Volume 8, issue 1 (2004)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A few remarks about symplectic filling

Yakov Eliashberg

Geometry & Topology 8 (2004) 277–293

arXiv: math.SG/0308183

Abstract

We show that any compact symplectic manifold (W,ω) with boundary embeds as a domain into a closed symplectic manifold, provided that there exists a contact plane ξ on W which is weakly compatible with ω, i.e. the restriction ω | ξ does not vanish and the contact orientation of W and its orientation as the boundary of the symplectic manifold W coincide. This result provides a useful tool for new applications by Ozsváth–Szabó of Seiberg–Witten Floer homology theories in three-dimensional topology and has helped complete the Kronheimer–Mrowka proof of Property P for knots.

To Ada

Keywords
contact manifold, symplectic filling, symplectic Lefschetz fibration, open book decomposition
Mathematical Subject Classification 2000
Primary: 53C15
Secondary: 57M50
References
Forward citations
Publication
Received: 25 November 2003
Revised: 13 January 2004
Accepted: 2 January 2004
Published: 14 February 2004
Proposed: Leonid Polterovich
Seconded: Peter Ozsváth, Dieter Kotschick
Authors
Yakov Eliashberg
Department of Mathematics
Stanford University
Stanford
California 94305-2125
USA