Volume 9, issue 3 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Khovanov's homology for tangles and cobordisms

Dror Bar-Natan

Geometry & Topology 9 (2005) 1443–1499

arXiv: math.GT/0410495

Abstract

We give a fresh introduction to the Khovanov Homology theory for knots and links, with special emphasis on its extension to tangles, cobordisms and 2–knots. By staying within a world of topological pictures a little longer than in other articles on the subject, the required extension becomes essentially tautological. And then a simple application of an appropriate functor (a “TQFT”) to our pictures takes them to the familiar realm of complexes of (graded) vector spaces and ordinary homological invariants.

Keywords
2–knots, canopoly, categorification, cobordism, Euler characteristic, Jones polynomial, Kauffman bracket, Khovanov, knot invariants, movie moves, planar algebra, skein modules, tangles, trace groups
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57M27
References
Forward citations
Publication
Received: 3 November 2004
Accepted: 4 July 2005
Published: 8 August 2005
Proposed: Vaughan Jones
Seconded: Robion Kirby, Cameron Gordon
Authors
Dror Bar-Natan
Department of Mathematics
University of Toronto
Toronto
Ontario M5S 3G3
Canada
http://www.math.toronto.edu/~drorbn/