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Existence of ruled wrappings in hyperbolic 3–manifolds

TERUHIKO SOMA

We present a short elementary proof of an existence theorem of certain CAT.�1/–
surfaces in open hyperbolic 3–manifolds. The main construction lemma in Calegari
and Gabai’s proof of Marden’s Tameness Conjecture can be replaced by an applicable
version of our theorem. Finally, we will give a short proof of the conjecture along
their ideas.

57M50; 30F40

Agol [1] and Calegari and Gabai [5] proved independently that any hyperbolic 3–
manifold M with finitely generated fundamental group is homeomorphic to the interior
of a compact 3–manifold. This is the affirmative answer to Marden’s Tameness
Conjecture in [8]. Subsequently, Choi [7] gave another proof of the conjecture, similar
to Agol’s, in the case when M has no parabolic cusps.

We are here interested in arguments in [5], where the notion of “shrinkwrapping” was
introduced. Shrinkwrappings play an important role in their proof. For the proof of the
existence of shrinkwrappings and that of their CAT.�1/–property, Calegari and Gabai
used very deep and rarefied arguments, which some readers, including the author, may
find difficult to approach. This paper is intended to give an elementary proof of part of
their proof by using ruled wrappings instead of shrinkwrappings.

For simplicity, we only consider the case when a hyperbolic 3–manifold has no parabolic
cusps and will prove the following theorem.

Theorem 0.1 Let N be an orientable hyperbolic 3–manifold without parabolic cusps,
� a disjoint union of finitely many simple closed geodesics in N , and f W † �!N a
2–incompressible map rel. � from a closed orientable surface † of genus greater than
1 to N n�. Then there exists a homotopy F W †� Œ0; 1��!N satisfying the following
conditions.

(i) F.x; 0/D f .x/ for any x 2†.

(ii) F.†� Œ0; 1//\�D∅.

(iii) The map gW † �! N defined by g.x/ D F.x; 1/ is a CAT.�1/–piecewise
ruled map.
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Here, a continuous map f W † �! N is said to be 2–incompressible in N rel. �
if f .†/\� D ∅, f�W �1.†/ �! �1.N n�/ is injective, and for any simple non-
contractible loop l in † the restriction f jl is not freely homotopic in N n� to a
(multiplied) meridian of any component of �. See Definition 1.4 for the definition
of piecewise ruled maps. We say that a map g satisfying properties (i)–(iii) as above
or its image g.†/ is a CAT.�1/–ruled wrapping of � in N homotopic to f . In
fact, Theorem 0.1 is a special case of Proposition 2.1, which corresponds to the main
construction lemma in [5].

In Section 4, we will give a short proof of Marden’s Conjecture along ideas in [5]. Our
proof is self-contained in the sense that it does not rely on published partial solutions
to the conjecture. It is not hard to see that all arguments and proofs in this paper work
also in the case when the ambient manifold N has pinched negative curvature and
hyperbolic cusps by invoking results in Canary [6, Section 4].

Acknowledgments The author would like to thank Brian Bowditch and the referee
for helpful comments and suggestions.

1 Completion of certain hyperbolic metrics

For a closed subset A in a metric space .X; d/, the r –neighborhood of A in X ,
fy 2 X I d.y;A/ � rg, is denoted by Nr .A/ (or more strictly by Nr .A;X /). In the
case when A is a single point set fxg, we also set Nr .fxg/D Br .x/. The link of x in
X with radius r , fy 2X I d.y;x/D rg, is denoted by Sr .x/.

Let U be a simply connected incomplete hyperbolic 3–manifold with metric completion
U such that each component l of L D U nU is a geodesic line, and there exists a
constant c>0 with dist.x;y/�3c for any points x;y contained in distinct components
of L. Moreover, we suppose that for any component l of L there exists an infinite
cyclic branched covering pl W Nc.l;U / �!Nc.j ;H3/ branched over a geodesic line
j of H3 , such that the restriction pl jNc.l;U /nl is a locally isometric covering. From
the definition, Nc.l;U / is homeomorphic to the quotient space of R2 � Œ0; 1� by the
identification map aW R2 � f0g �! R defined by a.x;y; 0/D x .

Suppose that � is a shortest arc in U connecting two given points and consisting of
two hyperbolic segments �1; �2 with � \LD �1 \ �2 D fxg. Let xi .i D 1; 2/ be
the point in �i with dist.x1; l/D dist.x2; l/D s > 0, where l is the component of L

containing x ; see Figure 1 (a). There exist totally geodesic half planes Pi in U with
�i � Pi and @Pi D l . Since the subsegment � of � with @� D fx1;x2g is the shortest
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Figure 1

arc in U connecting x1 with x2 , we have

(1–1) �1C �2 D �;

where �i is the angle made by �i and a fixed ray in l emanating from x . This fact is
easily seen by considering the developing of P1[P2 on H2 ; see Figure 1 (b).

For any d with 0< d � c , the set Bd .x;U / is homeomorphic to the subset of R3

f.u; v; w/ 2 R3
I u2
C v2

Cw2
� 1; w > 0g[ f.u; 0; 0/ 2 R3

I �1� u� 1g:

In particular, Bd .x;U / is simply connected. The image pl.Bd .x;U // coincides
with the hyperbolic ball Bd .yx;H3/, where yx D pl.x/. Rescaling the metric on the
boundary S D Sd .yx;H3/ of the ball, we have the spherical metric � on S isometric
to the unit sphere in the Euclidean 3–space. Consider the metric on zS D Sd .x;U /,
still denoted by � , so that the infinite cyclic branched covering pl j

zS W zS �! S is
locally pathwise isometric. Here, pl j

zS being locally pathwise isometric means that
length�.˛/D length�.pl.˛// for any rectifiable arc ˛ in zS . One can take d > 0 so
that � 0 D � \ Bd .x/ is a geodesic segment in Bd .x/ with @� 0 � zS . Let  be any
rectifiable arc in zS with @ D @� 0 . Since Bd .x/ is simply connected,  is homotopic
rel. @ to � 0 in Bd .x/. Then the following lemma is proved immediately from the
equality (1–1) and by checking the situation of y D pl. / in S ; see Figure 2.

Lemma 1.1 length�. /� � .

For any k � 0, let F.k/ be a complete Riemannian plane of constant curvature k . A
simply connected geodesic metric space X is called a CAT.k/–space if any geodesic
triangle � in X is not thicker than a comparison triangle x� in F.k/, that is, for
any two points s and t in the edges of � and their comparison points xs and xt in x�,
distX .s; t/ � distF.k/.xs;xt/. See Bridson–Haefliger [3] for fundamental properties of
such spaces.
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Figure 2: j D pl .l/ , y� D pl .�
0/ . (b) is the case when y winds around j

more than once, but length�. /D length�.y / does not exceed � very much.

Lemma 1.2 U is a CAT.�1/–space.

Proof By the generalized Cartan–Hadamard Theorem [3, Chapter II.4, Theorem
4.1(2)], it suffices to show that, for any point x 2U , there exists r > 0 such that Br .x/

is a CAT.�1/–space. If x 2 U then Br .x/ is obviously a CAT.�1/–space if we take
r so that Br .x/\LD ∅. So suppose that x 2 L. Let � be any triangle in Bc.x/

with geodesic edges 1; 2; 3 . Each Int i either meets L at most one point pi or
is contained in L. From this, we know that the union 1[ 2[ 2 bounds a triangle
�0 in Bc.x/ consisting of at most three totally geodesic hyperbolic subtriangles. In
fact, when p1;p2;p3 exist, the totally geodesic triangle with vertices p1;p2;p3 is
degenerated to a geodesic segment in L. By Lemma 1.1, the internal angle of �0 at
any pi is at least � . This shows that �0 is not thicker than a comparison triangle in
H2 . It follows that Bc.x/ is a CAT.�1/–space.

It is not hard to see that any geodesic segment in U is a broken line consisting of
finitely many hyperbolic segments, and any vertex of the broken line other than its end
points lies in L. By Lemma 1.2, a geodesic segment � in U connecting two given
points is uniquely determined. Moreover, � varies continuously with its end points.

Let Z be an incomplete hyperbolic 3–manifold such that the total space of the universal
covering qW U �!Z has the induced metric as above. We suppose moreover that for
the metric completion Z each component l of Z nZ is either a geodesic line or a
geodesic loop. That is, no component of Z nZ is a one point set. Then qW U �!Z

is extended to a locally pathwise isometric map xqW U �! Z . Note that the frontier
fx 2ZI dist.x; l/D cg of Nc.l;Z/ in Z is homeomorphic to either R2 or an open
annulus or a torus.
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Remark 1.3 Even in the case when Nc.l;Z/ is homeomorphic to a solid torus, we
always suppose that homotopies in Z starting from a continuous map f W A �! Z

never cross l (possibly they touch l ), where A is a manifold of dimension less than
three. In other words, we only consider homotopies F W A� Œ0; 1� �!Z which can be
covered by a map zF W zA� Œ0; 1� �! U , where zA is the universal covering space of A.

Definition 1.4 Let f W †�!Z be a continuous map from a closed orientable surface
†. Suppose that † admits a cell decomposition K consisting of finitely many triangular
2–cells. We say that f is a piecewise ruled map with respect to K if (i) for each edge
of e of K , f .e/ is a broken line consisting of finitely many hyperbolic segments,
and (ii) for each 2–cell F of K , f .F / is a ruled triangle based on a single vertex.
Since the Gaussian curvature at any smooth point of a ruled surface is nonpositive, the
(intrinsic) curvature of † at any smooth point is at most �1. This map f is called a
CAT.�1/–piecewise ruled map if the cone-angle of † at any singular point is at least
2� .

2 Applicable version of Theorem 0.1

Throughout this section, we assume that all hyperbolic 3–manifolds and surfaces are
orientable.

Let N be a complete hyperbolic 3–manifold N without parabolic cusps, and W a
3–dimensional compact connected submanifold of N . Consider a link � in Int W

consisting of finitely many disjoint simple closed geodesics in N . Let pW X �!W

be the covering of W associated to a finitely generated subgroup of �1.W /. Here we
make the following assumptions, which correspond to those in the main construction
lemma [5, Lemma 2.3].

(i) @W is incompressible in N n�.

(ii) There exists a union y� of components of p�1.�/ such that the restriction
pj y�W y� �!� is a homeomorphism.

(iii) There exists a continuous map f W † �!X from a closed surface † of genus
m> 1 which is 2–incompressible in X rel. y�.

Set X ı DX np�1.�/. The fundamental group �1.X
ı/ may be infinitely generated.

By (i), the restriction pı D pjX ıW X ı �!W n��N n� is �1 –injective. Thus, we
may assume that X ı is a subset of the total space of the covering qW Y ı �!N n�

associated to the subgroup pı�.�1.X
ı// of �1.N n�/ and the inclusion i W X ı �! Y ı

is a homotopy equivalence. Since @X ı D @X D p�1.@W / is a deformation retract of
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Y ı n Int X ı , condition (iii) implies that f W †�! Y is 2–incompressible in Y rel. y�,
where Y DX [.Y ın Int X ı/DX [Y ı . The complement ZD Y n y� has the induced
incomplete metric as was studied in Section 1. Let Z be the metric completion of Z .

With the notation and assumptions as above, we will prove the following proposition.

Proposition 2.1 There exists a homotopy F W †� Œ0; 1��!Z which never crosses y�
and connects f with a CAT.�1/–ruled wrapping gW † �!Z of y�.

Proof Let c1; : : : ; c3m�3 be mutually disjoint simple loops in † which define a pants
decomposition of †. Consider a cell decomposition K of † consisting of triangular
2–cells and such that each vertex of K is contained in c1[ � � � [ c3m�3 . If necessary
by deforming f by a homotopy in the sense of Remark 1.3 we may assume that each
f .ci/ is a closed geodesic in Z , and f .e/ is a geodesic segment in Z for any edge
e of K not contained in c1[ � � � [ c3m�3 . In fact, f .ci/ is the image of an axis of a
hyperbolic transformation on the metric completion U of the universal covering space
of Z . See for example [3, Theorem 6.8 (1)]. For any 2–cell F of K , take a vertex v0

and the opposite edge e0 . Then, f jF can be homotoped rel. @F to a map gjF such
that g.F / is a ruled triangle consisting of all geodesic segments connecting f .v0/

with points of f .e0/. These gjF define a piecewise ruled map gW †�!Z homotopic
to f . From our construction of g , for any singular point g.v/ of g.†/, there exists
an arc ˛ in † with Int˛ 3 v and such that g.˛/ is a geodesic segment in Z . If g.v/

is not an element of Z nZ , then it is easily seen that the cone-angle of † at v is at
least 2� . So we may assume that g.v/ is contained in a component l of Z nZ . For
any sufficiently small d > 0, ˛ divides the circle Sd .v;†/ into two arcs 1 , 2 . By
Lemma 1.1, the �–length of g.i/ .i D 1; 2/ in Sd .g.v/;Z/ is at least � . Thus, the
cone-angle of † at v is at least 2� . This shows that g is a CAT.�1/–ruled wrapping
of y� in Z .

Note that Theorem 0.1 is proved quite similarly to Proposition 2.1 by considering
.N; �/ instead of .Z; y�/.

3 Compact cores and end reductions

A 3–manifold X is topologically tame if there exists an embedding f W X �! Y

into a compact manifold Y with f .X /� Int Y . Throughout this section, we suppose
that M is an orientable, open, irreducible and connected 3–manifold with finitely
generated fundamental group. An end E of M is said to be topologically tame if there
exits a closed neighborhood of E in M homeomorphic to S � Œ0;1/ for some closed
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connected surface S . It is easily seen that the open 3–manifold M is topologically
tame if and only if each end of M is so.

Scott [10] proved that M contains a 3–dimensional submanifold C , called a compact
core of M , such that the inclusion i W C �!M is a homotopy equivalence. Let S

be the component of @C facing an end E of M , and pW zM �! M the covering
associated with the image of �1.S/ in �1.M /. There exists a compact core zC of
zM such that @ zC has a component zS mapped onto S homeomorphically by p . The

manifold zC is a compression body, ie, it is homeomorphic to E[h1[� � �[hm where
E is either a 3–ball or F � Œ0; 1� for some closed surface F consisting of nonspherical
components and the hi ’s are 1–handles attached to one side of E . In particular, when
E is a 3–ball, the compression body zC is a handlebody. Note that the end zE of zM
faced by zS is topologically tame if and only if E is also.

Let � D ı1 [ � � � [ ıi0
be an i0 –component link in the compression body zC such

that Œık � .k D 1; � � � ; i0 � 1/ form a basis for the free abelian group H1. zC ;Z/ and
Œıi0
� D Œı1�C � � � C Œıi0�1�. An advantage of considering compression bodies is that

any nontrivial free decomposition of �1. zC / induces a nontrivial decomposition of
H1. zC IZ/. In particular, this implies that the link � is algebraically disk-busting, that
is, for any nontrivial free decomposition A�B of �1. zC /, there exists a component ık
of � such that the element of �1. zC / represented by ık is neither conjugate into A

nor B .

Some results in Myers [9] concerning end reductions play an important role in the proof
of Theorem 4.1. The paper is useful also as an expository article on end reductions.
A compact, connected, 3–dimensional submanifold R of M is regular if M nR is
irreducible and the closure of any component of M nR in M is not compact. Let � be
a link in M each component of which is noncontractible in M . An open submanifold
V of M containing � is called an end reduction of M at � if it satisfies the following
conditions.

(i) No component of M nV is compact.
(ii) There exists a sequence fRng of regular submanifolds of M with � � R1 ,

Rn � Int RnC1 , V D
S

n Rn and such that @Rn is incompressible in M n�.
(iii) V satisfies the engulfing property at �, that is, for any regular submanifold N

of M with �� Int N such that @N is incompressible in M n�, V is ambient
isotopic rel. � to a manifold containing N .

We refer to Brin–Thickstun [4] for the existence and uniqueness up to isotopy of
end reductions. According to Myers [9, Theorem 9.2], if the link � is algebraically
disk-busting, then an end reduction V of M at � is connected and the homomorphism
i�W �1.V / �! �1.M / induced from the inclusion is an isomorphism.
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4 Proof of Marden’s Conjecture

Our proof of Marden’s Conjecture is based on that of Calegari–Gabai [5], but the
importance of the disk-busting property is suggested by Agol [1]. For simplicity, we
only consider hyperbolic 3–manifolds without parabolic cusps. It is not hard to modify
our argument for the case of manifolds with parabolic cusps.

Theorem 4.1 (Marden’s Tameness Conjecture) Let N be an orientable hyperbolic
3–manifold without parabolic cusps. If �1.N / is finitely generated, then N is topolog-
ically tame.

First of all, we fix the setting for the proof. It suffices to show that each end E of
N is topologically tame. As was seen in Section 3, we may assume that a compact
core C of N is a compression body. Let S be the component of @C facing E . If E
is geometrically finite, that is, C is locally convex in S , then it is well known that
E is topologically tame, for example see Marden [8]. So we may assume that E is
not geometrically finite. Then Bonahon [2] shows that there exists a sequence fıig
of closed geodesics in N exiting E . If necessary, by adding finitely many closed
geodesics to fıig one can suppose that �i D ı1[ � � � [ ıi is algebraically disk-busting
for all i not less than some fixed integer i0 > 0. If necessarily, by slightly deforming
the hyperbolic metric in a small neighborhood of

S
i ıi in N we may assume that the

closed geodesics ıi are simple and mutually disjoint, ie, each �i is a link in N . In fact,
the resulting metric is no longer hyperbolic but pinched negatively curved. However,
all the results concerting hyperbolic manifolds which we need, eg Proposition 2.1 in
Section 2, still hold under this metric if we replace CAT.�1/ with CAT.�a2/, where
�a2 is the supremum of sectional curvatures of N with respect to the new metric.
We refer to Canary [6, Sections 4 and 5] for standard arguments on such a metric
deformation.

For any i � i0 , let Vi be an end reduction of N at �i . By [9], the �1 –homomorphism
induced from the inclusion Vi �!N is an isomorphism. It follows that a compact core
Ci of Vi is also a compact core of N , and each ık .k D 1; : : : ; i/ is freely homotopic
in Vi to a loop of Ci . By property (ii) of the end reduction Vi , there exists a regular
submanifold Wi of Vi containing both Ci and the traces of these free homotopies
in Ci and such that @Wi is incompressible in N n�i . In fact, Rn in Section 3 with
sufficiently large n satisfies the properties of Wi . Since the inclusion Ci �!Wi �!N

is �1 –isomorphic, �1.Ci/ can be regarded as a subgroup of �1.Wi/. Consider the
covering pi W Xi �!Wi associated to �1.Ci/� �1.Wi/. Let yık be a component of
p�1

i .ık/ such that pi j
yık W yık �! ık is homeomorphic, and let y�i D

yı1[� � �[ yıi . The
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component Si of @Ci facing E has a lift S�i to Xi which is also a boundary component
of a compact core of Xi .

Lemma 4.2 Xi is topologically tame.

Proof The claim in [5, page 426] shows that Wi is an atoroidal manifold such that
@Wi has a component of genus greater than 1. This fact together with Canary [6]
proves that Xi is topologically tame.

Here, we will give an another proof without invoking the atoroidality of Wi . First
we outline the proof. Divide the covering pi W Xi �! Wi to restricted coverings
associated with a torus decomposition of Wi . By finite generation, all but finitely many
restrictions are universal coverings. By a result in Waldhausen [14], the total spaces
of such universal coverings are topologically tame. Other total spaces cover atoroidal
Haken manifolds with non-torus boundary component, and hence they are topologically
tame. Since Xi is obtained by attaching topologically tame manifolds to each other
along simply connected boundary components, Simon’s Combination Theorem [11]
shows that Xi is also topologically tame.

More precisely, let Ti D T1[ � � � [Tm be a maximal union of mutually disjoint and
nonparallel incompressible tori in Int Wi . Since Wi is regular and N is atoroidal and
irreducible, each Tj bounds a compact manifold Aj which is contained in a 3–ball in
N and homeomorphic to the exterior of a nontrivial knot in S3 . Either any two Aj are
mutually disjoint or one of them contains the other. Set ADA1[ � � �[Am . Note that,
for any component yA of p�1

i .A/, the image inci ıpi. yA/ is contained in a 3–ball in N ,
where inci W Wi �!N is the inclusion. Since inci ıpi W Xi �!N is �1 –isomorphic,
it follows that yA is simply connected. Then yA is topologically tame by [14, Theorem
8.1]. Since each component of @ yA is simply connected, p�1

i .@A/ induces a free
decomposition of �1.Xi/. The classical Grushko Theorem implies that the fundamental
group of any component yB of p�1

i .Wi n IntA/ is finitely generated. Since Wi n IntA
is an atoroidal Haken manifold such that one of the boundary components has genus
greater than 1, Int yB is topologically tame by [6, Proposition 3.2]. In the present case,
it is not hard to show that yB is also topologically tame. See Soma [12] for a more
general case. Finally, Theorem 3.1 in [11] implies that Xi is topologically tame.

Proof of Theorem 4.1 By Lemma 4.2, Xi is realized as the interior of a compact
manifold X i . Let S i be the component of @X i facing S�i in Xi , and ySi a closed
surface in Int Xi obtained by a small isotopy of S i in X i . We show that ySi is 2–
incompressible in Xi rel. y�i . If not, there would exist a compressing disk D for S i

in X i such that the intersection D\ y�i consists of at most one point. If D separates
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Xi , then �1.Xi/ has a nontrivial free decomposition A �B each factor of which is
isomorphic to the fundamental group of a component of Xi nD . Otherwise, �1.Xi/

is isomorphic to A �Z with A D �1.Xi nD/. When D \ y�i D ∅, any element of
�1.Xi/ represented by a component of y�i is conjugate into one of the factors. When
D\yıj ¤∅ for some component yıj of y�i , one can suppose that the cyclic factor Z is
generated by the element represented by yıj . Any element represented by a component
of y�i n

yıj is conjugate into A. It follows that y�i is not algebraically disk-busting in
Xi . Since .inci ıpi/�W �1.Xi/�! �1.N / is isomorphic and inci ıpi.y�i/D�i , the
link �i would not be algebraically disk-busting in N , a contradiction. One can show
similarly that ySi is 2–incompressible in Xi also rel. y�iI i0

D y�i \p�1
i .�i0

/.

For any i � i0 , let xqi W Zi �!N be the locally pathwise isometric map extending the
covering qi W Y

ı
i �!N n�i given in Section 2 which satisfies qiDpi on Xinp

�1
i .�i/.

Note that Zi is the metric completion of Zi D Xi [Y ıi n
y�i . By Proposition 2.1, ySi

is homotopic in Zi to a CAT.�a2/–ruled wrapping y†i without crossing y�i . The
image †i D xqi.y†i/ is also a CAT.�a2/–surface homotopic in N to Si .

Since the components Si of @Ci are homeomorphic to each other, all y†i are closed
surfaces of the same genus. Fix an " > 0 less than the Margulis constant for N

and so that N2".�i0
;N / is a tubular neighborhood of �i0

in N . Let l be any
simple noncontractible loop in y†i of length less than ". If l were contractible in
Zi , then l would either bound a disk in Zi disjoint from y�iI i0

or be contained in
N2".y�iI i0

;Zi/n y�iI i0
. In either case, this contradicts that y†i is 2–incompressible rel.

y�iI i0
. Thus l is not contractible in Zi , and hence xqi.l/ is contained in the "–thin part

Nthin."/ of N . From this fact together with Bounded Diameter Lemma [5, Lemma 1.15]
for CAT.�a2/–surfaces, we know that the diameter of any component of †i nNthin."/

is less than a constant independent of i . Let y̨i be a ray in Zi beginning at yıi and
covering a proper ray ˛i in N such that the sequence f˛ig exits E . Since the algebraic
intersection number of y̨i with ySi is one, y†i \ y̨i and hence †i \˛i are not empty.
This shows that f†ig exits E . Under the present situation, the tameness of E is proved
by standard arguments in hyperbolic geometry, for example see [2; 6; 13] or Tameness
Criteria in [5, Section 6]. However, the case when Ci is a handlebody is exceptional.
As is pointed out in the paragraph following the statement of Theorem 3 in Souto [13],
we need furthermore to show that Œ†i �¤ 0 in H2.N n ı1IZ/ for guaranteeing that any
surface homologous to †i in N nC excises the end E from N , where C is a compact
core of N with Int C � ı1 and C \†i D∅.

Suppose that a compact core of N and hence any X i are handlebodies. Let J be
a tubular neighborhood of ı1 in N and yJ a lift of J to Xi containing yı1 . For i

sufficiently large, J \ †i is empty and hence xq�1
i .J / \ y†i � xq

�1
i .J \ †i/ D ∅.
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The closure K of the union of bounded components of xZi n .y†i [
yJ / is compact.

As xq�1
i .ı1/ is disjoint from y†i [ @ yJ � @K , the preimage xq�1

i .ı1/ contains no line
components meeting K nontrivially. Since xq�1

i .ı1/ np�1
i .ı1/ � @Zi , if xq�1

i .ı1/\

K were nonempty, then each component yı0
1

of the intersection would be a loop
component of p�1

i .ı1/. Since .inci ıpi/�W �1.Xi/�! �1.N / is an isomorphism, yı0
1

is freely homotopic in Xi � Zi to yı1 up to multiplicity. Then there would exist a
CAT.�a2/–piecewise ruled annulus in Zi with the geodesic boundary yı1[yı01 , which
is a contradiction by the Gauss–Bonnet Theorem. It follows that xq�1

i .ı1/\K D∅,
and so Œ@ yJ �C Œy†i �D 0 in H2.Zi n xq

�1
i .ı1/IZ/. This shows that Œ†i �D�Œ@J �¤ 0 in

H2.N n ı1IZ/.
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