Volume 9, issue 4 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Rohlin's invariant and gauge theory III. Homology 4–tori

Daniel Ruberman and Nikolai Saveliev

Geometry & Topology 9 (2005) 2079–2127

arXiv: math.GT/0404162

Abstract

This is the third in our series of papers relating gauge theoretic invariants of certain 4–manifolds with invariants of 3–manifolds derived from Rohlin’s theorem. Such relations are well-known in dimension three, starting with Casson’s integral lift of the Rohlin invariant of a homology sphere. We consider two invariants of a spin 4–manifold that has the integral homology of a 4–torus. The first is a degree zero Donaldson invariant, counting flat connections on a certain SO(3)–bundle. The second, which depends on the choice of a 1–dimensional cohomology class, is a combination of Rohlin invariants of a 3–manifold carrying the dual homology class. We prove that these invariants, suitably normalized, agree modulo 2, by showing that they coincide with the quadruple cup product of 1–dimensional cohomology classes.

Keywords
Rohlin invariant, Donaldson invariant, equivariant perturbation, homology torus
Mathematical Subject Classification 2000
Primary: 57R57
Secondary: 57R58
References
Forward citations
Publication
Received: 2 August 2005
Accepted: 25 October 2005
Published: 27 October 2005
Proposed: Ronald Stern
Seconded: Ronald Fintushel, Simon Donaldson
Authors
Daniel Ruberman
Department of Mathematics
MS 050
Brandeis University
Waltham
MA 02454
USA
Nikolai Saveliev
Department of Mathematics
University of Miami
PO Box 249085
Coral Gables
Florida 33124
USA