Volume 9, issue 4 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Squeezing in Floer theory and refined Hofer–Zehnder capacities of sets near symplectic submanifolds

Ely Kerman

Geometry & Topology 9 (2005) 1775–1834
Bibliography
1 V I Arnol’d, On some problems in symplectic topology, from: "Topology and geometry—Rohlin Seminar", Lecture Notes in Math. 1346, Springer (1988) 1 MR970068
2 V Benci, H Hofer, P H Rabinowitz, A remark on a priori bounds and existence for periodic solutions of Hamiltonian systems, from: "Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 209, Reidel (1987) 85 MR920609
3 V Benci, P H Rabinowitz, A priori bounds for periodic solutions of a class of Hamiltonian systems, Ergodic Theory Dynam. Systems 8* (1988) 27 MR967627
4 M Bialy, L Polterovich, Geodesics of Hofer's metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76 (1994) 273 MR1301192
5 P Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001) 407 MR1844078
6 P Biran, L Polterovich, D Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J. 119 (2003) 65 MR1991647
7 S V Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1978) 72 MR524544
8 R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer (1982) MR658304
9 G Contreras, L Macarini, G P Paternain, Periodic orbits for exact magnetic flows on surfaces, Int. Math. Res. Not. (2004) 361 MR2036336
10 K Cieliebak, A Floer, H Hofer, Symplectic homology II: A general construction, Math. Z. 218 (1995) 103 MR1312580
11 K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology II: Stability of the action spectrum, Math. Z. 223 (1996) 27 MR1408861
12 K Cieliebak, V L Ginzburg, E Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv. 79 (2004) 554 MR2081726
13 C C Conley, E Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V I: Arnol'd, Invent. Math. 73 (1983) 33 MR707347
14 Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 MR1826267
15 A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513 MR965228
16 A Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207 MR1001276
17 A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575 MR987770
18 A Floer, H Hofer, Symplectic homology I: Open sets in $\mathbb{C}^n$, Math. Z. 215 (1994) 37 MR1254813
19 A Floer, H Hofer, K Wysocki, Applications of symplectic homology I, Math. Z. 217 (1994) 577 MR1306027
20 A Floer, H Hofer, C Viterbo, The Weinstein conjecture in $P\times \mathbb{C}^l$, Math. Z. 203 (1990) 469 MR1038712
21 V L Ginzburg, New generalizations of Poincaré's geometric theorem, Funktsional. Anal. i Prilozhen. 21 (1987) 16, 96 MR902290
22 V L Ginzburg, On closed trajectories of a charge in a magnetic field. An application of symplectic geometry, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 131 MR1432462
23 V L Ginzburg, An embedding $S^{2n-1}{\rightarrow}\mathbb{R}^{2n}$, $2n-1{\geq}7$, whose Hamiltonian flow has no periodic trajectories, Internat. Math. Res. Notices (1995) 83 MR1317645
24 V L Ginzburg, A smooth counterexample to the Hamiltonian Seifert conjecture in $\bold R^6$, Internat. Math. Res. Notices (1997) 641 MR1459629
25 V L Ginzburg, B Z Gürel, A $C^2$–smooth counterexample to the Hamiltonian Seifert conjecture in $\mathbb R^4$, Ann. of Math. $(2)$ 158 (2003) 953 MR2031857
26 V L Ginzburg, B Z Gürel, Relative Hofer–Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J. 123 (2004) 1 MR2060021
27 V L Ginzburg, B Z Gürel, E Kerman, Branching Floer homology, in progress
28 V L Ginzburg, E Kerman, Periodic orbits in magnetic fields in dimensions greater than two, from: "Geometry and topology in dynamics (Winston–Salem, NC, 1998/San Antonio, TX, 1999)", Contemp. Math. 246, Amer. Math. Soc. (1999) 113 MR1732375
29 V L Ginzburg, E Kerman, Periodic orbits of Hamiltonian flows near symplectic extrema, Pacific J. Math. 206 (2002) 69 MR1924819
30 A Gray, Tubes, Addison-Wesley Publishing Company Advanced Book Program (1990) MR1044996
31 M R Herman, Examples of compact hypersurfaces in $\mathbb{R}^{2p}, 2p{\geq}6$, with no periodic orbits, from: "Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 533, Kluwer Acad. Publ. (1999) 126 MR1720888
32 H Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25 MR1059642
33 H Hofer, Estimates for the energy of a symplectic map, Comment. Math. Helv. 68 (1993) 48 MR1201201
34 H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 483 MR1362838
35 H Hofer, C Viterbo, The Weinstein conjecture in cotangent bundles and related results, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 15 (1988) MR1015801
36 H Hofer, C Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583 MR1162367
37 H Hofer, E Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90 (1987) 1 MR906578
38 H Hofer, E Zehnder, A new capacity for symplectic manifolds, from: "Analysis, et cetera", Academic Press (1990) 405 MR1039354
39 H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag (1994) MR1306732
40 M Hutchings, Floer homology of families I, Algebr. Geom. Topol. 8 (2008) 435 MR2443235
41 E Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds, Internat. Math. Res. Notices (1999) 953 MR1717637
42 E Kerman, New smooth counterexamples to the Hamiltonian Seifert conjecture, J. Symplectic Geom. 1 (2002) 253 MR1959583
43 E Kerman, F Lalonde, Length minimizing Hamiltonian paths for symplectically aspherical manifolds, Ann. Inst. Fourier (Grenoble) 53 (2003) 1503 MR2032941
44 F Lalonde, D McDuff, Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35 MR1354953
45 F Laudenbach, Homotopie régulière inactive et engouffrement symplectique, Ann. Inst. Fourier (Grenoble) 36 (1986) 93 MR850746
46 M Levi, On a problem by Arnold on periodic motions in magnetic fields, Comm. Pure Appl. Math. 56 (2003) 1165 MR1989230
47 G Liu, G Tian, Weinstein conjecture and GW-invariants, Commun. Contemp. Math. 2 (2000) 405 MR1806943
48 G Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math. 52 (1998) 331 MR1645455
49 G Lu, Gromov–Witten invariants and pseudo symplectic capacities, Israel J. Math. 156 (2006) 1 MR2282367
50 L Macarini, Hofer–Zehnder capacity and Hamiltonian circle actions, Commun. Contemp. Math. 6 (2004) 913 MR2112475
51 L Macarini, F Schlenk, A refinement of the Hofer–Zehnder theorem on the existence of closed characteristics near a hypersurface, Bull. London Math. Soc. 37 (2005) 297 MR2119029
52 D McDuff, Geometric variants of the Hofer norm, J. Symplectic Geom. 1 (2002) 197 MR1959582
53 D McDuff, J Slimowitz, Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001) 799 MR1871405
54 Y G Oh, Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomorphism group, Asian J. Math. 6 (2002) 579 MR1958084
55 Y Ostrover, A comparison of Hofer's metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Commun. Contemp. Math. 5 (2003) 803 MR2017719
56 L Polterovich, Geometry on the group of Hamiltonian diffeomorphisms, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 401 MR1648090
57 L Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001) MR1826128
58 M Poźniak, Floer homology, Novikov rings and clean intersections, from: "Northern California Symplectic Geometry Seminar", Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 119 MR1736217
59 F Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics, Comment. Math. Helv. 81 (2006) 105 MR2208800
60 M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419 MR1755825
61 D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143 MR1702944
62 K F Siburg, New minimal geodesics in the group of symplectic diffeomorphisms, Calc. Var. Partial Differential Equations 3 (1995) 299 MR1385290
63 J C Sikorav, Systèmes Hamiltoniens et topologie symplectique, ETS, EDITRICE Pisa (1990)
64 M Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface, Bol. Soc. Brasil. Mat. $($N.S.$)$ 20 (1990) 49 MR1143173
65 I Ustilovsky, Conjugate points on geodesics of Hofer's metric, Differential Geom. Appl. 6 (1996) 327 MR1422339
66 H Weyl, On the Volume of Tubes, Amer. J. Math. 61 (1939) 461 MR1507388