Volume 8, issue 3 (2004)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
A field theory for symplectic fibrations over surfaces

François Lalonde

Geometry & Topology 8 (2004) 1189–1226

arXiv: math.SG/0309335

Abstract

We introduce in this paper a field theory on symplectic manifolds that are fibered over a real surface with interior marked points and cylindrical ends. We assign to each such object a morphism between certain tensor products of quantum and Floer homologies that are canonically attached to the fibration. We prove a composition theorem in the spirit of QFT, and show that this field theory applies naturally to the problem of minimising geodesics in Hofer’s geometry. This work can be considered as a natural framework that incorporates both the Piunikhin–Salamon–Schwarz morphisms and the Seidel isomorphism.

Keywords
symplectic fibration, field theory, quantum cohomology, Floer homology, Hofer's geometry, commutator length
Mathematical Subject Classification 2000
Primary: 53D45
Secondary: 53D40, 81T40, 37J50
References
Forward citations
Publication
Received: 20 September 2003
Revised: 22 August 2004
Accepted: 11 July 2004
Published: 10 September 2004
Proposed: Leonid Polterovich
Seconded: Yasha Eliashberg, Robion Kirby
Authors
François Lalonde
Department of Mathematics and Statistics
University of Montreal
Montreal H3C 3J7
Quebec
Canada