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1 Introduction

A Legendrian knot is an embedding S1 →֒ R3
xyz which is everywhere tangent

to the kernel of the standard contact 1–form α = dz − ydx. Two such knots
are equivalent if they are homotopic through Legendrian knots. This is a refine-
ment of the obvious subdivision according to classical knot type; just how much
finer is a topic of current research. (We may refer to this as the π0–problem of
the space Leg(S1,R3) of Legendrian knots). The integer-valued invariants tb
(Thurston–Bennequin number) and r (rotation number) guarantee that every
classical knot type contains infinitely many Legendrian equivalence classes. It
was a major break-through when Chekanov [6] introduced a much more compli-
cated, Floer-theoretical invariant which was able to distinguish between Legen-
drian knots of the same tb, r , and classical type (since then, Etnyre and Honda
[11, 12, 13] have been able to prove similar results with different methods).
The form in which we’ll consider Chekanov’s invariant is that of a system of
homology groups, which we will call contact homology.

In this paper we use contact homology to tackle another, so called π1–problem;
namely, we use monodromy induced on this homology to provide the first exam-
ples that Legendrian and classical knots are different at the level of 1–parameter
families.

1.1 Statements of results

In its most general formulation, Chekanov’s invariant of Legendrian knots [6]
takes the form of a stable tame isomorphism class of differential graded algebras,
or DGA’s for short, (A∗, ∂). What’s more important for us is that in particu-
lar, the homology ker ∂/ im ∂ is an invariant of the Legendrian knot type. This
homology, which is actually also a graded algebra over Z2 , will be referred to as
contact homology and will be denoted by H(L), where L is a (representative
of a) Legendrian knot type. In [14], Etnyre, Ng, and Sabloff defined a natural
extension of Chekanov’s work, namely a DGA and corresponding contact ho-
mology with Z[t, t−1]–coefficients. We will carry out our proofs in this more
general setting, even though in all of the applications known to the author the
original Z2–version (which will be used in sections 6–10) would be sufficient.

The main result of the paper is the following:

Theorem 1.1 For every Legendrian knot type L ⊂ Leg(S1,R3) and generic
L ∈ L, there exists a multiplicative homomorphism

µ : π1(L, L) → Aut(H(L)),
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defined by continuation on the Chekanov–Eliashberg contact homology H . This
is true with either Z2 or Z[t, t−1]–coefficients.

In particular, monodromy calculations are carried out in the homology and
neither in its linearized [6] or abelianized [14] versions, nor in the DGA itself.
Augmentations (which are the objects also needed to define linearized homol-
ogy) do however play an important role in proving that µ is non-trivial. This
will be demonstrated by the following example. Let L be the space of posi-
tive Legendrian (p, q) torus knots with maximal Thurston–Bennequin number
(where p, q ≥ 2 are relatively prime). L is connected by a result of Etnyre
and Honda [11]. Consider the loop Ωp,q ⊂ L of Figure 1 (a more elaborate
definition is in section 8). We claim the following:

Theorem 1.2 [Ωp,q] ∈ π1(L) is either an element of infinite order or its order
is divisible by p+ q .

Figure 1: The loop Ωp,q when p = 2 and q = 5, shown in the front projection

By Theorem 1.1, this follows immediately from the following:

Theorem 1.3 The restricted monodromy µ0(Ωp,q) = µ(Ωp,q)
∣
∣
H0(L)

of the loop

Ωp,q , where H0(L) is the index 0 part of the Z2–coefficient contact homology
H(L), has order p+ q .

In particular, µ(Ωp,q) is different from the identity automorphism, and because
p + q doesn’t divide 2p, so is (µ(Ωp,q))

2p . Thus by Theorem 1.1, [Ωp,q]
2p ∈

π1(L) is non-trivial. On the other hand, if K is the space of smooth positive
(p, q) torus knots, then [Ωp,q]

2p ∈ π1(K) is trivial1, because Ωp,q is homotopic
to a rotation by 2π/p radians and π1(SO(3)) = Z2 . So Theorem 1.2 had
to be demonstrated via a specifically “Legendrian” technique, which is the
monodromy invariant µ. We also have

1In fact, an elementary application of Hatcher’s work [20] shows that if p+ q is odd,
then Ωp,q is itself contractible in K, and if p+ q is even, then [Ωp,q] ∈ π1(K) has order
2.
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Corollary 1.4 There exist Legendrian knot types L so that for the corre-
sponding smooth knot type K ⊃ L, the homomorphism π1(L) → π1(K) in-
duced by the inclusion is not injective.

It is an open problem whether this homomorphism, for fixed K and L, is always
surjective. It is also worthwhile to compare our results to those of Benham, Lin,
and Miller in [2]. They prove that if W is the set of knots in K with writhe
tb(L) (so that L ⊂ W ⊂ K) then the inclusion W →֒ K is a weak homotopy
equivalence. For results about the homotopy type of K, see Hatcher [20].

There are two widely used ways to represent Legendrian knots in the standard
contact R3 . In Figure 1, we used the front projection. For most of the paper,
however, we will use Lagrangian projections, for the simple reason that H
is naturally defined in terms of those. (Ng [23] gives a definition in terms of
fronts.) Lagrangian projections are also more symmetric, but on the other hand
less robust than fronts. By this I mean that certain linear constraints need to be
satisfied both for the existence of an actual Legendrian lift of the diagram and
for doing Reidemeister moves as well. While [6, section 11] contains a thorough
description of the former phenomenon, our Theorem 4.1 appears to be the first
account in the literature on the latter problem. We formulate a solution in
terms of techniques and language of linear programming.

The paper is organized as follows. In section 1.2 we give some motivation and
describe related work. We review some basic material in section 2. Section 3
contains the definition of monodromy and the proof of Theorem 1.1. Section 4
concludes the general discussion of one parameter families of Legendrian links
by addressing Reidemeister moves.

Then we turn to examples; section 5 contains the simplest non-trivial one known
to the author, a loop of Legendrian trefoils. In section 8 we include it in a much
more general class of examples. Those loops consist of so called Legendrian clo-
sures of positive braids. Section 6 examines their base points; in particular, we
compute their DGA. In section 7 we construct an augmentation for that DGA.
Finally, we specialize our discussion again to the case when the Legendrian clo-
sure is a positive torus knot and use the last two sections to prove Theorem
1.3.

Acknowledgments This paper is almost identical to the author’s PhD thesis
that was submitted in 2004 at the University of California at Berkeley. It is
my pleasure to thank the institution, and in particular my advisors, Rob Kirby
and Michael Hutchings, for all the generous support that they provided. It
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1.2 Floer theory

Loosely speaking, the idea of Floer theory is to formulate a Morse-type homol-
ogy theory of certain real-valued smooth functionals on certain infinite-dimen-
sional manifolds. The manifold and the functional are typically associated to
an object such as a pair of Lagrangians, a symplectomorphism, a contact struc-
ture, a Legendrian submanifold etc. Some special cases of this project have had
great success (alas, analytical details are sometimes missing) and we refer to
these as “Floer theories.” We should mention at least one case when the anal-
ogy with finite-dimensional Morse theory starts breaking down: in symplectic
field theory [9], of which contact homology is a special case [14], generators of
Floer homology are indeed critical points of an action functional, but flow lines
(which are pseudoholomorphic curves in an appropriate sense) starting from
a critical point may split and end at a finite collection of critical points (as
opposed to just one endpoint). The natural way to include this phenomenon
in our algebraic formulation of the theory is to write the multiple endpoints
as a product. This is how the chain complex in this case takes the form of a
differential graded algebra (DGA).

Besides finding new Floer theories, it is also an important and promising direc-
tion of research to generalize more and more features of finite-dimensional Morse
theory to these new settings. One such feature can be the so called continuation
map. Suppose (ft, gt), t ∈ [0, 1] is a 1–parameter family of smooth functions
and Riemannian metrics on the finite-dimensional smooth manifold F . Sup-
pose that the family is generic. This in particular means that the pairs (ft, gt)
are Morse–Smale (ie, they have associated Morse homologies H(t) ) with finitely
many exceptions 0 < t1 < . . . < tk < 1. Note that we can not speak of homolo-
gies H(ti) . Yet we may define a vector field on [0, 1]×F by V = t(1− t)∂t+Vt ,
where Vt is the negative gradient of ft with respect to gt , and after observing
that Criti(V ) = ({ 0 } × Criti−1(V0)) ∪ ({ 1 } × Criti(V1)), we may count flow
lines of V to define a chain map from the Morse complex of (f0, g0) to that
of (f1, g1). The fact that it induces an isomorphism (which we call the con-
tinuation map) H(0) → H(1) can be established by a certain construction of
chain homotopies [16], similar in flavor to the above2. This provides an alter-

2What has just been outlined is what I call the ‘analytic approach.’ Alternatively,
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native proof that the isomorphism class of Morse homology depends only on
the manifold, thus making Morse theory a self-contained homology theory.

But the usefulness of the continuation map doesn’t stop here. Consider a fibra-
tion π : Z → S1 with smooth manifold fiber F , along with a smooth function
f : Z → R and a Riemannian metric g on Z . Suppose that for 1 ∈ S1 ,
the pair (f

∣
∣
π−1(1)

, g
∣
∣
π−1(1)

) is Morse–Smale and the family (f
∣
∣
π−1(t)

, g
∣
∣
π−1(t)

)

is generic. Then by continuation, we obtain an automorphism (called mon-
odromy) H(1) → H(1) . This is naturally equivalent to the automorphism of
the singular homology of π−1(1) induced by the gluing map of the fibration
(which is well defined up to homotopy, therefore its action is well defined). In
particular, a non-trivial monodromy implies the non-triviality of the fibration.

As already demonstrated by Seidel [26] and Bourgeois [4], the continuation
(monodromy) map can prove non-triviality theorems, in a way analogous to the
above, about the fundamental group of the space of objects (“object” means a
symplectomorphism in [26] and a contact structure in [4]), to which a version
of Floer theory is associated3. To get such conclusions, it is of course a key
point to prove that monodromy is invariant under homotopies of the loop of
objects. In this paper we obtain such a result about the space of Legendrian
knots Leg(S1,R3).

There is also a generalized invariant of families of objects parametrized by an
arbitrary finite-dimensional manifold, recently discovered by Hutchings [21].
The value of this is a spectral sequence. [21] contains its description in the
case of finite-dimensional Morse theory, where the spectral sequence associated
to a generic 4–tuple (Z,B, f, g) (as above, except that S1 is replaced by the
arbitrary finite-dimensional manifold B ) turns out to be isomorphic to the
Leray–Serre spectral sequence of the fibration. A paper [22] detailing the case
of the Floer theory of symplectomorphisms, thus generalizing Seidel’s results,
is in preparation. In other Floer theories, apart from Bourgeois’s results (where
B = Sn) and the present paper (where B = S1 ), the spectral sequence invariant

one may study the bifurcations that take place at t = t1, . . . , tk and define ‘combina-
torial’ continuation maps H(ti−ε) → H(ti+ε) , as well as chain homotopies to guarantee
that these are isomorphisms. The approach taken in this paper will in fact be a gen-
eralization of the latter.

3Strictly speaking, Floer homology is associated only to generic objects. Once we
have proven that its isomorphism class is invariant within a path-component of the
objects, this distinction becomes immaterial, provided that we only wish to use Floer
theory to separate such path-components (ie, we do π0–theory). But the presence of
non-generic objects is potentially an issue again when we investigate the topology of
the path-components (like their π1 , as in this paper).
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is yet to be either established (see the next paragraph for more on this when
B = S1 ) or exploited.

The motivation behind the group of results concerning one-parameter families
is that Floer homology should not just be viewed as an invariant of certain
objects, but should also be treated as a twisted coefficient system over the
space of those objects; its non-trivial twisting is then capable of detecting the
fundamental group of the moduli space. The existence of this twisted coefficient
system, modulo an issue of fixing the signs in the continuation maps (see [21] for
more), is an immediate consequence of what’s already in the literature for many
versions of Floer theory. These are the versions where they prove topological
invariance by constructing continuation maps and chain homotopies using the
analytic methods introduced in Floer’s seminal paper [16] (as opposed to a study
of bifurcations, which also appears in earlier work of Floer). In these cases the
existence of a monodromy invariant, which is equivalent to the spectral sequence
when B = S1 , is automatic too.

However, the invariance of contact homology was established in a different way,
namely through a certain combinatorial “bifurcation analysis” [6]. Therefore
we can use the analytic considerations mentioned so far only as a source of
motivation that the monodromy invariant (and the spectral sequence invariant)
exists in this context, even though one suspects that once monodromy is defined
analytically, it will agree with our combinatorially defined version4. Following
this “hint” then, we streamline Chekanov’s original proof in section 3.1 (without
changing its combinatorial nature) to emphasize the role of continuation more,
and then in section 3.2, we continue the combinatorial study of bifurcations to
provide the chain homotopies needed to prove that monodromy is a well-defined
invariant.

2 Preliminaries

For a more thorough treatment and proofs of what follows see [6, 14, 10].

Throughout this paper, we work in the standard contact R3 ; we write the
1–form, whose kernel field is the contact distribution, as α = dz − ydx. A
curve λ : S1 → R3 is called a Legendrian knot if it is embedded (in particular,

4It is proven in [14] that Chekanov’s combinatorially defined homology is isomorphic
to the relative contact homology whose analytical definition was outlined in [9] and
completed in [7]. For proof of invariance, however, the authors use bifurcation analysis
in [7].
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it has an everywhere non-zero tangent) and λ∗(α) = 0. The space of such
knots, modulo reparametrization, is denoted by Leg(S1,R3). We will refer to
connected components of Leg(S1,R3) (with respect to the quotient of the C∞

topology) as Legendrian knot types5. When talking about classical or smooth
knots, we simply mean that the Legendrian assumption is not made. Modulo
reparametrization, these form the moduli space Emb(S1,R3), whose connected
components are called classical or smooth knot types.

A (Legendrian or classical) link is a finite disjoint union of knots.

2.1 Link projections

The Lagrangian projection is π : (x, y, z) 7→ (x, y). If L is a Legendrian link, it
admits an xy–projection that is an immersion with the additional properties
described below in Proposition 2.2. We call L and γ = π(L) generic if γ satis-
fies the usual assumptions for classical link diagrams, ie, it has no singularities
other than finitely many transverse self-crossings.

The front projection is (x, y, z) 7→ (x, z). The image of a generic Legendrian link
under this is a smooth curve with finitely many semicubical cusp points, no self-
tangencies and no vertical tangents. As y = dz/dx, at every crossing the strand
with smaller slope is the overcrossing one. Generic homotopies are composed of
isotopies and a list of Reidemeister moves (see Figure 2). Unlike for Lagrangian
projections, these moves can always be carried out without further restrictions.
For example, the definition of Ωp,q in Figure 1 (with 2(q − 1) Reidemeister II
moves and 2(q − 1) Reidemeister II−1 moves) is sound. For the rest of the
paper, we won’t need to use fronts, except occasionally for motivation.

Fix an orientation of the Legendrian knot L. Let a be a simple transverse
self-intersection (crossing) in its Lagrangian projection γ = π(L) and denote
the difference in z–coordinate between the two preimages of a by h(a). We
will refer to the positive number h(a) as the height of a. Starting at the
undercrossing, follow γ until we reach a again, this time on the upper strand.
This path is called the capping path of a and we denote it by γa .

We use capping paths to define the grading, or index of a crossing, as follows.
Assume that all crossings happen at a right angle. Then the rotation r(γa) of
the tangent to the capping path γa (with respect to the orientation dx ∧ dy

5We will use λ for actual maps and L for their equivalence classes modulo repara-
metrization, while L will be used to denote Legendrian knot types.
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I−1I−1

I I

II

II−1

III

Figure 2: Reidemeister moves in the front projection; the list is completed by three
more moves, which are just the reflections of the middle move in the vertical, horizontal,
and in both, axes.

of the plane) is an odd multiple of 1/4. The grading of the crossing a is the
integer

|a| = −2r(γa) −
1

2
. (1)

The rotation number r of a Legendrian knot is the Whitney index of its (ori-
ented) Lagrangian projection. Its sign does depend on the choice of orientation.
(However the modulo 2r residue of the grading of a crossing does not depend
on the orientation. This residue is the value of Chekanov’s original grading.)
The Thurston–Bennequin number tb of a Legendrian knot is the writhe of its
Lagrangian projection, ie, the number of crossings with even grading minus the
number of those with odd grading6. It doesn’t depend on the orientation of
the knot. The parities of r and tb are opposite. The list of the three classical
invariants of a Legendrian knot is completed by its classical knot type.

Figure 3: Reeb signs and orientation signs

The Reeb signs of the four quadrants surrounding a crossing are defined accord-
ing to the scheme on the left of Figure 3. For the definition of the DGA with

6It is easy to verify that (−1)|a| coincides with the sign of the crossing a in classical
knot theory. This fact is assumed in Figure 3, too.
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Z[t, t−1] coefficients in the next subsection, we will also need the concept of the
so called orientation sign. This is +1 for all quadrants surrounding an oddly
graded crossing and at evenly graded crossings, the two marked quadrants of
Figure 3 have orientation sign −1, the other two have +1. The only property
of the orientation signs that matters for the purposes of defining a homology
theory is the following:

Lemma 2.1 [14] Around the crossing a, the product of the orientation signs
of any two opposite quadrants is −(−1)|a| .

Let a1, a2, . . . , an be the crossings of a classical link diagram γ . Let us denote
the bounded components of the complement by U1, U2, . . . , Un+1 . Let Sγ =
⊕n

j=1 Raj and Vγ =
⊕n+1

i=1 RUi be vector spaces with labeled bases and let

S+
γ and V +

γ be their respective (open) positive cones. Chekanov defined the
linear map Ψγ : Sγ → Vγ by the matrix [Eij ], where Eij ∈ {−2,−1, 0, 1, 2} is
the number of quadrants at aj that face Ui , counted with Reeb signs.

Proposition 2.2 Suppose γ is the Lagrangian projection of a generic Legen-
drian link L. For the areas fi of Ui , heights hj of aj , and incidence coefficients
Eij as described above, we have

fi =

n∑

j=1

Eijhj . (2)

Proof First, it is an elementary fact that any arc g = (x, y) : [0, 1] → R2
xy

has Legendrian lifts λ(t) = (g(t), z(t)) in R3 : let z(0) = 0 and define z(t) =
∫ t

0 y(t)dx(t). Further, any two such lifts differ by a translation in the z direc-
tion.

For each i, consider a piecewise continuously differentiable closed path κ =
(x, y) : [0, 1] → R2

xy that traverses the boundary of Ui once counterclockwise.
Suppose it meets the crossings b1, . . . , bs in this order (repetition in the list
is allowed). Construct a Legendrian lift λ(t) = (κ(t), z(t)) of κ(t). This is
not a closed curve; in fact by Stokes’ theorem, z(1) − z(0) =

∫ 1
0 y(t)dx(t) =

∫

Ui
dy ∧ dx = −fi . On the other hand, the same λ can also be constructed by

gluing together z–translates of pieces of L. Inspecting Figure 3, it is easy to
see that the total change of z along the latter is exactly ±h(b1) ± · · · ± h(bs),
where the counting happens with the opposite of the Reeb sign.

We will also need the following observation from [6] later:

Geometry & Topology, Volume 9 (2005)



Contact homology and one parameter families of Legendrian knots 2023

Lemma 2.3 In the situation of Proposition 2.2,

n∑

j=1

Eij |aj | ≡ 2 − #(positive corners of Ui) (mod 2r).

Remark 2.4 The equations (2) imply the well known fact that a Lagrangian
projection bounds zero area. Indeed, at each crossing, the sum of the indices
with respect to γ of either pair of opposite regions (sharing the same Reeb sign)
is the same.

Remark 2.5 By equation (2), the height vector h = (h1, h2, . . . , hn) ∈ S+
γ of a

generic Lagrangian projection determines the area vector f = (f1, f2, . . . , fn+1).
Moreover, h is such that f = Ψγh lies in V +

γ . In addition to hi > 0 for all i,
this forces n+1 homogeneous linear inequalities for h. By satisfying the linear
constraints we either mean that h is such that h ∈ S+

γ and Ψγh ∈ V +
γ , or that

the pair (h, f) ∈ S+
γ × V +

γ is such that (2) holds.

Definition 2.6 Let γ be a classical link diagram and consider the open convex
cone

Cγ = {h ∈ S+
γ | Ψγh ∈ V +

γ }.

We say that γ is a Lagrangian diagram if Cγ is non-empty.

By the previous remark, Lagrangian projections of generic Legendrian links are
Lagrangian diagrams. Lagrangian diagrams are the objects represented in our
figures; in particular, we do not draw areas of regions to scale. All Lagrangian
diagrams can, though, be isotoped (in the smooth sense) to actual Lagrangian
projections (or, equivalently, we can use orientation-preserving diffeomorphisms
of R2 to take one diagram to another). Moreover, any element of Cγ can be
realized this way and because Cγ is convex, it is easy to see that all Lagrangian
projections with the same underlying Lagrangian diagram can be isotoped into
each other (this time in the Legendrian sense, ie, keeping the linear constraints
intact throughout). In particular, a Lagrangian diagram represents a well-
defined Legendrian link.

Example 2.7 Consider the knot diagram γ on the left side of Figure 4. We
claim that Cγ is non-empty, thus γ is the Lagrangian diagram of a Legendrian
knot L. The equations (2) take the following form (note the Reeb signs in

Geometry & Topology, Volume 9 (2005)
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Figure 4):

f1 = h(a2)
f2 = −2h(a1) + h(a2) + h(b1) + h(b3)
f3 = h(a1)
f4 = h(a1) − h(b1) − h(b2) − h(b3)
f5 = h(b1) + h(b2)
f6 = h(b2) + h(b3).

It is easy to check that the choice of h(a1) = 4, h(a2) = 7, h(b1) = h(b2) =
h(b3) = 1 yields the values f1 = 7, f2 = 1, f3 = 4, f4 = 1, and f5 = f6 = 2.
As these are all positive, our linear constraints can indeed be satisfied.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

a1 a1

a2 a2

b1b1 b2b2 b3b3

U1

U2

U3

U4

U5 U6

Figure 4: Right-handed Legendrian trefoil knot

The claim can be proven in a less direct way, too: the diagram γ is the result
of the resolution [23] of a certain front diagram, analogous to the base point of
the loop of Figure 1. See section 6 for more.

The rotation number of this knot (with either orientation, of course) is r(L) = 0.
The gradings of the crossings (with either orientation, because r = 0) are
|a1| = |a2| = 1 and |b1| = |b2| = |b3| = 0. Hence the Thurston–Bennequin
number is tb(L) = 1. Finally, the classical knot type of L is the right-handed
trefoil knot.

Remark 2.8 Let p and q be arbitrary points on the same component C
of the Legendrian link L. Then π(p) and π(q) divide γ = π(C) into two
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arcs, γ1 and γ2 . If γ′1 is another immersed arc with the same endpoints and
starting and ending tangent vectors as γ1 , and so that γ′1 ∪ (−γ1) bounds
zero area, then γ′1 ∪ γ2 possesses a Legendrian lift (in general, an immersion)
which coincides with C over γ2 . This diagrammatical method can be used to
construct modifications of Legendrian links that only affect a small segment of
the link, although possibly quite dramatically. We will use this idea in sections
4, 6, and 8.

2.2 Knot DGA and homology

Definition 2.9 Let R be a commutative ring. A differential graded algebra,
or DGA, is a graded associative algebra A =

⊕∞
i=−∞ Ai over R with identity

1 ∈ A0 , together with a differential ∂ : A → A. We will also refer to the
grading as the index, which is multiplicative and takes values in a cyclic group
Γ. We require that ∂ be an index −1, R–linear map so that ∂(ab) = ∂(a)b +
(−1)|a|a∂(b) for all b ∈ A and a ∈ A with pure index |a| (consequently, ∂(1) =
0), and finally that ∂2 = 0.

A DGA A is called semi-free (with generators a1, . . . , an ) if its underlying alge-
bra is the ring (tensor algebra) T (a1, . . . , an) of non-commutative polynomials
in a finite collection of pure-index elements a1, . . . , an ∈ A. We will use the
term degree to refer to the degree of polynomials in this situation.

Throughout the paper, we will use the term polynomial to mean non-commu-
tative polynomial.

Let L be an oriented, generic Legendrian knot in R3 with Lagrangian projection
γ ⊂ R2

xy . Let the crossings of γ be a1, a2, . . . , an . We associate a semi-free
DGA to L as follows.

The graded algebra Let A be the non-commutative, associative, unital poly-
nomial algebra over R = Z[t, t−1] generated by the symbols a1, a2, . . . , an .
Grade each generator using the value |ai| defined by (1) and let |t| = 2r
(this value, ie twice the rotation number, is often called the Maslov number
of the knot). Extend the grading to monomials multiplicatively, obtaining a
Z–grading so that we may write A∗ . Note that this grading, also called index,
is different from the grading given by the degree of the polynomials.

For each positive integer k , fix an oriented disc Πk (thus the boundary ∂Πk

is also oriented) with k points xk0, x
k
1 , . . . , x

k
k−1 marked on its boundary in the

given cyclic order. A continuous map f : Πk → R2
xy is admissible with respect to
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γ (sometimes we’ll say f is an admissible disc in γ ) if it is an immersion away
from the marked points, it preserves the orientation of the disc and moreover
it takes ∂Πk to γ so that each marked point is mapped to a crossing in such
a way that locally, the image of the disc forms an angle less than 180◦ . We
also require that the quadrant occupied near the crossing f(xk0) (the so called
positive corner) has Reeb sign +1 and all other quadrants, at the so called
negative corners f(xk1), . . . , f(xkk−1), have Reeb sign −1. We’ll also say that

the disc turns at its corners f(xk0), f(xk1), . . . , f(xkk−1), or that it turns at certain
quadrants located at those points.

Note that we didn’t require that the orientations of the curves γ and f(∂Πk)
match. Let us call an admissible immersion f compatible with the orientation
of γ (or a compatible disc) if those two orientations either agree at all points of
∂Πk or disagree at all such points. We will need the following lemma in section
6.

Lemma 2.10 Let γ be an oriented Lagrangian diagram. An admissible im-
mersion f is compatible with the orientation of γ if and only if its positive
corner has odd index and all of its negative corners have even indices.

Proof An immersion is compatible if and only if the orientation requirement
is satisfied in arbitrarily small neighborhoods of the punctures. Then the state-
ment follows very easily from the observation (also mentioned in footnote 6)
that (−1)|a| coincides with the sign of the crossing a in classical knot theory.
Indeed, the middle diagram of Figure 3 shows an oddly graded crossing and
we see (comparing with the diagram on the left) that a compatible disc may
only turn at its positive quadrants. The diagram on the right shows an evenly
graded crossing and a similar examination yields that compatible discs may
only turn at its negative quadrants.

The following lemma is a consequence of Proposition 2.2.

Lemma 2.11 Let f : Πk → R2
xy be an admissible immersion. Then

h(f(xk0)) =

∫

Πk

f∗(dx ∧ dy) +
k−1∑

i=1

h(f(xki )).

In particular, h(f(xk0)) > h(f(xki )) for all i = 1, . . . , k − 1.
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The differential To compute ∂(a) for a given crossing a, one considers all
admissible immersions, modulo reparametrization, with positive corner a. A
typical one described above contributes the monomial

t−l · ε0ε1 . . . εk−1f(xk1) . . . f(xkk−1),

where ε0, ε1, . . . , εk−1 are the orientation signs (see Figure 3) of the quad-
rants occupied by f(Πk) at its corners, and l is defined as follows. Take the
union of the oriented segments of f(∂Πk) (the orientation is induced from that
of ∂Πk ) with the capping path γf(xk

0 ) = γa and the reversed capping paths

−γf(xk
1), . . . ,−γf(xk

k−1
) . This is a cycle whose homology class in H(L;Z) ∼= Z

is identified with the integer l via the chosen orientation of L.

∂(a) is the sum of these contributions over all admissible immersions. We
extend ∂ to A using Z[t, t−1]–linearity and the signed Leibniz rule ∂(ab) =
∂(a)b+ (−1)|a|a∂(b).

Theorem 2.12 (Chekanov–Etnyre–Ng–Sabloff) The sum taken when com-
puting ∂(a) for any crossing a is finite, hence ∂ : A → A is well defined. It has
index −1 and satisfies ∂2 = 0.

Definition 2.13 The semi-free DGA (A∗, ∂) is called the Chekanov–Eliash-
berg differential graded algebra associated to the generic Legendrian knot L. Its
homology H(L) = ker(∂)/ im(∂) is the Chekanov–Eliashberg contact homology,
or simply contact homology of L.

Chekanov’s main theorem is that H(L) (and further, a certain equivalence class
of (A∗, ∂), called its stable tame isomorphism class) is unchanged when one
passes to another generic Legendrian knot L′ that is homotopic to L through
Legendrian knots. (In this case we also say that L′ is Legendrian isotopic to
L.) We will state this result in Theorem 3.2.

Example 2.14 The trefoil DGA: please refer to Figure 4 and Example 2.7.
We choose the orientation as on the right side of the figure. Quadrants with
negative orientation sign are marked. Note that |t| = 0 and thus for index
reasons, ∂(b1) = ∂(b2) = ∂(b3) = 0. On the other hand,

∂(a1) = 1 − b1 − b3 − tb1b2b3. (3)

The admissible discs contributing these terms are U3 , U4 ∪ U5 , U4 ∪ U6 , and
U4 , respectively. Similarly,

∂(a2) = 1 − b2 + t−1 + b2b3 + b1b2 + tb2b3b1b2, (4)
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with terms contributed by7 U1 , U2∪U3∪U4 , U2∪2U4∪U5∪U6 , U2∪2U4∪U5 ,
U2∪2U4∪U6 , and U2∪2U4 , respectively. Note that all admissible immersions in
γ are compatible with the orientation of the diagram. The following observation
will be useful later in the proof of Theorem 1.2 for p = 3, q = 2:

∂(a2b3 + (t−1 + b2b3)a1) = b3 − b2b3 + t−1b3 + b2b
2
3 + b1b2b3 + tb2b3b1b2b3

+ t−1 − t−1b1 − t−1b3 − b1b2b3

+ b2b3 − b2b3b1 − b2b
2
3 − tb2b3b1b2b3

= b3 + t−1 − t−1b1 − b2b3b1.

(5)

In other words, b3 + t−1 − t−1b1 − b2b3b1 = 0 in the contact homology.

We may recover Chekanov’s original DGA by keeping the same generators and
admissible discs, but putting t = 1, reducing coefficients modulo 2 and the
grading modulo 2r . For example, in this theory, (3) and (4) reduce to ∂(a1) =
1 + b1 + b3 + b1b2b3 and ∂(a2) = b2 + b2b3 + b1b2 + b2b3b1b2 , respectively.

2.3 DGA maps and the product structure

Chain complexes of homology theories are primarily Abelian groups with a
differential. The presence of the (non-commutative) product structure in Che-
kanov–Eliashberg theory is an ‘extra’ feature. In this section we point out how
this does not actually complicate matters; namely, how we can concentrate on
generators only and then let the algebra take care of itself. For more on general
DGA theory, see [15].

Definition 2.15 Let (A, ∂) and (B, ∂′) be differential graded algebras (over
the same commutative ring R and graded by the same cyclic group Γ). A
linear map ϕ : A → B is a chain map if it is index-preserving and intertwines
the differentials: ϕ(∂(x)) = ∂′(ϕ(x)) for all x ∈ A. If such a ϕ is also an
algebra homomorphism, then we call it a DGA morphism.

Definition 2.16 Let (A, ∂) and (B, ∂′) be differential graded algebras (over
the same R, graded by the same Γ), and ϕ,ψ : A → B chain maps between

7This way of describing the actual immersions works fine in this case. In general
however it is possible that two different admissible discs cover the same regions with
the same multiplicities. As to whether we indeed listed all admissible discs, the reader
can check that as an exercise or can refer to section 6, where we shall determine all
admissible discs in a certain class of Lagrangian diagrams generalizing γ .
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them. An index r map S : A → B is called a (ϕ,ψ)–derivation of index r if
for all a ∈ A of pure index |a| and for all b ∈ A, we have

S(ab) = S(a)ψ(b) + (−1)r|a|ϕ(a)S(b).

If (A, ∂) = (B, ∂′) and ϕ = ψ = idA, then we simply speak of a derivation of
index r .

In this paper we consider three types of DGA mappings. They are all R–
linear, but each has a different relation to the product structure of the DGA.
Namely, by definition, the differential itself is a derivation of index −1. All
chain maps that we consider are going to be DGA morphisms (in particular,
they fix constants), and all chain homotopies connecting chain maps ϕ, ψ will
be (ϕ,ψ)–derivations of index 1 (from which it follows that they take constants
to 0). The following two lemmas show that these self-imposed restrictions are
very natural and useful.

Lemma 2.17 Let (A, ∂) and (B, ∂′) be semi-free differential graded algebras
over a commutative ring R, graded by Γ. If an index 0 algebra homomorphism
η : A → B is such that η(∂(a)) = ∂′(η(a)) for all generators of A, then the
same holds for all elements a ∈ A (ie, η is a chain map).

Moreover, any assignment of values η(a) ∈ B to the generators a of A which
satisfies |η(a)| = |a| for all a can be uniquely extended to an index 0 algebra
homomorphism.

Proof To complete a trivial induction proof, we need to show that if a and b
are homogeneous elements of A that satisfy the desired property, then such is
ab, too:

η(∂(ab)) = η
(

∂(a)b+ (−1)|a|a∂(b)
)

= η(∂(a))η(b) + (−1)|a|η(a)η(∂(b))

= ∂′(η(a))η(b) + (−1)|η(a)|η(a)∂′(η(b)) = ∂′(η(a)η(b)) = ∂′(η(ab)).

In the last assertion, the existence of an extension is obvious, since A is semi-
free with the given generators and B is associative. We just need to check
that the unique extension is also of index 0, which is established with the same
induction argument based on noting that if |η(a)| = |a| and |η(b)| = |b|, then
|η(ab)| = |η(a)η(b)| = |η(a)| + |η(b)| = |a| + |b| = |ab|.

Lemma 2.18 Let (A, ∂) and (B, ∂′) be semi-free differential graded algebras
over the commutative ring R, graded by Γ, and let ϕ,ψ : A → B be DGA
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morphisms. If K : A → B is a (ϕ,ψ)–derivation of index 1 so that K(∂(a)) +
∂′(K(a)) = ϕ(a) − ψ(a) for all generators of A, then the same holds for all
elements a ∈ A (ie, K is a chain homotopy between ϕ and ψ).

Moreover, any assignment of values K(a) ∈ B to the generators a of A which
satisfies |K(a)| = |a| + 1 for all a can be uniquely extended to a (ϕ,ψ)–
derivation of index 1.

Proof The first part of the proof is a similar, but longer computation as in
the previous argument:

(K∂ + ∂′K)(ab) = K(∂(ab)) + ∂′(K(ab))

= K
(

∂(a)b+ (−1)|a|a∂(b)
)

+ ∂′
(

K(a)ψ(b) + (−1)|a|ϕ(a)K(b)
)

= K(∂(a))ψ(b) + (−1)|a|−1ϕ(∂(a))K(b)

+ (−1)|a|K(a)ψ(∂(b)) + (−1)2|a|ϕ(a)K(∂(b))

+ ∂′(K(a))ψ(b) + (−1)|a|+1K(a)∂′(ψ(b))

+ (−1)|a|∂′(ϕ(a))K(b) + (−1)|a|+|ϕ(a)|ϕ(a)∂′(K(b))

=
(
K(∂(a)) + ∂′(K(a))

)
ψ(b) + (−1)|a|

(
−ϕ(∂(a)) + ∂′(ϕ(a))

)
K(b)

+ (−1)|a|K(a)
(
ψ(∂(b)) − ∂′(ψ(b))

)
+ ϕ(a)

(
K(∂(b)) + ∂′(K(b))

)

= (ϕ(a) − ψ(a))ψ(b) + 0 + 0 + ϕ(a)(ϕ(b) − ψ(b))

= ϕ(a)ϕ(b) − ψ(a)ψ(b) = ϕ(ab) − ψ(ab).

In the second part, to show that the extension is unique, we need to establish
that K((ab)c) = K(a(bc)), which is due to the following direct computation:

K((ab)c) = K(ab)ψ(c) + (−1)|a|+|b|ϕ(ab)K(c)

= K(a)ψ(b)ψ(c) + (−1)|a|ϕ(a)K(b)ψ(c) + (−1)|a|+|b|ϕ(a)ϕ(b)K(c).

K(a(bc)) = K(a)ψ(bc) + (−1)|a|ϕ(a)K(bc)

= K(a)ψ(b)ψ(c) + (−1)|a|ϕ(a)K(b)ψ(c) + (−1)|a|(−1)|b|ϕ(a)ϕ(b)K(c).

The extension is also index 1 by the already usual induction argument: If
a and b are homogeneous with |K(a)| = |a| + 1 and |K(b)| = |b| + 1, then
|K(ab)| = |K(a)ψ(b) + (−1)|a|ϕ(a)K(b)|, where |ψ(b)| = |b| and |ϕ(a)| = |a|,
so K(ab) is homogeneous of index |a| + |b| + 1 = |ab| + 1.

Table 1 summarizes the relevant algebraic machinery. For all three rows, it is
true that if the ‘map’ is defined on the generators so that the ‘index’ requirement
is satisfied and then if it is extended to the whole DGA using linearity and the
‘product identity,’ then
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map property index product identity

differential ∂ ∂2 = 0 −1 ∂(ab) = ∂(a)b + (−1)|a|a∂(b)

chain map η η∂ = ∂′η 0 η(ab) = η(a)η(b)

chain homotopy K K∂ + ∂′K
between chain = ϕ− ψ 1 K(ab) = K(a)ψ(b) + (−1)|a|ϕ(a)K(b)

maps ϕ, ψ

Table 1: Product identities

(1) such an extension is unique, it satisfies the ‘index’ requirement, and

(2) if the ‘property’ requirement holds for the generators, then it holds for
all elements of the DGA.

3 The monodromy invariant

Let us first outline the contents of the section. Let L ⊂ Leg(S1,R3) be a
Legendrian knot type. We call an element of L generic, as in section 2, if its
Lagrangian projection is generic (this is equivalent to saying that the Legendrian
knot doesn’t have degenerate Reeb chords). These are the ones to which a
graded chain complex (A∗, ∂), and a corresponding Floer homology H are
actually associated. Non-generic objects form a codimension 1 discriminant
D ⊂ L.

Generic homotopies, ie paths in L, meet only the codimension 1 (codimension
is always meant with respect to L) stratum D1 ⊂ D and diagrammatically,
this corresponds to Reidemeister II, II−1 , or III moves (see Figure 6). If L and
L′ are in adjacent chambers of L \ D, then following [6] (and [14] for the case
of Z[t, t−1]–coefficients), one is able to write down a chain map ϕ : A(L) →
A(L′), corresponding to the Reidemeister move, that induces an isomorphism
ϕ∗ : H(L) → H(L′). (In [6, 14] they use these chain maps to prove that the
homology is independent of the actual projection.) Composing these chain
maps/isomorphisms, every generic path Φ(t) that connects generic objects L0

and L1 has an induced isomorphism Φ∗ : H(L0) → H(L1), called the holonomy
of the path. Details are found in section 3.1.

Now to prove that the holonomy only depends on the homotopy class (with
fixed endpoints) of Φ(t), one has to consider two kinds of events: paths that
are tangent to D1 (this is easy) and paths that meet D2 . To deal with the
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latter, we take a small generic loop Ψ(t), starting and ending at the generic
element L, and linking the codimension 2 discriminant D2 ⊂ D once. While it
is not necessarily the case that the induced chain map ψ : A∗(L) → A∗(L) is the
identity, we will establish that there is always a chain homotopy K : A∗(L) →
A∗+1(L) connecting ψ and idA∗(L) , thereby proving that on the homology level
ψ∗ = Ψ∗ = idH(L) , as desired.

In Figure 5, we represented a hypothetical case when two strands of the dis-
criminant meet transversally. (As it is shown in [1, Figure 6] and as we’ll see
in section 3.2, the local description at other points of D2 may be slightly less
or more complicated, but the approach is the same.) As we know that all ar-
rows on the ‘top level’ represent isomorphisms, we may choose any two objects,
which may even coincide, and direct all arrows from the first to the second.
If this choice of directions can be accompanied with a chain homotopy on the
‘middle level,’ and in section 3.2 we prove that this is always the case, then we
indeed get that the diagram of holonomies on the ‘top level’ commutes.

In section 3.3 we review our formulas in their simplified, Z2–coefficient versions.

3.1 Chain maps

Generic paths in Leg(S1,R3) are isotopies with a finite number of Reidemeister
moves. If we work with Lagrangian projections, then there are four different
kinds of the latter, depicted in Figure 6. IIIa and IIIb moves are also called
triangle moves. Move II is sometimes referred to as a birth and move II−1 as a
death (of a pair of crossings).

Let us denote the DGA’s of the diagrams in the upper row of Figure 6 by (A, ∂)
and in the lower row, by (A′, ∂′). The crossings not affected by the moves are
in an obvious one-to-one correspondence. If x ∈ A is one of these, then the
corresponding crossing in A′ will be denoted by x′ .

Before stating Theorem 3.2, let us review Chekanov’s analysis, although in
slightly different terms, of the bifurcation that takes place on the right side of
Figure 6. The re-phrasing is possible because we shall only be concerned with
the homology, and not the stable tame isomorphism class of the DGA, as our
invariant. Let the crossings that generate A be arranged by height as follows:

h(al) ≥ . . . ≥ h(a1) ≥ h(a) > h(b) ≥ h(b1) ≥ . . . ≥ h(bm).

Let ∂(a) = εaεbb+ v , where εa and εb are the orientation signs from Figure 6
(it is easy to prove that the exponent of t is 0 in the term coming from the
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Figure 5: Chain complexes and homologies of different objects
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vanishing bigon) and by Lemma 2.11, v ∈ T (b1, . . . , bm). Define

τ : A → A
′

by putting τ(ai) = a′i (1 ≤ i ≤ l), τ(bj) = b′j (1 ≤ j ≤ m), τ(a) = 0, and
τ(b) = ε′aε

′
bv

′ , where ε′a and ε′b are the other two orientation signs in Figure 6
and v′ is obtained from v in the obvious way of putting primes on all the bj ’s
in the expression. Note that these assignments preserve the grading, so by the
second statement of Lemma 2.17, we can extend τ to a well-defined index 0
algebra homomorphism. The geometric content of the bifurcation is captured
by the following result of Chekanov:

Lemma 3.1 τ : A → A′ is a chain map.

One of the statements of Theorem 3.2 is that τ induces an isomorphism of
homologies. Our goal now is to define what will be its homotopy inverse, that
is another chain map8 ϕ : A′ → A. While it will be the case that τ ◦ ϕ = idA′ ,
ϕ ◦ τ and idA will only be chain homotopic via a certain K : A → A. In fact,
we will build ϕ and K with a somewhat subtle simultaneous construction9,
using the filtration that we will introduce next.

Define
Ai = T (b1, . . . , bm, b, a, a1, . . . , ai)

and A
′
i = T (b′1, . . . , b

′
m, a

′
1, . . . , a

′
i)

for all i = 0, 1, . . . , l . Note that by Lemma 2.11, ∂(ai) ∈ Ai−1 and ∂(a′i) ∈
A′
i−1 . It follows that

(
Ai, ∂

∣
∣
Ai

)
and

(
A′
i, ∂

′
∣
∣
A′

i

)
are DGA’s themselves10 for all

i = 0, 1, . . . , l . Furthermore, for all such i, the restriction

τ : Ai → A
′
i

is a DGA morphism. Define the index 0 algebra homomorphism

ϕ : A
′
0 → A0

by ϕ(b′j) = bj (1 ≤ j ≤ m). By Lemma 2.17, this is also a chain map, for
ϕ(∂′(b′j)) = ϕ(∂′(τ(bj))) = ϕ(τ(∂(bj))) = ∂(bj) = ∂(ϕ(b′j)). Here we used

8All of the considerations leading up from this point to Theorem 3.2 are purely
algebraic. The chain map ϕ is less explicit in [6] and [14] than in what follows.

9In Remark 3.4, we express ϕ in even more explicit terms and without referring
to K . That description is needed for applications, but would be impractical in the
theoretical discussion.

10It is not true though that, for example, ∂ would map Ai to Ai−1 ; ∂(a2
i ) is usually

not in Ai−1 .
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Lemma 3.1 and that by Lemma 2.11, ∂(bj) can’t contain a or b, and finally,
the obvious fact that ϕ ◦ τ

∣
∣
T (b1,...,bm)

= idT (b1,...,bm) .

Now, ϕ ◦ τ and idA0
are both DGA endomorphisms of A0 . By the second

statement of Lemma 2.18, the last three rows of the assignment

ai 7→ 0 (i = 1, . . . , l)
a 7→ 0
b 7→ ε′aε

′
ba

bj 7→ 0 (j = 1, . . . ,m)

(6)

can be uniquely extended to a (ϕ ◦ τ, idA0
)–derivation

K : A0 → A0

of index 1; note that indeed, because ∂ is of index −1, we have |a| = |b| + 1.
Then we use the first part of Lemma 2.18 to show that K is a chain homotopy
between ϕ ◦ τ and idA0

: For the generators b1, . . . , bm , the condition holds by
the observation at the end of the previous paragraph, together with the fact, fol-
lowing from the definition, that the restriction of K to the DGA T (b1, . . . , bm)
is 0. For a and b, it is established below:

K(∂(a)) + ∂(K(a)) = K(εaεbb+ v) + 0

= εaεbε
′
aε

′
ba+K(v) = (−1)|a|(−1)|b|a+ 0 = −a

by Lemma 2.1, and

K(∂(b)) + ∂(K(b)) = 0 + ∂(ε′aε
′
ba) = ε′aε

′
b(εaεbb+ v) = −b+ ε′aε

′
bv.

On the other hand,

ϕ(τ(a)) − a = ϕ(0) − a = −a and ϕ(τ(b)) − b = ϕ(ε′aε
′
bv

′) − b = ε′aε
′
bv − b.

Next, we use a recursive process to define extensions of ϕ and K to the whole
of A′ and A, respectively. Suppose that for some value 0 ≤ i < l , the DGA
morphism ϕ : A′

i → Ai and the (ϕ ◦ τ, idAi
)–derivation K : Ai → Ai of index 1

are already defined so that K is a chain homotopy between ϕ ◦ τ
∣
∣
Ai

and idAi
.

Extend ϕ to Ai+1 by letting

ϕ(a′i+1) = ai+1 +K(∂(ai+1)). (7)

As this preserves the grading of a′i+1 , by Lemma 2.17 (second part) there does
exist an extension, which is an index 0 algebra homomorphism ϕ : A′

i+1 →
Ai+1 . To see that it’s also a DGA morphism, we use Lemma 2.17 (first part),
the inductive hypothesis, and the following computation:

ϕ(∂′(a′i+1)) = ϕ(∂′(τ(ai+1))) = ϕ(τ(∂(ai+1)))

= (K ◦ ∂ + ∂ ◦K)(∂(ai+1) + ∂(ai+1)

= ∂ (K(∂(ai+1)) + ai+1) = ∂(ϕ(a′i+1)),
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which works because ∂(ai+1) ∈ Ai and ∂2 = 0.

Now we are in a position to use the DGA morphisms ϕ ◦ τ : Ai+1 → Ai+1 and
idAi+1

, along with the relevant values from (6) to define the (ϕ ◦ τ, idAi+1
)–

derivation K : Ai+1 → Ai+1 of index 1, which is obviously an extension of
the previous K . To make sure that K is also a chain homotopy between
ϕ ◦ τ and idAi+1

, we still have to check that for ai+1 , but it’s a tautology:
(K ◦ ∂ + ∂ ◦K)(ai+1) = K(∂(ai+1)) = ϕ(a′i+1) − ai+1 = ϕ(τ(ai+1)) − ai+1 .

a

a a

b

bb

cc

IIIa IIIb IIII−1

a′ a′b′ b′

c′c′

ε′a εa εb ε′b

Figure 6: Legendrian Reidemeister moves in the Lagrangian projection. The + and −
signs are Reeb signs and εa , ε′a , εb , ε

′
b refer to orientation signs.

Theorem 3.2 (Chekanov) The following maps, when extended to A as al-
gebra homomorphisms, are chain maps that induce isomorphisms (as graded
algebras) of the corresponding Chekanov–Eliashberg contact homologies. (Re-
call that (A, ∂) is the DGA of the upper row, and (A′, ∂′) is the DGA of the
lower row in Figure 6.)

(1) Move IIIa : Let a 7→ a′ , b 7→ b′ , c 7→ c′ , and x 7→ x′ , where x is any
generator of A not shown in Figure 6.

(2) Move IIIb : Let

a 7→ a′ − εaεbεct
kc′b′,

where εa , εb , and εc are the orientation signs of the quadrants indicated
in Figure 6 and k = k(a; b, c) ∈ Z is the winding, with respect to the
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chosen orientation of the knot, of the union of capping paths −γa+γb+γc
(thought of as starting and ending at the single point that the triangle
shrinks to). Other generators are mapped trivially: b 7→ b′ , c 7→ c′ , and
x 7→ x′ .

(3) Move II−1 : Let ∂(a) = ±b+ v (recall that v does not contain neither a
nor b). Define x 7→ x′ , which gives rise to the obvious re-labeling v 7→ v′ .
Then let

a 7→ 0

b 7→ ∓v′

(this is the map τ of the preceding discussion).

(4) Move II: The map ϕ : A′ → A, constructed in the preceding paragraphs
(for a more explicit description, see Remark 3.4).

Proof We cite [6] and [14] that the maps associated to IIIa , IIIb , and II−1

moves are indeed chain maps (cf Lemma 3.1), and we have already seen that ϕ
is one. In each of the four cases, the reverse of the move is again a Reidemeister
move, with a corresponding chain map associated to it. It is enough to prove
that the relevant pairwise compositions of these chain maps are chain homotopic
to the identity. This is obvious for the pair of IIIa moves on the left side of
Figure 6. For the pair of IIIb moves in the middle, note that the reverse move
sends

a′ 7→ a− ε′aε
′
bε

′
ct
kcb,

where ε′a , ε
′
b , and ε′c are the orientation signs of the quadrants opposite to

the previously considered ones, while the value of k is the same. So, since
εaεbεcε

′
aε

′
bε

′
c = [−(−1)|a|][−(−1)|b|][−(−1)|c|] = −1 by Lemmas 2.1 and 2.3, the

chain maps themselves are inverses of each other.

Next, we claim that τ ◦ ϕ = idA′ . As both sides are DGA morphisms, it’s
enough to check for generators. The claim is obvious for the b′j and follows
from the definition for the a′i : τ(ϕ(a′i)) = τ(ai + K(∂(ai))) = τ(ai) = a′i ,
because τ ◦ K = 0. This last assertion is true because it’s satisfied by all
generators and τ ◦K and 0 are both (τ ◦ ϕ ◦ τ, τ)–derivations of index 1.

Finally, it is only the composition ϕ◦τ that requires a non-zero chain homotopy,
but we have already constructed such a K before stating the theorem.

Definition 3.3 We will refer to the graded algebra isomorphisms induced
by the maps described in Theorem 3.2 as the holonomies of the correspond-
ing Reidemeister moves. Sometimes the chain maps themselves will be called
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holonomies, too. Along generic paths, finitely many Reidemeister moves happen
and the composition of the corresponding holonomies is called the holonomy of
the path. When such a sequence of Reidemeister moves returns to the original
starting knot, the holonomy is referred to as the monodromy of the loop.

Remark 3.4 For the purposes of computing holonomies (and monodromies),
one should understand the map ϕ : A′ → A in more concrete terms. Of course,
we have

ϕ(b′j) = bj for all j = 1, . . . ,m. (8)

Next, recall that ϕ(a′1) = a1 +K(∂(a1)). Let us write

∂(a1) =
∑

κB1bB2bB3bB4b . . . BkbA,

where k ≥ 0, κ ∈ Z[t, t−1], B1, B2, . . . , Bk ∈ T (b1, . . . , bm) are monomials, and
in the monomial A ∈ A0 , every b factor is preceded by an a factor (the point
here is that the b factor right before A is the last b before the first a; if there
is no a at all, then it’s just the last b in the word). The sum is taken over all
admissible discs with positive corner at a1 . Then it is not hard to compute,
applying the Leibniz-type rule of Table 1 that we used to define K (recall also
that ∂(a) = εaεbb+ v = −ε′aε

′
bb+ v), that

ϕ(a′1) = a1 +
∑

κ
(

(−1)|B1|ε′aε
′
bB1aB2bB3bB4b . . . BkbA

+ (−1)|B1|+|B2|(−1)|b|B1vB2aB3bB4b . . . BkbA

+ (−1)|B1|+|B2|+|B3|ε′aε
′
bB1vB2vB3aB4b . . . BkbA

+ (−1)|B1|+|B2|+|B3|+|B4|(−1)|b|B1vB2vB3vB4a . . . BkbA

+ . . .

+ (−1)|B1|+...+|Bk|(−1)|b|
(
ε′aε

′
b(−1)|b|

)k
B1vB2vB3vB4v . . . BkaA

)

.

(9)

With this expression in hand, we may compute ϕ(a′2) = a2 +K(∂(a2)). In fact,
we find the following recursion: If ∂(ai) =

∑
κB1bB2bB3bB4b . . . BkbA, where

κ ∈ Z[t, t−1], B1, . . . , Bk ∈ T (b1, . . . , bm, a1, . . . , ai−1), and A doesn’t contain
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any copy of b which is not preceded by a copy of a, then

ϕ(a′i) = ai +
∑

κ
(

(−1)|B1|ε′aε
′
bB̄1aB2bB3bB4b . . . BkbA

+ (−1)|B1|+|B2|(−1)|b|B̄1vB̄2aB3bB4b . . . BkbA

+ (−1)|B1|+|B2|+|B3|ε′aε
′
bB̄1vB̄2vB̄3aB4b . . . BkbA

+ (−1)|B1|+|B2|+|B3|+|B4|(−1)|b|B̄1vB̄2vB̄3vB̄4a . . . BkbA

+ . . .

+ (−1)|B1|+...+|Bk|(−1)|b|
(
ε′aε

′
b(−1)|b|

)k
B̄1vB̄2vB̄3vB̄4v . . . B̄kaA

)

,

(10)

where B̄1, . . . , B̄k are obtained from B1, . . . , Bk by replacing each of the sym-
bols a1, . . . , ai−1 by the corresponding polynomial from the already constructed
list ϕ(a′1), . . . , ϕ(a′i−1). Note that if ∂(ai) doesn’t contain any of a1, . . . , ai−1 ,
then (10) is analogous to (9).

The following is an easy consequence of (8) and either (7) or (10):

Proposition 3.5 If ϕ : A′ → A is the holonomy of a Reidemeister II move and
x′ ∈ A′ is a generator so that for the corresponding x ∈ A, we have ∂(x) = 0,
then ϕ(x′) = x.

Example 3.6 Figure 7 shows the succession of four Reidemeister moves. Using
Theorem 4.1 it will be very easy to check that all four of them are possible; see
Example 4.2. Note that we dropped primed labels from our notation which we
hope will not lead to confusion. Let us compute the images of the cycles b1 ,
b2 , and b3 under the composition of the four holonomies. (We could apply the
chain maps to a1 and a2 as well but because those are not cycles in the chain
complex (see Example 2.14), the results in themselves are not very informative.
Let us just mention as an illustration that under the first of the four moves, the
image of a2 is a2 + d+ tb2b3d.)

The first move is of type II. But because after the move, the diagram still only
contains crossings with grading 0 or 1 (|c1| = 0 and |d| = 1) and |t| = 0, the
boundary of either one of the index 0 crossings b1 , b2 , and b3 is still 0 after
the move. Thus by Proposition 3.5, all of them are mapped trivially. The two
type IIIb moves that follow only affect d (d 7→ d+ a1c1 7→ d− b1a2 + a1c1 ) but
this is not relevant for our purpose. Finally, the holonomy of the II−1 move
takes b1 to −t−1 − b3c1 (and d to 0).

Next, we prove that a non-trivial monodromy implies that the loop itself is
non-trivial.
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Figure 7: The loop Ω3,2 of trefoils, shown in the Lagrangian projection

3.2 Chain homotopies

It is a folk theorem of singularity theory (see for example [1, p. 18], where the
more general situation of plane curves with semicubical cusp singularities is
considered) that there are six different codimension 2 strata (bifurcations) of
degenerate immersions of 1–manifolds into 2–manifolds. These are the three
different possibilities of two distant Reidemeister moves happening at the same
time, and three more types: quadruple points with pairwise transverse branches;
degenerate triple points when exactly two branches are tangent; and cubic
tangency of two branches. The neighborhoods (versal deformations) of points
on each of these strata are also understood (see [1, Figure 6]).

For our purposes, each case has to be further separated according to the actual
position of the branches in 3–space. Thus, we have six types of quadruple points
corresponding to the six cyclic orderings of the branches. Degenerate triple
points have three types distinguished by whether the third branch crosses over,
under, or between the two whose projections are tangent. Cubic tangencies are
separated into two obvious types. As to the cases of simultaneous Reidemeister
moves, let us note that if two degenerate Reeb chords appear at the same time,
their lengths, which we’ll call the height of the move, can generically be assumed
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different.

Theorem 3.7 Let L ⊂ Leg(S1,R3) be a Legendrian knot type. Let L0 and
L1 be generic elements of L and Φ(t), Ψ(t) two generic paths joining them,
inducing the holonomies Φ∗,Ψ∗ : H(L0) → H(L1). If these paths are homotopic
with their endpoints fixed, then Φ∗ = Ψ∗ .

Proof As Φ(t) and Ψ(t) are homotopic, there is also a generic homotopy
Φs(t) connecting them. This map meets the codimension 2 discriminant D2

transversely in finitely many points. If the number of such points is zero,
then the only time the sequence of Reidemeister moves changes is those finitely
many values of s when Φs(t) is tangent to D1 (for some value of t). At these
instances, a pair of Reidemeister moves appears or disappears. Because these
two moves are inverses of each other, their holonomies cancel each other out by
what we have shown in the proof of Theorem 3.2. The rest of the proof consists
of an analysis of the codimension 2 strata of the discriminant, as described in
the introduction of the section.

Case 1 Simultaneous Reidemeister moves where the two or three crossings
affected by the moves form disjoint sets (“far away” moves) Each such case
fits the scheme (differentials noted for reference later)

before, before (∂)
ϕ

−−−−→ after, before (∂2)

ψ



y



yψ̂

before, after (∂1) −−−−→
ϕ̂

after, after (∂′)

(11)

and we can arrange that if one or two pairs of Reidemeister II, II−1 moves are
involved, then the arrows always point in the direction of the II−1 move. Then
it suffices to check that in each case, the two compositions of chain maps from
upper left to lower right agree. Therefore it will not be necessary to introduce a
chain homotopy, or in other words, it can be chosen to be 0. This phenomenon
will re-occur in each case except the very last one.

By our last assumption and the formulas of Theorem 3.2, the claim is clear
for generators not directly affected by the moves. If any of the moves is a
triangle move, it is straightforward to check for the vertices of the triangle,
too. Suppose the horizontal arrows represent II−1 moves, with disappearing
crossings a and b, so that ∂(a) = ±b + v . The crossing a gets mapped to
0 under either composition. Let ∂1(a) = ±b + w . Then ϕ̂(ψ(b)) = ∓w and
ψ̂(ϕ(b)) = ∓ψ̂(v). But because ψ(a) = a and hence ψ(∂(a)) = ∂1(a), and
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ψ(b) = b, we have ψ(v) = w . So to show that ϕ̂(ψ(b)) = ψ̂(ϕ(b)), we need to
prove that11 ψ(v) = ψ̂(v). This follows by a case-by-case analysis. If ψ and
ψ̂ are induced by triangle moves then they clearly act the same way on v . If
it is a II−1 move with a bigger height than that of the one inducing ϕ, then
ψ(v) = ψ̂(v) = v . If the height is lower than that of the first move, then we have
to make sure that the same expression computes the boundary of the higher-
index vanishing crossing of the second move in each diagram of the upper row
of (11), because this is used to define ψ and ψ̂ . But this is clear since ϕ is a
chain map and the expressions in question can’t contain neither a nor b.

Case 2 Quadruple points We are going to draw circles linking the singularity
once and compute monodromies around these loops, starting and ending at the
top left in each of the cases depicted in Figures 9 and 10. Such a loop meets
the triple point discriminant eight times and in each case we will find that the
composition of the corresponding eight chain maps is the identity.

Out of the six cases, the one on the bottom of Figure 9 is the most complicated,
due to the fact that all eight moves are of type IIIb . Even in this case, only
the crossings b, c, and e need checking, because others are always mapped
trivially. On the left side of Figure 9, we indicated the orientation signs used
in the following. In the second move, b’s image is b − ε′bεdε

′
at
k(b:d,a)ad. The

three generators in this expression are mapped trivially until the sixth move,
when the image becomes (b − εbε

′
dεat

k(b:d,a)ad) − ε′bεdε
′
at
k(b:d,a)ad = b (this is

by the same argument applied in the proof of Theorem 3.2). The generator e
returns to itself through two completely analogous moves. Finally, we have the
following for c:

c 7→ c− εcεdεet
k(c;d,e)ed 7→ same 7→ c− εcεdεet

k(c;d,e)(e− ε′eεaεf t
k(e;a,f)fa)d

7→ c− ε′cεbεf t
k(c;b,f)fb− εcεdεet

k(c;d,e)(e− ε′eεaεf t
k(e;a,f)fa)d

7→ c− ε′cε
′
dε

′
et
k(c;d,e)ed− ε′cεbεf t

k(c;b,f)fb− εcεdεet
k(c;d,e)(e− ε′eεaεf t

k(e;a,f)fa)d

= c− ε′cεbεf t
k(c;b,f)fb− (−1)|e|εcεdεaεf t

k(c;d,e)+k(e;a,f)fad

7→ c− ε′cεbεf t
k(c;b,f)f(b− εbε

′
dεat

k(b;d,a)ad) − (−1)|e|εcεdεaεf t
k(c;d,e)+k(e;a,f)fad

= c− ε′cεbεf t
k(c;b,f)fb 7→ same 7→ c− εcε

′
bε

′
f t
k(c;b,f)fb− ε′cεbεf t

k(c;b,f)fb = c.

11Note that, with a slight abuse of notation, we sometimes suppress the chain map
relating DGA’s of different diagrams when it simply replaces all generators in one
expression by corresponding generators from the other diagram. Our “excuse” is that
these new generators are denoted by the same symbols as the old ones. A more exact
version of the claim would be that ψ(v) and ψ̂(v) are expressed by identical polynomials
in the two DGA’s.
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Figure 8: Degenerate triple points and cubic self-tangencies
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Figure 9: Quadruple points I

The equality stated in the fourth row, as well as the very last one, holds by the
argument in the proof of Theorem 3.2. The other one in the sixth row is true
because

• k(c; b, f)+k(b; d, a) and k(c; d, e)+k(e; a, f) both equal the total winding
of −γc + γd + γa + γf , with each capping path thought of as starting and
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Figure 10: Quadruple points II

ending at the quadruple point.

• ε′cεfε
′
dεa(−1)|e|εcεdεaεf = (−1)|e|(−1)|c|(−1)|d| = 1 by Lemma 2.3.

The other five quadruple point bifurcations can be handled with very similar,
and simpler, computations.
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Case 3 Degenerate triple points For the three bifurcations on the top of
Figure 8, we claim that the chain maps corresponding to the two ways of moving
from upper left to lower right in the diagrams induce the same chain maps.
Please refer to Figure 8 for the positions of the orientation signs that appear
in the calculations and note that ε and ε′ always denote orientation signs of
opposite quadrants. Consider the third case (middle of Figure 8). Denote the
differential of the upper left diagram by ∂ , of the lower left diagram by ∂1 and
that of the upper right diagram by ∂2 . Applying the chain maps of Theorem
3.2 to the generator b, we find the following:

b
ϕ′

7−→ b− εbεdεct
k(b;c,d)cd

ϕ′′

7−→ ε′bε
′
av − εbεdεct

k(b;c,d)cd

and b
ψ′

7−→ b
ψ′′

7−→ ε′bε
′
a(ε

′
aε

′
dε

′
ct
k(a;d,c)cd+ w).

Here, v and w are defined by the equations ∂1(a) = εaεbb + v and ∂2(a) =
εaεbb + ε′aε

′
dε

′
ct
k(a;d,c)cd + w . The coefficients of cd agree in the two images

of b by Lemma 2.3 and the observation that the capping paths γa and γb
used to compute the exponents of t coincide at the moment of self-tangency.
Thus, we need to prove that v = w . For this, note that (ϕ′)−1(a) = a and
ψ′(a) = a, therefore ∂(a) = (ϕ′)−1(∂1(a)) = εaεb(b − ε′bε

′
dε

′
ct
k(b;d,c)cd) + v ,

which is also the expression of ∂2(a) = ψ′(∂(a)). Now, v = w follows be-
cause (−εaεbε

′
bε

′
dε

′
c)(ε

′
aε

′
dε

′
c) = −(−1)|a|+|b| = 1. The claim is clear for other

generators of the upper left diagram.

In the other two cases (top row of Figure 8), the proof is very similar. It is
important to note though that in the first diagram of the top row, h(d) >
h(a), and in the second, h(c) > h(a) in a neighborhood of the codimension
2 discriminant. Due to this fact, the boundary of a is given by the same
polynomial in both pairs of upper right and lower left diagrams.

Case 4 Cubic self-tangencies Note that on the two remaining diagrams (bot-
tom row of Figure 8), we only have two Reidemeister moves; the chain maps
ϕ′′ and ψ′′ are simple re-labelings. In the case depicted on the second diagram,
we still don’t need to introduce a non-zero chain homotopy. This is because
ϕ′′(ϕ′(a)) = ψ′′(ψ′(a)) = 0, ψ′′(ψ′(b)) = ψ′′(ε′aε

′
b(ε

′
aε

′
cc)) = x = ϕ′′(ϕ′(b)) (it is

an easy fact that ε′b = ε′c ), and a similar computation for c.

Finally, it is the situation on the bottom left of Figure 8 which does require
a non-trivial chain homotopy K , mapping between the two indicated DGA’s.
Let K(b) = εaεbx and let K map all other generators to 0. We extend K as
in Lemma 2.18. Let ϕ = ϕ′′ ◦ ϕ′ and ψ = ψ′′ ◦ ψ′ . Then ϕ(a) − ψ(a) = x,
ϕ(c)−ψ(c) = −x and ϕ(b)−ψ(b) = εbεcvc− ε′aε

′
bva , where the polynomials va
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and vc are defined in the upper left diagram by the equations ∂(a) = εaεbb+va
and ∂(c) = ε′cε

′
bb+ vc . Finally, it is easy to check the following, too:

(K ◦ ∂ + ∂′ ◦K)(a) = K(εaεbb+ va) = x

(because va doesn’t contain b);

(K ◦ ∂ + ∂′ ◦K)(c) = K(ε′cε
′
bb+ vc) = ε′cε

′
bεaεbx = (−1)|a|+|b|x = −x

(because ε′c = ε′a), and

(K ◦ ∂ + ∂′ ◦K)(b) = ∂′(εaεbx) = εaεbva + εaεbvc,

where, indeed, εa = εc and εaεb = −ε′aε
′
b .

3.3 Z2–coefficients

In this subsection we briefly summarize the modifications needed to reduce our
discussion to the original Z2–coefficient theory of Chekanov. (We will work in
that context in sections 6 through 10.) Please note again that this means that
we are going to describe the same geometry (Legendrian knots, their families,
Reeb chords, and holomorphic discs) using slightly less sophisticated algebra:
The generators are still the same Reeb chords, ie crossings, and the product
is non-commutative, but we substitute t = 1, reduce integers modulo 2, and
reduce the grading modulo 2r , where 2r is the common Maslov number of
each knot in the family. The only simplification we get in Table 1 is that now,
(−1)|a| = 1 (and ϕ− ψ = ϕ+ ψ). Otherwise, we keep all notation introduced
in this section and still refer to Figure 6 (orientation signs can now be ignored).

A list of maps that, when extended from the generators to the DGA as algebra
morphisms, become the chain maps that are used to define holonomies and
monodromies of (sequences of) Reidemeister moves, is as follows.

Move IIIa : Let a 7→ a′ , b 7→ b′ , c 7→ c′ , and x 7→ x′ , where x is any other
crossing of the upper diagram.

Move IIIb : Let
a 7→ a′ + c′b′,

while other generators are mapped trivially: b 7→ b′ , c 7→ c′ , and x 7→ x′ .

Move II−1 : Let ∂(a) = b + v . Define x 7→ x′ , which gives rise to the obvious
re-labeling v 7→ v′ . Then let

a 7→ 0

b 7→ v′.
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Move II: The map ϕ : A′ → A still takes

b′j 7→ ϕ(b′j) = bj

for all j = 1, . . . ,m. Formula (9) of Remark 3.4 becomes

a′1 7→ ϕ(a′1) = a1 +
∑(

B1aB2bB3bB4b . . . BkbA

+B1vB2aB3bB4b . . . BkbA

+B1vB2vB3aB4b . . . BkbA

+B1vB2vB3vB4a . . . BkbA

+ . . .

+B1vB2vB3vB4v . . . BkaA
)

,

and formula (10) takes the form

a′i 7→ ϕ(a′i) = ai +
∑(

B̄1aB2bB3bB4b . . . BkbA

+B̄1vB̄2aB3bB4b . . . BkbA

+B̄1vB̄2vB̄3aB4b . . . BkbA

+B̄1vB̄2vB̄3vB̄4a . . . BkbA

+ . . .

+B̄1vB̄2vB̄3vB̄4v . . . B̄kaA
)

.

In the rest of the paper, each time we compute the holonomy of a Reidemeister
II move, Proposition 3.5 applies. In other words, the detailed description of
move II was included only for completeness.

4 Legendrian Reidemeister moves

In this section, we investigate a very basic question, which arises naturally in
the theory of Legendrian knots and links. The question is this: if a Lagrangian
diagram of a Legendrian link contains a part that is topologically fit for a Rei-
demeister II, II−1 , or III move, can we carry the move out in the Legendrian
category? (If so, we will call the move consistent.) As it turns out, the an-
swer is not always affirmative and a necessary and sufficient condition can be
formulated in terms of a linear program.

We call two regions (of the complement of a knot diagram) adjacent at a vertex
if they share the vertex (crossing) but don’t share any edges.
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Theorem 4.1 Each Reidemeister move of Figure 6 is possible if and only if
the Lagrangian diagram can be isotoped (in the Legendrian sense) so that a
certain inequality is satisfied. The list is as follows:

• Move IIIa : the area of the triangle is smaller than the area of any of the
three regions adjacent to it at either of its vertices.

• Move IIIb : the area of the triangle is smaller than the area of the region
adjacent to it at the vertex a.

• Move II−1 : the area of the 2–gon is smaller than the sum of the areas of
the two regions adjacent to it at its vertices.

• Move II: the sum of the heights of the crossings along the right side of the
pinching region, counted with Reeb signs, is positive. (If the region to
the right of the pinching, as it is depicted in Figure 6, is the unbounded
one, then there is no obstruction to the move.)

Recall from section 2 that every Lagrangian diagram γ has the non-empty cone
Cγ associated to it. Cγ is defined by the positivity constraints on the heights
associated with γ and finitely many homogeneous linear inequalities (coming
from bounded regions of the complement) in terms of these heights (see Remark
2.5). Each inequality of Theorem 4.1 requires that a certain linear objective
function12 defined on Cγ take on a positive value. That is, in each case the
necessary and sufficient condition can be re-phrased to require that a certain
linear programming problem be unbounded. This can be checked by the simplex
method or any other linear programming algorithm (for small diagrams even
by hand, as the author can attest).

Proof The “only if” part of each statement is easy to justify. To see this for
move II, use Proposition 2.2: at the moment of self-tangency of the projection,
the sum in question is the area of the region pinching off on the right side plus
the difference in z–coordinate between the two preimages of the self-tangency.
As this is positive, our sum must have been positive for some period of time
before the move happened, too. The other three moves involve the vanishing of
the area of a region; clearly, for some time before that happens, the particular
area is smallest among all others and the said inequalities hold.

Now to prove the “if” statement for move II, suppose that the sum S described
in the statement is positive and extend a very narrow ‘finger’ that follows closely
the right side of the region from the lower edge to the upper one. The area of

12The objective function is linear exactly because the areas of the regions are linear
functions of the heights. These areas can also be thought of as slack variables.
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the finger can be made arbitrarily small and therefore with a slight downward
bump on the lower edge (see Remark 2.8) we can make sure that other parts
of the knot (in particular the value of S ) are not affected. As we are also able
to arrange that the area that is pinching off be less than S , an application of
Proposition 2.2 shows that at the moment the finger reaches the upper edge,
it must do so so that it crosses underneath it. If the ‘right side’ that we used
doesn’t exist due to the unboundedness of the pinching region, then simply let
the finger follow a path that encircles a large enough area (on the finger’s left)
so that it dips down sufficiently.

IIIb
a b

c

a′

b′

c′

V

Figure 11: Reidemeister IIIb move

In the other three cases, we again utilize the idea described in Remark 2.8. To
carry out move IIIb , replace the uppermost strand as indicated in Figure 11.
It is clear from the proof of Proposition 2.2 that if the new arc, starting from
the old crossing c, follows the side cb close enough, then the new crossing c′

has height arbitrarily close to h(c), and h(a′) is arbitrarily close to h(c)+h(b).
In particular, the types of the crossings are as indicated. Then, if we followed
the sides cb and ba close enough, we can use the excess area of the region V
to compensate for the modification.

Three very similar arguments establish the claim for move IIIa , and Figure 12
is self-explanatory for the case of move II−1 .

II−1

Figure 12: Reidemeister II−1 move

Example 4.2 We’ll prove that the loop of trefoils in Example 3.6 is sound,
ie, all four of the indicated Reidemeister moves can indeed be carried out.
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Let us consider the first diagram in Figure 7. By adding “bulges” of equal
area to the regions that were denoted by U1 and U2 in Figure 4, we may
arrange that the areas of those, along with the height h(a2), be arbitrarily
larger than any other area or height occurring in the projection. In particular,
h(a2) + h(b1)− h(a1) can be made positive, which by Theorem 4.1 means that
the first move is possible. The triangle move that follows is consistent because
the region adjacent to the triangle at a′ is the unbounded one. At this point,
we may finish the argument by pointing out that the remaining two moves are
mirror images of the first two, or we may continue as follows: For the other
triangle move, enlarge the areas of the triangle c1a1a

′ and of the region capping
off a1 until the area of the triangle gets bigger than that of the triangle a2b1a

′

(this is meant in the third diagram of Figure 7). Finally, the same trick applied
to the bounded regions adjacent to a1 in the fourth diagram makes sure that
the appropriate condition from Theorem 4.1 is satisfied and the last move of
the loop is consistent, too.

5 First evidence of non-triviality

At this point we are ready to prove that the monodromy invariant of Theo-
rem 1.1 is non-trivial. We will use essentially the same example to establish
Corollary 1.4, too.

Note that the first and last diagrams of Figure 7 coincide, so in Examples
3.6 and 4.2 we investigated a loop of Legendrian trefoil knots. It is not hard
to identify it with Ω3,2 (defined in the introduction). If we re-label the fifth
diagram like the first one, we can write that the monodromy of the loop (which
is the composition of the four holonomies of Example 3.6 and the re-labeling)
acts on the cycles b1 , b2 , and b3 as follows:

b1 7→ −t−1 − b2b3

b2 7→ b1

b3 7→ b2.

Proposition 5.1 The map µ0 defined by the formulas above on the index 0
part of the contact homology (of the knot introduced in Example 2.7) has order
5. Thus Theorem 1.3 holds in the case p = 3, q = 2.

Proof As µ0(b3) = b2 and µ2
0(b3) = b1 , all three generators are on the same

orbit. Then we compute that µ4
0(b3) = µ0(−t

−1 − b2b3) = −t−1 − b1b2 and that

µ5
0(b3) = µ0(−t

−1−b1b2) = −t−1−(−t−1−b2b3)b1 = −t−1 + t−1b1 +b2b3b1 = b3
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by equation (5) of Example 2.14.

The argument for the order will be complete if we show that b3 6= b2 in the
homology, ie, that there isn’t an element a ∈ A so that ∂(a) = b3 − b2 . For
this, notice that im ∂ is contained in the two-sided ideal generated by ∂(a1) and
∂(a2). An examination of equations (3) and (4) shows that after substituting
t = −1, they both contain an even number of terms that are powers of b3
(namely, two and zero terms). Therefore the same property holds for the entire
ideal. Since b3 − b2 is not such a polynomial, it cannot be in the image of the
differential.

It is easy to see that if we fix the basepoint, but allow knots in our one pa-
rameter families that are not Legendrian, then the three-fold concatenation
of Ω3,2 is homotopic to a continuous rotation by 2π radians. Therefore, as
π1(SO(3)) = Z2 is generated by exactly this loop, the six-fold concatenation
of Ω3,2 is contractible in the space K of smooth right-handed trefoil knots.
But because µ((Ω3,2)

6) 6= id (as µ0((Ω3,2)
6) = µ0(Ω3,2) 6= id), (Ω3,2)

6 is non-
contractible in the space L of Legendrian trefoil knots. This last implication,
which establishes Corollary 1.4, holds by Theorem 3.7. (We remark that with
a bit of extra work, it can be shown that Ω3,2 is itself contractible in K, so
taking its sixth power isn’t really necessary in our argument.)

In sections 9 and 10, we will generalize the proof of Proposition 5.1 for an
arbitrary (p, q) torus knot. (Except that to simplify the discussion, in those
sections we will work with Z2–coefficients.) Before we do that, we use sections
6 and 8 to set up a more general picture. Section 7 contains a vital ingredient
of the proof of Theorem 1.3.

6 Positive braid closures

Let us consider a positive braid β on q strands, as in Figure 15. Label the
left and right endpoints of the strands from top to bottom with the first q
whole numbers. The pair of left and right labels on each strand takes the
form (i, σ(i)), where σ is the underlying permutation of β . Further, label the
crossings of the braid with a pair of numbers, the first one the left label i of the
overcrossing strand and the second one the right label j of the undercrossing
one. (Note that not all pairs of numbers between 1 and q occur as labels of
crossings; for example, (i, σ(i)) never does for any i.)
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Definition 6.1 A positive braid β defines the front diagram of an oriented
Legendrian link as on the upper half of Figure 13 (orient each strand of β from
left to right). We call this construction the Legendrian closure of β and denote
it by Lβ .

a1

a2

a3

a4

T1

T2

T3

T4

U1

U2

U3

U4

α1α2α3α4

p1

p2

p3

p4

Figure 13: Front and Lagrangian diagrams of the closure of a positive braid

Note that the types of crossings are correctly determined by the slopes of the
branches that meet there exactly because the braid is positive. Applying Ng’s
[23] construction of resolution to the front diagram, we obtain the Lagrangian
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diagram γβ in the lower half of Figure 13.

In section 2, we omitted the modifications needed to define the invariants (such
as rotation and Thurston–Bennequin numbers and contact homology itself) for
oriented multi-component Legendrian links. We include an informal rundown
here (see [23, section 2.5] for more). The rotation number is the sum of the
rotations of the components. The Thurston–Bennequin number is still the
writhe of the Lagrangian projection; note that now, as opposed to the case of
a single component, the orientation matters in its definition.

From now on, we will always use Z2–coefficients in contact homology. For a
multi-component link, there is not a single distinguished grading of its DGA,
rather a family of so called admissible gradings. We consider those introduced in
[23] and not the larger class of gradings described in [6, section 9.1]. In the Z2–
coefficient theory, each of these is defined modulo the greatest common divisor
of the Maslov numbers of the components (recall that the Maslov number is
twice the rotation number of a knot). Self-crossings of individual components
have the same well-defined index in any admissible grading. We will refer to
such generators as proper crossings. Other crossings’ indices have the same
parity in each admissible grading. The parity of the index of any crossing
coincides with its sign in classical knot theory.

The differential ∂ is of index −1 with respect to each admissible grading. (Fur-
thermore, Lemma 2.3 holds for each admissible grading, too.) Contact homol-
ogy is a well-defined invariant in the sense that if two diagrams are Legendrian
isotopic, then there is a one-to-one correspondence between their sets of admis-
sible gradings so that the corresponding contact homologies are isomorphic as
graded algebras.

It is easy to calculate that the Legendrian closure of any positive braid has
rotation number r = 0 (in fact, every component has Maslov number 0). The
Thurston–Bennequin number is tb(Lβ) = (word length of β) − q . The positive
Legendrian (p, q) torus knot obtained as a special case is the one with maximal
Thurston–Bennequin number p(q−1)− q (see [11] for a classification of Legen-
drian torus knots). The (3, 2) torus knot that we considered earlier arises from
this construction, too. The unique Legendrian unknot with maximal Thurston–
Bennequin number tb = −1 [3, 8] is the Legendrian closure of the trivial braid
on a single strand.

In the Chekanov–Eliashberg DGA of γβ , the grading (any admissible grading)
is integer-valued. The crossings am (m = 1, . . . , q) have index 1. The rest
of the generators are the crossings of β and they have index 0. In the multi-
component case we should say instead that the grading that assigns the index
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0 to each is admissible; from now on, we will always work with this grading.
These generators will be labeled by bi,j,t , where the integers 1 ≤ i, j ≤ q are
the ones defined at the beginning of the section. The third label t is used to
distinguish between multiple intersections of strands, enumerating them from
left to right, as shown in Figure 14.

bi,j,1

bi,j,2

bi,j,3bp,r,1

bp,r,2

i

j

p
r

Figure 14: Labeling the crossings of a braid

Since ∂ lowers the index by 1,

∂(bi,j,t) = 0 for all i, j = 1, . . . , q and t.

In fact, there are no admissible discs whose positive corner is an index 0
crossing. The boundaries ∂(am), m = 1, . . . , q , are polynomials in the non-
commuting variables bi,j,t only. Our goal for the remainder of this section is to
compute these polynomials.

The first observation is that for all m = 1, . . . , q , there is an admissible disc
covering the teardrop-shaped region Tm right above am once. We’ll call it
the mth trivial disc. It contributes 1 to ∂(am). The mth trivial disc is the
only one that turns at the upward-facing positive quadrant at am . The rest of
the contributions to ∂(am) come from discs that turn at the positive quadrant
facing down.

Suppose f : Πk → R2
xy is an admissible immersion with respect to the projection

γ = γβ , with positive corner f(xk0) = am and so that it is different from the
mth trivial disc. Fix points p1, . . . , pq on γ as shown in Figure 13.

Lemma 6.2 The curve f(∂Πk) doesn’t pass through the points pm, . . . , pq .

Proof In fact, if we denote the region of the complement directly under ai
by Ui , then f(Πk) is disjoint from Um+1, . . . , Uq , as well as from Tm, . . . , Tq .
To see this, first shrink γ so that all areas and heights are smaller than εq−m ,
where ε > 0 is to be chosen later. Then add “bulges” of equal area 1 to Tq
and Uq on the outside of the diagram (see Remark 2.8). Next, add bulges of
area ε to Tq−1 and Uq−1 on their sides facing Uq . Continue all the way until
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adding bulges of area εq−m−1 to Tm+1 and Um+1 on their sides facing Um+2 .
The result is a Lagrangian projection of the same link in which, after the choice
of a small enough ε, the claim is obvious by Lemma 2.11, except for the case
of Tm . But that follows from the easy observation that if any admissible disc
passes through pm so that locally, f(Πk) faces downward, then f is the mth

trivial disc.

Recall that γ is oriented as shown in Figure 13. We have already noted that
apart from its positive corner which is of index 1, f turns only at certain index
0 crossings bi,j,t . By Lemma 2.10, this implies that f is compatible with the
orientation of γ . Therefore, as the orientation of f(∂Πk) agrees with that of γ
near the positive corner am , these orientations agree at all points of ∂Πk . This
last observation for example implies that f can’t turn at the downward facing
negative quadrant at any of the bi,j,t ’s.

We may summarize our findings about f so far as follows. The curve f(∂Πk)
starts at am , follows γ until it reaches the braid at the left endpoint labeled
m (while f extends this map toward Um). Then it travels through the braid,
possibly turning (left) at several crossings bi,j,t but always heading to the right,
until it reaches a right endpoint labeled i1 ≤ m. Then f(∂Πk) climbs to ai1
and, unless i1 = m, beyond ai1 (note that f can’t have a positive corner at
ai1 ) to pi1 , at which point the extension f is toward Ui1+1 . Then f(∂Πk)
descends back to ai1 so that it doesn’t turn at the negative corner. So the
process repeats with (m, i1) replaced with (i1, i2) (where i2 ≤ m), and so on
until ic+1 = m for some c.

Definition 6.3 A finite sequence of positive integers is called admissible if
for all s ≥ 0, between any two appearances of s in the sequence there is a
number greater than s which appears between them. For n ≥ 1, let us denote
by Dn the set of all admissible sequences that are composed of the numbers
1, 2, . . . , n− 1.

For example, D1 = { ∅ }, D2 = { ∅, { 1 } }, and

D3 = { ∅, { 1 }, { 2 }, { 1, 2 }, { 2, 1 }, { 1, 2, 1 } }.

By induction on n and observing the position of the unique maximal term in
the sequence, it is easy to prove that |Dn| = |Dn−1|

2 + |Dn−1|.

Proposition 6.4 For the admissible disc f as above, the sequence of inter-
mediate labels { i1, i2, . . . , ic } is an element of Dm .
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Proof There is an intuitive reason for the claim: if the index i was repeated
without the boundary of the disc climbing higher between the two occurrences,
then the disk would pinch off at ai . We shall give a more rigorous proof using
Blank’s theorem (see [24], or the review in [17], from where we’ll borrow our
terminology).

Let f̃ be a small generic perturbation of f . This has the corners rounded so
that f̃

∣
∣
∂Πk

is an immersion; moreover, let us note that because f(∂Πk) may

cover parts of γ more than once, the complement of f̃(∂Πk) typically contains
more regions than that of f(∂Πk). We are going to apply Blank’s theorem
to f̃

∣
∣
∂Πk

. We extend rays from each bounded component of R2 \ f̃(∂Πk) to

infinity. If the region is not one of those obtained from the Ti (let us denote
these by T ′

i ), or one of the small ones resulting from perturbation close to the
arc bounding Ti , this can be done so that γ only intersects the ray in a positive
manner (ie, if the ray is oriented toward ∞, then γ crosses from the right side
to the left side). By our observation on the compatibility of f , this implies that
f̃(∂Πk) also intersects those rays positively. Let us draw rays starting from the
regions T ′

1, . . . , T
′
q as in Figure 13. Label all rays, in particular label these last

q with the symbols α1, . . . , αq .

The Blank word of the disc f̃ is obtained by tracing f̃(∂Πk), starting from, say,
am , and writing down the labels of the rays we meet with exponents ±1 accord-
ing to positive and negative intersections (we’ll call these positive and negative
symbols or letters). A grouping of the Blank word is a set of properly nested
disjoint unordered pairs of the form {α,α−1 } so that each negative symbol is
part of exactly one pair. Blank’s theorem states that the set of groupings of the
Blank word is in a one-to-one correspondence with non-equivalent extensions
of the immersion f̃

∣
∣
∂Πk

to immersions of Πk .

As f̃ is such an extension, a grouping exists and we claim that this implies the
Proposition. We delete labels different from the αs from the Blank word of f̃
and concentrate on the remaining word, which also inherits a grouping (note
that most of the deleted labels only appeared positively anyway, except for
certain ones that belong to some regions that were the result of perturbation).
We’ll call this the Blank word of f and denote it by Wf . Note that if we only
keep the negative letters α−1

s from Wf , then the sequence of their indices is
exactly { i1, i2, . . . , ic }. In fact, Wf is decomposed into segments S1, . . . , Sc
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ended by these negative symbols, and a final segment S :

Wf =

S1
︷ ︸︸ ︷

α1α2 . . . αi1−1α
−1
i1

·

S2
︷ ︸︸ ︷

α1α2 . . . αi2−1α
−1
i2

· . . .

· α1α2 . . . αic−1α
−1
ic

︸ ︷︷ ︸

Sc

·α1α2 . . . αm−1
︸ ︷︷ ︸

S

.

We’ll prove the following statements by induction on j :

(1) Each copy of α−1
m−j is paired in the grouping with a copy of αm−j which

is located to the right of it.

(2) None of the pairs {α−1
m−j , αm−j } is nested in a pair {α−1

m−l, αm−l } for
any l > j .

(3) Any two copies of α−1
m−j are separated in Wf by a copy of α−1

m−n for some
n < j .

The last statement of course directly implies the Proposition.

The last letter of Wf is αm−1 and this is the only positive occurrence of this
letter. Hence (1) and (2) are obvious for j = 1. Also, since a second one
wouldn’t find a pair, there can be at most one copy of α−1

m−1 in Wf , thus (3) is
vacuously true for j = 1.

Assume that the statements hold for all j′ = 1, . . . , j− 1. To prove (1), assume
that a certain copy α−1 of α−1

m−j forms the pair P with a copy α of αm−j ,
which is to the left of it. Then, as α can’t be part of the final segment S , it
belongs to some Sb with last letter α−1

ib
, where ib > m− j , ie m− ib < j . This

copy of α−1
ib

= α−1
m−(m−ib)

is to the left of α−1 , hence it is part of a pair which

is nested inside P , which contradicts the hypothesis (2) for j′ = m− ib .

To prove (2), suppose that a certain pair {α−1
m−j , αm−j } is nested in P =

{α,α−1 } where α has an index less than m− j . This copy of αm−j can’t be
part of S because it has a symbol with lower index (namely, α or α−1 ) to the
right of it. It is clear then that the first negative letter after αm−j has index
m− j′ , which is higher than m− j (ie j′ < j ), and it is still nested in P . Then
so is the pair containing it, which contradicts (2) for j′ .

Finally for (3), assume the contrary again, namely that there are two copies of
α−1
m−j in Wf that are not separated by any higher index negative symbol. Then

the pair of the first α−1
m−j can not lie between them either, because it would

be part of some Sb and then α−1
ib

would separate. Thus, we have two pairs of

the form {α−1
m−j , αm−j } nested in one another. But then the positive symbol
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of the inner pair would be followed by some α−1
ib

, which is part of a pair that
is nested in the outer pair, and that contradicts (2) for j′ = m− ib .

Definition 6.5 Let 1 ≤ i, j ≤ q . The element Bi,j of the DGA of γβ is the
sum of the following products. For each path composed of parts of the strands
of the braid β that connects the left endpoint labeled i to the right endpoint
labeled j so that it only turns at quadrants facing up, take the product of the
crossings from left to right that it turns at.

For example, Bi,j contains the constant term 1 if and only if j = σ(i). We will
need the following polynomials of the Bi,j :

Definition 6.6 Let q ≥ i > j ≥ 1 and let

Ci,j =
∑

{ i1,...,ic,j }∈Di

Bi,i1Bi1,i2Bi2,i3 . . . Bic−1,icBic,j.

Similarly, for 1 ≤ m ≤ q , let

Cm,m =
∑

{ i1,...,ic }∈Dm

Bm,i1Bi1,i2Bi2,i3 . . . Bic−1,icBic,m. (12)

Finally, for any i and j , let

Mi,j =
∑

{ i1,...,ic }∈Dmin{i,j}

Bi,i1Bi1,i2Bi2,i3 . . . Bic−1,icBic,j.

In particular, for each summand in Ci,j , j is the last element of the admissible
sequence but it may occur elsewhere, too. For example, C1,1 = B1,1 , C2,1 =
B2,1 , and C3,1 = B3,1 + B3,2B2,1 + B3,1B1,2B2,1 . Note also that M1,j = B1,j ,
Mi,1 = Bi,1 , Mm,m = Cm,m and Mi,i−1 = Ci,i−1 , whenever these expressions
are defined.

Theorem 6.7 ∂(am) = 1 +Cm,m . Consequently, the index 0 part H0(Lβ) of
the contact homology H(Lβ) has a presentation where the generators are the
crossings of β and the relations are Cm,m = 1 for m = 1, . . . , q .

Proof The 1 in the formula comes from the mth trivial disc. We claim that
the rest of the contributions add up to Cm,m . From Proposition 6.4 and the
paragraph preceding Definition 6.3, we know that there can’t be any such terms
other than the ones included in Cm,m . To see that all such monomials actually
arise from admissible discs, we just need to find those discs. This can either
be done by an inductive construction on c (for the inductive step, remove the
smallest number from the sequence), or by applying Blank’s theorem.
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It is not clear whether H(Lβ) contains any non-zero higher index part at all
(except for the case of the unknot, when the single index 1 crossing is a non-
nullhomologous cycle). This is mainly why we only work with H0(Lβ) in this
paper. This difficulty in handling contact homology also underlines the impor-
tance of the augmentation that we construct in the next section.

7 Augmentations of braid closures

Definition 7.1 An augmentation of the Lagrangian diagram γ of a Legendrian
link L is a subset X of its crossings with the following properties.

• All elements of X are proper crossings of L (ie, intersections of different
components are not allowed in X ).

• The index of each element of X in any admissible grading is 0 (in fact,
this requirement implies the previous one).

• For each generator a, the number of admissible discs with positive corner
a and all negative corners in X is even.

The last requirement implies that the evaluation homomorphism (which is de-
fined on the link DGA, and which is also called an augmentation) εX : A → Z2

that sends elements of X to 1 and other generators to 0, gives rise to an algebra
homomorphism (εX)∗ : H(L) → Z2 .

Example 7.2 Consider the right-handed Legendrian trefoil knot diagram of
Figure 4. We claim that the set { b3 } is an augmentation. Indeed, the only two
non-zero differentials (see Example 2.14 or the previous section) are ∂(a1) =
1 + b1 + b3 + b1b2b3 and ∂(a2) = b2 + b2b3 + b1b2 + b2b3b1b2 , and even these
vanish after mapping b1 and b2 to 0 and b3 to 1.

Remark 7.3 Let us return to the front diagram in the upper half of Figure 13.
Such a diagram always has an admissible decomposition (or ruling) in the sense
of [5]: the only two values of the Maslov potential (even though it’s Z–valued)
are 1 on the upper strands and 0 on the strands of the original braid β , thus
all crossings are Maslov, and we may declare all of them switching (in the
multi-component case, consider only proper crossings). This gives rise to a
decomposition where the discs are nested in one another, so it’s admissible.

The existence of a ruling implies that Lβ is not a stabilized link type for any
positive braid β [5]. Also, by a theorem of Fuchs [18], it implies that the diagram
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has an augmentation13 (note this is by no means unique). In his proof, Fuchs
constructs an augmentation of a diagram which is equivalent to the original
but has a lot more crossings. This means that the original diagram can also be
augmented: the pull-back of an augmentation by a DGA morphism, like the
ones listed in section 3.3, is again an augmentation.

In the case of a braid closure, it would be impractical to pull back Fuchs’
augmentation to the original diagram. Instead, we’ll start from scratch and
construct an augmentation of the Legendrian closure γβ of an arbitrary positive
braid β . When selecting crossings into X , it will suffice to work with the braid
itself, as illustrated in Figure 15, for the index 0 proper crossings of γβ are all
crossings of β . (We will call these the proper crossings of the braid β .)

1
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2

2 2

3

33

3
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4

44
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55
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66
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77
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88

1

2

3
4
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Figure 15: Constructing an augmentation for the closure of a braid

First, we associate an oriented graph to an arbitrary permutation σ ∈ Sq . Let
o be one of the cycles of σ . Let us write the elements of o around the perimeter
of a circle in the cyclic order suggested by σ , directing an edge from s to σ(s)
for all s. (See Figure 15 for an example. The permutation in the diagram is
the one underlying the braid). If p is a non-maximal element of o, then follow
the cycle in the forward direction starting from p until it hits the first number
in o which is bigger then p. Let p+ be the number immediately before that. In
particular, p+ ≤ p < σ(p+). Do the same in the backward direction, resulting

13Fuchs and Ishkhanov [19] and independently Sabloff [25] have also proven that the
existence of an augmentation implies the existence of a ruling.
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in the number p− such that p− ≤ p < σ−1(p−). (For example, in Figure 15, 5
is an element of a 5–cycle o, with 5+ = 5 and 5− = 4.) Then, connect p+ to
p− by a directed chord of the circle and label the chord by p. If p+ = p− = p,
then instead, we attach a loop edge (labeled p) at p to the graph. This will
also be called a chord. Draw this loop edge inside the circle, right next to the
perimeter, on the side of p where the smaller of its two neighbors lies.

Definition 7.4 If p is non-maximal in its cycle o, then the oriented loop Γp
that starts from p, goes along the circle of o to p+ , then goes to p− on the
chord labeled p, then follows the circle again back to p will be called the loop
of p. If p̂ is the largest number in o, then let the loop of p̂ be the loop Γp̂ that
travels around the original circle once.

Lemma 7.5 If p < r , then

(a) Γp doesn’t contain r

(b) the discs bounded by Γp and Γr are either disjoint or the latter contains
the former.

In particular, the |o| − 1 (oriented) chords obtained in the construction are
pairwise disjoint. They can’t be parallel to the original edges and they differ
from each other as well.

Proof Chords differ from edges because it’s impossible that each end of an
edge be smaller than the other end (a chord and an edge can be parallel in
the non-oriented sense, as in Figure 15). The other statements follow from (a)
and (b). Statement (a) is obvious from the construction, and so is (b) if r is
maximal in o.

The directed arc of the circle stretching from p− to p+ only contains numbers
less than r . If this arc is disjoint from Γr , then of course so is Γp . Otherwise,
the whole arc must be contained in Γr . From this, statement (b) is clear, except
if the chord labeled p is a loop edge and either p = r+ or p = r− . In the first
case, σ(p) > r , but σ−1(p) ≤ r , so (b) holds by the construction of the loop
edge. The other case is handled analogously.

Definition 7.6 Let Γσ be the disjoint union of the graphs constructed above
over all cycles o of σ ∈ Sq . This oriented planar graph, with vertices labeled
by the numbers 1, . . . , q , is called the augmented graph of the permutation σ .

Lemma 7.7 For all p ∈ { 1, . . . , q }, the loop of p is the unique directed loop
in Γσ starting and ending at p so that the sequence of the vertices (apart from
p) visited by it is in Dp .
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Proof It is enough to prove the statement for a connected component associ-
ated to a cycle o. The loop Γp has the required property for all p, because all
the vertices visited by it are less than p and no repetition occurs.

We have to rule out the existence of other loops. Since σ(p+) and σ−1(p−) are
larger than p, by the disjointness statement in Lemma 7.5, all loops in question
are trapped in the disc bounded by Γp (and this is obviously true when p is
maximal in o). Then by statement (b) of Lemma 7.5, apart from edges of Γp ,
they may only contain chords labeled by numbers less than p. Now, if the chord
labeled by s occurred in the loop and s < p was the smallest such number,
then because p is not on Γs , the sequence of vertices on Γs would appear as a
subsequence of the original vertex sequence of the loop. In that case, s would
be repeated in the sequence without the two occurrences separated by a larger
number, which is a contradiction.

The following “edge reversal lemma,” which we will need in section 10, can be
proven very similarly.

Lemma 7.8 For any 1 ≤ p < r ≤ q so that σ(r) = p, if p is the second largest
vertex (after r) along Γr , then there is a unique oriented path in Γσ from p to
r so that the sequence of the intermediate vertices is in Dp . Otherwise, there
is no such path.

Definition 7.9 Let Y be a set of crossings of the positive braid β . By the
graph realized by Y we mean the oriented graph with vertices 1, . . . , q so that
a directed edge connects i to j if and only if Bi,j

∣
∣
Y

= 1. Here, Bi,j is as in

Definition 6.5 and by Bi,j
∣
∣
Y

we mean the element of Z2 obtained by substituting
1 for elements of Y and 0 for other generators in Bi,j .

Lemma 7.10 Let σ be the underlying permutation of β and Y a set of proper
crossings of β . If the graph realized by Y agrees with the augmented graph Γσ
of σ , then Y is an augmentation of the Legendrian closure of β .

Proof Assume the two graphs do agree. Then by Lemma 7.7, exactly one of
the summands of Cm,m (see equation (12)) contributes 1 to the sum Cm,m

∣
∣
Y

,
namely the one that belongs to the sequence of vertices on Γm . Therefore by
Theorem 6.7, Y is an augmentation.

Next, based on Γσ , we construct a candidate X , and then we will use Lemma
7.10 to prove that it’s an augmentation. Loosely speaking, the edges of Γσ
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connecting s to σ(s) are always realized, even by the empty set. To realize
the chord labeled p, we’ll select the crossing bp+,p−,1 into X . We can do this
because it always exists: p+ ≤ p < σ−1(p−) (for left labels) and p− ≤ p < σ(p+)
(for right labels), therefore the strand connecting p+ to σ(p+) always meets
the strand connecting σ−1(p−) to p− . If there were more than one points with
the first two labels p+, p− , we could have selected any of them14; we used the
third label 1 for concreteness and for ease in the proof of Theorem 10.1. In
Figure 15, we marked the selected crossings and labeled them with the label of
the chord that they realize.

Proposition 7.11 The set

X = { bp+,p−,1 | p ∈ { 1, . . . , q } is not a maximal element of a cycle of σ }

is an augmentation of the Legendrian closure of the positive braid β with un-
derlying permutation σ .

In particular, for a pure braid β , the empty set is an augmentation. In other
words, the DGA of the Legendrian closure of a pure braid is augmented, ie, the
boundary of each generator is a polynomial without a constant term. If β is
not pure, then X 6= ∅, hence εX 6= 0, and it follows that H(Lβ) 6= 0.

Proof It is clear from the construction that all the crossings in X are proper.
By Lemma 7.10, it suffices to prove that the graph G realized by X is the
graph Γσ . For this, the chief claim is that no two points of X are connected
with a part of a strand so that it arrives at both points from above. In other
words, the situation of Figure 16 can not arise: there is no pair of numbers p, r
so that σ(r+) = p− . Indeed, then we’d have r < σ(r+) = p− ≤ p and similarly,
p < σ−1(p−) = r+ ≤ r , which would be a contradiction.

p+

p−
r+

r−

p+, p−
r+, r−

Figure 16: A situation that we have to rule out

14For instance, the crossing b3 of Example 7.2 is denoted by b1,1,2 in the general
labeling system.
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We know then that any path that is to contribute a non-zero summand to a
certain Bi,j

∣
∣
X

can have at most one corner, which of course has to be in X .
Thus in the discussion before the Proposition we exhausted all such contribu-
tions: paths with no corners are responsible for the edges and paths with one
corner are responsible for the chords of Γσ . So indeed, G = Γσ .

Remark 7.12 Let β be the standard positive braid whose Legendrian closure
is a positive (p, q) torus link (the braid used to produce Figure 13 is an example
with p = 5 and q = 4). If we apply our construction to it, we find an interest-
ing connection of the resulting augmentation to the Euclidean algorithm. We
mention this here without proof; we will only need a small part of the statement
which is hidden in the proof of Proposition 10.3.

Let us denote the quotients and residues in the Euclidean algorithm (with input
p and q) as follows:

p = k−1q + r0 (0 ≤ r0 < q)

q = k0r0 + r1 (0 ≤ r1 < r0)

r0 = k1r1 + r2 (0 ≤ r2 < r1)

r1 = k2r2 + r3 (0 ≤ r3 < r2)

...

rl−3 = kl−2rl−2 + rl−1 (0 ≤ rl−1 < rl−2)

rl−2 = kl−1rl−1 + rl (0 ≤ rl < rl−1)

rl−1 = klrl + 0.

(Of course, rl = gcd{ p, q }.) The points of the augmentation X are arranged
in blocks of the following sizes: (k0 − 1) blocks of size r0 ; k1 blocks of size r1 ;
k2 blocks of size r2 and so on until the last kl blocks of size rl . If we draw
the diagram of the braid as in Figure 17, every block can be viewed as the
diagonal of a square, and the squares can in turn be seen to be placed inside
a p × q rectangular box so that they realize a ‘graphic implementation’ of the
Euclidean algorithm.

8 A loop of positive links

Let Lβ be the Legendrian closure of the positive braid β . Then there exists a
natural closed loop in the connected component Lβ of the space of Legendrian
links that contains Lβ , as follows. Let us write β = λ1 . . . λw as a product of
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Figure 17: The augmentation of a (p, q) torus link implements the Euclidean algorithm;
on the diagram, p = 11 and q = 26.

the braid group generators. In Figure 18, we show through an example how Lβ
can be changed into the Legendrian closure of the conjugate braid that results
from moving the first factor λ1 to the end of the word: if λ1 is a half-twist of
the mth and (m+1)st strands of the braid, then one interchanges the mth and
(m+ 1)st strands above the braid. In Figure 19, the same path Φλ1

is shown,
but in the Lagrangian projection. Note that the index 1 crossings am and am+1

trade places. (The notation used on the diagram for the index 0 crossings is
the one that we will introduce below for the special case of torus links.) The
Lagrangian diagrams of the endpoints are clearly obtained by resolution of the
corresponding fronts. However, we will not prove that the paths themselves
agree, too (up to homotopy). Instead, we will content ourselves with checking
(using Theorem 4.1) that the four Reidemeister moves in Figure 19 are consis-
tent, and thereafter use the Lagrangian construction as our definition of Φλ1

.
(There are no such consistency issues with Reidemeister moves of fronts, but
we need the Lagrangian diagrams to compute holonomies.)

Theorem 8.1 The sequence of Reidemeister moves in Figure 19, defining Φλ1
,

is consistent.
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Figure 18: A path that corresponds to conjugating a braid, viewed in the front projec-
tion. The moves are similar to those in Figure 1.

Proof This is a generalization of Example 4.2. Isotope the diagram just like
in the proof of Lemma 6.2. Then by choosing a small enough ε, the height
h(am+1) will dominate the expression whose positivity is needed (by Theorem
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atemp

atemp

atemp

am

am

am

am+1

am+1

am+1

bm,1

bm,1

bm,1

bm,1

cm,1

cm,1

bm+1,1. . . bq−1,1

Um+2

Figure 19: A path that corresponds to conjugating a braid, viewed in the Lagrangian
projection. The individual Reidemeister moves do not correspond to those in Figure
18.

4.1) in order for the first move (which is a Reidemeister II move) to be consistent.
To carry out the IIIb move that follows, we need to isotope the second diagram
from the top so that what remains from the region Um+2 after the first move
has larger area than the vanishing triangle. This can be achieved by the same
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trick (this time, moving away the ‘outer’ q−m−1 strands). Next, the newborn
triangle needs to be blown up so that it has larger area than the triangle which
is due to vanish in the second IIIb move (which is the third move altogether).
For this, the same trick with the bulges still works: apply it to the q −m− 1
outer strands and the one that crosses itself at am . Finally, the exact same
argument guarantees that the fourth move, of type II−1 , is consistent too.

Let us use the formulas of section 3.3 to compute the holonomy µ1 of Φλ1
(cf

Example 3.6). More precisely, we will compute the action of µ1 on the index
0 crossings which generate the index 0 contact homology H0(Lβ). In the first
move, two new crossings appear; using Lemma 2.3 it is easy to show that their
indices are 0 and 1. Let us denote the one with index 0 by15 cm,σ(m+1),1 and
the one with index 1 by atemp . The old index 0 crossings are not affected by
this move (ie, the holonomy maps them trivially). This is true by Proposition
3.5: for index reasons, the boundary of any index 0 crossing is 0. It is easy to
see that the following two triangle moves don’t affect the old index 0 crossings,
either.

In the fourth, Reidemeister II−1 move however the crossing bm,σ(m+1),1 (to-
gether with atemp ) vanishes, and its image in the holonomy becomes the poly-
nomial M ′

m+1,m = C ′
m+1,m . We used primed symbols to remind us that these

are to be computed with respect to the conjugated braid. The fact that for
each admissible disc that turns at the positive quadrant at atemp that faces
away from bm,σ(m+1),1 , the intermediate sequence of labels (of other index 1
generators through which the boundary of the admissible disk passes) doesn’t
contain any number larger than m can be shown just like in the proof of Lemma
6.2. The fact that the sequence is admissible follows by an argument very sim-
ilar to the proof of Proposition 6.4. Finally, the fact that each such admissible
sequence does contribute the said terms can be established as in the proof of
Theorem 6.7. We have proven:

Proposition 8.2 The holonomy µ1 of Φλ1
maps each crossing of the braid

trivially except the first one from the left, which is mapped to the polynomial
M ′
m+1,m = C ′

m+1,m (if the first crossing is between the mth and (m + 1)st

strands). This expression is to be computed as in Definition 6.6, with respect
to the conjugate braid λ2λ3 . . . λwλ1 .

15In other words, let it inherit the labels of the crossing that is being moved to the
other end of the braid. This is what we’ve done in Figure 19 too, except that there, a
different notation is used for index 0 crossings.
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Note also that at the end stage of Φλ1
each crossing of the (conjugate) braid

has index 0, thus in the multi-component case our choice of preferred grading
is justified.

Now, it is clear that the concatenation Ωβ = Φλ1
. . .Φλw

is a closed loop in Lβ

and by definition, its monodromy is the composition of holonomies µw ◦ . . .◦µ1 ,
followed by a re-labeling to restore the original labels. Namely, each symbol c
labeling an index 0 crossing needs to be changed back to b; in fact, ai would
have to be changed to aσ(i) , but because we only concern ourselves with H0(Lβ),
this can be ignored.

9 |µ0| divides p + q

The last two sections of the paper contain the proof of Theorem 1.3. The
argument works for any p, q except when q divides p (the case of a pure braid),
or p divides q . The reason why we don’t claim Theorems 1.3 and 1.2 for multi-
component torus links is that we only proved Theorems 3.2 and 3.7 (and thus
Theorem 1.1) for knots. (However, the extension of those proofs should only
be a matter of changing the formalism to that of link contact homology.)

Let us revisit the loop Ωp,q of Legendrian (p, q) torus knots defined in the
introduction. As the braid β is now composed of p periods, the general loop
Ωβ described in section 8 is the p-fold concatenation of another, and the latter
is easy to identify as homotopic16 to Ωp,q . In particular, by Theorem 3.7, the
‘full’ monodromy takes the form µp , where µ is the monodromy of Ωp,q . From
now on, we will concentrate on this map µ, and especially on its restriction µ0

to the index 0 part of the contact homology of the standard torus link diagram
γ (shown in Figure 13), representing the base point L.

We will adjust our notation to this special situation. The crossings of β will be
indexed with two integers (as opposed to three), namely bm,n (m = 1, . . . , q−1,
n = 1, . . . , p) will denote the mth crossing counted from the top in the nth

period of the braid. Note that in the definition of µ, after a full period of the
braid has been moved from the left end to the right end, a re-labeling takes
place, too: the second label of each crossing in the other (p − 1) periods is
reduced by 1, and the labels cm,1 in the now last period are changed to bm,p .

16Because we’ll omit the rigorous justification of this fact, the reader may treat the
new description of Ωp,q as the definition.
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Proposition 9.1 The monodromy µ of the loop Ωp,q of Legendrian torus links
acts on the index 0 generators as follows:

µ(bm,n) =

{
bm,n−1 if 2 ≤ n ≤ p
Cq,m if n = 1

.

Proof The claim is clear for those crossings not in the first period: by Propo-
sition 8.2, they are only affected, and in the described way, by the re-labeling.
The rest of the statement will be proven by induction on q − m. When this
value is 1, ie m = q − 1, this is just the statement of Proposition 8.2 (the
conjugate braid in this case is the original β again, and the re-labeling changes
C ′
q−1+1,q−1 into Cq,q−1). Assume the statement holds for bq−1,1, . . . , bm+1,1 .

Right after the conjugation that removes it from the left end of the braid, the
image of bm,1 is M ′′

m+1,m , computed with respect to the braid after this con-
jugation. This can be re-written (by grouping terms with respect to the first
factor in the product) as

M ′′
m+1,m = bm+1,1M

′
m+1,m + bm+2,1M

′
m+2,m + . . . + bq−1,1M

′
q−1,m +M ′

q,m,

where the terms labeled M ′ on the right are to be computed in the braid
indicated by the box in Figure 19. Note however that by Definition 6.6, the
same expressions are obtained if we use the whole braid β (before re-labeling).
If we apply the holonomies of the remaining q − 1 −m conjugations and the
re-labeling to this expression, we get (by the inductive hypothesis)

µ(bm,1) = Cq,m+1Mm+1,m+Cq,m+2Mm+2,m+. . .+Cq,q−1Mq−1,m+Mq,m = Cq,m.

The last equality is true because the middle expression is exactly what results if
we group terms in Cq,m with respect to the last label in the admissible sequence
which is more than m.

Proposition 9.2 In the contact homology ring H(L), we have:

µ(Bi,j) =







Bi−1,j−1 +Bi−1,qbj−1,p if i, j ≥ 2
Bi−1,q if i ≥ 2 and j = 1
bj−1,p if i = 1 and j ≥ 2

, (13)

µ(Ci,j) =

{
Ci−1,j−1 if j ≥ 2
Mi−1,q if j = 1

, (14)

and
µ(Mi,j) = Mi−1,j−1, whenever i, j ≥ 2. (15)

We omitted B1,1 and Ci,i because they (and hence their images) are equal to
1 in the contact homology. Recall also that Mi,1 = Bi,1 and M1,j = B1,j .
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Proof When i ≥ 2, none of the terms in Bi,j contains any of b1,1, . . . , bq−1,1 ,
so they only need to be re-labeled. This means that all crossings that the path
through the braid which generated the term turned at, are shifted to the left
by a unit. This operation changes the entry point from the one labeled i to
the one labeled i − 1. If j = 1, then the shifted path can be completed by
the overcrossing strand of the last period of the braid, which shows that the
re-labeled expression is a summand in Bi−1,q . Moreover, all such summands
are obtained in this way exactly once. When j ≥ 2, the re-labeling results in
a summand of Bi−1,j−1 , but not all such are obtained: we miss contributions
from paths that turn at the crossing (the last one on the strand with right
endpoint j − 1) bj−1,p . Hence the correction term in the top row of (13) (note
that the paths turning at bj−1,p are exactly those that would otherwise have
arrived at q).

When i = 1 and j ≥ 2, we have

µ(B1,j) = µ(b1,1B2,j + b2,1B3,j + . . .+ bq−1,1Bq,j +R)

= Cq,1(B1,j−1 +B1,qbj−1,p) + Cq,2(B2,j−1 +B2,qbj−1,p) + . . .

+ Cq,q−1(Bq−1,j−1 +Bq−1,qbj−1,p) + µ(R)

= Cq,1B1,j−1 + Cq,2B2,j−1 + . . . +Cq,q−1Bq−1,j−1

+ (Cq,1B1,q + Cq,2B2,q + . . . +Cq,q−1Bq−1,q)bj−1,p

+Bq,j−1 +Bq,qbj−1,p

= Cq,j−1 +Cq,j−1Cj−1,j−1 + Cq,qbj−1,p = Cq,j−1 + Cq,j−1 + bj−1,p

= bj−1,p.

Here, R is the sum of the contributions to B1,j that don’t contain crossings of
the first period. These terms only have to be re-labeled and that can be done
just like in the argument above for Bi,j when i ≥ 2. In the sum of sums

Cq,1B1,j−1 +Cq,2B2,j−1 + . . .+ Cq,q−1Bq−1,j−1 +Bq,j−1,

we re-grouped the terms; those with an admissible sequence of labels formed
Cq,j−1 , and the rest, where j−1 was repeated ‘illegally,’ formed Cq,j−1Cj−1,j−1 .

Note that by the now proven (13), for all i, j ≥ 2, µ(Bi,j+Bi,1B1,j) = Bi−1,j−1 .
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Therefore, when i > j ≥ 2,

µ(Ci,j) = µ




∑

{ i1,...,ic,j }∈Di

Bi,i1Bi1,i2Bi2,i3 . . . Bic−1,icBic,j





= µ









∑

{ j1, . . . , jd, j } ∈ Di

j1, . . . , jd ≥ 2

(Bi,j1 +Bi,1B1,j1)(Bj1,j2+Bj1,1B1,j2) . . .

(Bjd−1,jd +Bjd−1,1B1,jd)(Bjd,j +Bjd,1B1,j)









=
∑

{ j1, . . . , jd, j } ∈ Di

j1, . . . , jd ≥ 2

Bi−1,j1−1Bj1−1,j2−1 . . . Bjd−1−1,jd−1Bjd−1,j−1

= Ci−1,j−1.

As a consequence of this and (13), for all i ≥ 2,

µ(Ci,1) = µ



Bi,1 +

i−1∑

j=2

Ci,jBj,1



 = Bi−1,q +

i−1∑

j=2

Ci−1,j−1Bj−1,q = Mi−1,q.

Finally, when 2 ≤ i < j ,

µ(Mi,j) = µ

(

Bi,j +

i−1∑

k=1

Ci,kBk,j

)

= Bi−1,j−1 +Bi−1,qbj−1,p +Mi−1,qbj−1,p

+
i−1∑

k=2

Ci−1,k−1(Bk−1,j−1 +Bk−1,qbj−1,p)

= Mi−1,qbj−1,p +

(

Bi−1,j−1 +

i−1∑

k=2

Ci−1,k−1Bk−1,j−1

)

+

(

Bi−1,q +

i−1∑

k=2

Ci−1,k−1Bk−1,q

)

bj−1,p

= Mi−1,qbj−1,p +Mi−1,j−1 +Mi−1,qbj−1,p

= Mi−1,j−1,

and when i > j , the argument is very similar to the one we gave for Ci,j .

Theorem 9.3 The order of the (restricted) monodromy µ0 = µ
∣
∣
H0(L)

of the

loop Ωp,q of Legendrian (p, q) torus knots divides p+ q .
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Proof This is now a straightforward computation, generalizing the first para-
graph of the proof of Proposition 5.1. Consider the generator bm,p (m =
1, . . . , q− 1). By Proposition 9.1, the first p iterations of µ act on it as follows:

µ(bm,p) = bm,p−1, µ
2(bm,p) = bm,p−2, . . . , µ

p−1(bm,p) = bm,1, µ
p(bm,p) = Cq,m.

Then by (14) of Proposition 9.2, the next m iterations are as follows:

µp+1(bm,p) = Cq−1,m−1, . . . , µ
p+m−1(bm,p) = Cq−m+1,1, µ

p+m(bm,p) = Mq−m,q.

Now by (15), the next q −m− 1 iterations are

µp+m+1(bm,p) = Mq−m−1,q−1, . . . , µ
p+q−1(bm,p) = M1,m+1.

Finally, because M1,m+1 = B1,m+1 , (13) yields

µp+q(bm,p) = bm,p.

Because bm,n is on the orbit of bm,p for all n = 1, . . . , p, we see that µp+q is
the identity on all of the degree 0 generators.

10 (p + q) divides |µ0|

Theorem 10.1 The number p+ q divides the order of the monodromy µ.

In the proof of Theorem 9.3, we described explicitly the (p + q)-element or-
bit of each index 0 generator bm,n (altogether q − 1 orbits). Recall that
all of those orbits contain a b–sequence bm,p, bm,p−1, . . . , bm,1 of length p, a
C–sequence Cq,m, Cq−1,m−1, . . . , Cq−m+1,1 of length m and an M –sequence
Mq−m,q,Mq−m−1,q−1, . . . ,M1,m+1 of length q−m. (These expressions are cycles
in the chain complex A, but we really mean the homology classes represented
by them.) We will choose one of these orbits and show that it doesn’t have a
period shorter than p+ q . For this, we will evaluate the augmentation ε = εX
(see Proposition 7.11) on elements of the orbit, and prove that the resulting
sequence of 0’s and 1’s, which we will call the 0-1–sequence of the orbit, has
no such shorter period. In fact, we claim the following:

Proposition 10.2 If q > p but p ∤ q , the 0-1–sequence S of the orbit of bp,p
consists of p consecutive 0’s and q consecutive 1’s. If q < p but q ∤ p, then
the same holds for the orbit of b[p (mod q)],p .
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In the latter case, we will denote the value 1 ≤ [p (mod q)] ≤ q − 1 by r0 . For
the rest of the section, either this value r0 or p, as the case may be, should
be substituted for m in the formulas for the b–, C–, and M –sequences. Note
that if q | p, the said orbit doesn’t even exist (if q > p and p | q , then its
0-1–sequence consists only of 1’s).

Recall that X was constructed so that the graph realized by X was the aug-
mented graph of the underlying permutation σ of the braid. Hence, this ori-
ented graph Γσ has adjacency matrix [εX(Bi,j)] and therefore it contains all
the information we need to evaluate the algebra homomorphism ε = εX on the
polynomial expressions of the C– and M –sequences. We will only need to refer
to the actual braid in the case of the b–sequence. In our situation,

σ(i) = [(i − p) (mod q)], i = 1, . . . , q.

When q < p, we could equivalently write σ(i) = [(i − r0) (mod q)]. This
explains why our choice of orbit in Proposition 10.2 is reasonable: both in
the C–sequence and in the M –sequence the two lower indices are always the
endpoints of an edge of Γσ , but they are listed in the reverse order. So when
we evaluate ε on these polynomials, what we need to examine is whether the
given edge of the graph can be “reversed,” ie, if it is part of an oriented loop
(and how many loops) with an admissible sequence of vertices.

We will re-state and prove Proposition 10.2 in a more detailed version.

Proposition 10.3 The orbit specified in Proposition 10.2 contributes 0’s and
1’s to the sequence S as follows.

(1) If 2p ≤ q but p ∤ q (hence in fact 2p < q), then we have

p copies of 1
︷ ︸︸ ︷

bp,p, . . . , bp,1;

p copies of 1
︷ ︸︸ ︷

Cq,p, . . . , Cq−p+1,1;

p copies of 0
︷ ︸︸ ︷

Mq−p,q, . . . ,Mq−2p+1,q−p+1,

q−2p copies of 1
︷ ︸︸ ︷

Mq−2p,q−p, . . . ,M1,p+1 .

(2) If 2p > q but q > p, then the sequence is

2p−q copies of 0
︷ ︸︸ ︷

bp,p, . . . , bp,q−p+1,

q−p copies of 1
︷ ︸︸ ︷

bp,q−p, . . . , bp,1;

p copies of 1
︷ ︸︸ ︷

Cq,p, . . . , Cq−p+1,1;

q−p copies of 0
︷ ︸︸ ︷

Mq−p,q, . . . ,M1,p+1 .

(3) If q < p, q ∤ p, and 2r0 < q , then we get

p−r0 copies of 0
︷ ︸︸ ︷

br0,p, . . . , br0,r0+1,

r0 copies of 1
︷ ︸︸ ︷

br0,r0, . . . , br0,1;

r0 copies of 1
︷ ︸︸ ︷

Cq,r0, . . . , Cq−r0+1,1;

q−2r0 copies of 1
︷ ︸︸ ︷

Mq−r0,q, . . . ,Mr0+1,2r0+1,

r0 copies of 0
︷ ︸︸ ︷

Mr0,2r0 , . . . ,M1,r0+1 .
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(4) Finally, if q < p, q ∤ p, and 2r0 ≥ q , then we have

p−q+r0 copies of 0
︷ ︸︸ ︷

br0,p, . . . , br0,q−r0+1,

q−r0 copies of 1
︷ ︸︸ ︷

br0,q−r0, . . . , br0,1;

r0 copies of 1
︷ ︸︸ ︷

Cq,r0, . . . , Cq−r0+1,1;

q−r0 copies of 0
︷ ︸︸ ︷

Mq−r0,q, . . . ,M1,r0+1 .

Proof b–sequence In case (1), all numbers 1 ≤ j ≤ p are so that j < [(j+p)
(mod q)] = j + p and j < [(j − p) (mod q)]. This means that j+ = j− = j , ie,
that there is a loop edge attached to j in Γσ . It is easy to check that in the
construction of X , the crossing that realizes this loop edge is exactly bp,j .

In case (2), we similarly find loop edges but only attached to the numbers
1, . . . , q − p. These are realized by the crossings bp,1, . . . , bp,q−p . For the cross-
ings bp,q−p+1, . . . , bp,p , we find that their second labels in the system that we
used to label crossings of general braids in section 6 are also q − p + 1, . . . , p.
These numbers can not be the endpoints of a chord because the numbers pre-
ceding them in the permutation (namely, 1, . . . , 2p− q) are smaller than them.
Therefore these crossings are indeed not selected into X .

In cases (3) and (4), first note that the crossings br0,q+1, . . . , br0,p have third
labels greater than 1 in the labeling system of section 6, so they never get
selected into X . Neither do br0,r0+1, . . . , br0,q , because their ‘old’ first labels
are r0 +1, . . . , q and these are taken to the smaller values 1, . . . , q−r0 by σ (ie,
they’ll never be the startpoint of a chord). After this, the rest of the b–sequence
can be sorted out just like in the first two cases.

C–sequence Here the claim is that it always contributes only 1’s to S . This is
because i > σ−1(i) = [(i+ p) (mod q)] implies ε(Ci,[(i+p) (mod q)]) = 1. Indeed,
since it is preceded in the permutation by a smaller number, i can’t be the
endpoint of a chord, only of the single edge coming from σ−1(i). So there is a
unique term in Ci,[(i+p) (mod q)] that contributes 1 to ε(Ci,[(i+p) (mod q)]), namely
the one which, when multiplied by B[(i+p) (mod q)],i on the right, produces the
term corresponding to the unique loop described in Lemma 7.7.

M –sequence All the four claims in this case follow from Lemma 7.8. Note
in particular that if we allowed p | q in case (1), then j−p would be the second
largest vertex on Γj for all j = p + 1, . . . , q , and therefore the first p elements
of the M –sequence wouldn’t be mapped to 0 by ε. However if p ∤ q , then
the first number x after the sequence j, j − p, j − 2p, . . . ‘wraps around’ the
circle Zq is different from j . If x is also smaller than j (and this will be the
case exactly when j = q, q − 1, . . . , q − [q (mod p)] + 1), then it falls between
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j and j − p, so j − p is not second largest in Γj . If x is larger than j , then
it is recognized as what we called σ(j+) in section 7. But then there exists a
chord in Γσ , starting from j+ , and ending at the element j− of Γj . This j−
is by construction such that [(j− + p) (mod q)] > j . But because p < q/2,
if we assume that j > q − p, then this is only possible if j− + p > j , ie if
j− > j− p. This again means that in these cases, j− p is not second largest on
Γj . This proves the claim about the first part of the M –sequence. Finally, if
j ≤ q − p (which implies j− = j ), then Γj only visits the positive elements of
the arithmetic progression j, j − p, j − 2p, . . . (ie, there is no wrapping around)
and j − p is obviously second largest among these. Cases (2), (3) and (4) can
be handled similarly.

Note that this was a generalization of the second paragraph in the proof of
Proposition 5.1; there, we used the augmentation X = { b3 }.
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(2001) 525–534

[6] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002)
441–483

[7] T Ekholm, J Etnyre, M Sullivan, Legendrian submanifolds in R2n+1 and
contact homology, arXiv:math.SG/0210124

[8] Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian
knots, from: “Geometry, topology, and dynamics (Montreal, PQ, 1995)”, CRM
Proc. Lecture Notes 15, Amer. Math. Soc., Providence, RI (1998) 17–51

[9] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory,
Geom. Funct. Anal. (2000) 560–673

Geometry & Topology, Volume 9 (2005)



2078 Tamás Kálmán
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