Volume 7, issue 2 (2003)

Download this article
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Equivariant Euler characteristics and $K$–homology Euler classes for proper cocompact $G$–manifolds

Wolfgang Lueck and Jonathan Rosenberg

Geometry & Topology 7 (2003) 569–613
Bibliography
1 H Abels, A universal proper $G$–space, Math. Z. 159 (1978) 143 MR0501039
2 M F Atiyah, I M Singer, The index of elliptic operators III, Ann. of Math. $(2)$ 87 (1968) 546 MR0236952
3 S Baaj, P Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les $C^{*}$–modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 875 MR715325
4 B Blackadar, $K$–theory for operator algebras, Mathematical Sciences Research Institute Publications 5, Springer (1986) MR859867
5 J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$– and $L$–theory, $K$–Theory 15 (1998) 201 MR1659969
6 T tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter & Co. (1987) MR889050
7 J Dixmier, $C^*$–algebras, North-Holland Mathematical Library 15, North-Holland Publishing Co. (1977) MR0458185
8 M P Gaffney, A special Stokes's theorem for complete Riemannian manifolds, Ann. of Math. $(2)$ 60 (1954) 140 MR0062490
9 N Higson, A primer on $KK$–theory, from: "Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988)", Proc. Sympos. Pure Math. 51, Amer. Math. Soc. (1990) 239 MR1077390
10 D S Kahn, J Kaminker, C Schochet, Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977) 203 MR0474274
11 J Kaminker, J G Miller, Homotopy invariance of the analytic index of signature operators over $C^{*}$–algebras, J. Operator Theory 14 (1985) 113 MR789380
12 G G Kasparov, The operator $K$–functor and extensions of $C^{*}$–algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 571, 719 MR582160
13 G G Kasparov, Equivariant $KK$–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147 MR918241
14 T Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer (1995) MR1335452
15 H B Lawson Jr., M L Michelsohn, Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989) MR1031992
16 W Lück, Transformation groups and algebraic $K$–theory, Lecture Notes in Mathematics 1408, Springer (1989) MR1027600
17 W Lück, $L^2$–invariants: theory and applications to geometry and $K$–theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 44, Springer (2002) MR1926649
18 W Lück, Chern characters for proper equivariant homology theories and applications to $K$– and $L$–theory, J. Reine Angew. Math. 543 (2002) 193 MR1887884
19 W Lück, The relation between the Baum–Connes conjecture and the trace conjecture, Invent. Math. 149 (2002) 123 MR1914619
20 W Lück, J Rosenberg, The equivariant Lefschetz fixed point theorem for proper cocompact $G$–manifolds, from: "High-dimensional manifold topology", World Sci. Publ., River Edge, NJ (2003) 322 MR2048727
21 D Meintrup, On the type of the universal space for a family of subgroups, PhD thesis, Universität Münster (2000)
22 J Rosenberg, Analytic Novikov for topologists, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)", London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 338 MR1388305
23 J Rosenberg, The $K$–homology class of the Euler characteristic operator is trivial, Proc. Amer. Math. Soc. 127 (1999) 3467 MR1610789
24 J Rosenberg, The $G$–signature theorem revisited, from: "Tel Aviv Topology Conference: Rothenberg Festschrift (1998)", Contemp. Math. 231, Amer. Math. Soc. (1999) 251 MR1707347
25 J Rosenberg, The $K$–homology class of the equivariant Euler characteristic operator, unpublished preprint
26 J Rosenberg, S Weinberger, Higher $G$–signatures for Lipschitz manifolds, $K$–Theory 7 (1993) 101 MR1235284
27 J Rosenberg, S Weinberger, The signature operator at 2, Topology 45 (2006) 47 MR2170494
28 J P Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer (1977) MR0450380
29 S Waner, Y Wu, The local structure of tangent $G$–vector fields, Topology Appl. 23 (1986) 129 MR855452
30 S Waner, Y Wu, Equivariant $\mathrm{SKK}$ and vector field bordism, Topology Appl. 28 (1988) 29 MR927280