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The local Gromov–Witten invariants of
configurations of rational curves

DAGAN KARP

CHIU-CHU MELISSA LIU

MARCOS MARIÑO

We compute the local Gromov–Witten invariants of certain configurations of rational
curves in a Calabi–Yau threefold. These configurations are connected subcurves of
the “minimal trivalent configuration”, which is a particular tree of P1 ’s with specified
formal neighborhood. We show that these local invariants are equal to certain global
or ordinary Gromov–Witten invariants of a blowup of P3 at points, and we compute
these ordinary invariants using the geometry of the Cremona transform. We also
realize the configurations in question as formal toric schemes and compute their
formal Gromov–Witten invariants using the mathematical and physical theories of
the topological vertex. In particular, we provide further evidence equating the vertex
amplitudes derived from physical and mathematical theories of the topological vertex.

14N35; 53D45

1 Introduction

Let Z be a closed subvariety of a smooth projective threefold X such that X is a
local Calabi–Yau threefold near Z . In some cases, the contribution to the Gromov–
Witten invariants of X by maps to Z can be isolated and defines local Gromov–Witten
invariants of Z in X . Information obtained from the study of local Gromov–Witten
theory can be used to gain insight into Gromov–Witten theory in general. This has led
to a great amount of interest in the subject.

The study of the local invariants of curves in a Calabi–Yau threefold has a particularly
rich history. Their study goes back to the famous Aspinwall–Morrison formula for
the local invariants of a single P1 smoothly embedded in a Calabi–Yau threefold with
normal bundle O.�1/˚O.�1/; this result is studied by Aspinwall and Morrison
[3], Cox and Katz [9], Faber and Pandharipande [10], Kontsevich [18], Lian, Liu
and Yau [23], Manin [27], Pandharipande [31], and Voisin [32]. The local invariants
of nonsingular curves of any genus have been completely determined by Bryan and
Pandharipande [7; 8; 6]. In [5], Bryan, Katz and Leung computed local invariants of
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116 Karp, Liu and Mariño

certain rational curves with nodal singularities, and in particular, contractible ADE

configurations of rational curves. The local invariants of the closed topological vertex,
which is a configuration of three P1 ’s meeting in a single triple point, were computed
by Bryan and the first author [4].

In this paper, we will compute local invariants of certain configurations of rational
curves. The configurations considered in this paper are all connected subtrees of
the minimal trivalent configuration, which is a configuration of three chains of P1 ’s
meeting in a triple point (see Figure 1 below). A precise description of the formal
neighborhood will be given in Section 3.

A1

A2

B1

B2

C1

C2

Figure 1: The minimal trivalent configuration Y N D
SN

iD1 Ai [Bi [ Ci .
The normal bundles of A1;B1;C1 are isomorphic to O.�1/˚O.�1/; the
normal bundle of any other irreducible component is isomorphic to O ˚
O.�2/ .

1.1 Local Gromov–Witten invariants

Let Z �X be a closed subvariety of a smooth projective Calabi–Yau threefold. Let
Mg.X;d/ denote the stack of genus g stable maps to X representing d 2H2.X;Z/.
It is a Deligne–Mumford stack with a perfect obstruction theory of virtual dimension
zero which defines a virtual fundamental zero-cycle ŒMg.X;d/�vir .

Whenever the substack Mg.Z/ consisting of stable maps whose image lies in Z is a
union of path connected components of Mg.X;d/, it inherits a degree-zero virtual
class. The genus-g local Gromov–Witten invariant of Z in X is defined to be the
degree of this virtual class, and is denoted by N

g
d .Z �X /. We write N

g
d .Z/ when

the formal neighborhood is understood.

We will consider genus g , degree d local Gromov–Witten invariants N
g
d .Y

N /, where

dD
NX

jD1

�
d1;j ŒAj �C d2;j ŒBj �C d3;j ŒCj �

�
2H2.Y

N
IZ/:
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Gromov–Witten invariants of configurations of curves 117

For simplicity, we write dD .d1;d2;d3/ where di D .di;1; : : : ; di;N /. In this paper,
we always assume d is effective in the sense that di;j � 0. We will show that the local
invariants N

g
d .Y

N / are well defined in the following cases:

(i) (The minimal trivalent configuration) d1;1 D d2;1 D d3;1 D 1.

(ii) (A chain of rational curves) d1;1 > 0, d2;j D d3;j D 0 for 1� j �N .

We will see in Section 3 that the formal neighborhood of Y N has a cyclic symmetry,
so one can cyclically permute d1;d2;d3 in Case (ii). We show that in the above cases
the local invariants N

g
d .Y

N / are equal to certain global or ordinary Gromov–Witten
invariants of a blowup of P3 at points (Section 4), and we compute these ordinary
invariants using the geometry of the Cremona transform (Section 2). To state our results,
define constants Cg by

(1)
1X

gD0

Cgt2g
D

�
t=2

sin.t=2/

�2

D

1X
gD0

jB2g.2g� 1/j

.2g/!
t2g:

Theorem 1 (The minimal trivalent configuration) Suppose that

d1;1 D d2;1 D d3;1 D 1:

Then

N
g
d .Y

N /D

�
Cg if 1D di;1 � � � � � di;N � 0 for i D 1; 2; 3;

0 otherwise.

Theorem 2 (A chain of rational curves) Suppose that

d1 D .d1; : : : ; dN /; d2 D d3 D .0; : : : ; 0/;

where d1 > 0. Then

N
g
d .Y

N /D

8̂<̂
: Cgd2g�3 if d1 D d2 D � � � D dk D d > 0 and

dkC1 D dkC2 D � � � D dN D 0 for some 1� k �N

0 otherwise.

Our results are new and add to the list of configurations of rational curves for which
the local Gromov–Witten invariants are known.

The configuration in Theorem 2 is an AN curve. It is interesting to compare Theorem
2 with the result for a generic contractible AN curve E D E1 [ � � � [ EN from
Bryan–Katz–Leung [5, Proposition 2.10]:
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118 Karp, Liu and Mariño

Fact 1 (A generic contractible AN curve [5]) Assume di > 0 for i D 1; : : : ;N . Let
Ng.d1; : : : ; dN / denote genus g local Gromov–Witten invariants of E in the classPN

jD1 dj ŒEj �. Then

Ng.d1; : : : ; dN /D

�
Cgd2g�3 d1 D � � � D dN D d > 0;

0 otherwise.

Note that Y 1 is the closed topological vertex. By the results in Faber–Pandharipande
[10] and Bryan–Karp [4], N

g

d1;d2;d3
.Y 1/ is defined in the following cases:

(iii) (Super-rigid P1 ) d1 > 0; d2 D d3 D 0 (and its cyclic permutation).

(iv) (The closed topological vertex) d1; d2; d3 > 0.

Fact 2 (Super-rigid P1 [10]) Suppose that d > 0. Then

N
g

d;0;0
.Y 1/DN

g

0;d;0
.Y 1/DN

g

0;0;d
.Y 1/D Cgd2g�3:

Fact 3 (The closed topological vertex [4]) Suppose that d1; d2; d3 > 0. Then

N
g

d1;d2;d3
.Y 1/D

�
Cgd2g�3 d1 D d2 D d3 D d > 0;

0 otherwise.

1.2 Formal Gromov–Witten invariants

The minimal trivalent configuration Y N together with its formal neighborhood is a
nonsingular formal toric Calabi–Yau (FTCY) scheme yY N . The formal Gromov–Witten
invariants zN g

d .
yY N / of yY N are defined for all nonzero effective classes (see Section

5.1 and Bryan–Pandharipande [6, Section 2.1]). Moreover,

zN
g
d .
yY N /DN

g
d .Y

N /

in all the above cases (i)–(iv). Introduce formal variables �; ti;j and define

zZN .�I t/D exp
�X

g�0

X
d

�2g�2 zNg;d. yY
N /e�d�t�

where d runs over all nonzero effective classes, and

tD .t1; t2; t3/; ti D .ti;1; : : : ; ti;N /; d � tD
3X

iD1

NX
jD1

di;j ti;j :

We call zZN .�I t/ the partition function of formal Gromov–Witten invariants of yY N .
It is the generating function of disconnected formal Gromov–Witten invariants of yY N .
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Gromov–Witten invariants of configurations of curves 119

In Section 5, we will compute zZN .�I t/ by the mathematical theory of the topological
vertex (see Li–Liu–Liu–Zhou [22]) and get the following expression (Proposition 17):

(2) zZN .�I t/D exp
� 1X

nD1

1

nŒn�2

3X
iD1

X
2�k1�k2�N

e�n.ti;k1
C���Cti;k2

/

�

�

X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jti;1s.�i /t .u
i.q; ti//:

where E�D .�1; �2; �3/ is a triple of partitions, q D e
p�1� , Œn�D qn=2�q�n=2 . The

precise definitions of zW E�.q/ and s.�i /t .u
i.q; ti// will be given in Section 1.3. In

particular, we will show that

(3) zZ1.�I t/D
X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jtiW.�i /t .q/D exp

 1X
nD1

Qn.t/
�nŒn�2

!

where tD .t1; t2; t3/, W�.q/ is defined by (9) in Section 1.3, and

(4) Qn.t/D

e�nt1 C e�nt2 C e�nt3 � e�n.t1Ct2/� e�n.t2Ct3/� e�n.t3Ct1/C e�n.t1Ct2Ct3/:

In Section 6, we will compute zZN .�I t/ by the physical theory of the topological vertex
(see Aganagic–Klemm–Mariño–Vafa [2]) and get the following expression (Proposition
20):

(5) ZN .�I t/D exp
� 1X

nD1

1

nŒn�2

3X
iD1

X
2�k1�k2�N

e�n.ti;k1
C���Cti;k2

/

�

�

X
E�
W E�.q/

3Y
iD1

.�1/j�i je�j�i jti;1s.�i /t .u
i.q; ti//

where W E�.q/ is defined by (8) in Section 1.3. In particular, we will show that (Propo-
sition 19):

(6) Z1.�I t/D
X
E�
W E�.q/

3Y
iD1

.�1/j�i je�j�i jtiW.�i /t .q/D exp

 1X
nD1

Qn.t/
�nŒn�2

!
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120 Karp, Liu and Mariño

The equivalence of the physical and mathematical theories of the topological vertex
boils down to the following combinatorial identity:

(7) W�1;�2;�3.q/D zW�1;�2;�3.q/:

It is known that (7) holds when one of the three partitions is empty (see the work of Li,
C-C M Liu, K Liu and Zhou [24; 22]). When none of the partitions is empty, Klemm
has checked all the cases where j�i j � 6 by computer. Up to now, a mathematical
proof of (7) in full generality is not available. Equations (3) and (6) imply the following
result.

Theorem 3

X
E�
W E�.q/

3Y
iD1

.�1/j�i je�j�i jtiW.�i /t .q/D
X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jtiW.�i /t .q/:

Theorem 3 provides further evidence of (7) equating the vertex amplitudes derived
from physical and mathematical theories of the topological vertex.

1.3 The topological vertex

In [2], Aganagic, Klemm, Mariño, and Vafa proposed that Gromov–Witten invariants of
any toric Calabi–Yau threefold can be expressed in terms of certain relative invariants
of its C3 charts, called the topological vertex. They suggested that these local relative
invariants should count holomorphic maps from bordered Riemann surfaces to C3 where
the boundary circles are mapped to three explicitly specified Lagrangian submanifolds
L1;L2;L3 . The topological vertex depends on three partitions E� D .�1; �2; �3/,
where �i corresponds to the winding numbers (the homology classes of boundary
circles) in Li . There is a symmetry on C3 cyclically permuting L1;L2;L3 , so one
expects the topological vertex to be symmetric under a cyclic permutation of the three
partitions �1; �2; �3 .

In [2] the topological vertex was computed by using the conjectural relation between
open Gromov–Witten invariants on toric Calabi–Yau threefolds and Chern–Simons
invariants of knots and links. It has the following form:

(8) W E�.q/D q
�
�2=2C��3=2

X
�;�1;�3

c
�1

��1c
.�3/t

��3

W.�2/t�1.q/W�2�3.q/

W�2.q/
:
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Gromov–Witten invariants of configurations of curves 121

In (8), �t denotes the partition transposed to �. The expression (8) involves various
quantities that we now define. �� is given by

�� D
X

i

�i.�i � 2i C 1/:

The coefficients c
�
�� are Littlewood–Richardson coefficients. They can be defined in

terms of Schur functions as follows

s�s� D
X
�

c���s�:

Here, Schur functions are regarded as a basis for the ring ƒ of symmetric polynomials
in an infinite number of variables. The quantity W�.q/ can be also defined in terms of
Schur functions as follows:

(9) W�.q/D s�
�
xi D q�iC 1

2

�
:

One can show that

(10) W�t .q/D q���=2W�.q/:

We also define, in analogy to skew Schur functions,

(11) W�=�.q/D
X
�

c
�

��
W�.q/:

Finally, W��.q/ is defined by

(12) W��.q/D q��=2C��=2
X
�

W�t=�.q/W�t=�.q/:

This expression for W��.q/ is different from the one used originally in [2]. The fact
that both agree follows from cyclicity of the vertex, and it has been proved in detail
by Zhou [33]. The expression for the vertex in terms of Schur functions is given in
Okounkov–Reshetikhin–Vafa [30] where the cyclicity of the vertex is also proved.

In Li–Liu–Liu–Zhou [22] the topological vertex was interpreted and defined as local
relative invariants of a configuration C1[C2[C3 of three P1 ’s meeting at a point p0 in
a relative Calabi–Yau threefold .Z;D1;D2;D3/, where KZCD1CD2CD3ŠOZ ,
Ci intersects Di at a point pi ¤p0 , and Ci\Dj is empty for i ¤ j . The partition �i

corresponds to the ramification pattern over pi . It is shown in [22] that Gromov–Witten
invariants of any toric Calabi–Yau threefold (or more generally, formal Gromov–Witten
invariants of formal toric Calabi–Yau threefolds) can be expressed in terms of local
relative invariants as described above, and the gluing rules coincide with those stated
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122 Karp, Liu and Mariño

in Aganagic–Klemm–Mariño–Vafa [2]. The following expression of the vertex was
derived in [22]:

(13) zW E�.q/D q
�.�

�1�2�
�2� 1

2
�
�3 /=2

X
�C;�1;�3;�1;�3

c�
C
.�1/t�2c

�1

.�1/t�1c
�3

�3.�3/t

� q.�2�
�C�

�
�3

2
/=2W�C�3.q/

X
�

1

z�
��1.�/��3.2�/:

Here 2� D .2�1 � 2�2 � � � � / if � D .�1 � �2 � � � � /. Recall that

z� D
Y
i�1

imi �mi !

where mi Dmi.�/ is the number of parts of the partition � equal to i (see Macdonald
[26, p.17]).

It is expected that the two different enumerative interpretations in [2] and in [22] of
the vertex give rise to equivalent counting problems, in the spirit of the following
simple example: counting ramified covers of a disc by bordered Riemann surfaces with
prescribed winding numbers is equivalent to counting ramified covers of a sphere by
closed Riemann surfaces with prescribed ramification pattern over 1.

Finally, we introduce some notation which will arise in computations in Section 6. For
any positive integer n, define

(14) ui
n.q; ti/D

1

Œn�

�
1C

NX
kD2

e�n.ti;2C���Cti;k/
�
:

Given a partition �D .�1 � �2 � � � � � �` > 0/, define

(15) ui
�.q; ti/D

Ỳ
jD1

ui
�j
.q; ti/:

and

(16) s�.u
i.q; ti//D

X
j�jDj�j

��.�/

z�
ui
�.q; ti/:

In particular, when N D 1, we have

ui
n D

1

Œn�
D

X
i>0

q�iC1=2
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So

(17) s�.u
i.q; ti//D s�.xi D q�iC 1

2 /DW�.q/:
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2 Cremona

In this section we prove Theorems 1 and 2 using the geometry of the Cremona transform.
We assume that the formal neighborhood Y N �X is as constructed in Section 3. We
also assume that the local invariants of Y N are equal to certain ordinary invariants of
X , which we prove in Section 4.

2.1 The blowup of CP3 at points

We briefly review the properties of the blowup of P3 at points used here for complete-
ness and to set notation. This material can be found in much greater detail in, for
instance, Griffiths–Harris [13].

Let X!P3 be the blowup of P3 along M distinct points fp1; : : : ;pM g. We describe
the homology of X . All (co)homology is taken with integer coefficients. Note that
we may identify homology and cohomology as rings via Poincaré duality, where cup
product is dual to intersection product.

Let H be the total transform of a hyperplane in P3 , and let Ei be the exceptional
divisor over pi . Then H4.X;Z/ has a basis

H4.X /D hH;E1; : : : ;EM i :

Furthermore, let h 2H2.X / be the class of a line in H , and let ei be the class of a
line in Ei . The collection of all such classes form a basis of H2.X /.

H2.X /D hh; e1; : : : ; eM i

The intersection ring structure is given as follows. Let pt 2H0.X / denote the class of
a point. Two general hyperplanes meet in a line, so H �H D h. A general hyperplane
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124 Karp, Liu and Mariño

and line intersect in a point, so H �hD pt . Also, a general hyperplane is far from the
center of a blowup, so all other products involving H or h vanish. The restriction of
OX .Ei/ to Ei Š P2 is the dual of the bundle OP2.1/, so Ei �Ei is represented by
minus a hyperplane in Ei , i.e. Ei �Ei D�ei , and E3

i D .�1/3�1pt D pt (see Fulton
[11]). Furthermore, the centers of the blowups are far away from each other, so all
other intersections vanish. In summary, the following are the only non-zero intersection
products.

H �H D h H � hD pt

Ei �Ei D�ei Ei � ei D�pt

Also, we point out the that the canonical bundle KX is easy to describe in this basis:

KX D�4H C 2

MX
iD1

Ei

Finally, we introduce a notational convenience for the Gromov–Witten invariants of
P3 blown up at points in a Calabi–Yau class. Any curve class is of the form

ˇ D dh�

MX
iD1

aiei

for some integers d; ai where d is non-negative. Thus KX � ˇ D 0 if and only if
2d D

PM
iD1 ai . In that case, the virtual dimension of Mg.X; ˇ/ is zero, and

h i
X
g;ˇ D

Z
ŒMg.X ;ˇ/�vir

1

is determined by the discrete data fd; ai ; : : : ; aM g. Then, we may use the shorthand
notation

h i
X
g;ˇ D hd I a1; : : : ; aM i

X
g :

For example,

h i
X
g;5h�e1�e2�2e3�3e5�3e6

D h5I 1; 1; 2; 0; 3; 3iXg :

Furthermore, the Gromov–Witten invariants of X do not depend on ordering of the
points pi , and thus for any permutation � of M points,

hd I a1; : : : ; aM i
X
g D

˝
d I a�.1/; : : : ; a�.M /

˛X
g
:
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2.2 Properties of the invariants of the blowup of P3 at points

First, we use the fact, shown in Bryan–Karp [4], that the Gromov–Witten invariants of
the blowup of P3 along points have a symmetry which arises from the geometry of the
Cremona transformation.

Theorem 4 (Bryan–Karp [4]) Let ˇ D dh�
PM

iD1 aiei with 2d D
PM

iD1 ai and
assume that ai ¤ 0 for some i > 4. Then we have the following equality of Gromov–
Witten invariants:

h i
X
g;ˇ D h i

X
g;ˇ0

where ˇ0 D d 0h�
PM

iD1 a0iei has coefficients given by

d 0 D 3d � 2.a1C a2C a3C a4/

a01 D d � .a2C a3C a4/

a02 D d � .a1C a3C a4/

a03 D d � .a1C a2C a4/

a04 D d � .a1C a2C a3/

a05 D a5

:::

a0M D aM :

We also use the following vanishing lemma, and a few of its corollaries.

Lemma 5 Let X be the blowup of P3 at M distinct generic points fx1; : : : ;xM g,
and ˇ D dh�

PM
iD1 aiei with 2d D

PM
iD1 ai , and assume that d > 0 and ai < 0 for

some i . Then

Mg.X; ˇ/D∅:

Corollary 6 For any M points fx1; : : : ;xM g and X and ˇ as above the correspond-
ing invariant vanishes;

h i
X
g;ˇ D 0:

This follows immediately from the deformation invariance of Gromov–Witten invariants
and Lemma 5.
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Proof In genus zero, Lemma 5 follows from a vanishing theorem of Gathmann [12,
Section 3]. In order to prove Lemma 5, for arbitrary genus, it suffices to show that
the result holds for a specific choice of points, as if the moduli space is empty for a
specific choice, then it is empty for the generic choice. By choosing some of the points
to be coplanar, and the rest to also be coplanar on a second plane, the result follows.
For further details, see Karp [17].

Corollary 7 Let X be the blowup of P3 along M points and define ˇ D dh �PM
iD1 aiei where 2d D

PM
iD1 ai and d > 0. Also define

X 0 ��!X

to be the blowup of X at a generic point p , so that X 0 is deformation equivalent to the
blowup of P3 at M C 1 distinct points. Let fh0; e0

1
; : : : ; e0

MC1
g be a basis of H2.X

0/,
and let ˇ0 D dh0�

PM
iD1 aie

0
i . Then

hd I a1; : : : aM ; 0iX
0

g D hd I a1; : : : ; aM i
X
g

Proof This result follows from the more general results of Hu [14]. An independent
proof using Lemma 5 can be found in Karp [17].

2.3 Proof of Theorem 1

Let the blowup space X NC1 and the minimal trivalent configuration Y N be as con-
structed in Section 3 on page 128. By Proposition 8 on page 132 we have

N
g
d .Y

N /D h iX
NC1

g;d :

Assume that the invariant is non-zero:

h i
X NC1

g;d D
˝
3I 1; 1� d1;2; : : : ; d1;N�1� d1;N ; d1;N ;

1; 1� d2;2; : : : ; d2;N�1� d2;N ; d2;N ;

1; 1� d3;2; : : : ; d3;N�1� d3;N ; d3;N

˛X NC1

g

¤ 0

Then, by Corollary 6 , the coefficient of each ei ; fi ;gi is non-negative. Thus, for
i D 1; 2; 3,

(18) 1� di;2 � � � � � di;N � 0:
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Therefore we compute

h i
X NC1

g;d D
˝
3I 1; 0; : : : ; 0; 1;

1; 0; : : : ; 0; 1;

1; 0; : : : ; 0; 1
˛X NC1

g

D h3I 1; 1; 1; 1; 1; 1iX
2

g ;

where the last equality follows from Corollary 7. So when (18) holds, we have

N
g
d .Y

N /DN
g
1;1;1

.Y 1/D Cg:

The last equality follows from Fact 3 (see Bryan–Karp [4]).

2.4 Proof of Theorem 2

Let the blowup space zX NC1 and the chain of rational curves Y N
A

be as constructed in
Section 3 on page 130. By Proposition 10 on page 137 we have

N
g
d .Y

N /DN
g
d1
.Y N

A /D h i
zX NC1

g;d

where

d1 D .d1; : : : ; dN /; d2 D d3 D .0; : : : ; 0/:

Assume that the invariant is non-zero:

h i
zX NC1

g;d D hd1I d1; d1� d2; : : : ; dN�1� dN ; dN i
zX NC1

g ¤ 0:

By Corollary 6 the multiplicities are decreasing:

d1 � d2 � � � � � dN � 0

Therefore, as d1 > 0, there exists some 1� j �N such that

d1 � � � � � dj > 0; djC1 D � � � D dN D 0:

Then, using Corollary 7, we compute

N
g
d .Y

N /D
˝
d1I d1; d1� d2; : : : ; dj�1� dj ; 0; : : : 0

˛ zX NC1

g

D
˝
d1I d1; d1� d2; : : : ; dj�1� dj ; dj

˛ zX jC1

g
:
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Note that for any 1� i � j C 1 we may reorder˝
d1I d1; d1� d2; : : : ; dj�1� dj ; dj

˛ zX jC1

g
D

hd1I d1; d1; di � diC1; 0; 0; d1� d2; : : :

: : : ; di�2� di�1; diC1� diC2; : : : ; dj�1� dj ; dj

˛ zX jC1

g

Applying Cremona invariance (Theorem 4) we compute

h i
zX NC1

g;d D
˝
d1� 2.di � diC1/I d1� .di � diC1/; 0; diC1� di ; diC1� di ;

d1� d2; : : : ; dj�1� dj ; dj

˛ zX jC3

g
:

Then, by Corollary 6, diC1 � di . Since this inequality holds for every 1� i � j we
have d1 � � � � � dj . Therefore

d1 D � � � D dj D d:

Thus we have

h i
zX NC1

g;d D hd I d; 0; : : : ; 0; di
zX jC1

g

D hd I d; di
zX 2

g

DN
g

d;0;0
.Y 1/

D Cgd2g�3

The last equality follows from Faber–Pandharipande [10].

3 Construction

We construct these configurations as subvarieties of a locally Calabi–Yau space X NC1 ,
which is obtained via a sequence of toric blowups of P3 :

X NC1
�NC1

����!X N �N
��! � � �

�2
�!X 1 �1

�!X 0
D P3

In fact, X iC1 will be the blowup of X i along three points. Our rational curves will
be labeled by Ai ;Bi ;Ci , where 1� i �N , reflecting the nature of the configuration.
Curves in intermediary spaces will have super-scripts, and their corresponding proper
transforms in X will not.

The standard torus TD .C�/3 action on P3 is given by

.t1; t2; t3/ � .x0Wx1Wx2Wx3/ 7! .x0W t1x1W t2x2W t3x3/:
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There are four T–fixed points in X 0W D P3 ; we label them p0 D .1W 0W 0W 0/, q0 D

.0W 1W 0W 0/, r0 D .0W 0W 1W 0/ and s0 D .0W 0W 0W 1/. Let A0 , B0 and C 0 denote the
(unique, T–invariant) line in X 0 through the two points fp0; s0g, fq0; s0g and fr0; s0g,
respectively.

Define

X 1 �1
�!X 0

to be the blowup of X 0 at the three points fp0; q0; r0g, and let A1;B1;C 1 � X 1

be the proper transforms of A0;B0 and C 0 . The exceptional divisor in X 1 over p0

intersects A1 in a unique fixed point; call it p1 2X 1 . Similarly, the exceptional divisor
in X 1 also intersects each of B1 and C 1 in unique fixed points; call them q1 and r1 .

A2
1

A2
2

p2

B2
1

B2
2

q2

C2
1

C2
2

r2

Figure 2: The T–invariant curves in X 2

Now define

X 2 �2
�!X 1

to be the blowup of X 1 at the three points fp1; q1; r1g, and let A2
1
;B2

1
;C 2

1
�X 2 be

the proper transforms of A1;B1;C 1 . The exceptional divisor over p1 contains two
T–fixed points disjoint from A2

1
. Choose one of them, and call it p2 ; this choice is

arbitrary. Similarly, there are two fixed points in the exceptional divisors above q1; r1

disjoint from B2
1
;C 2

1
. Choose one in each pair identical to the choice of p2 and call

them q2 and r2 (identical makes sense here as the configuration of curves in Figure
2 is rotationally symmetric). This choice is indicated in Figure 2. Let A2

2
denote the

(unique, T–invariant) line intersecting A2
1

and p2 . Define B2
2
;C 2

2
analogously.
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Clearly X 2 is deformation equivalent to a blowup of P3 at six distinct points. The
T–invariant curves in X 2 are depicted in Figure 2, where each edge corresponds to a
T–invariant curve in X 2 , and each vertex corresponds to a fixed point.

A3
1

A3
2

A3
3

p3

B3
1

B3
2

B3
3

q3

C3
1

C3
2C3

3

r3

Figure 3: The T–invariant curves in X 3

We now define a sequence of blowups beginning with X 2 . Fix an integer N � 2. For
each 1< i �N , define

X iC1
�iC1

���!X i

to be the blowup of X i along the three points pi ; qi ; ri . Let AiC1
j �X iC1 denote the

proper transform of Ai
j for each 1� j � i . The exceptional divisor in X iC1 above pi

contains two T–fixed points, choose one of them and call it piC1 . Similarly choose
qiC1; riC1 , and define AiC1

iC1
�X iC1 to be the line intersecting AiC1

i and piC1 , with
BiC1

iC1
;C iC1

iC1
defined similarly. The T–invariant curves in X 3 are shown in Figure 3.

Finally, we define the minimal trivalent configuration Y N �X NC1 by

Y N
D

[
1�j�N

Aj [Bj [Cj ;

where
Aj DANC1

j ; Bj D BNC1
j ; Cj D C NC1

j :

The configuration Y N is shown in Figure 4, along with all other T–invariant curves in
X NC1 . It contains a chain of rational curves:

Y N
A DA1[ � � � [AN :
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ŒA1� D h � e1 � e2

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

eN C1

e2

e3

e4

eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1 eN C1

e1 � e2

e1

e1 � � � � � eN C1

ŒB1� D h � f1 � f2

ŒB2� D f2 � f3

ŒB3� D f3 � f4

ŒB4� D f4 � f5

ŒBN � D fN � fN C1

fN C1

f2

f3

f4

fN C1

f2 � f3

f3 � f4

f5 � f6

fN � fN C1

fN C1

f1 � f2

f1

f1 � � � � � fN C1

ŒC1�Dh
�g1 �g2ŒC2�

D g2�g3

ŒC3�

D g3�g4

ŒC4�

D g4�g5ŒCN �

D gN

�gN C1

gN C1

g2

g3

g4

gN C1

g2 � g3

g3 � g4

g5 � g6

gN � gN C1

gN C1

g1 � g2

g1

g1�
� � ��gN C1

h � e1 � f1h � e1 � g1

h � f1 � g1

Figure 4: The T–invariant curves in X NC1

3.1 Homology

We now compute H�.X NC1;Z/ and identify the class of the configuration ŒY N � 2

H2.X
NC1;Z/. All (co)homology will be taken with integer coefficients. We denote

divisors by upper case letters, and curve classes with the lower case. In addition, we
decorate homology classes in intermediary spaces with a tilde, and their total transforms
in X N are undecorated.

Let zE1; zF1; zG1 2H4.X
1/ denote the exceptional divisors in X 1!X 0 over the points

p0; q0 and r0 , and let E1;F1;G1 2H4.X / denote their total transforms. Continuing,
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for each 1� i �N C 1, let zEi ; zFi ; zGi 2H4.X
i/ denote the exceptional divisors over

the points pi�1; qi�1; ri�1 and let Ei ;Fi ;Gi 2H4.X / denote their total transforms.
Finally, let H denote the total transform of the hyperplane in X 0DP3 . The collection
of all such classes fH;Ei ;Fi ;Gig, where 1� i �N C 1, spans H4.X

NC1/.

Similarly, for each 1� i �N C1, let zei ; zfi ; zgi 2H2.X
iC1/ denote the class of a line

in zEi ; zFi ; zGi and let ei ; fi ;gi 2H2.X / denote their total transforms. In addition, let
h 2H2.X

NC1/ denote the class of a line in H . Then H2.X
NC1/ has a basis given

by fh; ei ; fi ;gig.

The intersection product ring structure is given as follows. Note that X NC1 is defor-
mation equivalent to the blowup of P3 at 3N distinct points. Therefore, these

H �H D h H � hD pt

Ei �Ei D�ei Ei � ei D�pt

Fi �Fi D�fi Fi �fi D�pt

Gi �Gi D�gi Gi �gi D�pt

are all of the nonzero intersection products in H�.X NC1/.

In this basis, the classes of the components of Y N are given as follows.

ŒAi �D

(
h� e1� e2 if i D 1

ei � eiC1 otherwise

ŒBi �D

(
h�f1�f2 if i D 1

fi �fiC1 otherwise

ŒCi �D

(
h�g1�g2 if i D 1

gi �giC1 otherwise

To see this, recall that A1 is the proper transform of a line through two points which
are centers of a blowup, and that Ai , for i > 1, is the proper transform of a line in an
exceptional divisor containing a center of a blowup. Bi and Ci are similar.

4 Local to global

In this section, we will show that the local invariants N
g
d .Y / are equal to the ordinary

invariants h iX
NC1

g;d in case Y is either the minimal trivalent configuration Y N or the
chain of rational curves Y N

A
defined in Section 3.
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4.1 The minimal trivalent configuration

Proposition 8 Let f W †!X NC1 represent a point in Mg.X
NC1;d/, where

1D di;1 � � � � � di;N � 0:

Then the image of f is contained in the minimal trivalent configuration

Y N
D

[
1�j�N

Aj [Bj [Cj :

Proof We use the toric nature of the construction. Assume that there exists a stable
map

Œf W †!X NC1� 2Mg.X
NC1;d/

such that Im.f / 6� Y N . Then there exists a point p 2 Im.f / such that p 62 Y N .

Recall that T–invariant subvarieties of a toric variety are given precisely by orbit
closures of one-parameter subgroups of T . So in particular the limit of p under the
action of a one-parameter subgroup is a T–fixed point. Moreover, since p 62 Y N , there
exists a one-parameter subgroup  W C�! T such that

lim
t!0

 .t/ �p D q

where q is T–fixed and q 62 Y N .

The limit of  acting on Œf � is a stable map f 0 such that q 2 Im.f 0/. It follows that
q is in the image of all stable maps in the orbit closure of Œf 0�. Thus, there must exist a
stable map Œf 00W †!X NC1� 2Mg.X

NC1;d/ such that Im.f 00/ is T–invariant and
Im.f 00/ 62 Y N .

We show that this leads to a contradiction. Let F denote the union of the T–invariant
curves in X NC1 ; it is shown above in Figure 4. We study the possible components of
F contained in the image of f 00 .
Note that the push forward of the class of † is given by

f 00� Œ†�D 3h� e1�

N�1X
jD1

.d1;j � d1;jC1/ejC1� d1;N eNC1

�f1�

N�1X
jD1

.d2;j � d2;jC1/fjC1� d2;NfNC1

�g1�

N�1X
jD1

.d3;j � d3;jC1/gjC1� d3;N gNC1:
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ŒA1� D h � e1 � e2

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

eN C1

e2

e3

e4

eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1 eN C1

ŒB1� D h � f1 � f2

ŒB2� D f2 � f3

ŒB3� D f3 � f4

ŒB4� D f4 � f5

ŒBN � D fN � fN C1

fN C1

f2

f3

f4

fN C1

f2 � f3

f3 � f4

f5 � f6

fN � fN C1

fN C1

ŒC1�Dh
�g1 �g2ŒC2�

D g2�g3

ŒC3�

D g3�g4

ŒC4�

D g4�g5ŒCN �

D gN

�gN C1

gN C1

g2

g3

g4

gN C1

g2 � g3

g3 � g4

g5 � g6

gN � gN C1

gN C1

Figure 5: The possible curves in Im.f 00/

Suppose that A1 [ B1 [ C1 � Im.f 00/. Then f 00� Œ†� contains (at least) 3h. Note
that ŒF � has no �h terms. Therefore Im.f 00/ does not contain any of the curves
h� e1�f1; h� e1�g1; h�f1�g1 . And furthermore each of A1 , B1 and C1 must
have multiplicity one.

There are no remaining terms that contain �e1;�f1 or �g1 . Also, since the image
of f 00 contains precisely one of A1;B1;C1 , we conclude that the multiplicity of
terms contain positive e1; f1;g1 must be zero. Thus, Im.f 00/ is contained in the
configuration shown in Figure 5.

Now, note that in d the sum of the multiplicities of the ei ’s is -2. This is true of the
curve A1 as well. Therefore the total multiplicity of all other e terms must vanish. But
all other e terms are of the form ei � eiC1 or ej . Since the former contribute nothing
to the total multiplicity, we conclude that there are no ej terms in the image of f 00 .
Therefore Im.f 00/ must be contained in the configuration shown in Figure 6.
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ŒA1� D h � e1 � e2

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1

ŒB1� D h � f1 � f2

ŒB2� D f2 � f3

ŒB3� D f3 � f4

ŒB4� D f4 � f5

ŒBN � D fN � fN C1

f2 � f3

f3 � f4

f5 � f6

fN � fN C1

ŒC2�

D g2�g3

ŒC3�

D g3�g4

ŒC4�

D g4�g5ŒCN �

D gN

�gN C1

g2 � g3

g3 � g4

g5 � g6

gN � gN C1

Figure 6: The remaining possible curves in Im.f 00/

But Im.f 00/ is connected, and contains h terms. Therefore it can not contain nor be
contained in any of the three outer parts of Figure 6. Therefore Im.f 00/� Y N . This
contradicts our assumption, and therefore at least one of A1;B1;C1 is not in Im.f 00/.

Without loss of generality, suppose A1 6� Im.f 00/. Let de;f ; de;g; df;g denote the
degree of f 00 on the components h� e1 � f1; h� e1 � g1; h� f1 � g1 respectively.
Since A1 is not contained in the image of f 00 , we must have

0< de;f C de;g � 3

as these are the only multiplicities of �e1 terms, and there are no terms containing
�h.

Furthermore, in order for Im.f 00/ to simultaneously be connected and contain �ei

terms for i > 1, it must be the case that Im.f 00/ contains two of

fe1; e1� e2; e1� � � � � eNC1g:

Geometry & Topology, Volume 10 (2006)



136 Karp, Liu and Mariño

Thus
de;f C de;g D 3; df;g D 0

and B1;C1 6� Im.f 00/. This forces Im.f 00/ to be contained in the configuration shown
in Figure 7.

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

eN C1

e2

e3

e4

eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1 eN C1

e1 � e2

e1

e1 � � � � � eN C1

ŒB2� D f2 � f3

ŒB3� D f3 � f4

ŒB4� D f4 � f5

ŒBN � D fN � fN C1

fN C1

f2

f3

f4

fN C1

f2 � f3

f3 � f4

f5 � f6

fN � fN C1

fN C1

f1 � f2

f1

f1 � � � � � fN C1

ŒC2�

D g2�g3

ŒC3�

D g3�g4

ŒC4�

D g4�g5ŒCN �

D gN

�gN C1

gN C1

g2

g3

g4

gN C1

g2 � g3

g3 � g4

g5 � g6

gN � gN C1

gN C1

g1 � g2

g1

g1�
� � ��gN C1

h � e1 � f1h � e1 � g1

Figure 7: The other possibility for curves in Im.f 00/

Again we have that Im.f 00/ is connected and contains �fi ;�gj for some i; j > 1.
Therefore Im.f 00/ contains at least one of f1�f2; f1�� � ��fNC1 and also at least one
of g1�g2;g1� � � ��gNC1 . But the multiplicity of f1 and g1 in d is �1. Therefore

de;f ; de;g � 2:
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This contradictions shows that our assumption A1 6� Im.f 00/ is incorrect. Therefore
A1 � Im.f 00/. An identical argument also shows that B1;C1 � Im.f 00/. However we
showed above that A1;B1;C1 6� Im.f 00/.

This contradiction shows that our original assumption is incorrect. Therefore there
does not exist a point p 2 Im.f 00/ such that p 62 Y N . Thus Im.f 00/� Y N , and the
result holds.

Remark 9 Note that this argument does not hold for general a1; b1; c1 . For instance,
it is a fun exercise to show that there is more than one T–invariant configuration of
curves in X in the following classes.

ˇ1 D2.h� e1� e2/C .e2� e3/

C 2.h�f1�f2/C .f2�f3/

C 2.h�g1�g2/C .g2�g3/

ˇ2 D4.h� e1� e2/C .e2� e3/C 2.h�f1�f2/C 2.h�g1�g2/C .g2�g3/

ˇ3 D4.h� e1� e2/C 4.e2� e3/

C 4.h�f1�f2/C 4.f2�f3/

C 4.h�g1�g2/C 4.g2�g3/:

4.2 A chain of rational curves

Proposition 10 Let f W C !X NC1 represent a point in Mg.X
NC1;d/, where

d1;1 > 0; d2;j D d3;j D 0; j D 1; : : : ;N:

Then the image of f is contained in the chain of rational curves

Y N
A DA1[ � � � [AN

defined in Section 3.

Since Y N
A

does not contain any of the curves Bi ;Ci , the blowups with centers pi and
qi in the construction of X NC1 are extraneous. In order to simplify the argument in
this case, consider the space

� � �
�NC2

����! zX NC1
�NC1

����! zX N �N
��! � � �

�1
�! P3;

where the construction of zX NC1 follows that of X NC1 , without the extraneous
blowups. So zX iC1! zX i is the blowup of zX i along the point pi , where pi is defined
in Section 3. Thus, zX NC1 is deformation equivalent to the blowup of P3 at N C 1

Geometry & Topology, Volume 10 (2006)



138 Karp, Liu and Mariño

points. Since Y N
A

does not contain the curves Bi ;Ci , clearly the formal neighborhood
of Y N

A
in zX NC1 agrees with the construction in X NC1 .

We continue to let Ei be the total transform of the exceptional divisor over pi , and ei

be the class of a line in Ei . Furthermore, we continue to let H denote the pullback of
the class of a hyperplane in P3 , and h be the class of a line in H . Then, fH;Eig is a
basis for H4. zX

NC1/ and fh; eig is a basis for H2. zX
NC1/. The non-zero intersection

pairings are given as follows.

H �H D h H � hD pt

Ei �Ei D�ei Ei � ei D�pt

The T–invariant curves in zX NC1 are shown together with their homology classes in
Figure 8.

ŒA1� D h � e1 � e2

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

eN C1

e2

e3

e4

eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1 eN C1

e1 � e2

e1

e1 � � � � � eN C1

h

h � e1

h

h � e1

h

Figure 8: The T–invariant curves in zX NC1

Proof of Proposition 10 As shown in above, we may use the toric nature of zX NC1

to construct a stable map Œf 00W †! zX NC1� 2Mg. zX
NC1;d/ such that Im.f 00/ is

T–invariant, but Im.f 00/ 6� Y N
A

. We show that this leads to a contradiction.

We study the class f 00� Œ†�D d. Note that the multiplicity of the �e1 term is the same
as that of h. Furthermore, each �e1 occurs along with h, and there are no �h terms.
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Therefore Im.f 00/ can not contain any terms containing positive e1 , nor can it contain
any of the curves in class h. Thus, the image of f 00 is contained in the configuration
of curves shown in Figure 9.

ŒA1� D h � e1 � e2

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

eN C1

e2

e3

e4

eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1 eN C1

h � e1h � e1

Figure 9: The possible curves in Im.f 00/

Since a1 > 0, it must be that f 00� Œ†� contains at least one ei term with non-zero
multiplicity for i > 1. Also, Im.f 00/ is connected and so we conclude that the image
of f must not contain either of the curves of class h� e1 in Figure 9.

Now, note that the total multiplicity of the e terms is �2a1 , and that the curve A1

must also have this property. Therefore the sum of all other e terms must be zero.
Since the other e terms are of the form ei � eiC1 or ej , we conclude that Im.f 00/
does not contain any of the curves ej . Thus Im.f 00/ is contained in the configuration
depicted in Figure 10.

However, since zX NC1 is connected and contains h, we conclude that Im.f 00/� Y N
A

.
This contradiction shows that our original assumption is incorrect, and that the result
holds.

5 Mathematical theory of the topological vertex

Let

(19) X NC1
�NC1

����!X N �N
��! � � �

�2
�!X 1 �1

�!X 0
D P3
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ŒA1� D h � e1 � e2

ŒA2� D e2 � e3

ŒA3� D e3 � e4

ŒA4� D e4 � e5

ŒAN � D eN � eN C1

e2 � e3 e3 � e4 e5 � e6 eN � eN C1

Figure 10: The remaining possible curves in Im.f 00/

be the toric blowups constructed in Section 3. Let Y N � X NC1 be the minimal
trivalent configuration, and let yY N be the formal completion of X NC1 along Y N .
Then yY N is a nonsingular formal scheme, and Mg. yY

N ;d/ is a separated formal
Deligne–Mumford stack with a perfect obstruction theory of virtual dimension zero. It
has a virtual fundamental class when it is proper, which is not true in general.

5.1 Formal Gromov–Witten invariants of yY N

In (19) TD .C�/3 acts on X j and the projections �j are T–equivariant, so yY N is a
formal scheme together with a T–action. The point s0 D A1 \B1 \C1 is fixed by
the T–action, so T acts on Ts0

X 0 and ƒ3Ts0
X 0 . Let S be the rank 2 subtorus of T

which acts trivially on ƒ3Ts0
X 0 . The union of one dimensional orbit closures of the

T–action on X j is a configuration of rational curves, which corresponds to a graph
(see Figure 11).

The S–action on X j can be read off from the slopes of the edges of the graph associated
to X j .More precisely, let ƒSDHom.S;C�/ be the group of irreducible characters of
S. If we fix an identification SŠ .C�/2 then an element in ƒS is of the form s

p
1

s
q
2

where .s1; s2/ are coordinates on .C�/2 and p; q 2 Z. The line segment associated
to C Š P1 is tangent to .p; q/ 2 Z˚Z if the irreducible characters of the S–actions
on TxC and TyC are s

p
1

s
q
2

and s
�p
1

s
�q
2

(see Figure 12). Similarly, the S–action on
yY N can be read off from Figure 13 in Section 5.5.

Let u1;u2 be a basis of H 2
S
.pt;Z/ so that H 2

S
.pt;Z/D Zu1˚Zu2 . For any nonzero

effective class d (di;j � 0), define

zN
g
d .
yY N /D

Z
ŒMg. yY N ;d/S�vir

1

eS.N vir/
:
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X 0 X 1 X 2

X 3 X 4

Y 1

Y 2 Y 3

Figure 11: Configurations of T–invariant curves

x

y

.p; q/

.�p;�q/

Figure 12: The S–action can be read off from the slope

A priori zN g
d .
yY N / is a rational function in u1;u2 with Q coefficients, homogeneous

of degree 0. By results in Li–Liu–Liu–Zhou [22], zN g
d .
yY N / 2Q is a constant function

independent of u1;u2 . We call zN g
d .
yY N / formal Gromov–Witten invariants. For the
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cases (i)–(iv) described in Section 1,

N
g
d .Y

N /D h iX
NC1

g;d

D

Z
ŒMg.X NC1;d/�vir

1

D

Z
ŒMg.X NC1;d/S�vir

1

eS.N vir/

D

Z
ŒMg. yY N ;d/S�vir

1

eS.N vir/

D zN
g
d .
yY N /:

As in Section 1, introduce formal variables �; ti;j , and define a generating function

(20) FN .�I t/D
X
g�0

X
d

�2g�2 zN
g
d .
yY N /e�d�t

where

tD .t1; t2; t3/; ti D .ti;1; : : : ; ti;N /; d � tD
3X

iD1

NX
jD1

di;j ti;j :

The partition function of the formal Gromov–Witten invariants of yY N is defined to be

zZN .�I t/D exp .FN .�I t// :

By connectedness and cyclic symmetry, we only need to compute zN g
d .
yY N / in the

following cases (see Figure 13):

(D1) dD .d1; 0; 0/, d1;j > 0 for j � k and d1;j D 0 for j > k , where 1� k �N .

(D2) d D .d1; 0; 0/, d1;j > 0 for k1 � j � k2 and d1;j D 0 otherwise, where
2� k1 � k2 �N .

(D3) d D .d1;d2; 0/, d1;m > 0 for m � j and d1;m D 0 for m > j , d2;m > 0 for
m� k and d2;m D 0 for m> k , where 1� j ; k �N .

(D4) d D .d1;d2;d3/, di;j > 0 for j � ki and di;j D 0 for j > ki , where 1 �

k1; k2; k3 �N .

Any other zN g
d .
yY N / is either manifestly zero (because Mg. yY

N ;d/ is empty) or is
equal to one of the above case. Let

F1
N .�I t1/; F2

N .�I t1/; F3
N .�I t1; t2/; F4

N .�I t/
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(1)

0

0 0d1;1 d1;2 d1;k

(2)

0

0
0 0 0d1;k1

d1;k2

(3)

0

0
0

d2;k

d2;1

d1;1 d1;j

(4)

0

0

0

d3;k3

d3;1

d2;1

d2;k2

d1;1 d1;k1

Figure 13: Four cases

denote the contribution to FN .�I t/ from (D1), (D2), (D3), (D4), respectively. Then

FN .�I t/D
3X

iD1

F1
N .�I ti/C

3X
iD1

F2
N .�I ti/

CF3
N .�I t1; t2/CF3

N .�I t2; t3/CF3
N .�I t3; t1/CF4

N .�I t/:

5.2 Summary of results

Let Cg be defined by
1X

gD0

Cgt2g
D

�
t=2

sin.t=2/

�2

as before. Then X
g�0

Cgn2g�3�2g�2
D
�1

nŒn�2

where
Œn�D qn=2

� q�n=2; q D e
p�1�:

In Section 5.5, we will compute zN g
d .
yY N / by the mathematical theory of the topological

vertex and obtain the following results. We will do the computations by the physical
theory of the topological vertex in Section 6.
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Proposition 11 Suppose that

d1 D .d1; : : : ; dN /; d2 D d3 D .0; : : : ; 0/:

where d1 > 0. Then

zN
g
d .
yY N /D

8<: Cgn2g�3 d1 D d2 D � � � D dk D n> 0 and
dkC1 D dkC2 D � � � D dN D 0 for some 1� k �N

0 otherwise

which is equivalent to

(21) F1
N .�I t1/D

X
n>0

�1

nŒn�2

X
1�k�N

e�n.t1;1C���Ct1;k/

Proposition 11 is equivalent to Theorem 2.

Proposition 12 Suppose that

d1 D .d1; : : : ; dN /; d2 D d3 D .0; : : : ; 0/:

where d1 D 0. Then

zN
g
d .
yY N /D

8<: �Cgn2g�3 dj D n> 0 for k1 � j � k2 and
dj D 0 otherwise, where 2� k1 � k2 �N

0 otherwise

which is equivalent to

(22) F2
N .�I t1/D

X
n>0

1

nŒn�2

X
2�k1�k2�N

e�n.t1;k1
C���Ct1;k2

/

Proposition 12 corresponds to a chain of .0;�2/ rational curves.

Proposition 13 Suppose that

d1 D .n; 0; : : : ; 0/; d2;1 > 0; d3 D .0; : : : ; 0/

where n> 0. Then

zN
g
d .
yY N /D

8<: �Cgn2g�3 d2;1 D d2;2 D � � � D d2;k D n and
dkC1 D dkC2 D � � � D dN D 0 for some 1� k �N

0 otherwise:

Proposition 14 Suppose that di;1 > 0. Then zN g
d .
yY N /D 0 unless

di;1 � di;2 � � � � � di;N :
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Proposition 15 Suppose that

di;j D

�
di > 0 j � ki

0 j > ki

where i D 1; 2; 3 and 1� ki �N . Then

(a) zN
g
d1;d2;0.

yY N /D

�
�Cgn2g�3 d1 D d2 D n> 0

0 otherwise

(b) zN
g
d1;d2;d3

. yY N /D

�
Cgn2g�3 d1 D d2 D d3 D n> 0

0 otherwise

Proposition 14 and Proposition 15 are consistent with Theorem 1.

Let N D 1 in Proposition 11 and Proposition 15, we get

Corollary 16

zZ1.�I t/D exp

 1X
nD1

Qn.t/
�nŒn�2

!
where tD .t1; t2; t3/ and

Qn.t/D e�nt1Ce�nt2Ce�nt3�e�n.t1Ct2/�e�n.t2Ct3/�e�n.t3Ct1/Ce�n.t1Ct2Ct3/:

Finally, we will derive the following expression of zZN .�I t/, where the notation is the
same as that in Section 1:

Proposition 17

zZN .�I t/D exp
� 3X

iD1

F2
N .�I ti/

�X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jti;1s.�i /t .u
i.q; ti//:

where

F2
N .�I ti/D

1X
nD1

1

nŒn�2

X
2�k1�k2�N

e�n.ti;k1
C���Cti;k2

/

In particular, when N D 1 we have

F2
1 .�I ti/D 0; s.�i /t .u

i.q; ti//DW.�i /t .q/;

which gives the following corollary.
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Corollary 18

zZ1.�I t/D
X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jtiW.�i /t .q/:

where tD .t1; t2; t3/.

Equation (6) in Section 1 follows from Corollary 16 and Corollary 18.

5.3 Three-partition Hodge integrals

Three-partition Hodge integrals arise when we calculate

zN
g
d .
yY N /D

Z
ŒMg. yY N ;d/S�vir

1

eS.N vir/

by virtual localization (see Li–Liu–Liu–Zhou [22, Section 7] for such calculations).
We recall their definition in this subsection.

Let w1; w2; w3 be formal variables, where w3 D �w1 �w2 . Let w4 D w1 . Write
wD .w1; w2; w3/. For E�D .�1; �2; �3/¤ .∅;∅;∅/D E∅, define

d1
E� D 0; d2

E� D `.�
1/; d3

E� D `.�
1/C `.�2/; `. E�/D

3X
iD1

`.�i/:

The three-partition Hodge integrals are defined by

(23) Gg; E�.w/D
.�
p
�1/`. E�/

jAut. E�/j

3Y
iD1

`.�i /Y
jD1

Q�i
j
�1

aD1
.�i

jwiC1C awi/

.�i
j � 1/!w

�i
j
�1

i

�

Z
Mg;`.E�/

3Y
iD1

ƒ_g .wi/w
`. E�/�1
iQ`.�i /

jD1
.wi.wi ��

i
j d i

E�Cj //

where
ƒ_g .u/D ug

��1ug�1
C � � �C .�1/g�g:

Note that Gg; E�.w1; w2; w3/ has a pole along wi D 0 if �i ¤∅. The following cyclic
symmetry is clear from the definition:

(24)
Gg;�1;�2;�3.w1; w2; w3/DGg;�2;�3;�1.w2; w3; w1/

DGg;�3;�1;�2.w3; w1; w2/
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Note that
p
�1

`. E�/
Gg; E�.w/ 2Q.w1; w2; w3/

is homogeneous of degree 0, so

Gg; E�.w1; w2;�w1�w2/DGg; E�.1;
w2

w1

;�1�
w2

w1

/:

Introduce variables �, pi D .pi
1
;pi

2
; : : :/, i D 1; 2; 3. Given a partition �, define

pi
� D pi

1 � � �p
i
`.�/

for i D 1; 2; 3. In particular, pi
∅ D 1. Write

pD .p1;p2;p3/; p E� D p1
�1p2

�2p3
�3 :

Define generating functions

G E�.�Iw/D
1X

gD0

�2g�2C`. E�/Gg; E�.w/;

G.�IpIw/D
X
E�¤E∅

G E�.�Iw/p E�;

G�.�IpIw/D exp.G.�IpIw//D 1C
X
E�¤E∅

G�E�.�Iw/p E�:

In particular,

Gg;�;∅;∅.1; 0;�1/D

�
�
p
�1d2g�2bg; �D .d/;

0; `.�/ > 1:

where

bg D

(
1; g D 0;R
Mg;1

 
2g�2
1

�g g > 0:

It was proved by Faber and Pandharipande [10] that

(25)
1X

gD0

bgt2g
D

t=2

sin.t=2/
:

So

(26) G.n/;∅;∅.�I 1; 0;�1/D
�
p
�1

2n sin.�n=2/
D

1

nŒn�
:

Geometry & Topology, Volume 10 (2006)



148 Karp, Liu and Mariño

Similarly, we have

(27) G.n/;∅;∅.�I 1;�1; 0/D
.�1/n�1

nŒn�
:

The following formula of three-partition Hodge integrals was derived in Li–Liu–Liu–
Zhou [22]:

(28) G�E�.�Iw/D
X

j�i jDj�i j

3Y
iD1

 
q

1
2
�
�i

wiC1
wi

��i .�i/

z�i

!
zWE�.q/;

In particular,

G��;∅;∅.�I1;�;���1/D
X
j�jDj�j

��.�/

z�
q

1
2
���W�.q/:(29)

G�
�1;�2;∅.�I1;�;���1/D

X
j�i jDj�i j

��1.�1/

z�1

��2.�2/

z�2

q
1
2.��1����2�

�1/W�1.�2/t .q/:(30)

Equation (29) is equivalent to the formula of one-partition Hodge integrals conjec-
tured in Mariño–Vafa [28], which was proved in Liu–Liu–Zhou [25] and Okounkov–
Pandharipande [29]. Equation (30) is equivalent to the formula of two-partition Hodge
integrals proved in Liu–Liu–Zhou [24].

5.4 Relative formal GW invariants of the topological vertex

Symplectic relative Gromov–Witten theory was developed by Li and Ruan [19], and
Ionel and Parker [15; 16]. The mathematical theory of the topological vertex in [22] is
based on Jun Li’s algebraic relative Gromov–Witten theory [20; 21].

Given a triple of partitions E� D .�1; �2; �3/ ¤ E∅ and a triple of integers n D
.n1; n2; n3/, let

F�
�; E�.n/ 2Q
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be the disconnected relative formal GW invariants of the topological vertex defined in
[22]. Introduce variables �;pi

j as in Section 5.3, and define generating functions

F�E�.�In/D
X
�

���C`. E�/F�
�; E�.n/

F�.�IpIn/D 1C
X
E�¤E∅

F�E�.�In/p E�

F.�IpIn/D log.F�.�IpIn//D
X
E�¤E∅

F E�.�In/p E�

F E�.�In/D
1X

gD0

�2g�2C`. E�/Fg; E�.n/:

By virtual localization, Fg; E�.n/ can be expressed in terms of three-partition Hodge
integrals and double Hurwitz numbers. We have

(31) F�E�.�In/D

.�1/
P3

iD1.ni�1/j�i j.�
p
�1/`. E�/

X
j�i jDj�i j

G�E�.�Iw/
3Y

iD1

z�iˆ��i ;�i

�p
�1
�
ni�

wiC1

wi

��

where

(32) ˆ��;�.�/D
X
�

H ��;�;�
���C`.�/C`.�/

.�C `.�/C `.�//!
D

X
�

e���=2
��.�/

z�

��.�/

z�
:

is a generation function of disconnected double Hurwitz numbers H ��;�;� . Equations
(28), (31), and (32) imply

(33) F�E�.�In/D
X

j�i jDj�i j

3Y
iD1

 
q

1
2
�
�i ni

��i .�i/

z�i

!
zWE�.q/;

Note that the w dependence on the right hand side of (31) cancels and the right hand
side of (33) is independent of w. Since ˆ���.0/D ı��=z� , we have

F��.
w2

w1

;
w3

w2

;
w1

w3

/D .�1/
P3

iD1.ni�1/j�i j.�
p
�1/`. E�/

X
j�i jDj�i j

G�E�.�Iw1; w2; w3/:
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Also F�E�.�In/ is independent of ni if �i is empty.

Fg;�;∅;∅.0; n2; n3/D .�1/j�j.�
p
�1/`.�/Gg;�;∅;∅.1; 0;�1/(34)

Fg;�;�;∅.�1; 0; n3/D .�1/j�j.�
p
�1/`.�/C`.�/Gg;�;�;∅.1;�1; 0/(35)

From (26), (27), (34), (35) we conclude that if �¤∅ then

F�;∅;∅.�I 0; n2; n3/D

(
.�1/n�1

p�1
nŒn�

�D .n/

0 `.�/ > 1:
(36)

F�;∅;∅.�I �1; n2; n3/D

(
.�1/n

p�1
nŒn�

�D .n/

0 `.�/ > 1:
(37)

If �¤∅; � ¤∅ then (see Liu–Liu–Zhou [24, p7] for details)

(38) F�;�;∅.�I �1; 0; n3/D

�
1
n
�D � D .n/

0 otherwise:

We also have

F.1/;.1/;∅.�I 0; 0; 0/D�1; F.1/;.1/;.1/.�I 0; 0; 0/D�
p
�1Œ1�:

5.5 Computations

The S–action on yY N can be read off from Figure 13 as explained in the first two
paragraphs of Section 5.1.

We now degenerate each P1 into two P1 ’s intersecting at a node. The total space
of the normal bundle O.n/ ˚ O.�n � 2/ degenerates to O.a/ ˚ O.�a � 1/ and
O.b/˚O.�b � 1/ with aC b D n. For each node we introduce a pair of framing
vectors to encode the S–action (see Figure 15). We refer to [22, Section 4] for details.

The framing here corresponds to the framing of Lagrangian submanifolds in the article
by Aganagic, Klemm, Mariño and Vafa [2] and the framing of knots and links in
Chern–Simons theory. In Figure 14, all the P1 ’s have normal bundles O.�1/˚O.�1/

or O˚O.�2/; in Figure 15, all the P1 ’s have normal bundles O˚O.�1/.

Using the connected version of the gluing formula [22, Theorem 7.5], we have

F4
N .�I t/D

X
j�i j>0

F E�.�I 0; 0; 0/
3Y

iD1

`.�i /Y
jD1

NX
kD1

e��
i
j
.ti;1C���Cti;k/

�

�
�i

j F.�i
j
/;.�i

j
/;∅.�1; 0; 0/

�k�1
�i

j F.�i
j
/;∅;∅.�I 0; 0; 0/
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D

X
j�i j>0

F E�.�I 0; 0; 0/
3Y

iD1

`.�i /Y
jD1

�
�i

j

.�1/�
i
j
�1
p
�1

�i
j Œ�

i
j �

NX
kD1

e��
i
j
.ti;1C���Cti;k/

�

d1;1

d1;2

d1;3

d1;4

d2;1
d2;2

d2;3

d2;4 d3;1

d3;2

d3;3

d3;4

Figure 14: Graph of yYN

Figure 15: Degeneration of yYN
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So

(39) F4
N .�I t/DX

j�i j>0

F E�.�I 0; 0; 0/
3Y

iD1

.�1/j�i j.�
p
�1/`.�

i /

`.�i /Y
jD1

�
1

Œ�i
j �

NX
kD1

e��
i
j
.ti;1C���Cti;k/

�

In particular, using F.1/;.1/;.1/.�I 0; 0; 0/D�
p
�1Œ1� and (39), we can recover Theorem

1. Equation (39) is equivalent to

(40) F4
N .�I t/D

X
j�i j>0

zF E�.�I 0; 0; 0/
3Y

iD1

.�1/`.�
i /e�j�i jti;1ui

�i .q; ti/

where ui
�.qI ti/’s are defined as in Section 1.3, and

zF E�.�I 0; 0; 0/D .�1/
P3

iD1 j�i jp
�1

`. E�/
F E�.�I 0; 0; 0/:

Similarly,

F3
N .�I t1; t2/D

X
j�1j>0;j�2j>0

zF�1;�2;∅.�I 0; 0; 0/

2Y
iD1

.�1/`.�
i /e�j�i jti;1ui

�i .qI ti/:(41)

F1
N .�I t1/D

X
�¤∅

zF�;∅;∅.�I 0; 0; 0/.�1/`.�/e�j�jt1;1u1
�.qI t1/

D

X
�¤∅

F�;∅;∅.�I 0; 0; 0/.�1/j�j.�
p
�1/`.�/e�j�jt1;1u1

�.qI t1/

D

X
n>0

.�1/n�1
p
�1

nŒn�
.�1/n.�

p
�1/e�nt1;1u1

n.qI t1/:

So

(42) F1
N .�I t1/D

X
n>0

�1

nŒn�2

NX
kD1

e�n.t1;1C���Ct1;k/:

This proves Proposition 11.

Geometry & Topology, Volume 10 (2006)



Gromov–Witten invariants of configurations of curves 153

F2
N .�I t1/D

X
n>0

F.n/;∅;∅.�I �1; 0; 0/
.�1/n�1

p
�1

Œn�

X
2�k1�k2�N

e�n.t1;k1
C���Ct1;k2

/

D

X
n>0

.�1/n
p
�1

nŒn�
�
.�1/n�1

p
�1

Œn�

X
2�k1�k2�N

e�n.t1;k1
C���Ct1;k2

/

So

(43) F2
N .�I t1/D

1X
nD1

1

nŒn�2

X
2�k1�k2�N

e�n.t1;k1
C���Ct1;k2

/

This proves Proposition 12.

From (40), (41), and (42), it is clear that if di;1 > 0, then zN g
d .
yY N /D 0 unless

di;1 � di;2 � : : :� di;ki
> 0:

This proves Proposition 14.

Let F5
N
.�I t1;1; t2/ be the contribution to F3

N
.�I t1; t2/ from the case in Proposition

13. To compute F5
N
.�I t1;1; t2/, we consider the degeneration in Figure 16.

Figure 16: Another degeneration

We have

F5
N .�I t1;1; t2/D

X
n>0

F.n/;∅;∅.�1; 0; 0/nF.n/;.n/;∅.�1; 0; 0/

�

� NX
kD1

.nF.n/;.n/;∅.�1; 0; 0//k�1nF.n/;∅;∅.0; 0; 0/e
�nt1;1�n.t2;1C���Ct2;k/

�

D

X
n>0

.�1/n
p
�1

nŒn�
�
.�1/n�1

p
�1

Œn�

� NX
kD1

e�nt1;1�n.t2;1C���Ct2;k/

�
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So

(44) F5
N .�I t1;1; t2/D

1X
nD1

1

nŒn�2

NX
kD1

e�nt1;1�n.t2;1C���Ct2;k/

Proposition 13 follows from (44).

We now prove Proposition 15. Suppose that di;j D di > 0 for j � ki and di;j D 0 for
j > ki , where i D 1; 2; 3 and 1� ki �N . From (41) and (40) it is easy to see that

zN
g
d1;d2;0

. yY N /D zN
g

d1;d2;0
. yY 1/;

zN
g
d1;d2;d3

. yY N /D zN
g

d1;d2;d3
. yY 1/:

Recall that
zN

g

d1;d2;d3
. yY 1/DN

g

d1;d2;d3
.Y 1/

where N
g

d1;d2;d3
.Y 1/ are given by Fact 3. Proposition 15 follows from Proposition 13

and Fact 3.

Finally, we prove Proposition 17. Let

F 0N .�I t/D FN .�I t/�
3X

iD1

F2
N .�I ti/:

Then

F 0N .�I t/D
X
E�¤E∅

zF E�.�I 0; 0; 0/
3Y

iD1

.�1/`.�
i /e�j�i jti;1ui

�i .qI ti/:

It was proved in [22] that

(45) zF�E�.�I 0; 0; 0/D
X

j�i jDj�i j
zWE�.q/

3Y
iD1

��i .�i/

z�i

So

exp.F 0N .�I t//D
X
E�
zW.�1/t ;.�2/t ;.�3/t .q/

3Y
iD1

.�1/j�i je�j�i jti;1s�i .ui.q; ti//

D

X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jti;1s.�i /t .u
i.q; ti//
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where s�.u
i.q; ti//’s are defined as in Section 1.3. We conclude that

exp.FN .�I t//D

exp
� 3X

iD1

F2
N .�I ti/

�X
E�
zW E�.q/

3Y
iD1

.�1/j�i je�j�i jti;1s.�i /t .u
i.q; ti//:

This completes the proof of Proposition 17.

6 Physical theory of the topological vertex

In this section, we compute the local Gromov–Witten invariants considered in this
paper by using the physical theory of the topological vertex. Typical computations
in this theory involve formal sums over Young tableaux, and in some cases, like the
one considered here, it is more convenient to use the operator formalism on Fock
spaces. After a short overview of this formalism, we will use it to compute the partition
functions for local Gromov–Witten invariants.

6.1 Operator formalism

We introduce:

jp�i D

`.�/Y
iD1

˛��i
j0i; js�i D

X
j�jDj�j

��.�/

z�
jp�i; js�=�i D

X
�

c���js�i

where ˛n satisfy the commutation relations

Œ˛m; ˛n�DmımCn;0;

and for n> 0, ˛nj0iD 0. The dual vector space is obtained by acting with the operators
˛n on the state h0j, and the pairing is defined by h0j0i D 1. One then finds,

hp�jp�i D z�ı�;� ; hs�js�i D ı�;� :

The coherent state jti is defined as

jti D exp
� 1X

nD1

tn

n
˛�n

�
j0i D

X
�

t�

z�
jp�i

where
t� D t�1

� � � t�`.�/
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and one has

hsjti D exp
� 1X

nD1

sntn

n

�
:

The elements js�i, where � is a partition, span a vector space H that can be identified
with the ring of symmetric functions ƒ in an infinite number of variables, and therefore
it inherits a ring structure from ƒ. This identification can be made by considering the
map

js�i ! ht js�i � s�.t/;

where s�.t/ gives the Schur function after identifying tn D pn D xn
1
Cxn

2
C � � � .

Given a coherent state jti, it is useful to define the coherent states

jt!i; jt�i; jt�i

where
t!n D .�1/nC1tn; t�n D�tn; t�n D .�1/ntn:

Using ��t .�/D .�1/j�jC`.�/��.�/ it is easy to show that

(46) s�.t
!/D s�t .t/; s�.t

�/D .�1/j�js�.t/:

The ring of symmetric polynomials is endowed with a coproduct structure (see for
example Macdonald [26, Ex. 25 of I.5])

�W ƒ!ƒ˝ƒ

which is a ring homomorphism, and is defined by

�.s�/D
X
�

s�=�˝ s�:

The nth power sums pn are primitive elements of ƒ under this coproduct, and one has

�pn D pn˝ 1C 1˝pn:

We then have a inherited coproduct �W H!H˝H , and it is easy to see that it acts
as follows on coherent states:

�.jti/D jti˝ jti:

This gives the following identity, which will be useful in proving Proposition 19:

(47)
X
�;�

s�.t/js�=�ihs� j D jtiht j:
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We need now explicit expressions for W�.q/ and W��.q/ in the operator formalism.
Using (9), one immediately finds

(48) W�.q/D s�.ˇ/; ˇn D
1

Œn�
D

1

qn=2� q�n=2
;

therefore

(49)
X
�

W�.q/js�i D jˇi;

where jˇi is a coherent state with ˇn given in (48). One can then write

W�.q/D hs�jˇi:

We introduce the operator q˙�=2 defined by

q˙�=2js�i D q˙��=2js�i:

We also define an operator W as

W��.q/D hs�jW js�i:

In the proof of Proposition 19, we will need an explicit expression for

ht jq��=2Wq��=2jxti;

where jti, jxti are coherent states. Using (12) one finds

ht jq��=2Wq��=2jxti D
X
�;�

q���=2���=2W�;�.q/s�.t/s�.xt/

D

X
�;�;�

s�t .t!/W�t=� .q/W�t=� .q/s�t .xt!/

D

X
�;�;�;�

s�.t
!/hˇjs�=� ihs� js� ihs�=� jˇis�.xt

!/

D hˇjt!iht! jxt!ihxt! jˇi;

where in the last step we have used (47) twice. The last quantity is expressed solely in
terms of products of coherent states, and we finally find

(50) ht jq��=2Wq��=2jxti D exp
� 1X

nD1

.�1/nC1.tnCxtn/

nŒn�
C

tnxtn

n

�
:

This result was previously obtained, in slightly different form, by Aganagic, Dijk-
graaf, Klemm, Mariño and Vafa [1], and Zhou [34]. It is also possible to compute
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ht jq��=2Wq��=2js�i by following the same steps. One finds

ht jq��=2Wq��=2js�i D hˇjt!i
X
�

W�t=�.q/s�.t
!/:

The sum over the representation � can be performed explicitly by using the following
formula (see Macdonald [26]):X

�

s�=�.x/s�.y/D s�.x;y/;

where x , y are variables of the Schur polynomials. We then find

(51) ht jq��=2Wq��=2js�i D hˇjt!is�.un/; un D
.�1/nC1

Œn�
C tn:

6.2 The closed topological vertex

The physical theory of the topological vertex [2] gives the following expression for
zZ1.�I t/:

Z1.�I t/DX
�1;�2;�3

W.�3/t;.�2/t;.�1/t .q/W�1.q/W�2.q/W�3.q/e�
P3

iD1 j�i jti .�1/
P3

iD1 j�i j
D

X
�1;�2;�3

W E�.q/W.�1/t .q/W.�2/t .q/W.�3/t .q/e
�j�1jt1�j�2jt2�j�3jt3.�1/j�1jCj�2jCj�3j

where tD .t1; t2; t3/, and in the last step we have used

W.�3/t ;.�2/t ;.�1/t .q/D q
�P3

iD1 ��i =2W�1;�2;�3.q/; W�.q/D q��=2W�t .q/:

In this subsection, we will prove (6) in Section 1:

Proposition 19

Z1.�I t/D exp
� 1X

nD1

Qn.t/
�nŒn�2

�
where

Qn.t/D e�nt1Ce�nt2Ce�nt3�e�n.t1Ct2/�e�n.t2Ct3/�e�n.t3Ct1/Ce�n.t1Ct2Ct3/:
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Proof

Z1.�I t/DX
�1; �2; �3;

�; �1; �3; �0

c
�1

��1W.�1/t .q/
˝
s.�2/t

ˇ̌
W
ˇ̌
s�1

˛˝
s�
ˇ̌
W.�3/t .q/c

�3

�0�3

ˇ̌
s�0
˛˝
s�3

ˇ̌
W
ˇ̌
s�2

˛
� e�j�1jt1.�1/j�1j

� e�j�2jt2.�1/j�2j
� e�j�3jt3.�1/j�3j

D

X
�2

.�1/j�2je�j�2jt2

D
s.�2/t

ˇ̌̌
W
�X
�;�1;�1

c
�1

�;�1.�1/j�1je�j�1jt1W.�1/t .q/js�1ihs�j
�(52)

� X
�0;�3;�3

c
�3

�0�3.�1/j�3je�j�3jt3W.�3/t .q/js�0ihs�3 j

�
W
ˇ̌̌
s�2

E
:

Here we have used the explicit expression for the topological vertex (8) and the identity
(10). We now write X

�;�1;�

c
�

�;�1.�1/j�je�j�jt1W�t .q/js�1ihs�j

D

X
�;�

.�1/j�je�j�jt1W�t .q/js�=�ihs�j

D

X
�;�

s�.u
�/js�=�ihs�j

D ju�ihu� j;(53)

where

(54) un D e�nt1ˇn:

and in the last step of (53) use has been made of (47) and of the fact that, under tn!atn
one has

s�.at/D aj�js�.t/:

Following the same steps for the second bracket in (52) one finds,

Z1.�I t/D
X
�

.�1/j�je�j�jt2hs�t jW ju�ihu� jv�ihv� jW js�i:

with

(55) vn D e�nt3ˇn:
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Notice that
ju�i D

X
�

.�1/j�je�j�jt1W�t .q/js�i;

and using again that W�t .q/D q���=2W�.q/ one can write

ju�i D q��=2ju�i:

We have similar equations for jv�i. Since hu� jv�i is a product of coherent states, we
only have to evaluateX

�

.�1/j�je�j�jt2hv� jq��=2Wq��=2js�ihs�t jq��=2Wq��=2ju�i;

where we used that �� D���t . The last step involves writing

(56)
X
�

.�1/j�je�j�jt2 js�i˝ js�t i D exp

 
�

1X
nD1

e�nt2

n
˛.1/�n ˝˛

.2/�n

!
j0i1˝j0i2

which is an element of H1˝H2 , and we have introduced explicit indices 1; 2 to label
the factors in the tensor product. We first take the scalar product of this state with
hv� jq��=2Wq��=2 2H�

1
to obtain a state in H2 . In order to do that, we can regard

(56) as a coherent state with tn D�e�nt2˛
.2/�n , therefore we can use the formula (50)

to obtain the element in H2

exp

 1X
nD1

�
vn

nŒn�
C
.�1/ne�nt2

nŒn�
˛.2/�n C

.�1/nC1e�nt2vn

n
˛.2/�n

!
j0i

D exp

 
�

1X
nD1

e�nt3

nŒn�2

!
jwi

where jwi is a coherent state in H2 given by

wn D .�1/nC1ˇne�nt2.e�nt3 � 1/:

The remaining step is to compute hwjq��=2Wq��=2ju�i, which can be done again
with the help of (50). Collecting all terms, one finds

(57)
Z1.�I t/D exp

�
�

1X
nD1

1

nŒn�2
.e�nt1 C e�nt2 C e�nt3 � e�n.t1Ct2/

� e�n.t2Ct3/� e�n.t3Ct1/C e�n.t1Ct2Ct3//

�
:

This completes the proof.
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6.3 A chain of rational curves

Let F2
N
.�I t1/ be defined as in Section 5.1, where N � 2. It can be viewed as a

generating function of formal Gromov–Witten invariants of a chain of .N �1/ rational
curves with normal bundles O˚O.�2/. In this section, we will compute

Z2
N .qI t1;2; : : : ; t1;N /D exp.F2

N .�I t1//

using vertex techniques.

We have

(58) Z2
N .qI t1;2; : : : ; t1;N /DX

�2;:::;�N

NC1Y
iD2

W.�i�1/t ;∅;�i .q/q
��
�i =2e�j�i jt1;i D

X
�2;:::;�N

NC1Y
iD2

q
��
�i�1=2W�i�1;�i .q/q

��
�i =2e�j�i jt1;i ;

where �1 D �NC1 D∅. Using the above techniques, in particular (49) and (46), we
can write the above expression as

Z2
N .qI t1;2; : : : ; t1;N /D hu

2
j

� NY
iD3

q��=2Wq��=2Oi

�
juNC1

i;

where ju2i, juNC1i are coherent states defined by

u2
n D

.�1/nC1e�nt1;2

Œn�
; uNC1

n D
.�1/nC1

Œn�

and
Oi D

X
�i

js�i ie�j�
i jt1;i hs�i j; i D 3; � � � ;N:

We first compute
hu2
jq��=2Wq��=2O2;

which is an element of H� . We proceed as in the computation following (56) above,
to obtain

hu2
jq��=2Wq��2O3 D exp

� 1X
nD1

.�1/nC1

nŒn�
u2

n

�
hu3
j;
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where hu3j is a coherent state defined by

u3
n D e�nt1;3

�
u2

nC
.�1/nC1

Œn�

�
:

We can now compute Z2
N
.qI t1;2; : : : ; t1;N / recursively, defining the coherent state

juii as

hui�1
jq��=2Wq��=2Oi D exp

� 1X
nD1

.�1/nC1

nŒn�
ui�1

n

�
hui
j;

where

(59) ui
n D e�nt1;i

�
ui�1

n C
.�1/nC1

Œn�

�
; i D 3; � � � ;N:

One then finds, by using (50) repeatedly, that

Z2
N .qI t1;2; : : : ; t1;N /D exp

� 1X
nD1

.�1/nC1

nŒn�

N�1X
iD2

ui
nC

1X
nD1

1

n
uN

n uNC1
n

�

D exp
� 1X

nD1

.�1/nC1

nŒn�

NX
iD2

ui
n

�
:

The recursion relation defining ui
n is easily solved:

ui
n D

.�1/nC1

Œn�

� iX
jD2

e�n.t1;jC���Ct1;i /
�
; i D 2; � � � ;N;

and putting everything together we finally obtain

Z2
N .qI t1;2; : : : ; t1;N /D exp

� 1X
nD1

1

nŒn�2

� X
2�i�j�N

e�n.t1;iC���Ct1;j /
��
;

or equivalently,

F2
N .�I t1/D

1X
nD1

1

nŒn�2

� X
2�i�j�N

e�n.t1;iC���Ct1;j /
�

which agrees with (22).

Notice that the non-trivial Gopakumar–Vafa invariants for this geometry occur for
Kähler classes which are in one-to-one correspondence with the positive roots of the
Lie algebra AN�1 .
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6.4 Minimal trivalent configuration

Let us finally consider the minimal trivalent configuration. We will allow the three
chains of P1 ’s to have different lengths N1;N2;N3 :

Y N1;N2;N3 D

[
1�i�N1

Ai [

[
1�j�N2

Bj [

[
1�k�N3

Cj :

So we have
dD .d1;d2;d3/; di D .di;1 : : : ; di;Ni

/;

tD .t1; t2; t3/; ti D .ti;1; : : : ; ti;Ni
/;

and we define

ui
n.qI t/D

1

Œn�

�
1C

NiX
kD2

e�n.ti;2C���Cti;k/
�
:

The rules of the topological vertex give the following expression,

ZN1;N2;N3
.�I t/

D

X
�i;j

.�1/
P3

iD1 j�i;1je�
P3

iD1 j�i;1jjti;1q
P3

iD1 ��i;1=2W.�3;1/t ;.�2;1/t ;.�1;1/t .q/

�

3Y
iD1

NiC1Y
jD2

q
��
�i;j�1=2W�i;j�1;�i;j .q/q

��
�i;j =2.q/e�j�i;j jti;j

where �i;NiC1 D∅. We will show that this expression can be simplified as follows:

Proposition 20

(60) ZN1;N2;N3
.�I t/D exp

� 1X
nD1

1

nŒn�2

3X
iD1

X
2�k1�k2�Ni

e�n.ti;k1
C���Cti;k2

/

�

�

X
E�
W�1;�2;�3.q/

3Y
iD1

.�1/j�i je�j�i jti;1s.�i /t .u
i.q; ti///

Equation (5) in Section 1 corresponds to the case N1 DN2 DN3 DN .

Proof The sum over the partitions �i;j , 2� j �Ni , can be performed by following
the same steps that we made before, and making use of (51). After writing �i;1! .�i/t ,
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the resulting expression takes the following form:

(61) ZN1;N2;N3
.�I t/D exp

� 1X
nD1

.�1/nC1

nŒn�

3X
iD1

NiX
jD2

vi;j
n

�

�

X
E�
.�1/

P3
iD1 j�i je�

P3
iD1 j�i jti;1W�3;�2;�1.q/

3Y
iD1

q
��
�i =2s�i .ui/:

In (61), the variables vi;j
n are defined recursively by

vi;Ni
n D

.�1/nC1e�nti;Ni

Œn�
;

vi;j�1
n D e�nti;j�1

�
vi;j

n C
.�1/nC1

Œn�

�
; j D 3; : : : ;Ni ;

ui
n D

1

Œn�
C .�1/nC1vi;2

n

The recursion defining vi;j
n can be easily solved:

vi;j
n D

.�1/nC1

Œn�

� NiX
kDj

e�n.ti;jC���Cti;k/
�
; j D 2; : : : ;Ni ;

ui
n D

1

Œn�

�
1C

NiX
kD2

e�n.ti;2C���Cti;k/
�
:

Therefore

(62) ZN1;N2;N3
.�; t/D exp

� 1X
nD1

1

nŒn�2

3X
iD1

X
2�j�k�Ni

e�n.ti;jC���Cti;k/

�

�

X
E�
.�1/

P3
iD1 j�i je�

P3
iD1 j�i jti;1W�3;�2;�1.q/

3Y
iD1

q
��
�i =2s�i .ui/:

Recall that
W.�1/t ;.�2/t ;.�3/t .q/D q

�P3
iD1 ��i =2W�3;�2;�1.q/;

so (62) is equivalent to (60).

The closed topological vertex (Section 6.2) and chain of rational curves (Section 6.3)
can be obtained taking limits of ZN1;N2;N3

.�I t/:
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(1) Let ti;j !1 for i D 1; 2; 3, j � 2. One has

vi;j
n D 0; i D 1; 2; 3; j � 2:

and ui
n D ˇn for i D 1; 2; 3, so s�i .ui/ D W�i .q/ D q

�
�i =2W.�i /t .q/ and

ZN1;N2;N3
.�I t/ becomes the closed topological vertex.

(2) Let ti;j !1 for i D 2; 3, and t1;1!1. We recover a chain of spheres with
Kähler parameters t1;2; : : : ; t1;N1

.

Unfortunately, the sum over partitions in (62) can not be evaluated in close form
as we did before. In fact, explicit computations show that ZN1;N2;N3

.�I t/ involves
Gopakumar–Vafa invariants at higher genera, and seem to indicate that there are infin-
itely many degrees di;j for which the Gopakumar–Vafa invariants are non-vanishing.
If we write ZN1;N2;N3

.�I t/ in the Gopakumar–Vafa form

ZN1;N2;N3
.�I t/D exp

� 1X
`D1

1X
gD0

X
d

n
g
d

1

`
Œ`�2g�2e�`d�t

�
where d � tD

P
i;j di;j ti;j , then, for N D 2 we find for example

n0
.1;1/;.1;1/;.1;1/ D� 1;

n0
.2;1/;.1;1/;.1;1/ D1;

n0
.1;0/;.2;1/;.2;1/ D� 2;

n0
.1;1/;.2;1/;.2;1/ D� 2;

n0
.2;1/;.2;1/;.2;1/ D4;

and they vanish for g > 0. Due to the cyclic symmetry of the configuration, the same
values are obtained for cyclic permutations of the three sets of degrees.

If, say, t3;j !1 for j � 1, so we have two lines of spheres joined by a two-vertex,
then one can perform the sum over one of the two remaining partitions. This is because
W∅;�2;�1

.q/DW�2;.�1/t .q/q
�
�1=2 , and (61) reads

ZN1;N2
.�I t1; t2/D exp

� 1X
nD1

.�1/nC1

nŒn�

2X
iD1

NiX
jD2

vi;j
n

�
X
�1;�2

.�1/
P2

iD1 j�i je�
P2

iD1 j�i jti;1s�2.u2/q
��
�2=2W�2;.�1/t .q/s�1.u1/:
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Using again (51), and relabelling �1! �, we finally obtain

ZN1;N2
.�I t1; t2/D exp

� 1X
nD1

.�1/nC1

nŒn�

�
v2;1

n C

2X
iD1

NiX
jD2

vi;j
n

�
C

1

n
v2;1

n v2;2
n

�
X
�

q���=2.�1/j�je�t1;1j�js�.yu2/s�.u
1/;

where

v2;1
n D

.�1/ne�nt2;1

Œn�
; yu2

n D
1

Œn�
� e�nt2;1u2

n D
1

Œn�

�
1�

N1X
kD1

e�n.t2;1C���Ct2;k/

�
:

We conclude that

Proposition 21

ZN1;N2
.�I t1; t2/D exp

�
F1

N2
.�I t2/CF2

N1
.�I t1/CF2

N2
.�I t2/

�
X
�

q���=2.�1/j�je�t1;1j�js�.yu2/s�.u
1/;

where

F1
Ni
.�I ti/D

X
n>0

�1

nŒn�2

NiX
kD1

e�n.ti;1C���Cti;k/

F2
Ni
.�I ti/D

X
n>0

1

nŒn�2

X
2�k1�k2�Ni

e�n.ti;k1
C���Cti;k2

/
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