Volume 7, issue 2 (2003)

Download this article
For printing
Recent Issues

Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Other MSP Journals
Area preserving group actions on surfaces

John Franks and Michael Handel

Geometry & Topology 7 (2003) 757–771

arXiv: math.DS/0203159

Abstract

Suppose G is an almost simple group containing a subgroup isomorphic to the three-dimensional integer Heisenberg group. For example any finite index subgroup of SL(3, ) is such a group. The main result of this paper is that every action of G on a closed oriented surface by area preserving diffeomorphisms factors through a finite group.

Keywords
group actions, Heisenberg group, almost simple
Mathematical Subject Classification 2000
Primary: 57S25
Secondary: 37E30
References
Forward citations
Publication
Received: 28 March 2003
Revised: 26 October 2003
Accepted: 29 October 2003
Published: 30 October 2003
Proposed: Benson Farb
Seconded: Leonid Polterovich, Joan Birman
Authors
John Franks
Department of Mathematics
Northwestern University
Evanston
Illinois 60208-2730
USA
Michael Handel
Department of Mathematics
CUNY, Lehman College
Bronx
New York 10468
USA