Volume 9, issue 2 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Singular Lefschetz pencils

Denis Auroux, Simon K Donaldson and Ludmil Katzarkov

Geometry & Topology 9 (2005) 1043–1114
Bibliography
1 D Auroux, Symplectic 4–manifolds as branched coverings of $\bold C\bold P^2$, Invent. Math. 139 (2000) 551 MR1738061
2 D Auroux, A remark about Donaldson's construction of symplectic submanifolds, J. Symplectic Geom. 1 (2002) 647 MR1959060
3 S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666 MR1438190
4 S K Donaldson, Lefschetz fibrations in symplectic geometry, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 309 MR1648081
5 S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205 MR1802722
6 S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743 MR1958528
7 D T Gay, R Kirby, Constructing symplectic forms on 4–manifolds which vanish on circles, Geom. Topol. 8 (2004) 743 MR2057780
8 R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177 MR2108373
9 K Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 MR2072799
10 K Honda, Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105 MR2108214
11 C LeBrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535 MR1487727
12 F Presas, Submanifolds of symplectic manifolds with contact border arXiv:math.SG/0007037
13 C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299 MR1677891
14 C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167 MR1697181
15 W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467 MR0402764