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Pseudoholomorphic punctured spheres in R� .S 1�S 2/:
Moduli space parametrizations

CLIFFORD HENRY TAUBES

This is the second of two articles that describe the moduli spaces of pseudoholo-
morphic, multiply punctured spheres in R � .S1 � S2/ as defined by a certain
natural pair of almost complex structure and symplectic form. The first article in
this series described the local structure of the moduli spaces and gave existence
theorems. This article describes a stratification of the moduli spaces and gives explicit
parametrizations for the various strata.

53D30; 53C15, 53D05, 57R17

1 Introduction

This is the second of two articles that describe the moduli spaces of multiply punctured,
pseudoholomorphic spheres in R� .S1 � S2/ as defined using the almost complex
structure, J , for which
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Here, s is the Euclidean coordinate on the R factor of R� .S1 �S2/, while t is the
R=.2�Z/ coordinate on the S1 factor and .�; '/ 2 Œ0; �� � R=.2�Z/ are the usual
spherical coordinates on the S2 factor. A change of coordinates shows that this almost
complex structure is well defined near the � D 0 and � D � cylinders, and that the
latter are pseudo-holomorphic with a suitable orientation.

This almost complex structure arises naturally in the following context: A smooth,
compact and oriented 4 dimensional manifold with non-zero second Betti number has
a 2–form that is symplectic on the complement of its zero set, this a disjoint set of
embedded circles (see, eg Taubes [13], Honda [10], Gay and Kirby [3]). There are
indications that certain sorts of closed, symplectic surfaces in the complement of the zero
set of such a 2–form code information about the differential structure of the 4–manifold
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(Taubes [12]). Meanwhile, [13] describes the complement of any such vanishing circle
in one of its tubular neighborhoods as diffeomorphic to .0;1/ � .S1 � S2/ via a
diffeomorphism that makes all of the relevant symplectic surfaces pseudoholomorphic
with respect to either the almost complex structure in (1–1) or its push-forward by the
two-fold covering map that sends .t; �; '/ to the same point as .t C�; � � �;�'/.

The investigation of these symplectic surfaces in the differential topology context lead
the author to study the pseudoholorphic subvarieties in R� .S1 �S2/ in general with
a specific focus on the multiply punctured spheres. This series of articles reports on
this study. In particular, the first article in this series [15] defined a topology on the set
of pseudoholomorphic subvarieties and defined them as elements of moduli spaces that
are much like those introduced by Hofer [4; 5; 6], Hofer–Wysocki–Zehnder [7; 8; 9]
and Eliashberg–Hofer–Givental [2] in a closely related context. The multiply punctured
sphere moduli spaces were then proved to be smooth manifolds and formulae were
given for their dimensions. Finally, [15] describes necessary and sufficient conditions
to guarantee the existence of a moduli space component with prescribed jsj ! 1
asymptotics in R� .S1 �S2/. The details of much of this are summarized below for
the benefit of those who have yet to see [15].

This second article in the series describes the multiply punctured sphere moduli spaces
in much more detail as it describes the set of components and provides something of a
parametrization for each component.

Note that the article [14], a prequel to this series, provided this information for certain
disk, cylinder and thrice-punctured sphere moduli space components.

1.A The background

The almost complex structure in (1–1) is compatible with the symplectic form

(1–2) ! D d
�
e�
p

6s˛
�
;

where ˛ is the following contact 1–form on S1 �S2 :

(1–3) ˛ ��.1� 3 cos2 �/dt �
p

6 cos � sin2 �d':

In this regard, the standard product metric on R� .S1 �S2/ is related to the bilinear
form !.�;J �/ using the rule
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On a related note, the form ! is self-dual and harmonic with respect to the product
metric in (1–4), this a consequence of the various strategically placed factors of

p
6.
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Following Hofer, a pseudoholomorphic subvariety in R� .S1 �S2/ is defined to be a
closed subset, C , that lacks isolated points and has the following properties:

�(1–5) The complement in C of a countable, nowhere accumulating subset is a
2–dimensional submanifold whose tangent space is J –invariant.

� sC\K ! < 1 when K � R � .S1 � S2/ is an open set with compact
closure.

� sC d˛ <1.

A pseudoholomorphic subvariety is said to be ‘reducible’ when the removal of a finite
set of points disconnects it.

As explained in [14, Section 2], any pseudoholomorphic subvariety intersects some
sufficiently large R version of the jsj �R portion of R� .S1 �S2/ as an embedded
union of disjoint, half-open cylinders. In particular, if E denotes such a cylinder,
then the restriction of s to E defines a smooth, proper function with no critical points.
Moreover, the limit as jsj ! 1 of the constant s slices of E converge in S1 � S2

pointwise as a multiple cover of some ‘Reeb orbit’, this an embedded, closed orbit of
the vector field

(1–6) y̨ � .1� 3 cos2 �/@t C
p

6 cos �@' :

A subset E � C of the sort just described is said to be an ‘end’ of C .

In the case that an irreducible subvariety is not a �D0 or �D� cylinder, considerations
of the convergence of the constant s slices of any given end to the limiting Reeb orbit
led in [15, Section 1] to the association of a 4–tuple of asymptotic data to the end in
question. To elaborate, such a 4–tuple has the form .ı; "; .p;p0// with ı either �1,
0 or 1; with " one of the symbols f�;Cg; and with .p;p0/ being an ordered pair of
integers that are not both zero and are constrained to obey:
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p
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q
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To explain the meaning of the 4–tuple assignment, first note that the angle � is constant
on any integral curve of the vector field in (1–6). This understood, the case ı D 0

signifies that this constant value of � on the limit Reeb orbit for the given end is an
angle in .0; �/. Meanwhile, the case ı D 1 signifies that this constant value is 0, and
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ıD�1 signifies that the jsj !1 limit of � on the end is � . In all of these cases, the
appearance of C for the parameter " signifies that s!1 on the given end, while
the appearance of � for " signifies that s!�1 on the end. An end with "DC is
said to be a ‘concave side’ end, and an "D � end is said to be a ‘convex side’ end.
Finally, the integers p and p0 are the respective integrals of the 1–forms 1

2�
dt and

1
2�

d' around any given constant jsj slice of the end granted that the latter are oriented
by the pull-back of the 1–form �˛ .

In the case that ı D 0, the jsj !1 limit of � on the end in question is determined by
the integer pair .p;p0/ as this limiting angle obeys

(1–8) p0.1� 3 cos2 �/�p
p

6 cos � D 0 and p0 cos � � 0:

In this regard, keep in mind that any ordered pair, .p;p0/ , of integers with at least one
non-zero defines a unique angle in .0; �/ via (1–8) in the case that p � 0. In the case

that p < 0, such a pair defines an angle in .0; �/ if and only if jp
0

p
j>

q
3
2

. The angle
so defined is also unique.

In the case that ıD˙1, the pair .p;p0/ determine the rate of convergence of the angle
� to its limiting value of 0 or � . To be explicit, results from [14, Sections 2 and 3] can
be used to verify that

(1–9) sin � D
p

6yce
.
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as jsj !1 on the given end with yc some positive constant.

Aside from the collection of 4–tuples from its ends, the subvariety also defines a
pair, (ç� , çC/, of non-negative integers, these being the respective numbers (counting
multiplicity) of intersections between the the � D 0 and � D � cylinders and the
subvariety. In this regard, keep in mind that these cylinders are pseudoholomorphic.
Also keep in mind a consequence of the analysis in [14, Section 2]: There are at most a
finite set of intersection points between any two distinct, irreducible pseudoholomorphic
subvarieties in R�.S1�S2/. Finally, keep in mind that any intersection point between
distinct pseudoholomorphic subvarieties has positive local intersection number (McDuff
[11]).

Granted what has just been said, an irreducible pseudoholomorphic subvariety that
is not a � D 0 or � D � cylinder defines an example of what is a called here an
asymptotic data set, this the set whose elements consist of the ordered pair (ç� , çC/
and the collection of 4–tuples from its ends. In general, the term ‘asymptotic data set’
refers to a certain sort of set that consists of one ordered pair of non-negative integers,
here (ç� , çC/; and some number of 4–tuples that have the form .ı; "; .p;p0// where

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1859

ı is �1, 0 or 1, " is either � or C, and .p;p0/ is an ordered pair of integers that
obey the rules in (1–7). A set, yA, as just described is deemed an asymptotic data set in
the event that it obeys five additional constraints. Here are the first two:

(1–10)
X

.ı;";.p;p0//2 yA

"p D 0 and
X

.ı;";.p;p0//2 yA

"p0C çCC ç� D 0:

The constraint in (1–10) follows when yA comes from an irreducible pseudoholomorphic
subvariety by using Stokes’ theorem when considering the integrals of 1

2�
dt and 1

2�
d'

on any sufficiently large, constant jsj slice of the subvariety.

Here is the third constraint:

(1–11) If yA has two 4–tuples and çC D ç� D 0, then the 4–tuple integer pairs are
relatively prime.

Indeed, any yA with two 4–tuples and çC D ç� D 0 labels a moduli space of pseu-
doholomorphic cylinders. All of the latter are described in [14, Section 4] and none
violate (1–11).

The two remaining constraints refer to a set, ƒ yA , of distinct angles in Œ0; �� that is
defined from yA. This set contains the angle 0 if çC > 0 or if yA contains a .1; : : :/
element, it contains the angle � if ç� > 0 or if yA contains a .�1; : : :/ element, and
its remaining angles are those that are defined through (1–8) by the integer pairs from
the (0,: : :/ elements in yA. This understood, here are the remaining constraints:

�(1–12) ƒ yA is a single angle if and only if the latter is in .0; �/, yA has only two
4–tuples, and these are .0;C;P / and .0;�;P / with P D .p;p0/ being a
relatively prime integer pair.

� If ƒ yA has more than one angle, then neither of its maximal or minimal
elements is defined via (1–8) by the integer pairs of any .0;C; : : :/ element
from yA.

The constraints in (1–12) are consequences of two facts noted in [14, (4.21)] and in
[15, Section 2.E] about the pull-back of the angle � when the latter is non-constant on
an irreducible pseudoholomorphic subvariety: First, this pull-back has neither local
maxima nor local minima in .0; �/ . Second, if its s!1 limit on a concave side end
is neither 0 nor � , then its restriction to any constant s slice of the end takes values
both greater and less than this limit.

Given an asymptotic data set yA, use M yA
to denote the set of irreducible, pseudoholo-

morphic, multiply punctured spheres that give rise to yA. Grace M yA
with the topology
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where a basis for the neighborhoods of any given C 2M yA
is given by sets that are

indexed by positive real numbers where the version that is defined by � > 0 consists of
those C 0 2M yA

with

(1–13) sup
z2C

dist.z;C 0/C sup
z2C 0

dist.C; z/ < �:

The following theorem restates [15, Theorem 1.2 and Proposition 2.5]:

Theorem 1.1 If yA is an asymptotic data set and M yA
is non-empty, the latter is a

smooth manifold of dimension

NCC 2.N�C yN C ç�C çC� 1/;

where NC , N� and yN are the respective numbers of .0;C : : :/, .0;�; : : :/ and
.˙1; : : :/ elements in yA.

Note that by virtue of (1–12), the sum N�C yNCç�CçC is at least 1 for any asymptotic
data set. As explained in [14], the story when N�C yN C ç�C çC D 1 is as follows:

(1–14) M yA
consists of R–invariant cylinders when N�C yN C ç�C çC D 1.

The components of the moduli spaces of pseudoholomorphic, R–invariant cylinders
are of two sorts. First, there are two single element components, the � D 0 cylinder
and the � D � cylinder. The second sort of component is a circle. In this regard, each
circle component is labeled by a relatively prime pair of integers, .p;p0/, with at least

one non-zero and with jp
0

p
j >

q
3
2

in the case that p < 0. The circle consists of the

subvarieties of the form R�  where  � S1 �S2 is an orbit of the vector field y̨
where � is given by the pair .p;p0/ via (1–8). The circle parameter on the moduli
space can be taken to be the constant value in R=.2�Z/ along  of p0t �p' .

A description of M yA
in the case that N�C yN C ç�C çC D 2 is given in the next

subsection. Subsection 1.C starts the story that is told in subsequent sections about the
general case.

1.B The space M yA when its dimension is NCC 2

This subsection is divided into two parts. The first provides an explicit parameterization
for M yA

in the case that N�C yN C ç�C çC D 2 and so dim.M yA
/DNCC 2. The

second part describes some aspects of the subvarieties that map near the frontier in the
parametrizing space.

Before starting, note that the story in this case is simpler than for cases when the
dimension is greater than NCC2 by virtue of the fact that function � lacks critical points
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with � values in .0; �/ on the model curves of subvarieties in the N�C yNCç�CçCD2

versions of M yA
. This is a consequence of [15, Proposition 2.11]. The same proposition

implies that the tautological map from any such model curve to R� .S1 �S2/ is an
immersion that is transversal to the � D 0 and � D � loci.

Part 1 The story here and also in the N�C yN C ç�C çC > 2 case presented later
requires the introduction of a graph with labeled vertices and labeled edges. The
simplicity in the case at hand stems from the fact that the graph in question is linear.

To describe the graph in the N�C yN C ç�C çC D 2 case, first agree to view a linear
graph as a closed interval in Œ0; �� whose vertices define a finite subset that includes
the endpoints. Let T

yA � Œ0; �� denote the graph in question. Each vertex of T
yA is

labeled with its corresponding angle, and the set of these vertex angles is the set ƒ yA
as defined in the previous subsection. Meanwhile, each edge of T

yA is labeled by an
integer pair using the rules that follow. In the statement of these rules and subsequently,
the letter ‘e ’ is used to signify an edge, and Qe is used to signify an integer pair that
is associated to the edge e . Here are the rules:

�(1–15) If e starts the graph at an angle in .0; �/, then Qe is the integer pair from
the .0;�; : : :/ element in yA that define this minimal angle via (1–8).

� If 0 is the smallest angle on e , then one and only one of the following
situations arise: There is a .1;�; : : :/ element in yA, or there is a .1;C; : : :/
element in yA, or çC D 1. In the these respective cases, Qe is the integer
pair from the .1;�; : : :/ element in yA, or minus the integer pair from the
.1;C; : : :/ element in yA , or .0;�1/ when çC D 1.

� Let o denote a bivalent vertex, let �o denote its angle, and let e and e0

denote its incident edges with the convention that �o is the largest angle
on e . Then Qe �Qe0 is the sum of the integer pairs from the .0;C; : : :/
elements in yA that define �o via (1–8).

According to [15, Theorem 1.3], the moduli space M yA
is non-empty if and only if the

following condition holds:

(1–16) Let ye denote an edge in T
yA . Then pqye

0�p0qye > 0 in the case that .p;p0/ is
an integer pair that defines the angle of a bivalent vertex on ye . Moreover, if all
of

(a) qye
0 < 0,

(b) neither vertex on ye has angle 0 or � and
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(c) the version of (1–8)’s integer p0 for one of the vertex angles on ye is
positive,

hold, then both versions of p0 are positive.

This condition is assumed in what follows.

The graph T
yA is now used as a blueprint of sorts to define a space, O

yA , that plays a
fundamental role in what follows. The definition of the latter follows in three steps.

Step 1 Let yAC � yA denote the set of .0;C; : : :/ elements and let

(1–17) R
yA
�Maps. yACIR/

denote the subspace where distinct elements in yAC have distinct images in R=.2�Z/

when their respective integer pair components define the same angle in (1–8).

Let R� denote an extra copy of the affine line R.

Step 2 View the space Maps. yACIZ/ as a group using addition in Z to give the
composition law. Of interest is an action of this group on

(1–18) R� �Maps. yACIR/:

This action is trivial on R� . To describe the action on the second factor in (1–18), note
first that Maps. yACIZ/ is generated by a set fzu W u 2 yACg where zu.yu/D 0 unless
yuD u in which case zu.u/D 1. The action of zu on a given x 2Maps. yACIR/ is as
follows: First, .zu � x/.yu/D x.yu/ in the case that the integer pair from yu defines an
angle via (1–8) that is less than that defined by u’s integer pair. Such is also the case
when the two angles are equal and yu¤ u. Meanwhile, .zu �x/.u/D x�2� . Finally, if
the integer pair from yu defines an angle that is greater than that defined by u’s integer
pair, then .zu �x/.yu/ is obtained from x.yu/ by adding

(1–19) �2�
pu
0pyu�pup0

yu

qye
0pyu� qyep0

yu

;

where .pu;pu
0/ is the integer pair entry of the element u, .pyu;pyu0/ is that of yu, and

ye is the edge in T
yA whose largest angle vertex has the angle that is defined via (1–8)

by this same .pyu;pyu0/.

The action just described of Maps. yACIZ/ commutes with the action of Z�Z that is
defined as follows: An integer pair N D .n; n0/ acts as translation by �2�.n0qe�nqe

0/

on R� ; here .qe; qe
0/ is the integer pair that is associated to the edge in T

yA with
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the smallest angle vertex. Meanwhile, N acts on any x 2Maps. yACIR/ so that the
resulting map, N �x , sends any given u 2 yAC to the point that is obtained from x.u/

by adding

(1–20) �2�
n0pyu� np0

yu

qye
0pyu� qep0

yu

:

Step 3 Granted the definitions in the preceding steps, set

(1–21) O
yA
� ŒR� �R

yA�=Œ.Z�Z/�Maps. yACIZ/�:

As is explained in Subsection 3.A, O
yA is a smooth manifold. Of particular interest

here is its quotient by the evident action of the group, Aut yA , whose elements are the
1–1 self maps of yAC that permute only elements with identical 4–tuples. To elaborate,
this group action is induced from the action on R

yA whereby a given � 2 Aut yA acts by
composition. Thus,

(1–22) .� �x/.u/D x.�.u// for each u 2 yAC:

In what follows, yO yA �O
yA denotes the subset of points with trivial Aut yA stabilizer.

The following theorem explains the relevance of these constructs:

Theorem 1.2 There is a diffeomorphism from M yA
to R� yO

yA=Aut yA .

There are diffeomorphisms between M yA
and R� yO

yA=Aut yA that grant direct geometric

interpretations to the R parameter and to all of the parameters in the yO yA=Aut yA factor.
Indeed, Theorem 3.1 asserts that the diffeomorphism in question can be chosen so as to
intertwine the R action on M yA

that translates the subvarieties by a constant amount

along the R factor in R� .S1�S2/ with the R action on its factor in R� yO
yA=Aut yA .

Furthermore, Propositions 3.4 and 3.5 describe diffeomorphisms of the latter sort that
interpret the image in yO yA=Aut yA for any given subvariety in terms of the jsj ! 1
limits on the subvariety and its behavior near the 0 and � loci.

For example, what follows describes how this yO yA=Aut yA data determines Reeb orbit
limits for a particular choice of diffeomorphism in Theorem 1.2. To set the stage,
keep in mind that � is constant on any Reeb orbit and that the Reeb orbits at a given
� 2 .0; �/ are distinguished as follows: Let .p;p0/ denote the relatively prime integer
pair that defines � via (1–8). The R=.2�Z/ valued function p' �p0t is constant on
any Reeb orbit at angle � , and its values distinguish these orbits.
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The set of s!1 limits in .0; �/ of � ’s restriction to any subvariety in M yA
is the

set of angles for the bivalent vertices in T
yA . Here is how to obtain information about

the corresponding Reeb orbit limits of the s!1 slices: Each element in yAC whose
integer pair defines a given angle in ƒ yA labels a map from OA to R=.2�Z/ that is
obtained as follows: First take the R=.2�Z/ reduction of the image via a given map
in R

yA of the element in yAC and then multiply the result by .qe
0p� qep0/ where e

denotes the edge that ends at the given vertex and .p;p0/ denotes the relatively prime
pair of integers that defines the angle in question. Now, let n denote the number of yAC
elements whose integer pair defines the given angle. The unordered set of n points in
R=.2�Z/ so defined by the image in O

yA=Aut yA of any chosen subvariety from M yA

is precisely the set of values for p' �p0t on those Reeb orbits at the given angle that
arise as s!1 limits of the constant s slices of the chosen subvariety.

Part 2 The space yO yA is compact in the case that the pairs from distinct .0;C; : : :/
elements in yA define distinct angles via (1–8). Thus, M yA

=R is compact in this case.
However, when two or more .0;C; : : :/ elements of yA have integer pairs that give the
same angle, then the quotient M yA

=R is no longer compact. This part of the subsection
concerns the latter situation. In particular, what follows is a brief introduction to the
sorts of subvarieties that inhabit the frontier of M yA

=R. A more detailed description
of the frontier is contained in Section 9.

To set the stage, remark that yO yA sits in O
yA and the latter sits in the compact space,

O
yA , that is obtained by replacing R

yA in (1–21) with the whole of Maps. yACIR/.
As the Aut yA action on O

yA extends to one on O
yA , the space O

yA=Aut yA provides a
compactification of M yA

=R . This compactification is geometrically natural since each

point in O
yA can be used to parametrize some pseudoholomorphic, multiply punctured

sphere. However, a point in O
yA
� yO

yA together with a point in R always parametrizes
a sphere with less than NCCN�C yN punctures. Even so, the subvarieties that are
parametrized by the points in O

yA
� yO

yA are geometric limits of sequences in M yA
.

To elaborate on this last remark, suppose that y 2 R�O
yA and that C is the pseudo-

holomorphic, punctured sphere that is parametrized by y . Meanwhile, let fyj g denote

any sequence in R�O
yA that converges to y and let fCj g denote the corresponding

sequence of pseudoholomorphic subvarieties. As explained in Subsection 9.C, the latter
converges pointwise to C in R� .S1 �S2/ in the sense that

(1–23) lim
j!1

�
sup
z2C

dist.z;Cj /C sup
z2Cj

dist.C; z/
�
D 0:
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In fact, more is true: Let C0 denote the model curve for C , this a punctured sphere
together with a proper, almost everywhere 1–1 pseudoholomorphic map to R�.S1�S2/

whose image is C . As noted above, C has at worst immersion singularities. Thus,
the punctured sphere C0 has a canonical ‘pull-back’ normal bundle, N ! C0 , with
an exponential map from a fixed radius disk subbundle in N to R� .S1 �S2/ that
immerses this disk bundle as a regular neighborhood of C . Let N1 �N denote this
disk bundle. Now, suppose that R is very large number, chosen to insure, among other
things, that the jsj �R part of C lies far out on the ends of C . Let C0j denote the
corresponding model curve for Cj . Then the jsj �R portion of each sufficiently large
j version of C0j maps to the corresponding portion of N1 so that the composition with
the exponential map gives the tautological map to the jsj �R part of Cj . Meanwhile,
the composition of this map to N1 with the projection from N1 to C0 defines a proper
covering map of the jsj �R part of C0j over this same part of C0 . In this regard, the
degree of this covering can be 1 or greater; in all cases, the covering is unramified.

To describe the jsj �R part of Cj , suppose that E �C is an end and let  � S1�S2

denote the corresponding closed Reeb orbit. This is to say that the constant jsj slices of
E converge pointwise to  as jsj!1. Thus, E lies in a small, constant radius tubular
neighborhood of one of the very large jsj sides of R�  as an embedded cylinder. A
component of the jsj �R part of Cj lies in this same tubular neighborhood. When
y is in O

yA , then the corresponding part of C0j is a cylinder. However, if y is in the
boundary of OA , there is at least one end of C where the corresponding part of C0j

is a sphere with at least three punctures. In any case, there is a tubular neighborhood
projection onto R�  that restricts to the nearby part of Cj so as to define a proper,
possibly ramified covering map from the corresponding jsj �R part of C0j onto the
relevant jsj �R part of R�  .

More is said in Subsection 9.C about this compactification.

1.C The case that M yA has dimension greater than NCC 2

The discussion here is meant to provide a brief overview of the story in the case that
N�C yN C ç�C çC D kC 2> 2.

Necessary and sufficient conditions for a non-empty M yA
are given in [15, Theorem 1.3].

As remarked previously, when non-empty, then M yA
is a smooth manifold whose

dimension is NCC 2k C 2. The structure of M yA
in the k > 0 case is rather more

complicated then in the k D 0 case. To simplify matters to some extent, the space M yA

is viewed here as an open subset in a somewhat larger space whose extra elements
consist of what are called ‘multiply covered’ subvarieties. In this regard, a multiply
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covered subvariety consists of an equivalence class of elements of the form .C0; �/

where C0 is a connected, complex curve with finite Euler characteristic and � is
a proper, pseudoholomorphic map from C0 to R � .S1 � S2/ whose image is a
pseudoholomorphic subvariety in the sense of (1–5). Here, the equivalence relation
puts .C0; �/� .C0; �

0/ in the case that �0 is obtained from � by composing with a
holomorphic diffeomorphism of C0 . If � is almost everywhere 1–1 onto its image,
then .C0; �/ defines a pseudoholomorphic subvariety as described in (1–5). The added
elements consist of the equivalence classes of pairs .C0; �/ where � maps C0 to
�.C0/ with degree greater than 1. Of interest here is the case where C0 and �.C0/

are punctured spheres. Moreover, with yA given, then C0 must have NCCN�C yN

punctures. Furthermore, the ends of C0 and the points where � ’s pull-back is 0 and �
must define the data set yA. In what follows M� yA is used to denote this larger space.

The topology on M yA
� is defined as follows: A basis for the neighborhoods of any given

(C0 , �/ are sets fU� g�>0 , where U� consists of the equivalence classes of elements
(C0
0 , �0 ) that obey the following: There exists a diffeomorphism  W C0! C0

0 such
that

(1–24) sup
z2C

�
dist.�.z/; .�0 ı /.z//C rz. /

�
< �:

Here, rz. / is the ratio of the norm at z of the Hom.T0;1C0IT1;0C0
0/ part of  ’s dif-

ferential to that of the Hom.T1;0C0IT1;0C0
0/ part. The theorem that follows describes

the local topology of M yA
� . This theorem introduces the subspace R�M yA

� whose
elements are the equivalence classes .C0; �/ where � agrees with its pull-back under
some non-trivial holomorphic diffeomorphism. Thus � D � ı where  W C0! C0

is a non-trivial, holomorphic diffeomorphism.

The description that follows of M� yA speaks of a ‘smooth orbifold’. This term is used
here to denote a Hausdorff space with a locally finite, open cover by sets of the form
B=G , where B is a ball in a Euclidean space and where G is finite group acting on
B . Moreover, these local charts are compatible in the following sense: Let U and U 0

denote two sets from the cover that overlap. Let �W B! U and �0W B0! U 0 denote
the quotient maps and let �� B and �0 � B0 denote respective components of the �
and �0 inverse images of U \U 0 . Then, there is a diffeomorphism, hW �!�0 such
that �D �0 ıh. A smooth map between smooth orbifolds is a map that lifts near any
given point in the domain to give a smooth, equivariant map between Euclidean spaces.
A diffeomorphism is a smooth homeomorphism with smooth inverse.

Theorem 1.3 The space M� yA has the structure of a smooth manifold of dimension
NCC 2.N�C yN C ç yA� 1/ on the complement of R and, overall, it has the structure
of a smooth orbifold. Moreover, M yA

embeds in M yA
� as an open set.
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This theorem is proved in Section 5.

A more detailed view of M yA
� is provided via a decomposition as a stratified space

where each stratum intersects M yA
�
�R as a smooth submanifold that extends across

R as an orbifold. The details of this are in Sections 5–9. What follows is a brief outline
of the story.

The strata of M� yA are indexed in part by a subset, B , of .0;�; : : :/ elements from yA

along with a non-negative integer, c , that is no greater than N�C yNCç�CçC�2�jBj.
Here, jBj denotes the number of elements in the set B . With B and c fixed, introduce
SB;c �M yA

� to denote those equivalence classes .C0; �/ for which the � pull-back
of � has precisely c critical points where � is neither 0 nor � , and where the following
condition holds:

(1–25) The 4–tuples in B correspond to the ends in C0 where s is unbounded from
below, where the s!�1 limit of � is neither 0 nor � , and where this limit
is achieved at all sufficiently large values of jsj.

In general, SB;c is a union of strata. To describe the latter, introduce d �NCCjBjCc

and use Id to denote the space of d unordered points in .0; �/ , thus the d –fold
symmetric product of the interval .0; �/ . The space Id has a stratification whose
elements are labeled by the partitions of d as a sum of positive integers. A partition
of d as d1C � � � C dm corresponds to the subset in Id where there are precisely m

distinct � values, with d1 points supplying one � value, d2 supplying another, and so
on. If dD .d1; : : : ; dm/ denotes such a partition, use Id;d to denote the corresponding
stratum.

Now define a map, f W SB;c! Id by assigning to any given pair .C0; �/ the angles
of the critical values of ��� in .0; �/ along with the angles that are defined via (1–8)
using the integer pairs from the .0;C; : : :/ elements in yA and from the 4–tuples from
B . Each stratum in Sc has the form f �1.Id;d/ where d is a partition of the integer d .
The stratum f �1.Id;d/� SB;c is denoted by SB;c;d in what follows.

As explained in Sections 6 and 8, each component of each stratum is homeomorphic to
a space that has the schematic form R�O=Aut where Aut is a certain finite group
and O is a certain tower of circle bundles over a product of simplices. The locus R
appears here as the image of the points where the Aut action is not free.

By way of an example, suppose that the integer pairs from the .0;C; : : :/ elements in yA
define distinct angles via (1–8). In this case, the version of O for any component of the
NCC2.kC1/ dimensional stratum is a tower of circle bundles over a k –dimensional
product of simplices. Moreover, Aut is always trivial when k > 0. To say more,
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reintroduce the set ƒ yA and let f��; �Cg denote the respective minimal and maximal
angles in ƒ yA . Then any k –dimensional simplex product that appears in the definition
of an NC C 2.k C 1/ dimensional version of O is a component of the space of k

distinct angles in .��; �C/�ƒ yA .

In this example, the codimension 1 strata consist of the subvarieties from M� yA where
the pull-back of � to the model curve has k non-degenerate critical points with either
k � 1 distinct critical values, none in ƒ yA , or k distinct critical values with one in
ƒ yA� .��; �C/. What follows is meant to give a rough picture of the manner in which
the coincident top dimensional strata join along the codimension 1 stratum.

In the case where there is a critical value in ƒ yA , the picture depends on where the
angle comes from. For example, in the case that the angle comes from some .0;C; : : :/
element in yA, three coincident top dimensional strata glue across the codimension 1
strata via a fiber bundle version of the ‘pair of pants’ that joins two circles to one. This
happens fiberwise as respective fiber circles for two of the associated top strata are
joined across a codimension 1 stratum to a fiber circle in the third. The following is a
schematic drawing:

(1–26)

∗ ∗

In this picture, the interior of each oval, minus its center point, and the exterior of the
union of the ovals correspond to the three codimension 0 strata. The two ovals minus
their intersection point correspond to the codimension 1 strata; the central intersection
point is a codimension two stratum.

If the angle comes from some .0;�; : : :/ element, then there are two incident top
dimensional strata; and the gluing comes from an identification between a fiber circle
in one top strata and a corresponding circle in the other. There is no fancy stuff here.

The story for the case where two critical values coincide is more involved by virtue of
the fact that there are various ways for this to happen. In the first, the critical values
coincide but the two critical points are in mutually disjoint components of the critical
locus. In this case again, two codimension 0 strata glue across the codimension 1
stratum via an identification of a fiber circle in one stratum with that in the other.
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In the remaining cases, the two critical points share the same component of the critical
locus. What follows is a schematic picture for the first of these cases:

(1–27)

*

*

*

Here, the complement of the three points and the three rays corresponds to three
codimension 0 strata. The rays minus the origin correspond to codimension 1 strata.
The origin and the point at 1 correspond to codimension 2 strata.

The following drawing depicts the second of the cases under consideration.

(1–28)

* *

There are three top dimensional strata depicted here; these correspond to the interiors of
the two circles minus their centers, and the exterior region. Meanwhile, the codimension
1 strata correspond to the interior of the horizontal arc, and the complement in the two
circles of the endpoints of this same arc. The end points of the horizontal arc depict
codimension 2 strata.

Section 9 contains additional details about all of this. Section 9 also describes a
compatible, stratified compactification of M� yA .

1.D A table of contents for the remaining sections

Section 2 constitutes a digression of sorts to accomplish two tasks. The first is to
explain how to use the level sets of the function � on a given subvariety to construct a
certain sort of graph with labeled edges and vertices. The second task explains how
this graph can be used to define a canonical set of parametrizations for the subvariety.
As explained in a later section, the associated graph and canonical parametrizations
provide the map that identifies a given component of a given stratum in M� yA with a
particular version of R�O=Aut.

Section 3 elaborates on the story told above for the case where N�C yN C ç�C çCD 2.
In particular, this section describes a map that provides the diffeomorphism in Theorem
1.2. The proof that the map is a diffeomorphism is started in this section.
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Section 4 starts with a digression to describe how the parametrizations from Section 2
can be used to distinguish distinct elements in M� yA . These results are then used to
prove that the map from Section 3 is 1–1. The final part of this section proves that the
map is proper. This completes the proof of Theorem 1.2.

Section 5 proves Theorem 1.3; and it proves that each component of each stratum of
M� yA is a suborbifold.

Section 6 uses the graphs from Section 2 to parametrize certain sorts of slices of the
strata of M� yA . A graph T determines a certain submanifold, M�

yA;T
; these are the

fibers for a map that fibers a given component of a given strata over a product of
simplices. Theorems 6.2 and 6.3 identify each M�

yA;T
as the product of R with the

quotient by a certain finite group of an iterated tower of circle bundles over simplices.
This section ends with description of a particular map that realizes the identification in
Theorem 6.2.

Section 7 completes the proof of Theorems 6.2 and 6.3. The arguments here first use
the results from the beginning of Section 4 to prove that the map from Section 6 is
one-to-one. The map is then proved to be proper. The proof of the latter assertion
requires the analysis of limits of sequences in M� yA , and the analysis of such limits is
facilitated by the use of Section 2’s canonical parametrizations. In particular, the latter
are used to replace some of the hard analysis in similar compactness theorems from
Bourgeois–Eliashberg–Hofer–Wysocki–Zehnder [1] with topology.

Section 8 describes the stratification of M� yA in greater detail. In particular, this section
describes each component of each stratum as a fiber bundle over a product of simplices
with the typical fiber being the space M�

yA;T
from Section 6. The section then explains

how the graphs that arise can be used to classify the strata.

Section 9 is the final section. This section describes how the codimension 0 strata fit
together across the codimension 1 strata and associated codimension 2 strata. This
section also describes a certain stratified compactification of M� yA . In particular,
Subsection 9.C says more about Subsection 1.B’s compactification of the N�C yN C

ç�C çC D 2 moduli spaces. The section ends with a description of the neighorhoods
of the codimension 1 strata that are added to make the compactification of M� yA in
the cases where N�C yN C ç�C çC > 2.

Acknowledgements David Gay pointed out to the author that the use of the critical
values of � to decompose M� yA has very much a geometric invariant theory flavor.
He also pointed out that the techniques that are described in Subsection 4.A are similar
to those used by Grigory Mikhalkin in other contexts. The author also gratefully
acknowledges the insight gained from conversations with Michael Hutchings.
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2 Background material

The purpose of this section is to elaborate on various notions from [15] that are used
extensively in the subsequent subsections to construct the parametrizations of any given
component of the multi-punctured sphere moduli space. The first subsection explains
how to use a subvariety in such a moduli space to define a certain graph with labeled
edges and vertices. The second describes some useful parametrizations of various
cylinders in any given pseudoholomorphic subvariety. The third explains how a graph
from the first subsection is used to designate as ‘canonical’ some of the parametrizations
from the second subsection.

2.A Graphs and subvarieties

The purpose of this subsection is to elaborate on the part of the discussion in [15,
Section 2.G] that describes a method of associating a graph to a pair .C0; �/ where C0

is a complex curve and � is a pseudoholomorphic map from C0 into R� .S1 �S2/

whose image is a pseudoholomorphic subvariety as defined in (1–5). As discussed
in [15, Section 2.E], the pull-back of � to C0 has no local extreme points where its
value is in .0; �/. This understood, let � � C0 denote the union of the non-compact
or singular components of the level sets of the pull-back of � .

The graph assigned to .C0; �/ is denoted here as T . Its edges are in a 1–1 correspon-
dence with the components of C0�� . Given the correspondence and an edge, e , then
Ke is used in what follows to denote e ’s component of C0�� . Each edge is labeled
by an ordered pair of integers, and when e denotes a given edge, Qe or .qe; qe

0/ is
used to denote the labeling integer pair. These integers are the respective integrals
of 1

2�
dt and 1

2�
d' about any constant � slice of Ke when these components are

oriented by the pull-back of the form

(2–1) x D .1� 3 cos2 �/d' �
p

6 cos �dt:

In this regard, note that this pull-back is non-zero along any such slice because the form
in (2–1) is a non-zero multiple of J �d� . (Here, the action of J on the cotangent bundle
is dual to its action on the tangent bundle.) The integral of x around any constant �
slice of Ke gives the Q� .q; q0/DQe version of the function

(2–2) ˛Q.�/D q0.1� 3 cos2 �/� q
p

6 cos �:

The QDQe version of ˛Q is strictly positive on the closure of Ke .

The monovalent vertices in T are in a 1–1 correspondence with the following:
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�(2–3) The points in C0 where � is either 0 or � .

� The ends of C0 where the jsj !1 limit of � is 0 or � .

� The convex side ends of C0 where the jsj !1 limit of � is not achieved
at finite jsj.

With regards to the last two points, the discussion in [15, Section 1.E] noted the
existence of some R� 1 such that the jsj �R portion of C0 is a disjoint union of
embedded cylinders to which jsj restricts as an unbounded, proper map to ŒR;1/
without critical points. Each such cylinder is called an ‘end’. The end is said to be
on the convex side of C0 when s is negative on the end. Otherwise, the end is said
to be on the concave side of C0 . The angle � on any such end has a unique limit as
jsj !1.

To say more about the manner in which this limit is approached, note first that the
analysis used in [14, Sections 2 and 3] proves a version of (1–9) for a given end where
the jsj ! 1 limit of � is in .0; �/. In fact, the techniques from [14] can be used
to find coordinates .�; �/ for the end such that � is equal to a positive multiple of
s; � 2 R=.2�Z/, and d�^d� is positive. Moreover, when written as a function of �
and � , the function � has the form

(2–4) �.�; �/D �E C e�r�.b cos.nE.� C �//Cyo/;

where the notation is as follows: First, �E is the s!1 limit of � on E . Second, b

is a non-zero real number, nE is a non-negative integer, but strictly positive if E is on
the concave side of C0 , and � 2 R=.2�Z/. Third, r > 0 when E is on the concave
side, r < 0 when E is on the convex side of C0 ; and in either case, r is determined a
priori by the integer nE and E ’s label in yA. Finally, yo and its derivatives limit to zero
when j�j !1.

The convex side ends that arise in the third point of (2–3) are those using the nE D 0

version of (2–4).

The multivalent vertices of T are in a 1–1 correspondence with the sets that comprise a
certain partition of the collection of non-point like components in � . To describe these
partition subsets, define a graph, G , whose vertices are the non-point like components
of � , and where two vertices share an edge if the restrictions of � to the corresponding
components of � agree and if both of these components lie in the closure of some
component of C0 �� . The set of components of G defines the desired partition of
the set of non-point like components of � . In this regard, note that each compact,
non-point like component of � defines its own partition subset.
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As remarked at the outset, each vertex in T has a label. These labels are explained
next. To start, a monovalent vertex that corresponds to a point in C0 where � D 0 is
labeled by .p0/, where p0 is the positive integer that gives the degree of tangency at
the intersection point between the � D 0 cylinder and the image of any sufficiently
small radius disk about the given point in C0 . Meanwhile, a vertex that corresponds to
a point in C0 where � D � is labeled by .�p0/ where p0 � 1 is the analogous degree
of tangency.

A monovalent vertex that corresponds to an end where the jsj !1 limit of � is 0
or � is labeled by a 4–tuple of the form .ı; "; .p;p0//, where ı D 1 if the � limit is
0 and ı D �1 if the � limit is � . Meanwhile, " 2 fC;�g with C appearing when
the end is on the concave side and � appearing when the end is on the concave side.
Finally, the ordered pair .p;p0/ are the integers that appear in (1–9).

A monovalent vertex that corresponds to a convex side end where the jsj !1 limit
of � is neither 0 nor � is labeled by a 4–tuple of the form .0;�; .p;p0// where the
ordered pair of integers is either C or � the pair that labels its incident edge. The sign
here is that of the constant b in (2–4).

The labeling of the multivalent vertices is more involved. To elaborate, each such vertex
is first assigned the angle in .0; �/ of the components of its corresponding partition
subset. In addition, each is assigned a certain graph of its own, this also a graph with
labeled vertices and edges. When o denotes a vertex, its graph is denoted by �o . The
graph �o is a certain closure of the union, �o , of the components of the partition
subset that is assigned to o. The vertices of �o that lie in �o consist of the critical
points of � on �o . The vertices in �o��o are in 1–1 correspondence with the set of
ends of C0 where all sufficiently large jsj slices intersect �o . Each vertex in �o is
labeled with an integer. This integer is zero when the vertex lies in �o . The integer is
positive when the vertex corresponds to a concave side end of C0 and it is negative
when the vertex corresponds to a convex side end. In either case, the absolute value
of this integer is the greatest common divisor of the respective integrals of 1

2�
dt and

1
2�

d' around any given constant jsj slice in the corresponding end.

So as not to confuse the edges in �o with o’s incident edges in T , those in �o are called
‘arcs’. The arcs are in 1–1 correspondence with the components of the complement
in �o of the �o ’s � critical points. Note that each arc is oriented by the 1–form that
appears in (2–1). As can be seen in [15, (2.16)] and (2–4) here, each vertex in �o has
an even number of incident half-arcs and with half oriented so as to point towards the
vertex and half oriented so as to point away. Only vertices with non-zero integer label
can have two incident half arcs. Each arc is also labeled by two incident edges to the
vertex o; these correspond to the two components of C0�� whose closure contains
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the arc’s image in the locus �o . Thus, one labeling edge connects o to a vertex with
smaller angle and the other to a vertex with larger angle.

An isomorphism between graphs T and T 0 of the sort just described consists of, among
other things, a homeomorphism between the underlying 1–complexes. However, such
an isomorphism must map vertices to vertices and edges to edges so as to respect all
labels. In particular, if o is a bivalent vertex in T and o0 its image in T 0 , then the
isomorphism induces an isomorphism between �o and �o0 that preserves their vertex
labels and arc orientations and respects the labeling of their arcs by pairs of incident
edges to the vertices. An automorphism of a given graph T is an isomorphism from
T to itself.

As just described, the edges of T correspond to the components of C0�� , the vertices
to certain ends of C0 and the singular and non-compact level sets of ��� . Meanwhile,
the labeling of the edges and vertices correspond to other aspects of the ends of C0 and
the ��� level sets. This understood, a ‘correspondence’ in .C0; �/ of a graph T of
the sort just described signifies in what follows a particular choice for the identification
that were just described between the geometry of ��� on C0 and the various edges,
vertices and so on of T . Note that any one correspondence of T in .C0; �/ is obtained
from any other by the use of an automorphism on T . The use of a subscript, ‘C ’, on T ,
thus TC , signifies in what follows a graph T together with a chosen correspondence
in a specified pair .C0; �/.

If T has a correspondence in .C0; �/, and if  is a holomorphic diffeomorphism of
C0 , then T also has a correspondence in .C0; �

0 � � ı /. More to the point, there is
an automorphism ıW T ! T and respective correspondences for T in .C0; �/ and in
.C0; �

0/ such that the inverse image via  and ı intertwine the two correspondences.
For example, if e � T is an edge and Ke is its corresponding component of the ���
version of C0�� , then  �1.Ke/ is the component of the �0 � � version of C0��

that corresponds to Kı.e/ .

Granted what has just been said, the isomorphism type of graph with a correspondence
in a given pair .C0; �/ depends only on the image of .C0; �/ in M� yA .

2.B Preferred parametrizations

Let K � C0 � � denote a component. Since the � level sets in K are circles, the
angle � and an affine parameter on the � level sets can be used to parametrize K by
an open cylinder. In this regard, there is a set of preferred parametrizations. To set
the stage for their description, introduce the ordered pair Q � .q; q0/ to denote the
respective integrals of 1

2�
dt and 1

2�
d' around any given constant � slice of K using
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the orientation that is defined by the pull-back of the 1–form in (2–1). Next, let �0

denote the infimum of � on K and let �1 denote the supremum. In what follows, �
is used to denote the linear coordinate on .�0; �1/ and v is used to denote an affine
coordinate for the circle R=.2�Z/.

Definition 2.1 A preferred parametrization for K is a diffeomorphism from the
cylinder .�0; �1/�R=.2�Z/ to K whose composition with the tautological immersion
of K into R� .S1 �S2/ can be written in terms of smooth functions a and w on the
cylinder as the map that pulls back the coordinates .s; t; �; '/ as

�(2–5) s D a,
� t D qvC .1� 3 cos2 �/w mod .2�Z/,
� � D � ,
� ' D q0vC

p
6 cos �w mod .2�Z/.

The set of preferred parametrizations for K is in all cases non-empty. Indeed, to
construct such a parametrization, start by fixing a transversal to the constant � circle in
K , this a properly embedded, open arc in K that is parametrized by the restriction of � .
Next, use � as one coordinate and, for the other, use the line integral of x=˛Q along the
constant � circles from the chosen arc. A preferred coordinate system can be obtained
from the latter by adding an appropriate function of � to the second coordinate.

Listed next are six important properties of the preferred parametrizations.

Property 1 All preferred parametrizations pull the exterior derivative of the contact
1–form ˛ back as sin �˛Q.�/d� ^dv where ˛Q is the function on Œ0; �� that appears
in (2–2). This implies that ˛Q is positive on the interval .�0; �1/, and that it is positive
at an endpoint of this interval if the value there of � is attained on the closure of K .

With regards, to ˛Q , note as well that the 1–form x in (2–1) pulls back to any constant
� circle in the parametrizing cylinder as ˛Qdv .

Property 2 The fact that K is pseudoholomorphic puts certain demands on the pair
.a; w/. In particular, K is pseudoholomorphic in R �.S1 �S2/ if and only if

(2–6)
˛Qa� �

p
6 sin �.1C 3 cos2 �/wav D�

1C 3 cos4 �

sin �

�
wv �

1

1C 3 cos4 �
ˇ
�

.˛Qw/� �
p

6 sin �.1C 3 cos2 �/wwv D
1

sin �
av;

Here, ˇ is defined to be the function p.1 � 3 cos2 �/C p0
p

6 cos � sin2 � . In this
equation and subsequently, the subscripts � and v denote the partial derivatives in the
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indicated direction. Because ˛Q is nowhere zero on .�0; �1/ the system in (2–6) is a
non-linear version of the Cauchy–Riemann equations.

Here is an important consequence of the second equation in (2–6):

(2–7) The function � ! ˛Q.�/
R

R=.2�Z/w.�; v/dv is constant on the interval
.�0; �1/.

Property 3 Consider the behavior of K where � is near a given �� 2 f�0; �1g. If ��
is not achieved by � on the closure of K , then there exists " > 0 such that the portion
of K where j� � ��j � " is properly embedded in an end of C0 . In particular, the
constant � slices of this portion of K are isotopic to the constant jsj slices when � is
very close to �� . Moreover, if �� … f0; �g, then such an end is on the convex side of
C0 and the associated integer nE that appears in (2–4) is zero.

Supposing still that �� 2 .0; �/, let .p;p0/ denote the relatively prime integer pair
that defines �� via (1–8). Then .q; q0/ D m.p;p0/ with m a non-zero integer, and
it follows from (2–5) and (2–7) that the mod .2�Z/ reduction of any � 2 .�0; �1/

version of

(2–8)
1

2�m
˛Q.�/ s

R=.2�Z/

w.�; v/dv

is the R=.2�Z/ parameter that distinguishes the Reeb orbit limit of the �! �� circles
in K .

Property 4 If �� 2 f�0; �1g is neither 0 nor � and if �� is achieved on the closure of
K , then the complement of the � critical points in the � D �� boundary of this closure
is the union of a set of disjoint, embedded, open arcs. The closures of each such arc is
also embedded. However, the closures of more than two arcs can meet at any given
� -critical point.

This decomposition of the � D �� boundary of K into arcs is reflected in the behavior
of the parametrizations in (2–5) as � approaches �� . To elaborate, each critical point
of � on the � D �� boundary of the closure of K labels one or more distinct points on
the � D �� circle in the cylinder Œ�0 , �1��R=.2�Z/. These points are called ‘singular
points’. Meanwhile, each end of C0 that intersects the � D �� boundary of the closure
of K in a set where jsj is unbounded also labels one or more points on this same circle.
The latter set of points are disjoint from the set of singular points. A point from this
last set is called a ‘missing point’.

The complement of the set of missing and singular points is a disjoint set of open arcs.
Each point on such an arc has a disk neighborhood in .0; �/�R=.2�Z/ on which the
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parametrization in (2–5) has a smooth extension as an embedding into R� .S1 �S2/

onto a disk in C0 .

As might be expected, the set of arcs that comprise the complement of the singular and
missing points are in 1–1 correspondence with the set of arcs that comprise the � D ��
boundary of the closure K . In particular, the extension to (2–5) along any given arc in
the � D �� boundary of Œ�0; �1��R=.2�Z/ provides a smooth parametrization of the
interior of its corresponding arc in the � D �� boundary of the closure of K .

Property 5 It is pertinent to what follows to say more about the behavior of the
parametrization near the singular points on the � D �� circle in the case that �� 2
f�0; �1g is a value of � on the closure of K .

To set the stage, let z� denote any given point in C0 . Let yt and y' denote the functions,
defined on a ball centered at the image of z� in S1�S2 , that vanish at the latter point
and whose respective differentials are dt and d' . Now introduce

(2–9) r �
sin �

.1C 3 cos4 �/1=2

�
.1� 3 cos2 �/y' �

p
6 cos �yt

�
;

a function that is defined on the given ball about the image of z� in S1�S2 . Next, let
D� � C0 be a small radius disk with center z� on which the pull-back of r is well
defined. Note that d� ^dr is zero on D� only at the critical points of � . Thus, r and
� define local coordinates on the complement in D� of its � critical points.

When a component K � C0 � � whose closure contains z� is given a preferred
parametrization, there is a function, yv , that is defined on any given contractible com-
ponent of K \D� whose differential pulls back to .�0; �1/�R=.2�Z/ as dv . This
understood, then (2–5) identifies r on such a component of K\D� as

r D
sin �

.1C 3 cos4 �/1=2
˛QK

.�/.yv� v�/

�
sin �

.1C 3 cos4 �/1=2

p
6.cos � � cos ��/.1C 3 cos � cos ��/w�:

(2–10)

Here, v� and w� are constants. In particular, if z� is in K , then v� D yv.z�/ and w�

is the value of w at the point in .�0; �1/�R=.2�Z/ that parametrizes z� via (2–5).
Such is also the case when z� is on the boundary of K and is not a critical point of �
provided that the radius of D� is sufficiently small. With regard to this last case, note
that a small radius guarantees the following: The boundary of K ’s closure intersects
D� as an embedded arc and any chosen yv extends to this arc as a smooth function.

According to (2–9), the 1–form dr can be written as dr D J � d� C rd� where jr j
vanishes at the image of z� . This and the fact that � is pseudoholomorphic have the
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following consequence: There exists a holomorphic coordinate, u, on D� such that
the pull-back of the complex function � C i r has the form

(2–11) � C i r D ��CumC1
CO

�
jujmC2

�
:

Here, m � 0 is the degree at z� of the zero of d� . The term in (2–11) designated
as O.jujmC2/ is such that it’s quotient by jujmC2 is bounded as u limits to zero.
Now, given that D� has small radius, (2–11) indicates that K intersects D� in a finite
number of components, each contractible. This noted, then r is given on each such
component by a version of (2–10) where v� is determined by the choice for yv and the
R=.2�Z/ coordinate of the given given � D �� singular point. Meanwhile, w� is the
limiting value of the function w at the singular point that maps to z� . Together, (2–10)
and (2–11) describe the behavior of a preferred parametrization near this singular point.

Property 6 In the case that �� 2 f�0; �1g is either 0 or � and � takes value �� on the
closure of K , then the map in (2–5) extends to the � D �� boundary of the cylinder as
a smooth map that sends this boundary to a single point. This extended map factors
through a pseudoholomorphic map of a disk into R� .S1�S2/ with the � D �� circle
being sent to the disk’s origin.

To say a bit more about this case, note that the the pair .q; q0/ has q D 0 and q0 < 0.
In this regard, �q0 is the intersection number between the image of the aforementioned
disk and the � 2 f0; �g locus. As q D 0, the assertion in (2–7) implies that the
mod .2�Z/ reduction of any � 2 .�0; �1/ version of the expression in (2–8) gives the
t –coordinate of the intersection point between the disk and the � D f0; �g locus.

To end this subsection, note that the set of preferred parametrizations of a given
component K � C0 � � constitutes a single orbit for an action of the group Z� Z.
To elaborate, let  denote a parametrization for K , and let N � .n; n0/ denote an
ordered pair of integers. Let �N denote the diffeomorphism of .�0; �1/�R=.2�Z/

that pulls .�; v/ back as

(2–12) ��N .�; v/D

�
�; v� 2�

˛N .�/

˛Q.�/

�
:

Then  N � ı�N is also a preferred parametrization. In this regard, if .a; w/ are the
pair that appears in  ’s version of (2–5), then the  N version is the pair .aN ; wN /

given by

aN .�; v/D a

�
�; v� 2�

˛N .�/

˛Q.�/

�
and

wN .�; v/D w

�
�; v� 2�

˛N .�/

˛Q.�/

�
C 2�

qn0� q0n

˛Qe
.�/

:

(2–13)
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The assignment of the pair .N;  / to  N defines a transitive action of Z�Z on the
set of preferred parametrizations. In this regard, note that the stabilizer of any given
parametrization is the Z subgroup in Z�Z of the integer multiples of Q.

As all parametrizations that arise henceforth for any given component of C0�� are
preferred parametrizations, the convention taken from here through the end of this article
is that the word ‘parametrization’ refers in all cases to a preferred parametrization. The
qualifier ‘preferred’ will not be written as its presence should be implicitly understood.

2.C Graphs such as �
o

and preferred parametrizations

Let o denote a given multivalent vertex in TC . This subsection describes how the
graph �o is used to define certain ‘canonical’ parametrizations for those components
of C0�� that are labeled by o’s incident edges. This is preceded by a description of
various properties of �o that are used in subsequent parts of this article. The discussion
here has seven parts.

Part 1 Suppose here that  is an arc in �o and let e 2 E� and e0 2 EC denote
the incident edges to o that comprise its edge-pair label. Suppose that both Ke and
Ke0 have been graced with parametrizations. View the interior of  as an open
arc in �o and so an open arc in C0 . As explained in the previous subsection, the
parametrizations of both Ke and Ke0 extend to a neighborhood of int. /. As such,
there is a ‘transition function’ that relates one of these extensions to the other. To
describe this transition function, let yve denote a lift to R of the R=.2�Z/ valued
coordinate v on the parametrizing cylinder for Ke . Meanwhile, let yve0 denote a
corresponding lift of the R=.2�Z/ valued coordinate on the parametrizing cylinder for
Ke0 . Then the coordinate transition function has the form

(2–14) ˛Qe
yve D ˛Qe0

yve0 � 2�˛N ;

where N � .n; n0/ is some ordered pair of integers and ˛N D n0.1 � 3 cos2 �/ �
p

6n cos � is the QDN version of the function that appears in (2–2). In this regard,
the pair N can be chosen so that the corresponding versions of .a; w/ that appear in
(2–5) are related via

ae

�
�;
˛Qe0

.�/

˛Qe
.�/
yve0 C 2�

˛N .�/

˛Qe
.�/

�
D ae0.�; yve0/;

we

�
�;
˛Qe0

.�/

˛Qe
.�/
yve0 C 2�

˛N .�/

˛Qe
.�/

�
D we0.�; yve0/

C
1

˛Qe
.�/

.qe
0qe0 � qeqe0

0/yve0 �
2�

˛Qe
.�/

.qen0� qe
0n/:

(2–15)
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Here, .qe; qe
0/ comprise the pair Qe while .qe0 ; qe0

0/ comprise Qe0 . With regards to
these formulae, note that changing the lift yve by adding 2� has the effect of changing
the integer pair from N to N �Qe . Meanwhile, a change of the lift yve0 by the addition
of 2� changes N to N CQe0 .

Part 2 As is explained momentarily, a parametrization of Ke and a lift to R of the
R=.2�Z/ valued coordinate on the corresponding parametrizing cylinder determines a
canonical ordered pair whose first component is a parametrization of Ke0 and whose
second is a lift to R of the R=.2�Z/ valued coordinate on the latter’s parametrizing
cylinder. Indeed, this canonical pair provides the N D .0; 0/ version of (2–14) and
(2–15), and it is a consequence of (2–12) and (2–13) that there is a unique pair of
parametrization and lift that makes both (2–14) and (2–15) hold with N D .0; 0/.

Keep in mind that this canonical parametrization and lift changes with a change in
the initial parametrization for Ke and lift of its R=.2�Z/ parameter. To make matters
explicit, suppose that N D .n; n0/ is an integer pair and that the latter changes the
parametrization for Ke as depicted in (2–12) and (2–13). In addition, suppose that the
value of the new R–lift, yvN

e , of the R=.2�Z/ coordinate on the parametrizing cylinder
is related to the original at any given point by

(2–16) yvN
e D yve � 2�

˛N .�/

˛Qe
.�/

:

It now follows from (2–14) and (2–15) that the canonical e0 pair of parametrization
and lift are changed in the analogous manner by this same integer pair N . This is to
say that the new parametrization of Ke0 is related to the original via the e0 version of
(2–12) and (2–13) as defined using the pair N . Meanwhile, the R–valued lift, yvN

e0 ,
of the R=.2�Z/ valued coordinate on the e0 version of the parametrizing cylinder is
obtained from the old at any given point by the version of (2–16) that substitutes e0 for
e .

With regards to R–valued lifts of the R=.2�Z/ coordinate on a given parametrizing
cylinder, note that any such lift is uniquely determined by the lift to R of the R=.2�Z/

coordinate of any one point. In the applications below, a lift to R is chosen for
the R=.2�Z/ coordinate of a distinguished missing or singular point on the � D �o

boundary of the parametrizing cylinder. The latter lift is then used to define the lift of
the R=.2�Z/ coordinate over the whole cylinder.

This last very straightforward observation is used below in the following context:
Suppose that �e is a distinguished missing or singular point on the � D �o boundary
circle of the parametrizing cylinder for e , and suppose that a lift to R of the R=.2�Z/

coordinate of �e has been chosen. Now, let � denote a path on this boundary circle that
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begins at �e and ends at some other missing or singular point. In this regard, the end
point of � may well be �e . In any event, assume that � can be written as a non-empty
concatenation of segments that connect pairs of missing points, or connect pairs of
singular points, or connect a missing point and a singular point. Note that any such
segment can run either with or against the defined orientation of the � D �o boundary
circle.

Let  0 denote the image in �o of the final segment on � , and let e0 denote the vertex
that labels  0 with e . The lift to R of the R=.2�Z/ coordinate of �e then defines a lift
to R of the coordinate along the whole of � and thus a lift over  0 . In this regard, note
that the latter depends on the homotopy class rel end points of the path � . In any event,
this lift and the given parameterization of Ke determines a canonical parameterization
of Ke0 . Of course, it also determines a canonical lift to R of the R=.2�Z/ coordinate
of the end point of � .

Part 3 This and Part 4 of the subsection describe a generalization of these constructions.
In this regard, the preceding definition suffices when TC is a linear graph with no
automorphisms, but more is needed for a more complicated graph.

This part of the story constitutes a digression whose purpose is to elaborate on some
aspects of the graph �o . To start, let e denote an incident edge to o. Then e labels
a certain circular graph, `oe , with oriented edges and labeled vertices that has an
immersed image in �o . In order to describe `oe , it convenient to first choose a
parametrization of the component, Ke � C0�� that e labels. Such a parametrization
identifies `oe with the � D �o circle in the associated parametrizing cylinder. In this
regard, the vertices of `oe are the set of missing and singular points on this circle, and
its ‘arcs’ are then the arcs in this circle that connect these points. The orientation of an
arc is defined by the restriction of dv. Meanwhile, the vertices are labeled by integers
in the following manner: All singular points are labeled by the integer 0. Any given
missing point has label ˙m where m is a positive integer and where the C sign is used
if and only if the missing point corresponds to a concave side end of C . The integer
m is the greatest common divisor of the respective integrals of 1

2�
dt and 1

2�
d' over

any given constant jsj slice of the end.

The map from `oe to �o is then induced by the extension of the parametrizing map.
In this regard, recall that this extension maps the complement of the set of missing
points on the � D �o circle to �o � �o . This map from `oe to �o has the following
properties: First, it sends vertices to vertices and arcs to arcs so as to preserve the vertex
labels and the arc orientations. Second it is 1–1 on the complement of the vertices.
Thus, the image of the map from `oe to �o is a closed, oriented path in �o that crosses
no arc more than once. The arcs in the image of `oe are those whose edge pair label
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contains e. In what follows, the homology class in H1.�o ; Z/ of the image of `o;e is
denoted as Œ`oe �.

Since the abstract circle `oe can be reconstituted (up to an automorphism) from its
image as an oriented path in �o , the image is also denoted by `oe . Note as well
that distinct parametrizations of Ke define isomorphic versions of `oe and that the
associated maps to �o are compatible with any such isomorphism.

Four properties of C0 are reflected in the manner in which the collection f`oeg sit in
�0 . Their descriptions involve sets E� and EC where E� is the set of incident edges
to o that connect to vertices with angles less than �o , while EC is the set of incident
edges that connect to vertices with angles greater than �o .

Property 1 Each arc in �o is contained in precisely two versions of `o.�/ , one labeled
by an edge from EC and the other by an edge from E� . These are the edges that
comprise the label of the arc.

Property 2 The collection fŒ`oe �ge is incident to o generates H1.�oIZ/ subject to
the following constraint:

(2–17)
X

e2EC

Œ`oe ��
X

e2E�

Œ`oe �D 0:

The first property is a direct consequence of the definitions. To explain the second
property, first note that the closed parametrizing cylinders for the components of C0��

that are labeled by o’s incident edges can be glued to �o by identifying any given
version of `o.�/��o with corresponding segment in the �D�o boundary of the relevant
parametrizing cylinder. The result of this gluing is a sphere with as many punctures as
o has incident edges. By construction this multipunctured sphere deformation retracts
onto �o . Meanwhile, its homology is generated by the collection fŒ`oe �g subject to the
one constraint in (2–17).

The third property is actually a consequence of the first two, but can also be seen to
follow from the fact that C0 is a smooth, irreducible curve.

Property 3 Let yE denote the set of o’s incident edges that appear in the pair labels
of the incident half-arcs to a given vertex in �o . An equivalence relation on yE is
generated by equating the two edges that come from the edge pair label of an incident
half-arc to the given vertex. This relation defines just one equivalence class.

The final property is a special case of the one just stated.

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1883

Property 4 Suppose that e and e0 are incident edges to o, one in EC and the other in
E� , and suppose that  � `oe \ `oe0 . If  0 follows  in `oe , then  0 cannot follow 

in `oe0 unless the vertex between them is bivalent.

Part 4 With the preliminary digression now over, this part of the subsection describes
the advertised generalization of the definition in Part 2 of a canonical parametrization.
The following definition is needed to set the stage:

Definition 2.2 A ‘concatenating path set’ is an ordered set, f�1; �2; : : : ; �N g, of
labeled paths in �o with the following properties:

� The label of each �k consists of a specified direction of travel and a specified
incident edge to o.

� If e denotes the edge label to a given �k , then �k is entirely contained in `oe .
Moreover, �k is the concatenation of a non-empty, ordered set of arcs in `oe that
are crossed in their given order when the path is traversed from start to finish.
Note that the arcs that comprise �k need not be distinct and can be crossed in
either direction.

� No two consecutive pairs �k and �kC1 are labeled by the same incident edge to
o.

� For each 1� j <N , the final arc on �j is the starting arc on �jC1 .

The concatenating path set defines a directed path in �o by sequentially traversing the
paths that comprise the ordered set f�1; : : : ; �N g in their given order.

Granted this definition, here is the context for the discussion that follows: Suppose
that one of o’s incident edges has been designated as the ‘distinguished incident edge’.
Let e denote the latter, and suppose that a parametrization is given for Ke , and that a
vertex has been designated as the ‘distinguished vertex’ on the realization of `oe as the
� D �o boundary circle of the parametrizing cylinder. Let �e denote this distinguished
vertex, and let � 2 �o denote its image. Now, let e0 label some incident edge to o with
e0 D e allowed. Suppose, in addition, that a concatenating path set � � f�1; : : : ; �N g

has been chosen so that

�(2–18) The edge label of �1 is e , and �1 starts at � .

� The edge label of �N is not e0 but its final arc lies in `oe0 .

Properties 3 and 4 from Part 3 can be used to construct this sort of concatenating path
set.
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With this data set, a parametrizing algorithm is described next whose input is a pair
consisting of a parametrization for e and a lift to R of the R=.2�Z/ coordinate of �e

in the � D �o boundary of the parametrizing cylinder for Ke and whose output is a
parametrization for Ke0 as well as a canonical R–valued lift of the R=.2�Z/ parameter
on the associated parametrizing cylinder. This output parameterization is the advertised
‘canonical’ parametrization for Ke0 .

To describe this algorithm, note first that the observations from the final paragraph
from Part 2 can be viewed as defining a parametrizing subroutine that takes as input
the data:

�(2–19) A parametrization of a component of C0�� whose closure intersects �o .

� A distinguished point on the �D�o boundary of the parametrizing cylinder.

� A lift to R of the R=.2�Z/ coordinate of this distinguished point.

� A non-trivial path in the � D �o boundary of the parametrizing cylinder
that starts at the distinguished point and consists of segments that connect
missing and/or singular points on this boundary.

and gives as output:

�(2–20) A parametrization of the as yet unparametrized component of C0 � �

whose closure contains the image in �o of the interior of the final segment
on the chosen path.

� A lift to R of the R=.2�Z/ coordinate on the � D �o boundary of the
corresponding parametrizing cylinder for this second component of C0�� .

The parametrizing algorithm runs this subroutine N consecutive times. The first run
uses as input the chosen parameterization for Ke , the point �e , the chosen lift of
its R=.2�Z/ coordinate, and the path �1 . The second run of the subroutine uses as
input the resulting parameterization from (2–20) of the component of C0 � � that
shares the edge label with �2 , the second to last vertex on �1 with the lift of its
R=.2�Z/ parameter from (2–20), and the path �2 . In general, the .j C 1/0st run of
the subroutine uses the output from the j ’th run of the subroutine as it takes as input
the parameterization in (2–20) for the component of C0�� that shares the edge label
with �jC1 , the second to last vertex on �j , the lift of the R=.2�Z/ coordinate for �j
that is obtained from (2–20), and the path �jC1 . Because of (2–18), the N ’th run
of the subroutine parametrizes Ke0 and gives a lift of the R=.2�Z/ parameter on its
parametrizing cylinder. This parametrization of Ke0 is deemed ‘canonical’.

As just described, the canonical parameterization of a component of C0 �� whose
closure intersects �o depends on the following input data:
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�(2–21) A distinguished incident edge to o

� A parameterization of the corresponding component in C0�� .

� A choice of a distinguished vertex in the �D�o boundary of the parametriz-
ing cylinder.

� A lift to R of the R=.2�Z/ coordinate of the corresponding point in the
� D �o boundary of the parametrizing cylinder.

� A choice of a concatenating path set that obeys the constraints in (2–18).

The dependence on this input data has a role in subsequent parts of this article and so
warrants the discussion that occupies the remaining portions of this subsection.

Part 5 The question on the table now is that of the dependence of a canonical
parametrization on the data in (2–21). What follows describes the situation for the
various listed cases, starting at the top and descending. In these descriptions, the
edge e denotes the original distinguished edge, and the edge e0 denotes the edge that
labels the component of C0�� that is to receive the canonical parameterization. Use
f�1; : : : ; �N g to denote the original concatenating path set.

Case 1 Suppose that a new distinguished edge, ye , has been selected. What follows
describes input data for the parametrization algorithm, now run with the edge ye , that
supplies a canonical parametrization for Ke0 that agrees with the original one. In short,
the ye input data is obtained as follows: A concatenating path, y� , is chosen to first
parametrize Kye given the original parametrization of Ke . This parametrization of
Kye is then used as the input to the algorithm to obtain the ye version of the canonical
parametrization of Ke0 . The concatenating path that is used for this ye parametrization
of Ke0 runs backword along y� to its starting vertex on `oe , and then forward along the
concatenating path that is used by the parametrization algorithm to obtain the original
canonical parametrization of Ke0 .

Here are the details: Choose a concatenating path set, fy�1; : : : ; y� yN g whose end vertex
lies on Kye and let y� denote its ending vertex. Let y� denote this path set, and use y�
with the parametrizing algorithm to give Kye its canonical parameterization. Since the
final arc from y� yN lies on `oye , the vertex y� has a canonical lift to the � D �o circle
of the parametrizing cylinder for Kye . Use the latter for the new distinguished vertex,
and use the value given by the parametrizing algorithm for the R–valued lift of its
R=.2�Z/ parameter.

Now, take the following for the new concatenating path set: The first path in this set
consists solely of the final arc in y� yN , but traveled in the direction opposite to that
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used by y� . The second constituent path in the new concatenating path set is y� yN , but
traveled in the direction opposite to that by y� . The third is y�N�1 , also traveled in the
reverse direction from end to start. Continue in this vein using the paths in y� in reverse
to return to the original distinguished vertex on `oe . However, instead of using the
first constituent path, y�1 , of y� in reverse here, use instead the concatenation that first
takes y�1 in reverse and then adds to its end the first path, �1 , in the concatenating path
set that lead from the original distingushed vertex to `oe0 . This understood, take the
subsequent constituent path in the new concatenating path set to be the second of the
constituent paths, �2 , from the original distinguished vertex to `oe0 . Then, complete
the new path set by adding in their given order the constituent paths �3; : : : ; �N from
the original concatenating path set.

It is left as an exercise to verify that the output parameterization for Ke0 is not changed
when this new data is used as input to the parametrizing algorithm.

Case 2 Suppose that the parameterization of Ke is changed by the action of a given
integer pair N as depicted in (2–12) and (2–13). In addition, suppose that the new
R–lift of the R=.2�Z/ coordinate is related to the old via (2–16). Repeating what
is said in Part 2 at each run of the parametrizing subroutine finds that the canonical
parameterization of Ke0 is also changed by the action of the integer pair N via the e0

version of (2–12) and (2–13).

Case 3 This is the story in the case that the distinguished vertex on the �D�o boundary
of the parametrizing cylinder is changed. Agree to use the same parameterization for
Ke as the original. Also, agree to take the R–valued lift of the R=.2�Z/ coordinate
for the new vertex to be that given by the lift of the original distinguished vertex. Take
the new concatenating path set as follows: The new version is f�1

0; �2; : : : ; �N g where
�1 ’ is the concatenation that travels from the new distinguished vertex to the original
distinguished vertex in `oe , against the given orientation of `oe , and then proceeds
outward from the old distinguished vertex along �1 .

The parametrizing algorithm finds no difference between the new and old parametriza-
tions of Ke0 when using this new input data.

Case 4 The change in just the R–valued lift of the R=.2�Z/ coordinate of the
distinguished point is given by the N 2 Z �Qe version of Case 2. In particular, if z 2 Z

and if the new lift is related to the old via the N D zQe version of (2–16), then the
parameterization of Ke0 is changed by the action of N D zQe via the e0 version of
(2–12) and (2–13).
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Case 5 As is explained momentarily, the story for any given case from the final point
in (2–21) can be obtained from that for the special case in which the new concatenating
path set shares its respective starting and ending arcs with the original set. Meanwhile,
the discussion for the latter case requires the introduction of some new notions and is
deferred for this reason to the upcoming Part 7 of this subsection.

To begin the discussion here, suppose that the original concatenating path set is changed
subject to (2–18) so as to obtain a new concatenating path set whose starting arc
differs from the original. Let f�1

0; �2
0; : : : ; �N 0

0g denote the new set. The resulting
parametrization of Ke0 is not changed when the new concatenating path set has the
form f�1

00; �2
0; : : : ; �N 0

0g where �1
00 is obtained from �1

0 by adding two new arcs
in `oe at its start, the first leading out along the starting arc of �1 , and the second
returning along this same arc to the distinguished vertex. The third arc in �1

00 is the
first arc in �1

0 , the fourth arc in �1
00 is the second arc in �1

0 , and so on.

Suppose next that the final arc in the new concatenating path set f�1
0; : : : ; �N 0

0g differs
from that in the original. In this case, the new concatenating path set can be modified
by increasing the number of its constituent paths by 2 so as not to change the resulting
parametrization of Ke0 but so as to have the desired final arc. To elaborate, let � 2 `oe0

denote the original final arc, viewed as a directed arc. Let e00 denote the incident edge
to o that labels � with e0 . There are two cases to consider: In the first, direction along
� and direction along the final arc in �N 0

0 give the same orientation to `oe0 . In this case,
add a path, �N 0C1 � `oe0 , that starts with the final arc in �N 0

0 , proceeds along it in the
direction used by �N 0

0 , and continues until it first hits a vertex of � . By assumption,
this must be the starting vertex of � . This understood, continue �N 0C1 by traversing �
to its end. The final path, �N 0C2 , consists solely of � , but viewed as in `oe00 .

In the second case, the arc � and the final arc on �N 0
0 define opposite orientations

for `oe0 . In this case, �N 0C1 starts with the final arc in �N 0
0 and continues along

`oe0 until the it first hits a vertex on � . In this case, the vertex here is the end vertex.
Continue �N 0C1 by traversing � backwards to its start. Take �N 0C2 to be the path
that starts at the end vertex of � , traverses � to its start and then reverses direction
to retrace � to its end again. Label this path with the edge e00 . A check of the
parametrizing algorithm reveals that the canonical parameterization of Ke0 as defined
using f�1

0; : : : ; �N 0
0; �N 0C1; �N 0C2g is identical to that obtained using f�1

0; : : : ; �N 0
0g.

Part 6 The remainder of the story for the final point in (2–21) requires the introduction
of a certain ‘blow up’ of the graph �o . This blow up is a graph, ��o , with labeled and
oriented edges that comes equipped with a canonical ‘blow down’ map to �o that maps
certain edges to vertices of �o . Note that Property 4 from Part 3 is used implicitly in
the the constructions that appear in the next few paragraphs.
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To start the definition of ��o , let � denote a vertex in �o with non-zero integer
assignment. Then � labels an oriented, circular subgraph `�� � ��o whose vertices
are in 1–1 correspondence with the incident half-arcs to � in �o . For the purpose
of describing this correspondence, keep in mind that each vertex in �o has an even
number of incident half-arcs, half oriented towards the vertex and half oriented in the
outward direction. The correspondence between the vertices of `�� and the incident
half-arcs to � is defined so that the following is true: Let  denote an incident half-arc
to � with edge labels e 2E� and e0 2EC . If  is an inbound arc, then  labels a
vertex on `�� and the subsequent vertex in the oriented direction on `�� is labeled
by the arc in `oe that follows  . On the other hand, if  is an outbound arc, then the
subsequent vertex on `�� is labeled by the arc in `oe0 that precedes  .

This correspondence has the following consequence: The vertices that are met upon
a circumnavigation of `�� correspond alternately to inbound and outbound incident
half-arcs to the vertex � . Moreover, if a given vertex corresponds to an inbound arc in
�o with the edge pair label .e; e0/, then the subsequent vertex is the subsequent arc
in `oe and the previous vertex is the subsequent arc in `oe0 . On the other hand, if the
vertex corresponds to an outbound arc with label .e; e0/, then the subsequent vertex on
`�� corresponds to the previous arc on `oe0 and the previous vertex corresponds to the
previous arc on `oe .

With the definition set, then each arc in `�� is labeled by an ordered pair whose first
element is � and whose second is an incident edge to o. To elaborate, an incident
edge e 2E� labels the arc when its starting vertex (as defined by its given orientation)
corresponds to an inbound arc to � in �o whose E� edge label is e . An edge e0 2EC
labels the arc when its starting vertex corresponds to an outbound arc in �o whose EC
label is e0 .

The remaining arcs in ��o are labeled by pairs of incident edges to o, and this set
enjoys a 1–1 correspondence with the arcs in �o that respects their incident edge labels.

All of this is designed so that the map from ��o to �o that collapses the circles f`��g
has the following properties: First, it is an orientation preserving map that sends vertices
to vertices. Second, the map is 1–1 on neighborhoods of vertices with zero integer
assignment. On the other hand, the inverse image of any given vertex in �o with
non-zero integer assingment is the circular subgraph that carries its label. Third, the
inverse image of any arc in �o is an arc that bears its same edge pair label. Finally,
each `oe in �o has a canonical inverse image as an embedded circular subgraph of
��o . The latter is obtained from the inverse image of the arcs that comprise `oe by
adding the arcs from the collection in [�`�� whose label contains the edge e . The
inverse image of `oe in ��o is denoted subsequently as `�oe .

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1889

With their orientations as specified above, each edge labeled loop `�o.�/ defines a
homology class in H1.�

�
o ; Z/ as does each vertex labeled `�.�/ . In this regard, the

collection of these classes,fŒ`�oe �; Œ`
�� �g, generate the integral homology of ��o subject

to the following single constraint:

(2–22)
X

e2EC

Œ`�oe ��
X

e2E�

Œ`�oe �D
X
�

Œ`�� �:

This last identity provides a canonical class in the Z�Z valued cohomology of ��o .
Indeed, this class, �o , is defined so as to send any given Œ`�oe � to Qe . Meanwhile, �o

sends the class Œ`�� � to the pair m�Po , where m� is the integer weight assigned to
the vertex � and Po denotes here the relatively prime integer pair that defines �o via
(1–8).

Here is one way to view ��o : The result of attaching one boundary circle of a closed
cylinder to each circle from the collection f`�oeg [ f`

��g results in a space whose
interior is a multipunctured sphere that is homeomorphic to �o ’s component of every
small but positive ı version of the j� � �oj< ı portion of C0 .

Part 7 This part of the subsection describes how the canonical parametrization of
Ke0 changes when the given concatenating path is changed with no change to the first
traversed arc and no change either to the last arc or to the direction of traverse on the
last arc.

To begin the story, note first that when f�1; : : : ; �N g is a concatenating path set, then
each if its elements can be assigned a canonical inverse image in ��o . The inverse
image of a given �k is denoted here as ��k . The latter path lies in the version of `�o.�/

that shares �k ’s incident edge label, it starts with the inverse image of �k ’s starting arc
and ends with the inverse image of �k ’s ending arc. The next point to make is that the
union of the collection f��kg1�k�N of such lifts defines a single directed path whose
starting point is a vertex on the version of `�.�/ that projects to the starting vertex on
�1 and whose end point is on the version of `�.�/ that projects to the ending vertex of
�N . In this regard, the various subpaths that comprise this union are traversed in their
given order in their given direction. Let �� denote the latter path.

Now, if � and �0 are concatenating path sets that obey (2–18), and if they share both
starting arcs and ending arcs, then the corresponding lifts, �� and �0� , share the same
starting vertex and also share the same ending vertex. Thus, a closed loop, �� , is
defined in ��o by traveling first on �0� from start to finish, and then traveling on ��

in the ‘wrong’ direction, thus from its ending vertex back to its starting vertex.

The following lemma now summarizes the relation between the � and �0 versions of
the canonical parameterization for Ke0 :
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Lemma 2.3 The action of the integer pair ��o.Œ�
��/ 2 Z � Z on the canonical

parameterization defined by � gives the canonical parameterization defined by �0 .

The remainder of this subsection is occupied with the

Proof of Lemma 2.3 The proof is given in six steps.

Step 1 Write �0 D f�1
0; : : : ; �N 0

0g and let  0 � `oe0 denote the directed path that first
crosses the final arc on �N 0

0 from start to finish in the direction used by �0 , and then
recrosses this arc in the opposite direction. Label  0 with the incident edge e0 . With
 0 understood, introduce the concatenated path set given by the following ordered set
of constituent paths:

(2–23)
˚
�1
0; : : : ; �N 0

0;  0; �N
�1; : : : ; �2

�1; �1 ı �
�1
1 ; �2; : : : ; �N

	
:

Here, �1 ı �
�1
1

denotes the path in `oe obtained by first traveling �1 in reverse from
its end to its start, and then returning on �1 back to its end vertex. The canonical
parameterization that the path set in (2–23) defines for Ke0 is the same as that assigned
when using the path �0 .

Step 2 Let � denote the first arc in �1 , viewed as a directed arc that starts at the
distinguished vertex � . Let ye denote the edge that labels the arc � with e . Now, let 
denote the following directed path in `oye : Start at the ending vertex on � and traverse
this arc in reverse so as to return to the distinguished vertex. Then, reverse direction
and retrace � to return its end vertex. Thus,  D � ı ��1 . Label  with the edge ye .

This labeled, directed path  appears in the concatenating path set whose ordered
constituent paths are

(2–24)
˚
�1
0; : : : ; �N 0

0;  0; ��1
N ; : : : ; �2

�1; �1
�1; 

	
:

Running the parametrizing algorithm on the set in (2–24) provides as output a new pair
of parameterization of Ke and lift to R of the R=2�Z coordinate of the distinguished
point on the � D �o circle in the parametrizing cylinder. The latter pair is obtained
from the former by the action of some integer pair as depicted in (2–12), (2–13) and
(2–16).

This integer pair is relevant because the conclusions of Step 1 together with the Case 3
story for (2–21) from Part 5 imply that the canonical parametrization of Ke0 that is
obtained using the concatenating path �0 is obtained from the canonical parametrization
that is obtained using the concatenating path � by the action of this same integer pair
via the e0 version of (2–12) and (2–13).
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Step 3 Let C denote the collection of concatenating path sets that obey the e0 D e

version of (2–18) and have � as both first and last arc. For example the set in (2–24)
lies in C . Note that each � 2 C defines an integer pair as just described in Step 2,
this denoted below by N�.�/. To elaborate, any given � 2 C can be used with the
parametrizing algorithm to define a new parameterization for Ke and a corresponding
lift of the R=.2�Z/ coordinate of the distinguished point on the � D �o circle of the
parametrizing domain. The latter pair is obtained from the original by the action of
N�.�/ as depicted in (2–12), (2–13) and (2–16).

The assignment �!N�.�/ defines a map from C to Z�Z and the task is to identify
this map. It is useful in this regard to introduce various structures of an algebraic nature
to C of which the first is the product operation, } W C � C! C , given by

(2–25) }.�0; �/D
˚
�01; : : : ; �

0
N 0 ; �1; : : : ; �N

	
:

The conclusions from Step 2 imply that

(2–26) N�.}.�;�
0//DN�.�/CN�.�

0/:

The set C! C also admits a self map, t , that changes the sign of N�.�/. To elaborate,
let 0 denote the directed path that starts at the distinguished vertex, runs along � to
its end, and the returns to the distinguished vertex by reversing direction on � . Label
0 with the edge e . Now, let �D f�1; : : : ; �N g 2 C denote a given data set and set

(2–27) t.�/D
˚
0; �N

�1; �N�1
�1; : : : ; �1

�1; 
	
;

The parametrizing algorithm finds that N�.t.�//D�N�.�/.

By virtue of (2–26) and (2–27), the set C contains elements with N�.�/ D .0; 0/.
Perhaps the simplest such element is the concatenating path set f;  0g with  and  0

defined as in (2–27).

The next point to make is that the assignment N�W C! Z�Z is insensitive to certain
modifications of a given concatenating path set. To elaborate, suppose again that
� D f�1; : : : ; �N g 2 C . Suppose, in addition that j < N has been specified. Let
ej denote the version of `o.�/ that contains �j and let �1 denote the final arc in �j

viewed here as a directed arc. Use yej to denote the incident edge to o that is partnered
with ej in the label of �1 . Let f�1; : : : ; �N 0g now denote a concatenating path set with
the property that the first arc in �1 has label yej and directed first arc equal to �1 . Let
�N denote the final arc in �N , also viewed as a directed arc. With the concatenations
�N
�1 ı �N and �1 ı �1

�1 suitably labeled by edges, the set

(2–28)
˚
�1; :::; �j ; �1; :::; �N ; .�N

�1
ı �N /; �

�1
N ; :::; ��1

1 ; .�1 ı �
�1
1 /; �jC1; :::; �N

	
:
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is an element in C . Running the parametrizing algorithm find that N� has the same
value on � as it has on the set in (2–28).

Step 4 Let �e � `oe denote the path that starts at the vertex � , runs out along � and
continues once around `oe so as to end after crossing � a second time. The ordered
pair f�e;  g defines a concatenating path set in C . The considerations in Case 4 of the
preceding part of this subsection imply that N� has value ˙Qe on this element, with
the � sign occurring if and only if travel along � from � defines the oriented direction
in `oe .

As will now be explained, every other version of Q.�/ whose label is an incident edge to
o is a value of N� in c . To see how this comes about, let e0¤ e denote a given incident
edge to o and let f�1; : : : ; �N g denote a concatenating path set with the following
properties: First, �1 is labeled by e , it starts at � and its first arc is � . Meanwhile, �N

is not labeled by e0 but its last arc lies in `oe0 and the direction along �N on this last
arc defines the given orientation of `oe0 . Let �e0 denote the path in `oe0 that starts
with this last arc in �N continues once around `oe0 to the end of this last arc, and then
reverses direction to retrace this last arc back to its starting vertex. Label �e0 with the
edge e0 .

The ordered set f�1; : : : ; �N ; �e0 ; �
�1
N
; : : : ; �1

�1;  g is an element in C , and a run of
the parametrizing algorithm finds that N� has the desired value �Qe0 on this element.

Step 5 The results from the preceding steps suggest that the value of N� on any given
� 2 C depends only on the homology class of the path in �o that is defined by the
union of �’s constituent paths. However, this conclusion is wrong when �o contains
vertices that correspond to ends of C0 .

That such is the case can be seen most readily when the vertex at the end of � is a
bivalent vertex. Let � 0 denote the latter vertex and let �1 denote the arc in `oe that
shares � 0 with � . Thus, both � and �1 are labeled by the edge pair that consists of e

and ye . This understood, then

(2–29)
˚
�1 ı �; � ı �

�1
ı ��1

1

	
is a concatenating path set in C if the first constituent path is labeled by e and the
second by ye . As is explained next, a run of the parametrizing algorithm on this path
finds that N� assigns it either m� 0Po or �m� 0Po . Here, m� 0 is the integer weight
accorded � 0 as a vertex in �o , and Po is the relatively prime integer pair that is defined
by �o via (1–8). Meanwhile, the + sign appears if and only if either e 2E� and travel
from � along � is in the oriented direction in `oe , or else e 2EC and travel from �

along � goes against the orientation from `oe .
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To see why the parametrizing algorithm must give ˙m� 0Po , it is necessary to go back
to (2–5) for the cases of e and ye . Let R be some very large number, chosen so that jsj
has value R on the end E � C0 that is labeled by the vertex � 0 . Write PoD .po;po

0/

and keep in mind that the respective integrals of 1
2�

dt and 1
2�

d' about the jsj DR

slice of E are jm� 0 jpo and jm� 0 jpo granted that the latter are oriented by the pull-back
of the 1–form �˛ with ˛ depicted in (1–3).

As can be seen from (2–4), there are two points of the jsj DR circle in E that lie on
�o , and one will lie in � and the other in �1 when R is large. Label these points z

and z0 . Given that Kye is parametrized using the single element concatenating path set
f�1 ı�g, it then follows that the respective values of the R–valued functions yve and yve0

are very close at the respective points in the Ke and Kye parametrizing cylinders that
map to z . They also have very similar values at the respective points that map to z0 .
The values of we and we0 at the respective points in the Ke and Ke0 parametrizing
cylinders that map to z0 are also nearly equal since these points are used in (2–14) and
(2–15) to define the parameterization of Ke0 .

However, given these near equalities, and given that the pair . 1
2�

dt; 1
2�

d'/ has a
non-zero integral in Z�Z around the jsj DR circle, the form of (2–5) precludes nearly
equal values for we and we0 at the respective points in their parametrizing cylinders
that map to z . Indeed, the difference in their values is exactly accounted for by the
Z�Z action of the appropriately signed version of m� 0Po on the given pair of Ke

parameterization and lift to R of the R=.2�Z/ coordinate of � .

The analysis just done for this simple case can be repeated in the case that the vertex at
the end of � has some 2.kC 1/ incident half-arcs. To elaborate, each such arc can be
directed and then the set suitably labeled as f�; �1; : : : ; �kg so that

(2–30)
˚
�1 ı �; �2 ı �1

�1; : : : ; �k ı �k�1
�1; � ı ��1

ı �k
�1
	

defines an element in C . For example, �1 is the incident half-arc to � 0 in `oe that
follows � when traveling along � in `oe . Meanwhile, �2 is the incident half-arc that
follows ��1

1
when traveling the latter in the indicated direction on the version of `o.�/

whose edge shares with e the label of �1 . The arc �3 is defined by the analogous
rule when �2 is used in lieu of �1 ; in general, �k for k > 3 is defined by successive
applications of this same rule using �k�1 in lieu of �1 .

The parametrizing algorithm can be run using (2–30) and then (2–5) can be employed
to prove that N� again has value ˙m� 0Po with the C sign appearing under the same
circumstances as in case when � 0 is bivalent.

The story is much the same for a null-homotopic path in �o of the following sort:
Let � 0 denote any given arc in �o and let 2.kC 1/ denote the number of its incident
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half-arcs. Direct and label these as f� 0; �1; : : : ; �kg by mimicking the scheme used in
(2–30) with � 0 replacing � . Now, let f�1; : : : ; �N g denote a concatenating path set with
the following properties: The path �1 starts with � and is labeled by e . Meanwhile,
the final arc on �N is � 0 , but the edge label of �N is not that of both � 0 and �1 . Given
these properties, the ordered set
(2–31)˚
�1; : : : ; �N ; �1 ı �

0; �2 ı �1
�1; : : : ; �k ı �k�1

�1; ��1
ı �k
�1; �N

�1; : : : ; �1
�1; 

	
defines an element in C on which N� has value ˙m�Po with the ˙ determined as
before but for the replacement of � 0 by � .

Step 6 As explained previously, a concatenating path set defines a canonical path in
the blow up graph ��o . Indeed, each constituent subpath is specified as a concatenated
union of arcs that all lie in a single version of `o.�/ . Thus, each such path has a canonical
lift to `�e � �

�
o to give a directed path of concatenated arcs. Moreover, consecutive

paths from the given path set lift to paths in ��o so that their union defines a directed
path with travel starting on the lift of first path and continuing on that of the second.

When � 2 C , let �� denote its lift. Let �� � ��o denote the inverse image of the first
arc in �, and thus the first arc in �� . This is also the final arc in �� . Thus, travel on
�� up to but not including the final appearance of �� defines a closed loop, y�;� ��o ,
that starts and ends at the starting vertex of �� .

By virtue of what has been said in the previous steps, the value of N� on � is minus
the value of the homomorphism �o on y�, and this last conclusion implies the assertion
of Lemma 2.3.

3 The map from M to OT

Suppose for the moment that yA is an asymptotic data set with N�C yN C ç�C çCD 2.
Granted that yA also obeys the conditions in (1–16) that guarantee a non-empty version
of M yA

, then Theorem 1.2 asserts a diffeomorphism between M yA
and the product

of R and a space denoted by yO yA=Aut yA . Here, yO yA is the part of O
yA from (1–21)

where Aut yA acts freely. The purpose of this subsection is to describe one such map
from M yA

to R� yO
yA=Aut yA . The map given here is the prototype for a suite of such

maps that are used in subsequent sections to describe other components of the space
moduli space of multiply punctured, pseudoholomorphic spheres.
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3.A The more general context

If yA is an asymptotic data set, reintroduce from Subsection 1.A the set ƒ yA of angles
in Œ0; ��. Unless noted to the contrary, restrict attention in the remainder of this section
to asymptotic data sets with the following properties:

(3–1) There is a unique element in yA that supplies the minimal angle in ƒ yA , and
there is also a unique element in yA that supplies the maximal angle in ƒ yA .

To make this explicit, note that yA has a unique element that gives ƒ yA ’s minimal angle
if and only if the one of following is true:

�(3–2) There are no .1; : : :/ elements in yA, the integer çC is zero, and there is a
unique .0;�; : : :/ element whose integer pair gives the minimal angle in
ƒ yA via (1–8).

� There are no .1; : : :/ elements in yA and çC > 0.

� There is a unique .1; : : :/ element in yA and çC D 0.

An analogous set of conditions must hold when there is a unique element in yA that
supplies the maximal angle to ƒ yA . Note that an asymptotic data set with N�C yN C

ç�C çC D 2 automatically obeys (3–1).

As is explained next, the data set yA can be used to define a linear graph, T
yA , much like

that introduced in Subsection 1.B in the case N�C yN C ç�C çCD 2. As in Subsection

1.B, the graph T
yA is viewed as a closed subinterval in Œ0; �� whose vertices include

its endpoints; the edges of T
yA are the closed intervals that run from one vertex to the

next. The vertices of T
yA are in 1–1 correspondence with the angles in ƒ yA and this

correspondence is such that the angle of any vertex in ƒ yA is also its angle in Œ0; ��.

The edges of T
yA are labeled by integer pairs that are determined using the rules that

follow. The notation is such that when e denotes an edge, then Qe D .qe; qe
0/ denotes

its integer pair label.

�(3–3) Let e denote the edge that contains the minimum angle vertex.
(a) If this angle is positive, then Qe is the integer pair from the .0;�; : : :/

element in yA that supplies this minimal angle to ƒ yA .
(b) If the miminal angle in ƒ yA is zero and çC > 0, then Qe D .0;�çC/.
(c) If the minimal angle in ƒ yA is zero and çCD 0, then Qe D�"P given

that the element from yA that supplies this angle to ƒ yA has the form
.1; ";P /.
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� Let o denote a bivalent vertex in T
yA and let e and e0 denote its incident

edges with e connecting o to a vertex with angle less than that of o. Then
Qe DQe0CPo where Po is obtained by subtracting the sum of the integer
pairs from the .0;�; : : :/ elements from yA that supply o’s angle to ƒ yA
from the some of the integer pairs from the .0;C; : : :/ elements from yA

that supply o’s angle to ƒ yA .

In [15, Theorem 1.3] asserts that M yA
is non-empty if and only if the conditions in

(1–16) hold for the current version of T
yA . Assume for the remainder of this subsection

that yA obeys (3–1) and that the conditions of (1–16) hold for T
yA . What follows

describes a generalization of the space O
yA that appears in (1–21). This space is then

used to parametrize a certain subspace in M yA
.

To begin the description of O
yA , introduce yA� � yA to denote the subset of 4–tuples

whose integer pairs define the non-extremal angles in ƒ yA . Associate to each u 2 yA� a
copy, Ru of the affine line and let

(3–4) R
yA
�Maps. yA�IR/

denote the subspace of points where distinct u and u0 from yA� have distinct images
in R=.2�Z/ in the case that their integer pairs defined the same angle via (1–8). Let
R� denote an auxiliary copy of R.

As is explained next, there is an action of Maps. yA�IZ/ on

(3–5) R� �Maps. yA�IR/

that preserves R� �R
yA . This action is trivial on R� . To describe the action on the

second factor, let u2 yA� and let zu denote the corresponding generator of Maps. yA�IZ/.
If x 2Maps. yA�IR/, then .zu �x/.yu/D x.yu/ if the integer pair from yu defines an angle
via (1–8) that is less than that defined by the integer pair from u. Such is also the case
when the two angles are equal except if yuD u. If yuD u, then .zu �x/.u/D x.u/�2� .
When the integer pair from yu defines an angle that is greater than that of the pair from
u, then .zu �x/.yu/ is obtained from x.yu/ by adding

(3–6) �2�"u
pu
0pyu�pupyu

0

q0
ye
pyu� qyepyu

0
;

where the notation is as follows: First, ye labels the edge that contains yu as its largest
angle vertex and .qye; qye

0/ is the integer pair that is associated to ye . Meanwhile,
.pu;pu

0/ is the integer pair from u and .pyu , p0
yu
/ is that from yu. Finally, "u 2 f˙g is

the second entry in the 4–tuple u.
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Also needed is the action of Z�Z on the space in (3–5) that is described just as in Step
2 of Part 1 in Subsection 1.A for the latter’s version of R� �R

yA . This Z�Z action
commutes with that of Maps. yA�IZ/. This understood, define

(3–7) O
yA
� ŒR� �R

yA�=Œ.Z�Z/�Maps. yA�IZ/�:

As is explained next, O
yA is a smooth manifold.

To see that O
yA is smooth, it is sufficient to verify that each point in (3–5) has the same

stabilizer under the action of the group in (3–7). As is explained below, this stabilizer
is a copy of Z whose generator projects to Maps. yACIZ/ as �

P
u zu and projects to

Z�Z as the integer pair Qe with e here denoting the edge in T
yA that contains the

smallest angle vertex. To prove such is the case, suppose that � 2 .��;x/ is a point in
the space depicted in (3–5), and that g D .N; z/ fixes � . As �� is fixed, the pair N

must have the form r�Qe where Qe here denotes the integer pair that is assigned to
the edge with the smallest angle vertex and where r� is a fraction whose denominator
is the greatest common divisor of these same two integers.

To proceed, suppose next that yu 2 yA� supplies an integer pair that gives the second
smallest angle in ƒ yA . Since the pair Qye D .qye; qye

0/ in the relevant version of (1–19)
is the same as the just defined Qe , it follows that g fixes both �� and x.yu/ if and
only if z.yu/D�r� . Note that this means that r� is an integer since z.yu/ is an integer.

Suppose next that yu 2 yA� supplies an integer pair that gives the third smallest angle in
ƒ yA . The corresponding x.yu/ is then fixed if and only if

(3–8) z.yu/C 2�
X

u

z.u/"u
pu
0pyu�pupyu

0

qye
0pyu� qyep0

yu

C r�
q0epyu� qep0

yu

qye
0pyu� qyep0

yu

D 0;

where the sum is over the elements in yA� whose integer pair defines the second smallest
angle in ƒ yA . Here, e is the edge that has the smallest angle vertex in T

yA and ye is the
edge that contains the second and third smallest angle vertices. To make something of
(3–8), note that each z.u/ that appears in the sum is �r� . In addition, (3–3) identifiesP

u ".pu;pu
0/ with Qe �Qye . These points understood, then (3–8) asserts that x.yu/

is fixed by g if and only if z.yu/D�r� .

One can now continue in this vein in an inductive fashion through the elements from
yA� with integer pairs that give successively larger angles in (1–8). In particular, an

application of (3–3) at each step finds that g D .N; z/ fixes .��;x/ if and only if
N D r�Qe and z sends each element in yA� to �r� . This straightforward task is left
to the reader.
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Define the group Aut yA to be the group of 1–1 maps of yA� to itself that only mix
elements with identical 4–tuples. This group acts smoothly on O

yA . Set yO yA �O
yA to

be the set of points where the action is free. Propositions 4.4 and 4.5 say more about
yO
yA .

Theorem 1.2 in Subsection 1.B now has the following generalization:

Theorem 3.1 Let yA denote an asymptotic data set that obeys (3–1) and whose graph
T
yA obeys the conditions in (1–16). The subspace of subvarieties in M yA

whose graph
from Subsection 2.A is linear is a closed submanifold of M yA

that is diffeomorphic to

R� yO
yA=Aut yA . Moreover, there is a diffeomorphism that intertwines the R action on

M yA
as the group of constant translations along the R factor of R� .S1 �S2/ with

the R action on R� yO
yA=Aut yA as the group of constant translations along the R factor

in the latter space.

Let M�M yA
denote the indicated subspace. The remaining subsections describe a

map from M to R�O
yA=Aut yA that is seen in the next section to be a diffeomorphism

between these two spaces.

3.B The map to R

Fix C 2M. The image of C in the R factor of R�O
yA=Aut yA is the simplest part of

the story. Even so, its definition is different in each of the three cases of (3–2). These
are treated in turn.

Case 1 Let E � C denote the convex side end where the jsj !1 limit of � gives
the minimal angle in ƒ yA . Associated to the latter is the real number b that appears in
(2–4). In this regard, note that the integer nE that appears here is zero and thus, b must
be positive since �E is the infimum of � on C . This understood, the map to R sends
the subvariety C to ���1 ln.b/ where ��

p
6 sin2 �E.1C3 cos2 �E/=.1C3cos4�E/.

Case 2 In this case, C intersects the � D 0 cylinder at a single point and C ’s image
in the R factor of R�O

yA=Aut yA is the s coordinate of this point.

Case 3 In this case, C has a single end whose constant jsj slices limit to the � D 0

cylinder as jsj !1. This end defines the positive constant yc that appears in (1–9).
Note that the integers p and p0 that appear in (1–9) comprise the pair from the .1; : : :/

element in yA. The image of C in R is �.
q

3
2
C

p0

p
/�1 ln.yc/.
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3.C The map to O
yA=Aut yA

The definition of C ’s assigned point in O
yA=Aut yA requires a preliminary digression

to set the stage. To start, let o denote a bivalent vertex in T
yA and let yAo �

yA denote
the subset of elements whose integer pair defines o’s angle via (1–8). Use no in what
follows to denote the number of elements in yAo .

Introduce So to denote the subspace of 1–1 maps from yAo to R=.2�Z/. The inverse
image of So in Maps. yAoIR/ is the part of the latter space that contributes to R

yA .
The components of So are in 1–1 correspondence with the set of cyclic orderings of
the elements in yAo . If uo 2

yAo is a chosen distinguished element, then any given
component S � So can be identifed with

(3–9) R=.2�Z/��o;

where �o � Rno is the open, no � 1 dimensional simplex in the positive quadrant
where the sum of the coordinates is equal to 2� . Here, the identification in (3–9) is
obtained as follows: Identify the cyclic ordering that defines S with the linear ordering
that has uo as the last element. This identification provides a 1–1 correspondence
between yAo and the set f1; : : : ; nog. Granted this, the identification of S with the
space in (3–9) is given by identifying a given .�; .r1; : : :// 2 R=.2�Z/��o with the
map from yAo to R=.2�Z/ that sends the k ’th element in yAo to the mod .2�Z/

reduction of � C r1C � � �C rk .

Now suppose that F is a space with an action of Maps. yAoIZ/. Let Fo denote the
associated fiber bundle over So with fiber F . Thus,

(3–10) Fo D .Maps. yAoIR/�F /=Maps. yAoIZ/:

The identification between S and the space in (3–9) is covered by one between FojS

and

(3–11) .Ro �F /=Zo ��o;

where Ro is a copy of R while Zo is a copy of Z whose generator acts on Ro as the
translation by �2� and on F as that of

P
u zu 2Maps. yAoIZ/.

All of this has the following implications: Fix a distinguished element in each version
of yAo . This done, then any given component of O

yA is identified with

(3–12) .�o�o/� ŒR� � .�oRo/�=Œ.Z�Z/� .�oZo/�;

where the notation �o indicates a product that is labeled by the vertices in T
yA , and

where the group actions are as follows: First, N D .n; n0/ 2 Z � Z acts on R� as
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before while acting on any given version of Ryo as translation by the element in (1–20).
Meanwhile, any given Zo acts trivially on R� and also trivially on Ryo in the case
that the angle of yo is less than that of o. On the other hand, 1 2 Zo acts on Ro as the
translation by �2� and it acts on Ryo in the case that yo’s angle is greater than o’s angle
as the translation by

(3–13) �2�
po
0 ypyo�po yp

0

yo

qye
0 ypyo� qye yp

0

yo

;

where the notation is as follows: First, . ypyo; yp0yo/ is the relatively prime pair of integers
that defines yo’s angle in (1–8). Second Po � .po;po

0/ is obtained by subtracting the
sum of integer pairs from the .0;�; : : :/ elements in yAo from the sum of those from
the .0;C; : : :/ elements. Thus, Po is the integer pair from o’s version of the second
point in (3–3).

Granted what has just been said, if a distinguished element has been chosen in each
version of yAo , then a point for C in O

yA=Aut yA is obtained from an assigned point in

(3–14) R� � .�o.Ro ��o//

together with an assigned cyclic ordering for each version of yAo . The story on these
assignments appears below in four parts.

With the preceding understood, the digression is now ended.

Part 1 The assignment to C of a point in the R� factor of (3–14) requires the choice
of a parameterization for the component of C0�� whose labeling edge has the minimal
angle vertex. With such a parameterization in hand, let w denote the associated function
from (2–5). The R� assignment of C is the value of the expression

(3–15) �
1

2�
˛Q.�/

Z
R=.2�Z/

w.�; v/dv

as computed using any � that lies between the vertex angles on the edge in question.
Here, Q is the integer pair that labels this same edge.

Part 2 As has most probably been noted, there is an evident ‘forgetful’ map from a
graph T with a correspondence in .C0; �/ to the graph T

yA that is obtained by dropping
the circular graph labels from the vertices in T . Thus, the map is an isomorphism of
underlying graphs that respects vertex angles and the integer pair labels of the edges.
This forgetful map is used implicitly in what follows to identify respective vertices and
respective edges in the two graphs.
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Let o denote a given bivalent vertex in T . Fix a 1–1 map from the vertices in the
T version of �o to yAo with the following property: A vertex in �o is assigned an
element u 2 yAo if and only the integer label for the vertex is equal to "umu where
"u is the second entry to u and mu is the greatest common divisor of the integer pair
entry for u. Granted this 1–1 correspondence, define a cyclic ordering of yAo using
the ordering of the vertices on the circular graph �o as they are met on an oriented
circumnavigation.

Label the arcs in T ’s version of �o by integers consecutively from 1 to no so that
the labeling gives the order in which arcs are crossed when circumnavigating �o in
its oriented direction when starting at the vertex that is mapped to the distinguished
element in yAo .

Having done the above, fix a correspondence of T in .C0; �/ and thus define TC .

Part 3 Let k denote an integer that labels a given arc on �o . To obtain the assignment
for C in the k ’th coordinate factor of the simplex �o in (3–16), first integrate the
pull-back of .1�3 cos2 �/d'�

p
6 cos �dt over the k ’th arc in the corresponding C0

version of the graph �o . Then, divide the result by 2�˛Q.�o/ where �o is o’s angle

and where Q is the integer pair that labels the edge in T
yA with largest angle �o .

Part 4 The assignment to C of a point in the �oRo factors in (3–14) is made in
an iterative fashion that starts with the minimal angle bivalent vertex in T

yA and
proceeds from vertex to vertex in their given order along T

yA . Here is the basic
iteration step: Let o denote a bivalent vertex in T

yA , let e denote the edge in TC that
contains o as its largest angle vertex and let e0 denote the edge that contains o as its
smallest angle vertex. Suppose that e ’s component Ke � C0�� has been assigned a
canonical parameterization. Let � denote the missing point on the � D �0 circle in the
corresponding parametrizing cylinder that corresponds to the distinguished element
in yAo . Choose a lift to R of the R=.2�Z/ coordinate of � . Use this lift as the value
that is assigned to C in the factor Ro that appears in (3–14). To initiate the next
iteration round, use this same lift and the canonical parameterization of Ke in the
manner described by Part 2 of Subsection 2.C to define the canonical parametrization
of the component Ke0 � C0�� .

The chosen parameterization from Part 1 above should be used for the canonical
parameterization when starting the iteration at the smallest angled bivalent vertex.

3.D The invariance of the image in O
yA

The point just assigned to C in (3–14) required the following suite of choices:
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�(3–16) A distinguished element in each version of yAo .

� A suitably constrained 1–1 correspondence from each o 2 T version of the
vertex set in �o to the corresponding yAo .

� A correspondence of T in .C0; �/.

� A parameterization for the component of C0 � � whose corresponding
edge contains the minimal angled vertex in TC .

� A lift to R made for each multivalent vertex in TC . In particular, let
o denote such a vertex and let e denote the edge that contains o as its
maximal angled vertex. The lift for o is that of the R=.2�Z/ coordinate
of the missing point on the � D �o boundary of the pararameterizing
cylinder for the canonical parameterization of Ke that corresponds to the
distinguished element in yAo

This subsection explains why the image in O
yA=Aut yA of the point given C in (3–14)

is insensitive to the choices that are described in (3–16). These choices are considered
below in the order 5, 4, 1, 2, 3. Note for future reference that the arguments given
below proves that the image of C in O

yA is already insenstive to changes that are
described points 5, 4 and 1. In any event, the discussion that follows is in five parts,
one for each of the points in (3–16).

Part 1 To start the explanation for the fifth point in (3–16), suppose that o is a
multivalent vertex in TC . Let �o denote o’s angle, let e denote the edge that has o

as its largest angle vertex and let e0 denote the edge that has o as its smallest angle
vertex. Note that any parameterization of Ke has a ‘distinguished’ missing point on
the � D �o boundary circle, this the point that corresponds to the chosen distinguished
point in yAo .

Suppose that �o 2 R is the original lift of the R=.2�Z/ coordinate of the distinguished
point on the � D �o boundary of the parametrizing cylinder for Ke . Now change this
lift to �o� 2� . Such a change has no affect on the assignment of C in R� or in Ryo if
yo is a bivalent vertex with angle less than �o . Of course, it changes the assignment in
Ro from �o to �o� 2� .

The affect of this change on the remaining R.�/ factors in (3–14) is examined vertex by
vertex in order of increasing angle. To start this process, invoke the discussion in Case
4 in Part 5 of Subsection 2.C, to conclude that the change �o! �o� 2� changes the
parameterization of Ke0 by the action of the integer pair Qe . In this regard, note that
the equality Qe DQe0 CPo , implies that this change is identical to that obtained by
the action of Po . The latter view proves the more useful for what follows.
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Let o0 now denote the vertex with the largest angle on e0 and suppose that o0 is bivalent.
Let �old denote the original assignment to C in Ryo . As applied now to o0 , the assertion
of (2–16) and the conclusions of Case 2 of Part 5 in Subsection 2.C imply that there
is a choice for the lift of the R=.2�Z/ coordinate of the distinguished point on the
� D �o0 circle for the new parametrizing cylinder whose relation to the old is given by
the N D Po version of

(3–17) �new
D �old

� 2�
˛N .�o0/

˛Qe0
.�o0/

� 2�ko0

with ko0 2 Z.

To continue, let yo denote the vertex that shares an edge with o0 but has greater angle.
Suppose, for the sake of argument, that yo is bivalent. Let ye denote the edge between
yo and o0 . Apply Case 2 of Part 5 in Subsection 2.C here together with the identity
Qe0 DQyeCPo0 to conclude that the canonical parameterization for Kye is changed
by the action of the integer pair PoC ko0Po0 . This then means that the old and new
assignments for C in Ryo are related by the � D �yo version of

(3–18) �new
D �old

� 2�
˛Po

.�yo/

˛Qye .�yo/
� 2�ko0

˛Po0
.�yo/

˛Qye .�yo/
� 2�kyo

with kyo 2 Z.

Continue in this vein vertex by vertex in order of increasing angle with applications of
Case 2 in Part 5 of Subsection 2.C so as to obtain the generalization of (3–18) that is
summarized as the next lemma.

Lemma 3.2 The bivalent vertices of T with angles greater than �o label a collection,
fk.�/g, of integers with the following significance: Let yo denote any bivalent vertex in
T with angle greater than �o , and let ye denote the edge that has yo as it maximal angled
vertex. Then, the change, �o ! �o � 2� of the assignment to C in Ro changes the
assignment of C in Ryo by the rule

(3–19) �yo! �yo� 2�
˛Po

.�yo/

˛Qye .�yo/
� 2�

0X
o0

ko0
˛Po0

.�yo/

˛Qye .�yo/
� 2�kyo;

where the prime on the summation symbol is meant to indicate that the sum is over
those bivalent vertices whose angles lie between �o and �yo .

Together, (1–8) and (3–19) imply that the action of �oZo on (3–14) rectifies any change
in the choices that are described in the fifth point of (3–16). Thus, the image of C in
O
yA is insensitive to any such change.
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Part 2 Consider now the effect of a change as described by the fourth point in (3–16).
The analysis of this change starts with its affect on the various Ro factors. This can
be analyzed vertex by vertex in order of increasing angle by successively invoking
the observations from Case 2 in Part 5 of Subsection 2.C. In particular, with the help
of (1–8), these observations dictate the following: Suppose that N D .n; n0/ 2 Z�Z

and that the chosen parameterization of the smallest angled component of C0�� is
changed by the action of N as described in (2–12) and (2–13). This changes C ’s
assignment in the �oRo factor of (3–14) by the action on the original assignment in
�oRo of an element of the form .N; : : :/ 2 .Z�Z/� .�oZo/.

As can be seen directly from (2–13) and (3–15), the change induced by N on the
parameterization of the C0 � � component with the smallest � values changes the
assignment of C in R� by subtracting 2�.n0qe � nqe

0/. Meanwhile, the integer
pair N acts affinely on R� as described in the preceding subsection by subtracting
2�.n0qe � nqe

0/.

Taken together, the conclusions of these last two paragraphs imply that the image of C

in O
yA is insensitive to any change that is described by the fourth point in (3–16).

Part 3 This part analyzes the affect on C ’s assigned point in O
yA of a change in the

chosen distinguished element from any given version of yA.�/ . The subsequent five
steps prove that this assignment is not changed.

Step 1 The new and old version choices for distinguished elements result in respective
new and old assignments of a point for C in R��R

yA . To be explicit, a choice of cyclic
ordering and distinguished element in each version of yA.�/ identifies �yo.Ryo ��yo/

with a component of R
yA as follows: The distinguished element and cyclic ordering

of a given yAo endow its elements in their cyclic order with a labeling by the integers
in the set f1; : : : ; nog so that no labels the distinguished element. Granted this linear
ordering, let uk denote the k ’th element in some given yAo . Then all maps in R

yA that
arise from a point in �yo.Ryo ��yo/ with a given .�; .r1; : : :// 2 Ro ��o send uk to
� C r1C � � �C rk � 2� 2 R.

This identification of �yo.Ryo��yo/ with a component of R
yA results in the identification

described earlier between the space in (3–12) and a component of O yA .

Step 2 Let o denote a bivalent vertex in TC , let u 2 yAo the original choice for a
distinguished element, and u0 denote the new choice. As explained in Step 1, these
choices result in respective points for C in R� �R

yA . Such a change has no affect on
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the assignment to R� . Let x and x0 denote the respective original and new assignments
of R

yA .

Because the change from u to u0 has has no affect on C ’s assignment in any Ryo or
�yo factor in (3–12) when �yo < �o , the maps x and x0 send any given yu 2 yA� to the
same point in R if the integer pair component of yu is less than �o .

Step 3 This step describes the image via x0 of an element whose integer pair gives
�o . This task requires an analysis of the change to C ’s assignment to the �o and Ro

factors in (3–14). Start this analysis by labeling the arcs in �o from 1 through no with
the first arc starting at u’s vertex in �o . Suppose that the arc that ends at the vertex
that corresponds to u0 is the k ’th arc. Let r D .r1; r2; : : :/ 2�o denote the original
assignment for C . Then r 0 D .rkC1; rkC2; : : :/ gives the new assignment.

Consider next the change in the assignment to Ro . The description here is simplest
if it is agreed beforehand to keep the original parameterization of the component of
C0�� labeled by the smallest angle vertex in TC and also to keep C ’s assigned point
in each Ryo in the case that �yo < �o . Granted this, let e now denote the edge that has
o as its largest angle vertex. Then the canonical parametrization of the component
Ke � C0�� is unchanged. With this last point understood, take the lift to R of the
R=.2�Z/ coordinate of the missing point on the � D �o circle that maps to u0 to be
that obtained from the original lift by adding r1C � � �C rk .

The preceding conclusions have the following implications for the map x0 : Let uj

denote the j ’th element in the original linear ordering of the set yAo . Then x.uj /D

x0.uj / in the case that j 2 fkC 1; : : : ; nog and x0.uj /D x.uj /C 2� in the case that
j 2 f1; : : : ; kg.

Step 4 This step describes the value of x0 on the elements in yA� whose integer pair
defines an angle that is greater than �o . To start the analysis, suppose that yo is a bivalent
vertex with angle greater that o’s angle. There is no change to the simplex �yo with
the change from u to u0 . To consider the affect on the assignment in (3–12)’s factor
Ryo , let e0 denote the edge in TC with o as its smallest angle vertex. According to
what is said in Case 3 of Part 5 and Lemma 2.3 of Part 6 from Subsection 2.C, the
parameterization for Ke0 is changed by the action of the integer pair

(3–20) N D
X

1�j�k

Puj :

Given the discussion from Part 2 of Subsection 2.C and the fourth point in (3–16), this
then has the following consequence: The new assignment for C in (3–14) can be made
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consistent with what has been said so far and such that the new and old assignments to
the �yo > �o versions of Ryo change by the addition of

(3–21) 2�
X

1�j�k

puj
0 ypyo�puj yp

0

yo

qye
0 ypyo� qye yp

0

yo

:

The implication for the map x0 is as follows: Let yu 2 yA� denote an element whose
integer pair component defines via (1–8) an angle that is greater than �o . Then x0.yu/

is obtained from x.yu/ by acting on the former by adding the term in (3–21).

Step 5 The conclusions of the previous steps imply that the map x0 is obtained from
x by acting on the former with the element �

P
1�j�k z.uj / from Maps. yA�IZ/.

Part 4 What follows in this part is an explanation of why the image of C in O
yA=Aut yA

is insensitive to the change that is described by the second point in (3–16). To start,
suppose that o is a multivalent vertex in TC and the original correspondence between to
the vertex set of �o and yAo is changed to some new assignment. The new assignment is
thus obtained by composing the original with a 1–1 self map of yAo that only permutes
elements with identical 4–tuples. Let �W yAo!

yAo denote this permutation.

As explained in Step 1 of the Part 3, the original point for C in R��.�oRo/ corresponds
to an assigned point .��;x/ 2 R��R

yA . The change induced by � in the identification
between �o and yAo to C ’s assigned point in R� � .�oRo/ will change the assigned
point in R� �R

yA . Let .��0;x0/ denote this new point. The task ahead is to prove that
.��
0;x0/ and .�;x/ define the same point in O

yA=Aut yA .

To start this task, let ye denote the edge in T that contains T ’s minimal angled vertex.
Agree to keep the original parameterization of Kye . This then means that ��0 D �� .
One can also arrange that x0.yu/D x.yu/ if the integer pair from yu defines an angle via
(1–8) that is less than �o . This is done by an iterative scheme that keeps the canonical
parameterization unchanged on each component of C0 � � where � < �o . Indeed,
suppose that yo is a bivalent vertex, and suppose that the original parameterization is
used for the component labeled by the edge with yo as its largest angle vertex. Then,
the original parameterization will arise on the component labeled by the edge with yo
as its smallest angle vertex if there is no change made to the lift at yo as described in
the fourth point of (3–16).

To consider the behavior of x0 on elements whose integer pair gives an angle as large
as �o , remark that the new identification between �o and yAo has two affects. First, it
changes the distinguished point on the � D �o boundary of the parametrizing cylinder
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for the component of C0 � � that is labeled by the edge with o as its largest angle
vertex. It also changes the embedding of Ro ��o into Maps. yAoIR/.

Now, the change of the distinguished missing point can be undone if one first changes
the original choice for the distinguished element in yAo . As explained in Part 3, such
a change modifies x to some z� � x where z� 2Maps. yA�;Z/. Note that by virtue of
what was said in the preceding paragraph, z�.yu/D 0 in the case that the integer pair
from yu defines an angle via (1–8) that is less than �o .

Meanwhile, the new embedding of Ro��o into Maps. yAoIR/ only affects the value of
z� �x on elements u whose integer pair defines �o via (1–8). To see how x0 differs from
z� �x on the latter set, note first that the new embedding of Ro ��o to Maps. yAoIR/

is obtained from the old by composing the latter with the action of the permutation �.
This then means that x0 is obtained from z� �x by the action of � 2 Aut yA .

Part 5 A change in the choice for the correspondence of T in .C0; �/ can be rectified
by changing the choices for the first and second points in (3–16). This understood, then
the image of C is insensitive to the choice of such a correspondence.

3.E The local structure of the map

The purpose here is to investigate the local structure around any given subvariety in
M of the map just defined to R�O

yA=Aut yA . However, there is one important point
to establish first, this is summarized by:

Proposition 3.3 The subspace M�M yA
is a smooth submanifold whose dimension

is NCCN�C 2.

Proof of Proposition 3.3 This is a special case in [15, Proposition 2.12].

The next proposition summarizes some of the salient local features of the map. In this
regard, one should keep in mind that each C 2M has an open neighborhood with
the following property: The graph T.�/ of any subvariety from the neighborhood is
canonically isomorphic to TC . Indeed, the ambiguity with the choice of an isomorphism
between TC and some TC 0 arises when there is no canonical pairing between the
respective sets of ends in C and in C 0 that define identical elements in yA. However, if
C 0 and C are close in M, then each end of C 0 is very close at sufficiently large jsj to
a unique end of C , and vice versa. This geometric fact provides the canonical pairing
of ends and thus the canonical identification between TC and TC 0 .
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Having made this last point, it then follows that the map from M to O
yA=Aut yA has

a canonical lift to O
yA on a neighborhood of any given subvariety. The following

proposition describes the nature of this lift.

Proposition 3.4 Every subvariety in M has an open neighborhood on which the map
to O

yA=Aut yA lifts as a smooth embedding onto an open set in O
yA .

This proposition is also proved momentarily.

What follows is another way to view Proposition 3.4. To set things up, remark that
all graphs in any given component of M have isomorphic versions of T.�/ . This said,
fix a component and fix a graph, T , that is in the corresponding isomorphism class.
Let M yA;T

denote the corresponding component, and let M yA;T
ƒ denote the set of

pairs .C;TC / where C 2M yA;T
and TC signifies a chosen correspondence of T in

.C0; �/. The tautological projection from MA;T
ƒ to M yA;T

defines the former as
a covering space and principal Aut.T / bundle over M yA;T

. Given a bivalent vertex
o 2 T , fix an admissable identification between the vertices of T ’s version of �o and
the set yAo . To elaborate, the identification is admissable if the second component of
the assigned 4–tuple gives the sign of the integer label of the vertex, and if the greatest
common divisor of the integer pair component of the 4–tuple is the absolute value of
the integer label.

With these identification chosen, the map from M yA;T
to O

yA=Aut yA lifts as a map

from M yA;T
ƒ to O

yA and Proposition 3.4 asserts that the lifted map is a local diffeo-

morphism. Note that M yA;T
ƒ can be viewed as the moduli space of pairs that consist

of a subvarieties with a distinct labeling of its ends.

As indicated by the discussion from Subsection 1.B in the paragraphs after Theorem 1.2,
the various affine parameters that enter in the definition of O

yA have direct geometric
interpretations. To elaborate, suppose that T , M yA;T

and M yA;T
ƒ are as just defined.

Let o2 T denote a bivalent vertex and let e denote the edge of T that contains o as its
largest angle vertex. Introduce . ypo; yp

0
o/ to denote the relatively prime pair of integers

that defines �o via (1–8). Now define a map from Maps. yAoIR/ to Maps. yAoIR=.2�Z//

as follows: First multiply any given x 2Maps. yAIR/ by .qe
0 ypo� qe yp

0
o/ and then take

the mod .2�Z/ reduction of the result. Using the map for the relevant bivalent vertex,
evaluation on any given u 2 yA� defines a map from R

yA to R=.2�Z/ that descends to
give a map

(3–22) ‰uW O
yA
! R=2�Z:
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The composition of such a map with the map from M yA;T
ƒ has following geometric

interpretation:

Proposition 3.5 Let .C;TC / 2M yA;T
ƒ , let o denote a bivalent vertex in T , let

u 2 yAo , and let E � C denote the end that corresponds via TC to u. Then the
restriction to the end E of ypo'� yp

0
ot has a unique jsj !1 limit in R=.2�Z/ and the

latter is obtained by composing the map ‰u with the map from M yA;T
ƒ to O

yA .

The parameter on the line R� also has geometric interpretation. To describe the latter,
first introduce m here to denote the greatest common divisor of the integer pair that is
assigned to the edge in T with T ’s smallest angle vertex. Then, the map from R� to
R=.2�Z/ that takes the mod .2�Z/ reduction of 1

m
�� descends to O

yA=Aut yA Let
‰� denote the latter map.

Proposition 3.6 The composition of ‰� with the map from M to O
yA=Aut yA is the

following:

� When the first point in (3–2) holds, let o denote the minimal angle vertex in T .
Let C 2M and let E � C denote the end where the jsj !1 limit of � is �o .
Then this composition maps C to the jsj !1 limit on E of ypo' � yp

0
ot .

� When the second point in (3–2) holds, then this composition assigns to C the
t –coordinate of its intersection point with the � D 0 locus.

� When the third point in (3–2) holds, write the .1; : : :/ element in yA as
.1; ";m. ypo; yp

0
o//. Let E � C denote the end of C where the jsj !1 limit of

� is 0. This composition then assigns to C the jsj!1 limit of �". ypo'� yp
0
ot/.

Formal proofs of these last two propositions are omitted as both follow directly from
(1–8) and (2–5) using the given definitions in Subsection 3.C above. The remarks that
follow are meant to indicate what is going on. Consider first the assertion in Proposition
3.5. The point here is that if e is the edge that ends at o, and if .�; v/ parametrize Ke

via (1–8), then (2–5) finds

(3–23) ypo' � yp
0
ot D

�
ypoq0� yp0oq

�
vC yp0

p
6 cos.�/� yp0o.1� 3 cos2 �/w:

According to (1–8), the coefficient in front of w vanishes when � is the angle that
is assigned to the vertex o. As a consequence, the jsj ! 1 limit of ypo' � yp

0
ot on

the end that is associated to o is equal to . ypoq0� yp0oq/vo (modulo 2�Z/, where vo is
the coordinate of the missing point on the boundary of the parametrizing cylinder that
corresponds to the end in question.
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The conclusions of Proposition 3.6 are derived using similar considerations. For
example, in the first case of the proposition, the left most term in (3–23) is zero on the
end in question and the right most term is ˛Q.�/w . Thus, the claim follows directly
using (3–15).

Proof of Proposition 3.4 The result follows using the previous two propositions in
conjunction with [15, Proposition 2.13]. To elaborate, note that the differential structure
on M yA;T

ƒ is that given by Theorem 1.1. [15, Proposition 2.13] guarantees that the
angles from Propositions 3.5 and 3.6 provide local coordinates.

4 Proving diffeomorphisms

The previous section introduced the submanifold M �M yA
of subvarieties with

a corresponding T.�/ graph that is linear, and it described a map from M to R �

O
yA=Aut yA . This map is denoted in what follows by B. This section proves that the

map B is a dffeomorphism onto R� yO
yA=Aut yA . The proof of this assertion verifies

Theorem 3.1. Meanwhile, the proof introduces various techniques that are used in the
subsequent sections to analyze the whole of M� yA and the other multiply punctured
sphere moduli spaces.

The proof that B is a diffeomorphism has three parts. The first part establishes that
the map is 1–1 onto its image. The second proves that the image is in R� yO

yA=Aut yA .
The third proves that the map is proper onto R� yO

yA=Aut yA . Granted that the map
is 1–1 and that its image is R� yO

yA=Aut yA , Proposition 3.4 establishes that the map
is a local diffeomorphism. Granted that P is a proper map onto R� yO

yA=Aut yA , it
diffeomorphically identifies M with R� yO

yA=Aut yA .

The first subsection below introduces the machinery that is used to prove both that B is
1–1 and that its image is in R� yO

yA=Aut yA . The former conclusion is established in the
subsequent subsection. Subsection 4.C constitutes a digression to describe O

yA� yO
yA ,

and then Subsection 4.D contains the proof that P maps M onto R� yO
yA=Aut yA . The

final subsection explains why B is a proper as a map onto R� yO
yA=Aut yA .

4.A Graphs and subvarieties

One can ask of any two elements from some version of M� yA whether one is obtained
from the other by a constant translation along the R factor of R�.S1�S2/. This section
provides a sufficient condition for such to be the case. This condition is summarized
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by Lemma 4.1, below. The next subsection considers the consequences of Lemma 4.1
in the case that both subvarieties come from Theorem 3.1’s moduli space M.

To set the stage for Lemma 4.1, suppose that .C0; �/ and .C0
0; �0/ define points in

some version of M� yA . Then the same version of T must have correspondences in
both .C0; �/ and in .C0

0; �0/. Choose respective correspondences and denote them as
TC and TC 0 .

For each edge e � T , the parametrizing cylinder for the e–labeled component in
C0 � � is the same as that used for C0

0
� � 0 . This understood, say that respective

parametrizations of the C0 and C0
0 versions of Ke are compatible when the following

two conditions are met:

�(4–1) When o is a multivalent vertex on e , then the respective extensions of the
two parametrizations to the � D �o circle in the parametrizing cylinder
have identical sets of missing points, and also identical sets of singular
points. Moreover, these identifications define identical versions of the
circular graph `oe in the sense that a given point has the same integer label
whether viewed in the C0 or in the C0

0 version.

� This identification between the two versions of `oe is the same as that
given by the chosen correspondences TC and TC 0 .

Assume now that the respective parametrizations of the C0 and C0
0 versions of each

K.�/ are compatible.

To continue, suppose again that e is an edge in T , and define functions .yae; ywe/ on any
given C0 version of Ke as follows: Let .ae; we/ denote the versions of the functions
that parametrize C0 ’s version of Ke via (2–5), and let .ae

0; we
0/ denote those that

appear in the C0
0 version. Both versions are pairs of functions on the parametrizing

cylinder. Define yae D ae � ae
0 and ywe D we �we

0 .

Now make the following assumption:

(4–2) There exists a continuous function on the complement in C0 of the critical
point set of cos � whose pull-back from C0�� via the various parametrizing
maps gives the collection f yweg.

Let yw denote this continuous function. As is explained below, such a function exists
if and only if the identification between the C0�� and C0

0
�� 0 via the compatible

parametrizing maps extends to define a homeomorphism between C0 and C0
0 that

identifies respective cos.�/ critical point sets and is differentiable in their complements.
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To finish the stage setting, introduce G to denote the portion of the yw D 0 locus that
lies in the complement of the set of critical points of cos � on C0 . The guarantee that
�0 and � are translates of each other involves G :

Lemma 4.1 If G ¤ø, then �0 is obtained from � by composing the latter with a
constant translation along the R factor of R� .S1 �S2/.

The proof of this lemma has three fundamental inputs. The first concerns the edge
labeled set fyae � ae � ae

0g:

Lemma 4.2 There is a continous function on C0 that pulls back from C0�� via the
parametrizing maps as the collection fyaeg. Moreover, this function is smooth away
from the critical points of the pull-back of � .

Let ya denote the function from Lemma 4.2.

The second input concerns the nature of G :

Lemma 4.3 If G is neither empty nor all of the complement of the cos � critical point
set, then it has the structure of an embedded, real analytic graph. In addition:

� Each edge is an embedded arc whose interior is oriented by the pull-back of dya.

� The number of incident edges to any given vertex is even and at least four.
Moreover, any circle about a vertex with sufficiently small and generic radius
misses all vertices of G , and intersects the edges transversely. Furthermore, a
circumnavigation of such a circle alternately meets inward pointing and outward
pointing incident edges.

� Any sufficiently small and generic radius circle about a critical point of cos �
misses all vertices of G and intersects the edges transversely. Furthermore, a
circumnavigation of such a circle alternately meets inward pointing and outward
pointing incident edges.

� If R is sufficiently large and generic, then the jsj DR locus misses the vertices
G and intersects the edges transversely. This locus intersects an even number of
edges and a circumnavigation about any given component of the jsj DR locus
alternately meets edges where jsj is respectively increasing and decreasing in
the oriented direction.

� Let E denote an end of C0 . Then, ya is bounded on G \E and it has a unique
jsj !1 limit on G \E .

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1913

The third input, and part of Lemma 4.2’s proof, is a certain Cauchy–Riemann equation
that is obeyed any given pair .yae; ywe/:

˛Qe
yae� �

p
6 sin �.1C 3 cos2 �/

�
weyaevC yweae

0
v

�
D�

1C 3 cos4 �

sin �
ywev

.˛Qe
ywe/� �

p
6 sin �.1C 3 cos2 �/

�
we ywevC ywewe

0
v

�
D

1

sin �
yaev;

(4–3)

Indeed, this last equation appears when the .ae
0; we

0/ version of (2–6) is subtracted
from the .ae; we/ version.

If Lemmas 4.2 and 4.3 are taken on faith for the moment, here is the proof of Lemma
4.1.

Proof of Lemma 4.1 If G ¤ø, then there are two possibilities to consider, that where
the closure of G is all of C0 , and that where it is not. To analyze the first, appeal to
(4–3) to conclude that each yae is constant when the closure of G is C0 . According to
Lemma 4.3, all of these constants are the same; �0 is obtained from � by composing
with a constant translation along the R factor in R� .S1 � g2/.

As is argued next, the case that G ’s closure is not C0 can not occur unless G is empty.
Here is why: Since ya is bounded on G , it has some supremum. By virtue of the first
point in Lemma 4.3, this supremum is not achieved in the interior of any edge. By
virtue of the second point, it is not achieved at any vertex. Meanwhile, the third point
implies that it is not achieved on the closure of G . The fourth and fifth points in Lemma
4.3 imply that the supremum is not an jsj ! 1 limit of ya on G . This exhausts all
possibilities and so G Dø.

To tie up the first of the loose ends, here is the proof of Lemma 4.2.

Proof of Lemma 4.2 Let e 2 T denote a given edge. A diffeomorphism is defined
from C0 ’s version of Ke to the C 0

0
version by pairing respective points that have the

same inverse image in the parametrizing cylinder. Let  e denote the latter map.

As is explained momentarily, there is a homeomorphism between C0 and C0
0 that

is smooth away from the � critical set and whose restriction to any given Ke is the
corresponding  e . This homeomorphism is denoted by  . Then yaD ��s� ��0�s ,
and so ya is continuous and smooth away from the � –critical set.

With the preceding understood, consider now the asserted existence of  . To start the
analysis, focus attention on a multivalent vertex, o 2 T . At issue here is whether the
relevant versions of  .�/ fit together across the locus �o in C0 . For this purpose, let e

denote one of o’s incident edges and let  denote an arc in `oe with the latter viewed
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as the � D �o circle in the parametrizing cylinder for Ke . By virtue of the first point
in (4–1), any point in the interior of  simultaneously parametrizes a unique point
in C0 ’s version of �o and also one in the C0

0 version. This fact gives the map  e a
canonical extension as a homeomorphism from a neighorhood of the � D �o boundary
in C0 ’s version of the closure of Ke to a neighorhood of the � D �o boundary in the
closure of the C0

0 version.

To continue, let e0 denote  ’s other edge label. Just as with  e , the extension of  e0 to
 defines a homeomorphism from its interior to that of an arc in the C0

0 version of �o .
Together, (2–14) and the second point in (4–1) imply that these two homeomorphisms
agree. As this conclusion holds for any arc of any version of �o , it thus follows from
(4–1) that the collection f eg is the restriction of a homeomorphism from C0 to C0

0 .

Having established that  is at least continuous across � in C0 , the next step is to
verify that it is smooth across this locus. For this purpose, return to the arc  in
�o , and let e and e0 again denote its edge labels. Fix respective lifts, yve and yve0 ,
for the R=.2�Z/ coordinate functions on the e and e0 versions of the parametrizing
cylinder. Having done so, an integer pair arises in C0 ’s version of (2–14) and (2–15),
and a similar pair arises in the C0

0 version. Let L D .`; `0/ denote the difference
between these two integer pairs. The assumptions in (4–2) force ˛L.�o/ to vanish.
This understood, then the assumption in (4–3) forces .qe`

0� qe0`/ to vanish as well.
These two vanishing conditions require L to vanish.

Granted that LD 0, fix a small radius disk about any given point in the interior of  ’s
image in the version of �o from C0 . Let D denote this disk. If the radius of D is very
small, then the parametrizing maps for both the C0 versions of Ke and Ke0 extend
to parametrize D. There is an analogous D0 in C0

0 . If the radius of D is small, both
 e and  e0 extend as diffeomorphisms from D onto an open set in D0 . Since  is
continuous, these extensions agree on the � D �o locus in D . However, since LD 0,
they agree on the whole of D . Thus,  is smooth on D .

Proof of Lemma 4.3 The analysis of G has four parts. The first studies G in C0�� ,
the second examines how G intersects � . Together, these prove that G has the structure
of a graph. The third part establishes the third and fourth points of the lemma. The
final part establishes the final point about ya.

Part 1 Fix an edge, e � T , so as to consider the part of the yw D 0 locus that lies in
Ke . In this regard, assume that this locus is not the whole of Ke . It is a consequence
of (4–3) that the pair .yae; ywe/ are real analytic on the interior of the parametrizing
cylinder for Ke . Thus, the zero locus of yw in Ke is a 1–dimensional, real analytic
variety. In particular, this gives it the structure of a graph whose vertices are the points
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where both d yw and yw are zero. An edge of G is the closure of a component of the
complement in the yw D 0 locus of the set where d yw D 0. As a consequence of (4–3),
the 1–form dyae is zero at any given point on the yw D 0 locus if and only if d ywe is
also zero there. It also follows from (4–3) that dyae is not a multiple of d ywe at any
point on the ywe D 0 locus where both are non-zero. This implies that dyae pulls-back
to orient each edge of G . Moreover, the latter orientation is consistent with the one
that comes by viewing the interior of any given edge as a portion of the boundary of
the region where ywe � 0.

To continue, remark that (4–3) also implies that G has no isolated points in Ke .
To see why, first introduce the function

(4–4) � ! k.�/D

�
1

.1C 3 cos4 �/˛Qe
.�/

�1=2

:

Next, set �� yae� ik ywe . Now fix any point in the parametrizing cylinder, and standard
arguments find a complex coordinate, z , centered on the point and a disk about that
point that makes (4–3) equivalent to a single complex equation that has the form

(4–5) x@�Cu ywe D 0:

Here, u is a smooth function on the disk. As � is real analytic, so it has a non-trivial
Taylor’s expansion about any given point; and (4–5) implies that this expansion about
any given ywe D 0 point has the form

(4–6) �D r C czp
C o

�
jzjpC1

�
;

where r is real and p is a positive integer. This last observation precludes local extrema
for ywe where ywe is zero. Therefore, G has no isolated points in Ke .

Equation (4–6) also implies that each vertex of G in Ke has at least four, and an even
number of incident edges.

In any event, the second point in Lemma 4.3 for vertices in Ke follows using transver-
sality theory and the fact that the dya orientation on any given edge is consistent with
its orientation as part of the boundary of the region where yw � 0.

Part 2 Let o 2 T be a bivalent vertex, and let  � �o be an arc. This part of the
proof describes G ’s behavior in a neighborhood of  . To start, focus attention on a
small radius disk about a point in the interior of  whose closure lies some positive
distance from the vertices of  . Let e and e0 denote the edges that label  . Thus,  is
in the closure of both Ke and Ke0 . Because the pairs .ae; we/ and .ae

0; we
0/ extend

over the � D �o boundary of Ke ’s parametrizing domain, so the functions .yae; ywe/
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also extend. By taking the chosen disk to have small radius, the disk can be assumed
to lie in the image of this extention of the parametrizing domain. Likewise, the pair
.yae0 ; ywe0/ can be assumed to extend from the parametrizing cylinder of Ke0 to a subset
in Œ0; ���R=.2�Z/ that maps to the chosen disk via an extension of the e0 version of
(2–5).

A comparison of the respective extensions of .yae; ywe/ and .yae0 ; ywe0/ can be made using
the corresponding C0 and C0

0 versions of (2–14) and (2–15). For this purpose, fix
respective lifts, yve and yve0 chosen for the R=.2�Z/ coordinate functions on the e and e0

versions of the parametrizing cylinder. As remarked in the proof of Lemma 4.2, this can
be done so that respective integer pairs that appear in the C0 and C0

0 versions of (2–14)
and (2–15) are equal. Granted this, (2–15) implies that the coordinate transformation
that is defined by (2–14) on the given disk identifies .yae; ywe/ with .yae0 ; ywe0/. As a
consequence, the use on this disk of the extension of Ke ’s parametrizing cylinder
coordinates identifies yw�1.0/ with the zero locus of ywe .

With this last identification understood, then G ’s intersection with the chosen disk
must be a graph that has the structure described in Part 1 above for G\Ke . Moreover,
any give edge of this intersection is either contained in the � D �o locus, or it intersects
this locus in a finite set. By the way, if G ’s intersection with the chosen disk has an
edge in the � D �o locus, then it contains the whole of  since this locus and G are
real analytic.

Part 3 The transversality assertions in the third and fourth points follow from Sard’s
theorem. The assertion about the alternating orientation follows from the fact that the
dya orientation on any given edge is consistent with its orientation as a part of the
boundary of the region where yw � 0.

Part 4 The proof of the fifth point of the lemma requires some understanding of the
behavior of ya on the ends of C0 . For this purpose, suppose first that E � C0 is an
end with a .˙1; : : :/ label from yA. The identification TC D TC 0 pairs E with a C0

0

end, E0 , that has the same label. This understood, a comparison between the E and
E0 versions of (1–9) proves that yae is bounded on E and has a unique limit on E as
� ! 0.

Next, suppose that E�C0 is an end with a .0;�; : : :/ label from yA where the constant
nE in (2–4) is zero. Let E0 denote the corresponding end in C0

0 as defined by the
chosen identification of TC and TC 0 . Let b and b0 denote the respective constants
that appear in the E and E0 versions of (2–14). It then follows from (2–14) that

(4–7) yaD
1

r
ln
�

b

b0

�
C o.1/;
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where r is the constant that appears in (2–4). Here, the term designated as o.1/ limits
to zero as � limits to the angle �E , thus as jsj !1 on E .

Finally, suppose that E�C0 is an end with a .0; � � � / label from yA where the integer nE

in (2–4) is non-zero. It then follows from (2–4) that E corresponds to some multivalent
vertex, o 2 T . Now, equation (2–4) is one of a pair of equations that describe E at
large jsj. To write this second equation, note that .1� 3 cos2 �o/d' �

p
6 cos �odt

is exact on E . This understood, in [14, Equation (2.13)] with the analysis from of
[14, Section 2] can be used to prove that any anti-derivative of this 1–form appears
as follows: Let f denote the antiderivative, and let .�; �/ denote the coordinates that
appear in (2–4). Then

(4–8) f .�; �/D fE C e�r�.�b sin.nE.� C �//Cyo/;

where nE , r and b are the same constants that appear in E ’s version (2–4). Meanwhile,
� is a constant that depends only n and on E ’s label in yA. Finally, fE is a constant
and yo is a term that limits to zero as �!1.

To exploit (2–4) and (4–8) for the present purposes, keep in mind that the coordinate
� is a constant, positive multiple of the function s . In this regard, it is important to
realize that this multiplier depends only on E ’s label in yA.

To see how (2–4) and (4–8) describe the behavior of ya on G\E , suppose that e is an
edge of T that is incident to o, and suppose that the closure of Ke has non-compact
intersection with E . This being the case, the end E then corresponds to a vertex on
`oe and thus a missing point on the � D �o circle in C0 ’s version of the parametrizing
cylinder for Ke . Fix an R–valued lift, yv , of the coordinate v of this parametrizing
cylinder that is defined in a contractible neighborhood of E ’s missing point. To save
on notation, assume that yv has value zero at this missing point. It then follows from
(2–4) that

(4–9) f � ˛Qe
.�o/yvC

p
6
h�

1� 3 cos2 �o

�
cos � � cos �o

�
1� 3 cos2 �

�i
we:

is a pull-back of an antiderivative of .1�3 cos2 �o/dt�
p

6 cos �od' to a neighborhood
of E ’s missing point in the C0 version of the parameter cylinder for Ke .

The respective identifications of T with both TC and TC 0 pairs E with an end,
E0 � C0

0 that also corresponds to a vertex on �o . In this regard, the vertex is the same
as the one given E , and this implies that the E0 versions of (2–4) and (4–8) use the
same integer nE . Even so, the E0 version can employ a different positive constant, b0 .

There is also a primed version of (4–9), this denoted by f 0 . Note, in particular, that
f � f 0 is zero on the portion of G \E in the closure of Ke . This being the case,
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(2–4) and (4–8) imply that ya is bounded on this part of G\E , and that it has a unique
jsj !1 limit here which is given by (4–7). Since the pair b and b0 are determined
by E and E0 without regard for the edge e , so the function ya has a unique jsj !1
limit on G \E .

4.B Why the map from M to R�O
yA=Aut yA is 1–1

The previous section defined a continuous map, P , from M to R�O
yA=Aut yA and

the purpose of this subsection is to explain why the latter map is 1–1. The explanation
that follows is in three parts.

Part 1 To start, suppose that C and C 0 have the same image. As is explained in a
moment, this requires that the same version of T have correspondences in both .C0; �/

and in .C0; �
0/. Granted that such is the case, choose such correspondences. Such

choices are implicit in Parts 2 and 3 that follow.

Let TC denote a graph with a correspondence in .C0; �/ and let TC 0 denote one with
a correspondence in .C0; �

0/. To explain why TC must be isomorphic to TC 0 , remark
first that the respective vertex sets enjoy a 1–1 correspondence that preserves angles,
and that the latter correspondence induces one between the respective edge sets that
preserves the integer pair labels. Thus, the issue here is whether the circular graphs
that label the respective equal angle bivalent vertices in TC and TC 0 are isomorphic.

To see that such is the case, let o denote a given bivalent vertex in TC and let o0 denote
its equal angle partner in TC 0 . Choose admissable identifications between �o and
yAo , and likewise between �o0 and yAo . Here as before, an identification is deemed to

be admissable when the second component of a 4–tuple gives the sign of the integer
label of the corresponding vertex while the greatest common divisor of the integer pair
component gives the absolute value of the integer label. These identifications induce
respective cyclic orderings of yAo . These cyclic orderings are relevant because �o is
isomorphic to �o0 as a labeled graph if and only if one cyclic ordering is obtained
from the other by composing with a 1–1 self map of yAo that only permutes identical
4–tuples.

To see that the cyclic orderings have the desired relation, take a lift of the common
image point to R��R

yA . The image of yAo by the R
yA component of this lift defines a

set of no distinct points in R=.2�Z/ and thus a cyclic ordering for yAo . As dictated
by the construction in Subsection 3.C, this cyclic ordering is obtained from those
induced by the ordering of the vertices on the respective TC and TC 0 versions of �o by
composing the latter with an appropriate permutation of yAo that mixes only elements

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1919

with identical 4–tuples. Thus, the induced cyclic orderings on yAo from the TC and
TC 0 versions of �o are related in the desired fashion.

Part 2 The respective images of C and C 0 in O
yA=Aut yA are defined by first assigning

these subvarieties points in the space depicted in (3–14). As the images of C and C 0

agree in O
yA=Aut yA , so their images agree in (3–12); and this means that the choices

that are used to define the respective assignments in (3–14) can made so that these
assignments agree. This has the following consequences: First, the conditions in (4–1)
are met at each multivalent vertex. To see why this is so, let o 2 T denote such a
vertex and let e denote the incident edge with maximal angle �o . Since C and C 0

have the same image in �o , the spacing of the missing points on the � D �o circle in
the parametrizing cylinder for Ke agree. Moreover, as the C and C 0 versions of the
assigned point in Ro agree, so the R=.2�Z/ coordinates of the respective distingushed
missing points on the � D �o circle must agree. This then implies that the respective
C and C 0 versions of the missing point set on the � D �o circle agree. Given the
definitions of the respective TC and TC 0 versions of �o , this agreement of missing
point sets induces the isomorphism between the two versions of `oe that comes from
the given identification between TC and TC 0 as the graph T .

The fact that C and C 0 define the same points in (3–14) has additional consequences.
To describe the first, let e denote for the moment the edge of T that contains the
minimal angle vertex of T . Since C and C 0 have the same image in R� , there are
respective parametrizations of Ke that make their versions of (3–15) agree. Choose
such parametrizations. Now, let o denote the vertex on e with the larger angle and,
if o is bivalent, let e0 denote the second of o’s incident edges. The point assigned
both C and C 0 in the line Ro endows Ke0 with its ‘canonical’ parameterization. This
parameterization is such that the integer pair .n; n0/ that appears in (2–15) is zero. As
such is the case for both the C and C 0 versions, so the functions ywe and ywe0 agree
along the � D �o locus in C .

Part 3 Suppose that o is a bivalent vertex. Let e and e0 denote the incident edges
to o with e the edge where the maximum of � is �o . Suppose that both the C and
C 0 versions of Ke are given their ‘canonical’ parameterization as defined inductively
using the following data: First, the already chosen parametrizations for the respective
C and C 0 versions of the component of C0�� whose labeling edge has the minimal
angle vertex in T . Second, the assigned point in each R.;/ factor from (3–14) whose
label is a multivalent vertices with angle less than �o . The canonical parametrizations
of the two versions of Ke and the assigned point in Ro endows both the C and C 0

versions of Ke0 with a ‘canonical’ parameterization. The parametrizations of the C
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and C 0 versions of Ke give the function ywe on C ’s version of Ke , while that of the
two versions of Ke0 give ywe0 on the C 0 version of Ke0 . This understood, the argument
used at the end of the previous paragraph finds that ywe D ywe0 along the � D �o locus
in C .

Granted the preceding, it then follows that (4–2) holds when the components of the
C and C 0 versions C0 � � are given the parametrizations just described. Since C

and C 0 have the same image in the R factor of R�OT =Aut.T /, the desired identity
C D C 0 follows from Lemma 4.2 if the graph G � C is non-empty. That such is the
case follows from the identity between the assigned values of C and C 0 in (3–14)’s
factor R� . Indeed, subtracting the C 0 version of (3–15) from the C version finds that
yw has average 0 over any constant � slice of the component of C ’s version C0��

whose labeling edge contains the minimal angle vertex in T . As such there must be a
zero of yw on each such slice.

4.C The complement of yO yA in O
yA

Before proving that the map from M to O
yA=Aut yA lands in yO yA=Aut yA , it is worth-

while to describe the complement of yO yA in O
yA , this the subspace of points where

Aut yA has non-trivial stabilizer.

To start, let o denote a multivalent vertex in T
yA and let Cyco denote the set of cyclic

orderings of yAo . The components of O
yA are in 1–1 correspondence with �o Cyco .

When v 2 �o Cyco , let O
yA
v denote the corresponding component. If x 2 O

yA
v is

fixed by some � 2 Aut yA , then � must preserve the cyclic orderings that are determined
by v .

To see the implications of this last observation, let o denote a bivalent vertex and let
Auto;v denote the group of permutations of yAo that preserve the cyclic order defined
by v while permuting only elements with identical 4–tuples. This is a cyclic group
whose order is denoted in what follows by mo . The group �o Auto;v is the subgroup

of Aut yA that preserves O
yA
v .

Set kv to denote the greatest common divisor of the integers in the set that consists of
m� and the collection fmog. Thus, each Auto;v has a unique Z=.kvZ/ subgroup. Note
that in the case that kv > 1, each such subgroup has a canonical generator. To explain,
let �o denote the generator of Auto;v that moves elements the minimal amount in the
direction that increases the numerical order in the following sense: Fix a distinguished
element in yAo so as to turn v into a linear ordering with the distinguished element last.
Then �o moves the distinguished element to the position numbered by no=mo . The
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canonical generator of the Z=.kvZ/ subgroup moves the distinguished element to the
position numbered no=kv .

Granted the preceding, a canonical Z=.kvZ/ subgroup of Aut yA is defined by the
requirement that its generator project to any given Auto;v so as to give the canonical
generator of the latter’s Z=.kvZ/ subgroup.

With this understood, consider:

Proposition 4.4 The Aut yA stabilizer of any given point in O
yA
v is a subgroup of the

canonical Z=kvZ subgroup. Conversely, any subgroup of the latter has a non-empty
set of fixed points in O

yA
v .

This proposition is proved momentarily.

To view this fixed point set in a different light, fix a distinguished element in each
yA.�/ � yA� so as to use the description in (3–12) for O

yA
v . In particular, the space

in (3–12) has the evident projection to �o�o and this projection is equivariant with
respect to the action of �o Auto;v on O

yA
v and an action on �o�o . In this regard,

the action on �o�o is the product of the action of each version of Auto;v on the
corresponding version of �o that cyclically permutes the coordinates in the manner
dictated by a given element in Auto;v . Here, the latter action is obtained by labeling
the Euclidean coordinates of points in �o by the elements in yAo so that the j ’th
coordinate corresponds to the j ’th element in yAo using the linear ordering that gives
v ’s cyclic ordering and has the distinguished element last.

Granted all of this, consider:

Proposition 4.5 Let G be a subgroup of the canonical Z=kvZ subgroup in Aut yA .
Then the set of points in (3–12) with Aut yA stabilizer G is the restriction of the fiber
bundle projection from O

yA to �o�o over the set of points in �o�o with stabilizer G .

The remainder of this subsection contains the following proofs.

Proof of Propositions 4.4 and 4.5 The proof is given in six steps.

Step 1 Let yAut denote the semi direct product of the groups Aut yA and .Z� Z/�

Maps. yA�IZ/. This group acts on R� � R
yA . The stabilizers of points in O

yA can

be determined by studying the stabilizers in yAut
yA

of points in R� � R
yA since the

image in O
yA of .��;x/ 2 R� �R

yA is fixed by g 2 Aut yA if and only if .��;x/ is
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fixed by an element g 2 yAut that has the form of .g; .N; z// with N 2 Z � Z and
z 2 Maps. yA�IZ/. This understood, suppose now that the point .��;x/ projects to
O
yA
v and that g 2 �o Auto;v fixes its image.

Step 2 To start the analysis of g , note that �� is fixed if and only if N D r� Qe

where e here denotes the edge in T
yA with the smallest angle vertex in T

yA and where
r� is a fraction with m�r� 2 Z.

Step 3 Let o now denote the vertex in T
yA with the second smallest angle. Assuming

o is bivalent, g fixes both �� and the restriction of x to yAo if and only if

(4–10) x.u/D x.gou/� 2�.z.u/C r�/

for all u 2 yAo . Here, go is the component of g in Auto;v . Let ko denote the order
of go . Using (4–10) some ko times in succession finds that g fixes both �� and the
restriction of x to yAo if and only if m�r� 2 Z and

(4–11)
X

0�j<ko

z.gj
o u/C kor� D 0

for all u 2 yAo . Note that this last condition can be satisfied if and only if kor� 2 Z.
Note as well that the case r� 2 Z is precluded unless go is trivial since x is assumed
to lie in R

yA .

Step 4 If T
yA has a second bivalent vertex, let yo denote the one that shares an edge

with o. Thus, yo has the third smallest vertex angle. Then g fixes the restriction of x

to yAyo if and only if
(4–12)

x.yu/D x.gyoyu/� 2�

�
z.yu/C

X
u2 yAo

z.u/"u
pu
0pyu�pupyu

0

qye
0pyu� qyepyu

0
C r�

qe
0pyu� qepyu

0

qye
0pyu� qyepyu

0

�

for all yu 2 yAyo . Here, gyo denotes g ’s component in Auto;v and ye denotes the edge in
T
yA that contains both o and yo.

To make sense of this last condition, use (4–11) as applied to the various go orbits in
yAo to identify the sum in (4–12) with

(4–13) �r�
po
0pyu�popyu

0

qye
0pyu� qyepyu

0
:

Then, use (3–3) to write Po as Qe �Qye and thus see that the equality in (4–12) is
exactly the equation that results from (4–10) by replacing o with yo and u with yu.
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This last point leads to the following conclusion: The element g fixes �� and the
restriction of x to both yAo and yAyo if and only if m�r� 2 Z and both the .o;u/ and
.yo; yu/ versions of (4–11) hold.

Step 5 With the help of (3–3), essentially the same analysis can be continued in an
inductive fashion through the bivalent vertices with ever larger angle so as to draw the
following conclusions:

� The element g fixes .��;x/ if and only if both m�r� 2 Z and (4–10) holds for
each bivalent vertex o 2 T

yA .

� These conditions are satisfiable if and only if (4–11) holds for each bivalent
vertex, and the latter can be satisfied if and only if kor� 2 Z for each bivalent
vertex o 2 T

yA .

Step 6 The ‘only if’ direction of the two conclusions from Step 5 have two relevant
consequences, and here is the first: Because x 2 R

yA , the various versions of ko must
agree. Indeed, if not, let k denote the smallest and let o denote a vertex where koD k .
Now, repeat the analysis with g replaced by gk . The corresponding gk versions of
(4–11) has kr� replacing r� and o’s version would require kr� 2 Z. But then a
version where k.�/ ¤ k would need x to lie outside of R

yA .

Here is the second consequence: Each ko is a divisor of the corresponding mo , this the
order of Auto;v . As they are all equal to the same k 2 Z, so k divides each mo and so
k is a multiple of the greatest common divisor of the collection fmog. In addition as
kr� 2 Z, so k must also be a divisor of m� . Thus, k is a multiple of kv and g is an
element in some subgroup of the canonical Z=kvZ subgroup of �o Auto;v .

Meanwhile, the ‘if’ directions of Step 5’s observations directly imply that any subgroup
of the canonical Z=kvZ subgroup of �o Auto;v has a non-empty set of fixed points,
and that the fixed point set is described by Proposition 4.5.

4.D Why the map from M lands in R� yO
yA=Aut yA

As indicated by the heading, the purpose of this subsection is to explain why the image
of the map P from M to R�O

yA=Aut yA lies in R� yO
yA=Aut yA . To this end, suppose

that C 2M. The image of C in O
yA=Aut yA has a lift to some component O

yA
v �O

yA ,
and suppose that this lift is fixed by some g 2�o Auto;v . This being the case, g is some
multiple of the generator of the canonical Z=kvZ subgroup. Let k 2 f0; : : : ; kv � 1g

denote this multiple. The proof that k D 0 has four parts.
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Part 1 Fix a distinguished element in each version of yAo so as to write O
yA
v as in

(3–12). Using this view of O
yA
v , lift C ’s image as a point in (3–14) by choosing

an admissable identification between the vertex set of each TC version of �o and
the corresponding yAo . Denote the resulting point in (3–14) as .��; .�.�/; r.�/// where
�� 2 R� , each �o is a point in the corresponding version of Ro , and each ro is a point
in the corresponding version of �o .

Let e denote for the moment the edge in T
yA that contains the minimal angle vertex

and choose a parameterization of Ke that makes (3–15) equal to �� . Use this parame-
terization with the data .�.;// to inductively define canonical parametrizations for the
remaining C0 � � . This is done with the following induction step: Suppose that yo
is a bivalent vertex and that the component of C0 �� whose label is the edge with
largest angle �yo has its canonical parameterization. To obtain one for the component
that has �yo as its smallest angle, first introduce the arc in �yo starting at the vertex that
corresponds to the distinguished element in yAyo . This arc constitutes a one element
concatenating path set. The latter with the lift �yo defines the canonical parameterization
for the component of C0�� whose label is the edge that has �yo as its smallest angle,
this according to the rules laid out in Part 4 of Subsection 2.C.

The next step is to change each of these parameterization. To start, let e denote an
edge of T

yA and let �e denote the parametrizing map from the relevant parametrizing
cylinder to Ke . The new parameterization of Ke is defined by composing �e with the
diffeomorphism of Œ0; ���R=.2�Z/ that pulls back the coordinate functions as

(4–14) .�; v/! .�; v� 2�k=kv/:

This new parameterization is of the sort that is described in Subsection 2.B because
kv evenly divides both integers from the pair associated to any edge of T

yA . This
divisibility arises for the following reasons: First, kv divides both integers from the
edge with the smallest angle vertex. Second, it divides the order of Auto;v for each
bivalent vertex o 2 T

yA and the order of Auto;v divides the corresponding version of
Po that appears in (3–3).

For reference below, note that if .ae; we/ denotes that original versions of the functions
.a; w/ that appear in (2–5), then the new versions, .ae

0; we
0/ are given by

(4–15) ae
0.�; v/D ae.�; v� 2�k=kv/ and we

0.�; v/D we.�; v� 2�k=kv/:

Part 2 Agree to implicitly view g as an element in Aut.TC / via the chosen identifi-
cation between any given TC version of �o and the corresponding yAo . Granted this
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view of g , let o now denote a bivalent vertex in T
yA . According to Proposition 4.5,

g ’s action on �o must fix the point ro 2�o and this has the following consequence:
Let � denote a given vertex in �o . Now sum the coordinates of ro that correspond
to the arcs in �o that are met on the oriented path that starts at g�1� and ends at � .
This sum is 2�k=kv .

This last observation implies that the diffeomorphism in (4–15) restricts to the � D �o

circle of the parametrizing cylinder so as to map missing points to missing points. More-
over, the labels granted these missing points as vertices in `oe are preserved by (4–14).
Thus, both of the conditions in (4–1) hold for the new and original parametrizations
using C 0 D C and using g as the element in Aut.TC / for the isomorphism between
TC and itself.

Part 3 The condition in (4–2) also holds in this context. To see this, let o denote
a bivalent vertex in T

yA , let e denote the edge that contains o as its maximal angle
vertex, and let e0 denote the edge that contains o as its minimal angle vertex. Let
 � �o denote the arc that starts at the vertex that corresponds to the distinguished
element in yAo . This arc corresponds to respective arcs on the � D �o boundary circle
for the parametrizing domain of both Ke and Ke0 . The R=.2�Z/ coordinates on these
arcs lift to R so as to make the N D 0 version of (2–14) hold. These lifts identify the
two boundary circle arcs. With this identification understood, the N D 0 version of
(2–15) describes the relationship between we and we0 on the interior of  when the
latter is viewed as an arc in the � D �o locus in C ’s model curve.

On this same arc, the pair we
0 and we0

0 are related by another version of (2–15); the
version that applies to the arc that is mapped to  by the inverse of the map in (4–14).
However, using Lemma 2.3 and the fact that g acts on �o as an isomorphism, the
relationship between we

0 and we0
0 on  ’s image in C0 is also given by the N D 0

version of (2–15). Indeed, Lemma 2.3 finds that

we

�
�; yv� 2�k=kv

�
D we0

�
�; yv� 2�k=kv

�
C

1

˛Qe
.�/

�
qe
0qe0 � qeqe0

0
��
yv� 2�k=kv

�
C

2�

˛Qe
.�/

�
qe
0j � qej 0

�
;

(4–16)

where .j ; j 0/ is proportional to the relatively prime integer pair that defines �o via
(1–8). In particular, the proportionality factor here is minus the sum of the integer
weights that are assigned to all vertices but � that lie on the oriented path in �o from
g�1.�/ to � . Because g acts as an isometry, this sum must equal .k=kv/Po with
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Po as in (3–3). Thus, .j ; j 0/ can be written as .k=kb/.Qe �Qe0/. With .j ; j 0/ so
identified, the equality in (4–16) finds that we

0 and we0
0 do indeed obey the predicted

N D 0 version of (2–15) on  .

As both .we; we0/ and .we
0; we0

0/ obey the same N D 0 version of (2–15) on  , it
then follows that ywe D ywe0 along  . The fact that this equality holds along the whole
of �o in C0 can be seen with the help of (2–5). To see this, let  0 denote another arc
in �o . The relationship between we and we0 on  0 can be obtained with the use of
the e and e0 versions of (2–5); it is given by the version of (2–15) where .j ; j 0/ is a
certain multiple of the relatively prime pair that defines �o via (1–8). To be precise, this
multiple is obtained by summing with an appropriate sign the weights of the vertices
that lie on the oriented path in �o that starts at the endpoint of  and ends at the
starting point of  0 . Since the same weights appear on the analogous path defined by
g�1. / and g�1. 0/, the relation between we

0 and we0
0 on  0 is the same .j ; j 0/

version of (2–15). Thus, ywe D ywe0 along  0 .

Part 4 Let G � C0 denote the part of the zero locus of yw that lies in the complement
of the critical point set of the pull-back of cos.�/. This set is described by Lemma 4.3.
Moreover, G ¤ø since the we and we

0 versions of the integral in (3–15) are identical
in the case that e is any edge in T

yA .

To see the implications of Lemma 4.1 in this context, return momentarily to the proof
of Lemma 4.2. The latter explains how the various versions of (4–14) fit together across
� � C0 so as to define a diffeomorphism,  W C0! C0 . With  in hand, introduce
the tautological map, �W C0! R� .S1�S2/, onto C . Keep in mind that � is almost
everywhere 1–1. Let �0� � ı . In the present context, Lemma 4.1 asserts that �0.C0/

is obtained from C by a constant translation along the R factor in R � .S1 � S2/.
However, this factor must be zero since the average of any given ae

0 around a constant
� circle is equal to that of ae around the same circle. Thus, �0 also maps C0 onto C .
Granted this, then (4–14) implies that  is 1–1 if and only if k is zero.

4.E Why the map from M is proper

The map P from M! R� yO
yA=Aut yA is proper if and only if all sequences in M

with convergent image in R� yO
yA=Aut yA have convergent subsequences. The proof

that such is the case is given here in three parts.

Part 1 Let fCj gjD1;2;::: denote a sequence with convergent image in R� yO
yA=Aut yA .

The desired convergent subsequence in M is found by first invoking [15, Proposi-
tion 3.7] to describe the j !1 behavior of a subsequence from fCj g in terms of a
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limiting data set, „. Here, „ is a finite set of pairs where each has the form .S; n/

with S being a pseudoholomorphic, multiply punctured sphere in R� .S1 �S2/ and
with n being a positive integer.

This first part of the subsection establishes that the conclusions of [15, Proposition 3.7]
hold in the case that K D R� .S1 �S2/. The precise version needed here is stated
formally as follows.

Proposition 4.6 Let fCj gjD1;2;::: �M denote an infinite sequence with convergent

image in R� yO
yA=Aut yA . There exists a subsequence, hence renumbered consecutively

from 1, and a finite set, „, of pairs of the form .S; n/ where n is a positive integer and
S is an irreducible, pseudoholomorphic, multiply punctured sphere; and these have the
following properties:
� limj!1

R
Cj
$ D

P
.S;n/2„n

R
S $ for each compactly supported 2–form $ .

� The following limit exists and is zero:

(4–17) lim
j!1

�
sup

z2Cj

dist.z;[„S/C sup
z2[.S;n/2„S

dist.Cj ; z/
�

The proof of this proposition appears momentarily. It is employed in the following
manner to prove that the map P from M to R� yO

yA=Aut yA is proper: Part 2 of this
subsection uses Proposition 4.6 to prove that „ contains but a single element, this
denoted as .S; n/. Part 3 of the subsection proves that nD 1 and that S is a subvariety
from M. Granted that such is the case, then (4–17) asserts that S is in fact the limit
of fCj g with respect to the topology on M as defined in (1–13). This last conclusion
establishes that P is proper.

Proof of Proposition 4.6 Except for the second point in (4–17), this proposition
restates conclusions from [15, Proposition 3.7]. The proof of the second point in
(4–17), assumes it false so as to derive some nonsense. For this purpose, note that
[15, Proposition 3.7] asserts that the second point in (4–17) holds if the supremums
that appear are restricted to those points z that lie in any given compact subset of
R� .S1 �S2/.

The derivation of the required nonsense starts with the following lemma.

Lemma 4.7 Assume that the second point in (4–17) does not hold for the given infinite
sequence, fCj g, of multiply punctured, pseudoholomorphic spheres. Then, there exists
an R–invariant, pseudoholomorphic cylinder, S� � R; an infinite subsequence of
fCj g (hence renumbered consecutively from 1); and given " > 0 but small, there is a
real number s0 , a sequence fsj�gjD1;2::: � .�1; s0� and a corresponding sequence
fsjCgjD1;2::: � Œs0;1/ ; all with the following significance:
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� Both sj� and sjC are regular values of s on Cj .

� If either fsj�g and fsjCg is bounded, then it is convergent; but at least one of
the two is unbounded.

� The s 2 Œsj�; sjC� portion of Cj ’s intersection with the radius " tubular neigh-
borhood of S� has a connected component, Cj� , whose points have distance 1

2
"

or less from S� .

� Both the s D sj� and s D sjC slices of Cj� are non-empty and both contain
points with distance 1

2
" from S� .

� Let ıj denote the maximum of the distances from the point on the s D 1
2
.sj�C

sjC/ locus in Cj� to S� . The corresponding sequence fıj g is then decreasing
with limit zero.

Lemma 4.7 is proved momentarily. To see where this lemma leads, suppose first that �
is neither 0 nor � on S� . In this case, the conclusions in [15, Lemma 3.9] hold. But
topological considerations find that [15, Lemma 3.9] and Lemma 4.7 lead to nonsense.

To elaborate, first let �� denote the constant value for � on S� and assume that ��
is neither 0 nor � . Next, fix " small and then j large. By virtue of what is said in
[15, Lemma 3.9], there exists some very small and j –independent constants ı˙ , either
both positive and negative and with the following properties: First, neither ��C ıC
or ��C ı� is an jsj ! 1 limit of � on Cj . Second, when j is large, ��C ıC is
a value of � on the s D sjC boundary of Cj� and �� C ı� is a value of � on the
sD sj� boundary. Let zC and z� denote respective points on the sD sjC and sD sj�

boundaries of Cj� where � has the indicated value. Since both ı� and ıC have small
absolute value, the � D ��Cı� and � D ��CıC loci are circles in the same component
of Cj ’s version of C0 � � . Thus, there is a path in this component that lies in the
set where j� � ��j �min.jı�j; jıCj/ and runs from z� to zC . Denote the latter by  .
When j is large, the last point in Lemma 4.7 forbids an intersection between  and
the s D 1

2
.s�j C sCj / locus. On the other hand, there is a path in Cj� that runs from

zC to z� and does intersect this locus. The concatenation of the latter path with 
defines a closed loop in Cj that has non-zero intersection number with the constant s
slices of Cj� . But no such loop exists since Cj has genus zero.

Suppose next that that � D 0 or � on S� . In this case, the maximum value of � on both
the sD sj� and sD sjC slices of Cj� is bounded away from zero by a uniform multiple
of "2 when " is small. Meanwhile all values of � on the s D 1

2
.s�j C sCj / slice of

Cj� are bounded by o.ıj
2/. This being the case, the mountain pass lemma demands a

non-extremal critical point of � on Cj . Note in this regard that there are at most a finite
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number of intersections between any two distinct, irreducible, pseudoholomorphic
subvarieties.

Thus, in all cases, Lemma 4.7 leads to nonsense. Granted the lemma is correct, then its
conclusions are false and so the second point in (4–17) must hold.

Proof of Lemma 4.7 Let „ denote the data set that is provided by [15, Propo-
sition 3.7]. Since the second point in (4–17) is supposed to fail, there exits some
subvariety, S , from „; an end E � S ; a constant R0 � 1; and, given " > 0, a
divergent sequence fRj g � ŒR0;1/; all with the following properties:

�(4–18) Each sufficiently large j version of Cj intersects the jsj 2 ŒR0;Rj � portion
of the radius " tubular neighborhood of E where the distance to E is no
greater than 1

2
".

� Meanwhile, each such Cj has a point on the jsj DRj slice of this neigh-
borhood where the distance to E is equal to 1

2
".

Of course, there may be more than one such S and more than one such end in S to
which (4–18) applies. Lemma 4.7 holds if there exists a pair .S;E/ as in (4–18) where
S is not an R invariant cylinder. Lemma 4.7 also holds if there exists a pair .S;E/ as
in (4–18) where S is an R–invariant cylinder that intersects a subvariety from some
other pair in „. Indeed, such is the case because each Cj is irreducible. In fact, for
this very reason, Lemma 4.7 holds if „ contains any pair whose subvariety is a not an
R–invariant cylinder.

To finish the argument for Lemma 4.7, consider now the case when all subvarieties
from „ are R–invariant cylinders. Even so, Lemma 4.7 must hold unless one of the
following is true:

�(4–19) Let S denote any cylinder from „. Given " > 0, there exists a divergent
sequence fRj g � Œ0;1/ such that each sufficiently large j version of Cj

intersects the s 2 .�1;Rj � portion of the radius " tubular neighborhood
of S where the distance to S is no greater than 1

2
", and it intersects the

s DRj slice at a point with distance to S equal to 1
2
"

� Let S denote any cylinder from „. Given " > 0, there exists a divergent
sequence fRj g � Œ0;1/ such that each sufficiently large j version of Cj

intersects the s 2 Œ�Rj ;1/ portion of the radius " tubular neighborhood
of S where the distance to S is no greater than 1

2
", and it intersects the

s D�Rj slice at a point with distance to S equal to 1
2
".
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As is explained next, both possibilities violate the assumed convergence of the images
of fCj g in the R factor R� yO

yA=Aut yA .

In the case that the top point in (3–2) holds, this can be seen by making a new sequence
whose j ’th subvariety is a j –dependent, constant translation of Cj along the R factor
of R� .S1 �S2/. Were (4–19) to hold, a new sequence of this sort could be found
whose limit data set in [15, Proposition 3.7] has an irreducible subvariety with the
following incompatible properties: It is not an R–invariant cylinder, it has the same �
infimum as each fCj g, and there is no non-zero constant b that makes (2–4) hold for
the corresponding end.

Were the second point in (3–2) to hold, then one of the limit cylinders from „ would
be the � D 0 cylinder and then the convergence dictated by (4–19) would demand a
.1; : : :/ element in yA.

An argument much like that just used to rule out the first point of (3–2) rules out the
third point as well. In this case, the derived nonsense from the translated sequence
is an irreducible subvariety from the data set of the corresponding version of [15,
Proposition 3.7] with the following mutually incompatible properties: First, it is not
the � D 0 cylinder but contains an end where the jsj !1 limit of � is zero. Second,
the respective integrals of 1

2�
dt and 1

2�
d' about the constant jsj slices of this end

have the form 1
m

p and 1
m

p0 where .p;p0/ is the pair from the .1; : : :/ element in yA
and where m� 1 is some common divisor of this same pair. Finally, there would be no
non-zero version of the constant yc that would make (1–9) hold. Note that the argument
for the second property uses the fact that there are no critical points of � with � value
in .0; �/ on any Cj . Indeed, the lack of critical points implies that the component of
the Cj version of C0 �� where the jsj !1 limit of � is zero is parametrized by
a j –dependent map from a j –independent cylinder. Of course, this same cylinder
parametrizes the corresponding component in any translation of Cj . Granted this, apply
of [15, Proposition 3.7] to the translated sequence to find the asserted form for the
integrals of 1

2�
dt and 1

2�
d' .

Part 2 This part of the argument proves that „ contains but a single element. The
proof assumes the converse so as to derive an absurd conclusion. For this purpose,
introduce S � R� .S1 �S2/ to denote the union of the subvarieties from S that are
not R–invariant cylinders. Then set Y to denote the subset of S that contains the
images of critical points of � from the model curves of the irreducible components of
S , the singular points of [.S;n/2„S , and the points on S where � 2 f0; �g. This set
Y is finite.
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The first point to make is that „ contains at least one element whose subvariety is
not an R–invariant cylinder. Indeed, this follows from an appeal to Proposition 4.6.
However, „ cannot have two elements whose subvarieties are not R–invariant. To
explain, suppose first that there are two such subvarieties from „ and a value of � that
is taken simultaneously on both. Since Y is a finite set, this value can be taken so as
to be disjoint from any value of � on Y , and also disjoint from any value of � from
the set ƒ yA . Let �� denote such a value. Then, the � D �� locus in S is at least two
disjoint circles.

To see where this leads, introduce the notion a ‘� –preserving preimage’ in [15, Step 4
of Section 3.D]. Note here that a compact submanifold in S �Y has a well defined
� –preserving preimage even if Cj has nearby immersion points. This said, each circle
from the � D �� locus in S has � –preserving preimages in each sufficiently large j

version of Cj . The set of these preimages gives a set of disjoint, embedded circles on
which � D �� . However, there can be at most one such circle.

Thus, if „ has two subvarieties that are not R–invariant, then the supremum of � on
one must be the infimum of � on the other. To rule out this possibility, let S and S 0

denote the subvarieties that are involved, and suppose that �� is the supremum of �
on S and the infimum of � on S 0 . Note that �� must be the value of � on some
bivalent vertex in T

yA . Let e denote the edge in T
yA where the maximum of � is ��

and let e0 denote that where the minimum of � is �� . Let P denote the relatively
prime integer pair that defines �� via (1–8). As is explained next, both Qe and Qe0

must be non-zero multiples of P , and this is impossible for the following reason: The
� D �� locus in each Cj is a non-empty union of arcs on which both the QDQe and
QDQe0 versions of (2–2)’s function ˛Q are positive. Thus, the QD P version of
˛Q is positive at � D �� , and this contradicts (1–8).

To see why Qe is proportional to P, let ı > 0 be very small. Proposition 4.6 guarantees
that the integrals of 1

2�
dt and 1

2�
d' around the � D �o � ı circle in any large j

version of Cj is proportional to its integral around the analogous circle in S , and the
latter integral is proportional to Po . The analogous argument using the � D ��C ı
circles proves the claim about Qe0 .

The proof that there are no R–invariant cylinders from „ is given next. For this
purpose, assume to the contrary that one subvariety from „ is an R–invariant cylinder.
Let S� denote this cylinder. The second point in (4–17) requires that � ’s value on S�
is its value at some bivalent vertex on T . Let o denote the vertex involved. In what
follows, .p;p0/ are the relatively prime integers that define �o via (1–8).

Given " > 0, let Cj� denote the subset of Cj whose points have distance less than
" from S� . If j is large, the second point in (4–17) requires that Cj� have both a
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concave side end and a convex side end of Cj . The next lemma asserts that there is a
path in any large j version of Cj� from the convex side end in Cj� to the concave
side one.

Lemma 4.8 If " > 0 is small, then all sufficiently large j versions of Cj� contain an
embedding of R on which s is neither bounded from above nor below. Moreover, at
large jsj this embedding sits in the � D �o locus in Cj� .

Accept this lemma for the moment to see where it leads. For this purpose, note that the
1–form pd'�p0dt is zero on S� and thus exact on the radius " tubular neighborhood
of S� . It can therefore be written as df on this neighborhood where f is a smooth
function that vanishes on S� . Now let j � Cj� denote a given large j version of
the line from Lemma 4.8. Because f vanishes on S� , the line integral of pd' �p0dt

along j has small absolute value. In fact, if the j –version of this absolute value is
denoted by �j , then the second point in (4–17) demands that limj!1 �j D 0. This
last conclusion is nonsense as can be seen using (2–5) to reinterpret the integral of
pd' �p0dt along j as a j –independent multiple of the sum of one or more of the
coordinates of the image of Cj in the simplex �o . To explain, let e denote the incident
edge in T that contains o as its largest angle vertex and fix any parameterization for
Ke . Since the large jsj part of j lies in the � D �o locus, referral to (2–5) finds that
�j is the absolute value of the integral of .pqe

0�p0qe/dv between two missing points
on the � D �o circle of parametrizing cylinder for Ke . According to Part 3 in Section
3c, the latter integral is a fixed multiple of a sum of one or more of the coordinates from
Cj ’s image in the �o factor that is used in (3–12) to define Cj ’s image in yO yA=Aut yA .
In particular, such a sum must have a positive, j –independent lower bound if the image
of fCj g is to converge in yO yA=Aut yA .

Proof of Lemma 4.8 There are three steps to the proof.

Step 1 Any given .�; �/ 2 R� S1 defines a diffeomorphism of R� .S1 � S2/ by
sending .s; t; �; '/ to .s C �; t C p�; �; ' C p0�/. All such diffeomorphisms act
transitively on S� with trivial stabilizer and so parametrize S� once a point in S� is
chosen as the point where �D 0 and �D 0. Such a parameterization of S� is used
implicitly in what follows.

Fix a very small radius pseudoholomorphic disk in R � .S1 � S2/ whose closure
intersects S� at a single point, this its center. For example, a disk of this sort can be
found in one of the pseudoholomorphic cylinders where either t or ' is constant (see,
eg [14, Subsection 4(a)].) Let D denote such a disk. The translates of D by the just
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described R� S1 group of diffeomorphisms defines an embedding of S� �D into
R� .S1 �S2/ as a tubular neighborhood of S� .

Step 2 Let S denote the subvariety from „ that is not R–invariant. If S intersects
S� , it does so at a finite set of points. The subvariety S can also approach S� at large
jsj if S has ends whose constant jsj slices converge as jsj!1 as a multiple cover of
the Reeb orbit that defines S� . In fact such ends must exist if S \S� Dø since each
Cj is connected and since (4–17) holds. By the same token, if there are no such ends,
then S must intersect S� .

Given " > 0 and small, let D" �D denote the radius " subdisk about the origin. If
" is small enough, then the points where S intersects S� �D" are of two sorts. The
first lie in a small radius ball about the points where S intersects S� . As "! 0, the
radii of these balls can be taken to zero. The second sort are points where the absolute
value of the parameter � on S� is uniformly large. Of course, points of the latter sort
exist if and only if S has an end whose constant jsj slices converge as jsj !1 to
a multiple cover of the Reeb orbit that defines S� . Assuming that such is the case,
then each small " has an assigned positive and large number, �" , this a lower bound
for the absolute value of the parameter � on S� at the points in S \ .S� �D"/ with
distance 1 or more from S \S" . In this regard, the assignment "! �" can be made in
a continuous fashion. It is perhaps needless to add that there is no finite "! 0 limit of
the collection f�"g">0 .

In the case where �" is defined, the analysis in [14, Section 2] can be used to find
an even larger �0" together with non-negative integers nC and n� with the following
significance: There are precisely nC intersections between S and the disk fiber of
S� �D" over any point where � � �"0 . Here, all have intersection number 1 and all
occur in the subdisk D"=2 . There are also precisely n� intersections between S and
the fiber of S� �D" over any point where � � ��"0 ; all of these have intersection
number 1 and lie in D"=2 .

Step 3 Fix " > 0 but very small, and let Cj" � Cj denote the intersection of Cj with
S� �D" . Let n� denote the integer that is paired with S� in „. If j is large, then
Cj" intersects each fiber disk in S� �D" where j�j � �" in n� points counted with
multiplicity. In this regard, each such point has positive local intersection number.
Moreover, these intersection points vary continuously with the chosen base point in S� .
This is to say that the assignment of the n� intersection points to the base point defines
a continuous map from the j�j � j�"j portion of S� to Symn�.D"/. As a consequence,
each component of the �D �" slice of any large j version of Cj" is connected in the
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j�j � �" part of Cj"\ .S� �D"/ to at least one component in the �D��" slice, and
vice versa.

Thus, if " is small, then there is no obstruction to choosing a path between �D �" and
� = -�" slices of any sufficiently large j version of Cj" .

The argument just used can be repeated to extend the path just chosen, first as a path
from the �D �"0 slice of Cj" to the latter’s � = -�"0 slice, and then to arbitrarily large
values of j�j. For example, to extend the path to where �" D � � �"0 , note first that
the number of intersections counted with multiplicity between Cj" and the fiber disks
over this part of S� may change. Even so, when j is very large, all such intersections
lie either very close to S or very close to S� . In particular, there are precisely n�
such intersections in each disk that lie very much closer to S� than to S . Granted
this, the preceding argument implies that any component of the �D �" slice of Cj" is
connected to one or more components of the �D �"0 slice of Cj" .

To explain why this last extension can be continued to arbitrarily large values of � ,
note first that when j is large, then Cj� has precisely n�C nCn intersections with
any given fiber disk over the � � �"0 portion of S� when counted with multiplicity.
Here, n is the integer that is paired with S in „. Note that all intersections are again
positive, and that these disk intersections now define a continous map from the � � �"0

portion of S� to Symn�CnCn.D/. This then means that any given component of the
�D �0" slice of Cj" is part of a slice of a component of the � � �"0 part of Cj" where
� has no finite upper bound.

Part 3 Let S denote the single element from „ and let S0 denote the model curve
for S. An argument from Part 2 can be used to prove that the pull-back of � to S0 has
no non-extremal critical points. Indeed, were there such a point, then there would be
an open interval of disconnected, compact � level sets in S0 . Most of these level sets
would avoid the set Y, and any of the latter would have � –preserving preimages in any
sufficiently large j version of Cj . Of course, no such thing is possible since Cj lacks
disconnected, compact � level sets.

A very similar argument implies the following: Let E � S denote any end where the
jsj !1 limit of � is neither 0 nor � . Then E ’s version of (2–4) has integer nE D 1.

These last points have the following consequence: Let TS denote a graph with a
correspondence in a pair whose first component is the model curve for S . Then TS

is necessarily linear. Moreover, by virtue of Proposition 4.6, the vertex set of TS

enjoys an angle preserving, 1–1 correspondence with that of T
yA . Meanwhile, any two

C D Cj and C D Cj 0 versions of the graph TC must be isomorphic when j and j 0
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are large because the image of fCj g converges in yO yA=Aut yA . Let T denote a graph
in the isomorphism class. The remainder of this Part 3 explains why the graphs TS

and T are isomorphic. The explanation is given in eight steps.

Step 1 Each edge in T has its evident analog in TS since the vertex sets share the
same angle assignments. If e 2 T is a given edge, then the corresponding T and TS

versions of the integer pair Qe are related as follows: The T version is n times the
TS version where n here is the integer that pairs with S in „. This then means that
nD 1 in the case that the integers that comprise the suite of T versions have 1 as their
greatest common divisor. In particular if n is larger than 1, then it must divide both
integers that comprise the version of Q.�/ whose labeling edge has the smallest angle
vertex in T .

Step 2 Let o denote a bivalent vertex in TS and let E � S denote an end where the
jsj !1 limit of � is �o . Since E ’s version of (2–4) uses the integer nE D 1, the
� D �o locus in the model curve for S intersects the very large jsj portion of E as a
pair of open arcs, one oriented in the increasing jsj direction and the other oriented
with jsj decreasing. Moreover, given a positive and very large number, R, there is an
arc in the � � �o portion of E with the following properties:

�(4–20) jsj �R on the arc.

� The arc starts on one component of the � D �o locus in the jsj �R part of
E and ends on the other.

� The function � restricts to this arc so as to have but a single critical point,
this its minimum.

Let � denote such an arc. Note that � has an analog that shares its endpoint and sits
where � � �o . The latter is denoted below by �0 .

Step 3 The arc � has � –preserving preimages in every large j version of Cj ; there
are n such preimages, each with its endpoints on the the � D �o locus in Cj . To
see how these appear, let e denote the edge in T whose largest angle is �o . Fix a
parameterization of the component Ke in Cj ’s version of C0�� . Each � preserving
preimage of � appears in the corresponding parametrizing cylinder as a closed arc with
both endpoints on the � D �o circle. Denote these arcs as f�j ;kg1�k�n .

To say more about these preimages, remember that the constant jsj slices of E converge
as jsj !1 as a multiple cover of a � D �o closed Reeb orbit in S1 �S2 . The latter
has a tubular neighborhood with a function, f , with the following two properties: First,
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it vanishes on the Reeb orbit in question. Second, df D 1
2�
.pd' � p0dt/ where p

and p0 are the relatively prime integers that define �o via (1–8). Because f has limit
0 as jsj !1 on E , the integral over � of df is small. Moreover, given " > 0, there
exists R" such that the integral of df over any R�R" version of � from (4–20) has
absolute value less than ".

Granted this, it then follows that the same is true for the integral of df over any
R�R" and sufficiently large j version of any of the � –preserving preimages of � .
This understood, use the parametrization of Ke to identify the mod .2�Z/ image
of the latter integral as that of .pqe

0�p0qe/dv between the two endpoints of the arc
�j ;k . In particular, this means that when R is large and j is large, the two endpoints
of �jk on the � D �o circle of the parametrizing cylinder are very close to each other.
They divide the circle into one very short arc and one arc on which the integral of dv is
almost 2� .

Step 4 Because the images of fCj g converge in yO yA=Aut yA , their images converge
in the �o factor of (3–12). This fact and the final conclusion from Step 3 have the
following consequence: The very short arc in the � D �o parametrizing cylinder circle
between the endpoints of any large R and correspondingly large j version of �j ;k
contains at most one missing point in its interior.

As is explained next, such a � D �o arc must contain precisely one missing point. For
this purpose, let �� denote the minimum of � on � . Were there no missing point in
the indicated short arc, then one of the � –preserving preimages of � in Cj would
be homotopic rel boundary in the Œ�; ��� portion of Cj to an arc lying entirely in the
� D �o locus. Such a homotopy could then be projected back to S to give a homology
rel boundary in the model curve for S between the arc � and the disjoint union of
an arc in the � D �o locus and a union of very small radius circles, each surrounding
some point that maps to one of the immersion singularities in S. No such homology is
possible because any constant jsj slice of E generates a non-trivial homology class in
S0 .

Step 5 As a consequence of the result from Step 4, each end of S where limjsj!1 �
is neither 0 nor � labels n ends of any sufficiently large j version of Cj . These n ends
have the same jsj !1 limit of � as their namesake in S; and by virtue of Proposition
4.6, they are all convex side if their namesake is a convex side end. Otherwise, they are
all concave side ends. Here is one way to view this correspondence: Let E � S denote
an end as in the previous steps. Fix some large R, and the concatenation of the arc �
with its � � �o cousin �0 defines a closed loop in E that is homologous to a constant
jsj slice. Such a loop has � –preserving preimages in each sufficiently large j version
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of Cj . Any such preimage must be a union of one � –preimage of � and one of �0 .
Indeed, it must, in any event, contain the same number of � preimages as �0 preimages;
and said number must be 1 because of the very small length of one of the arcs between
the endpoints of each �j ;k in the � D �o circle of the relevant parametrizing cylinder.

Granted the preceding the concatenation of � with �0 has n distinct � preserving
preimages in all large j versions of Cj . Since the aforementioned short arc between
the endpoints of each �j ;k contains one and only one missing point on the � D �o

circle, each preimage of the � � �0 concatenation is homologous in Cj to the constant
jsj slice in some end of Cj where the jsj ! 1 limit of � is �o . Moreover, these
preimages account for n distinct ends in Cj . Finally, an appeal to Proposition 4.6 finds
that distinct limjsj!1 � D �o ends of S label disjoint, n-element subsets of such ends
in Cj .

Step 6 An end E � S corresponds to a vertex in the S version of the circular graph
�o . As such, it comes with an integer weight. Meanwhile, the corresponding n ends
in Cj correspond to n vertices on the Cj version of the graph �o . As is explained
here, each of the latter vertices have the same integer weight as E ’s vertex.

The conclusions of Step 5 guarantee that the nC 1 weights involved all have the same
sign. Here is how to compute their magnitudes: The integral of the form 1

2�
.pdt C

p0d'/ over any constant jsj slice of a relevant end has the form m.p2Cp02/ where
m is the desired magnitude.

Apply this last observation first to the concatenation of � and its � � �o cousin �0 in
a given end E � S . Since this concatenation is homologous to a constant jsj slice,
the form 1

2�
.pdt Cp0d'/ integrates over this concatenation to give mE.p

2Cp02/

where mE is the absolute value of the integer weight for E ’s vertex in the S version
of �o . Next, apply the observation to any one of the � –preserving preimages of the
� � �0 concatenation in each very large j version of Cj . As there are n of these, the
integral over any one is mE.p

2Cp02/ as well. The desired equality follows because
one of these preimages is homologous to the constant jsj slices any given E-labeled
end in Cj .

Step 7 The results of the previous steps imply that TS is isomorphic to T in the case
that n D 1. Such an isomorphism is obtained via the correspondence given in Step
5 between the ends of S and those of Cj . In the hypothetical n> 1 case, it implies
that each T version of the group Auto has a Z=.nZ/ subgroup. More to the point, the
following is true: Let O

yA
v �O

yA denote a component whose Aut yA orbit contains the
the limit point of the image of fCj g. Then Aut yAv has a canonical Z=.nZ/ subgroup
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since n also divides the integer pair that is associated to the edge in T with the smallest
angle vertex.

This step explains an observation that is used in the subsequent step in two ways: It is
used to prove that the image of S in R� yO

yA=Aut yA is the limit of the images of fCj g

in the case that nD 1, and it is used to preclude the case that n> 1.

To start, let E and E0 denote ends of S where limjsj!1 � D �o and such that travel
in the oriented direction along a component of the � D �o locus in the model curve of
S proceeds from large jsj on E to large jsj on E0 . The case that E DE0 is allowed
here. In any event, let  denote the component of the � D �o locus in question and let
r denote the integral along  of the 1–form .1� 3 cos2 �o/d' �

p
6 cos �odt .

Now, fix R very large and let z denote the endpoint on  of E ’s version of the arc
� . Meanwhile, let z0 denote the endpoint on  of the E0 version of this arc in the
case that E0 ¤ E . If E0 D E , take z0 to be the second of the two endpoints of the
arc � . Deform  slightly if it passes through a point in Y so that the result misses Y ,
lives where � � �o , and agrees with  on E and E0 . Let R denote the portion of
such a deformation that runs between z and z0 . If R is large, then r is very nearly
the integral along R of the pull-back of the 1–form .1� 3 cos2 �o/d' �

p
6 cos �odt .

Use r;R to denote the latter integral. Thus, the R!1 limit of fr;Rg is r .

With R fixed and then j very large, the arc R has n disjoint, � preserving preimages
in any parametrizing cylinder for the Cj version of the component Ke . Any such
preimage runs from very close to one of E ’s missing points on the � D �o circle in the
oriented direction to a point that is very close to the subsequent missing point, this one
labeled by E0 . This understood, it then follows from Proposition 4.6 that the integral
of the QDQe version of ˛Q.�o/dv between these two missing point is very nearly
r .

Now, this arc between the two missing points labels one of the coordinates for Cj in
the symplex �o that appears in (3–12), and it follows from what has just been said
that the value of this coordinate is very nearly r .

Step 8 In the case that nD 1, the results of the preceding step assert that the assigned
point to any large j version of Cj in any given �o is very near that assigned to S .
The implication is that the j !1 limit of these images is that of S .

In the hypothetical n> 1 case, the results from the preceding step imply that the image
of any large j version of Cj in any given �o is very close to the set of points that
are fixed by the Z=.nZ/ subgroup version of Auto;v . In fact, the results from the
preceding step imply that the image of Cj in the space �o�o is very near the fixed
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set of the canonical Z=.nZ/ subgroup of �o Auto;v � Aut yA . Granted the observations

from Proposition 4.6, this then implies that the image in yO yA=Aut yA of any large j

version of Cj is very close in O
yA=Aut yA to .O yA� yO yA/=Aut yA .

This last conclusion rules out the n> 1 case because it is incompatible with the initial
assumption of the convergence in yO yA=Aut yA of the image of fCj g.

5 The first chapter of story when N�C yNCç�CçC is greater
than 2

Introduce as in Subsection 1.C, the larger space M� yA whose elements consist of
honest subvarieties in the sense of (1–5) along with ‘multiple covers’ of honest subva-
rieties. Subsection 1.C also introduced a stratification of M� yA . The first subsection
below summarizes results about the local structure of M� yA and its stratification. The
remaining subsections contain the proofs of these results.

5.A The local structure of M�
yA and its stratification

As outlined in the first section, the space M� yA consists of equivalence classes of
pairs .C0; �/ where C0 is a complex curve homeomorphic to an NC C N� C yN

times punctured sphere and � is a proper, pseudoholomorphic map from C0 into
R� .S1 �S2/ whose image is a subvariety as defined in (1–5). Moreover, the pair
.C0; �/ must be compatible with the data set yA in the following sense: First, there
is a 1–1 correspondence between the ends of C0 and the 4–tuples in yA; and this
correspondence must pair an end and a 4–tuple if and only if the 4–tuple comes
from the end as described in Subsection 1.A. Second, the integers çC and ç� are the
respective intersection numbers between C0 and the � D 0 and � D � cylinders. To
be precise here, note that there is a finite number of � D 0 and � D � points in C0 .
This understood, a sufficiently generic but compactly supported perturbation of � gives
an immersion of C0 into R � .S1 � S2/ that has transversal intersections with the
� D 0 and � D � loci. The latter has a well defined intersection number with both loci,
and these are respectively çC and ç� . As noted in Subsection 1.C, pairs .C0; �/ and
.C0; �

0/ define the same point in M� yA if �0 is obtained from � by composing with a
holomorphic diffeomorphism of C0 .

A base for the topology on M� yA is depicted in (1–24). Theorem 1.3 asserts that M� yA
is a smooth orbifold whose singular points consist of those pairs .C0; �/ where there is
a holomorphic diffeomorphism that fixes � . Theorem 1.3 also asserts that the inclusion
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of M yA
in M� yA is a smooth embedding onto an open subset. Theorem 1.3 is proved

below so grant it for the time being.

As noted in Subsection 1.C, the strata of M� yA are indexed by ordered triples of the
form .B; c; d/ where B � yA is a set of .0;�; : : :/ elements, c is a non-negative integer
no greater than NCCN�C yN C ç�C çC� 2� jBj and d is a partition of the integer
d �NCC jBj C c as a sum of positive integers. By way of a reminder, the stratum
SB;c;d �M� yA lies in the subset, SB;c that consists of the equivalence classes of pairs
.C0; �/ that have two properties stated next. In these statements and subsequently,
functions on R�.S1�S2/ and their pull-backs via � are not distinguished by notation
except in special circumstances. Here is the first property: The curve C0 has precisely
c critical points of � where the value of this function is neither 0 nor � . Here is
the second: The ends that correspond to elements in B are the sole convex side ends
of C0 where the jsj !1 limit of � is neither 0 nor � and whose version of (2–4)
has a strictly positive integer nE . To define SB;c;d , introduce the map Id to denote
the space of unordered d –tuples of points in .0; �/ and the map f W SB;c! Id that
sends a given .C0; �/ to the d –tuple that consists of the critical values in .0; �/ of
� ’s pull-back to C0 and the jsj !1 limits in .0; �/ of � on the concave side ends
of C0 and on the ends that correspond to the 4–tuples in B . The stratum SB;c;d is the
inverse image via f of the stratum in Id that is labeled by the partition d.

The next proposition describes the local structure of SB;c;d . The proposition speaks of
a locally constant function on SB;c;d whose value at a given point defined by some
pair .C0; �/ is the number of distinct critical values of � in the subset of the critical
values in .0; �/ that do not arise via (1–8) from an integer pair component of either a
.0;C; : : :/ 4–tuple in yA or a 4–tuple in B . Let m denote this locally constant function.

Proposition 5.1 If not empty, then the stratum SB;c;d is a smooth orbifold in M�
that intersects M��R as a smooth manifold. In this regard, a given component has
dimension NCCjBjC cCmC 2.

A description of the components of any given version of SB;c;d is provided in Sections 6
and 8.

The proof of Theorem 1.3 has five parts and these are presented the next two subsections.
The final subsection contains the proof of Proposition 5.1.

5.B Parts 1–4 of the proof of Theorem 1.3

The proof is very much like that in [15, Proposition 2.9]. The five parts that follow
focus on the points that differ.
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Part 1 Suppose that .C0; �/ defines a point in M� yA . There is, in all cases, a
fixed radius ball subbundle B1 � �

�T1;0.R � .S
1 � S2// and an exponential map,

e , that maps B1 into R � .S1 � S2/ so as to embed each fiber and send the zero
section to C0 . As noted in [15, Section 2.D] for pairs that map to M yA

, the bundle
��T1;0.R� .S

1 �S2// splits as a direct sum, W ˚N , of complex line bundles such
that the differential, �� , of � maps T1;0C0 into W , and N restricts to the points where
�� ¤ 0 as the pull-back normal bundle. In this regard, e can be chosen so as to embed
the fibers of B1\N and of B1\W as pseudoholomorphic disks. Note that in case
where � is not almost everywhere 1–1, there is a complex curve, C1 , with an attending,
almost everywhere 1–1, pseudoholomorphic map, �1 , to R� .S1 �S2/ whose image
is C � �.C0/. In this case, � factors as �1 ı where  is a holomorphic, branched
covering map to C1 . The ��

1
T1;0.R�.S

1�S2// decomposition as W ˚N then pulls
back by  to give the W ˚N decomposition for ��T1;0.R� .S

1 �S2//. Because
of this factoring property, the map e can be chosen to be invariant under the action on
��T1;0.R� .S

1 �S2// of the group of holomorphic diffeomorphisms of C0 that fix
� . Such a choice is assumed in what follows.

Part 2 [15, Section 2.D] described an operator, DC , whose domain is a certain Hilbert
space of sections of ��T1;0.R� .S

1 � S2// and whose range is a Hilbert space of
sections of ��T1;0.R� .S

1 � S2//˝ T 0;1C0 . The discussion in [15, Section 2.D]
involves only pairs .C0; �/ that define points in M yA

, but the story generalizes in an
almost verbatim fashion to define DC for any pair that defines a point in M� yA .

By way of a reminder, DC is defined from an operator, D , whose kernel is the space
of first order deformations of � that result in maps that are pseudoholomorphic with
respect to the given complex structure on C0 and the almost complex structure J .
The salient features of D are as follows: First, D is a first order differential operator
that maps sections of ��T1;0.R� .S

1 �S2// to sections of ��T1;0.R� .S
1 �S2//

so as to map sections of W to those of W ˝T 0;1C0 . In particular, if v is a section
of T1;0C0 , then ��v is a section of W and D��v D ��.x@v/. Second, composing D
with orthogonal projection onto the N summand in ��T1;0.R� .S

1 �S2// defines
an R–linear operator that sends a section, �, of N to a section of the form

(5–1) x@�C ��C�x�I

here � is a fixed section of T 1;0C0 and � is a fixed section of N 2˝T 1;0C0 .

The operator D has an extension as a Fredholm operator that maps a certain weighted
Hilbert space completion of its range to that of its domain. The inner products that
define the range and domain Hilbert spaces for sections of the N and N ˝T 1;0C0

summands are as depicted in [15, Equation (2.7)]. Similar weighted norms are used for
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the respective W and W ˝T 1;0C0 summands, but the latter insure that all sections are
square integrable. In this regard, some care must be taken when there are holomorphic
diffeomorphisms of C0 that preserve � . To elaborate, note first that � is finite to one,
and as a consequence, the set of diffeomorphisms of C0 that preserve � defines a finite
group. Let GC denote the latter. The norms used for these Hilbert spaces can and
should be taken to be GC invariant.

Part 3 In the case that C0 is a disk or cylinder, the operator DC is D in the just
described Fredholm context. When C0 has negative Euler characteristic, DC is obtained
from this Fredholm D by composing with an orthogonal projection on the latter’s range.
The definition of this projection requires the choice of some 3.NCCN�C yN � 1/

dimensional, GC –invariant vector space of sections of T1;0C0˝T 1;0C0 that projects
isomorphically to the cokernel of x@. Let V denote the latter choice and let

Q
denote

the orthogonal projection onto ��V. Then DC D .1�
Q
/D .

The following proposition describes the important facts about the kernel and cokernel
of DC . The proof uses verbatim arguments from the proof of [15, Propositions 2.9]
and so is omitted.

Proposition 5.2 Suppose that .C0; �/ defines a point in M� yA . Then the operator
DC has index NCC2.N�C yN CçCCç��1/. Moreover, this is its kernel dimension
as its cokernel is trivial.

Part 4 Here is the significance of DC : A small ball in the vector space V parametrizes
the complex structures on C0 that are near to the given one. This understood, an element
in the kernel of DC gives a deformation of � that is pseudoholomorphic to first order
with respect to a complex structure that is parametrized by a point in V . More to
the point, the implicit function theorem can be employed in a relatively standard
manner to obtain the following description of a neighborhood of the point defined
by .C0; �/ in M� yA : There is a ball, B � kernel.DC /, a smooth function, f , from
B to cokernel.DC / that vanishes with its differential at zero, and a homeomorphism
between a neighborhood of .C0; �/’s point in M� yA and the quotient of f �1.0/ by
the action of the group GC on the kernel of DC . To elaborate, this homeomorphism
comes from a GC –equivariant map, F , from B to the domain space of DC that maps
the origin to 0 with differential at 0 the identity on kernel.DC /. The homeomorphism
is obtained by restricting the composition e ıF to f �1.0/.

It is worth a moment now to say something about why these local charts map onto a
neighborhood of .C0; �/ as defined by (1–24). The point here is that if .C0

0; �0/ is
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close to .C0; �/ in the sense of (1–24), then the map �0 ı can be obtained from �

by composing the exponential map from ��T1;0.R� .S
1 �S2// with a small normed

section. A change in the diffeomorphism changes the section, and [14, Proposition 2.2]
can be used to find diffeomorphisms that give small normed section in the domain of
DC . Granted this, the implicit function theorem asserts that there is a unique such
small normed section from the image of F .

Note that in the case that cokernel.DC / D f0g, then kernel.DC /=GC is a local Eu-
clidean orbifold chart for a neighborhood of .C0; �/’s point in M� yA . As is usually
the case with implicit function theorem applications of the sort just described, these
charts fit together to give a smooth orbifold structure to the set of points in M� yA that
are defined by pairs .C0; �/ with trivial DC cokernel. Granted this, the assertion in
Theorem 1.3 about the local structure of M� yA follows directly from Proposition 5.2.

5.C Part 5 of the proof of Theorem 1.3

This part explains why the set inclusion of M yA
into M� yA is a topological embedding.

Note that the equivalence of the two topologies is, in fact, implied by the statement
of [14, Proposition 3.2]. However, the arguments in [14] for this proposition focused
for the most part on issues that are not present in the analogous compact symplectic
manifold assertion and so left the proof of the equivalence to the reader. In its deference
to [14, Proposition 3.2], the proof of [15, Proposition 2.9] does not address the implied
equivalence between the two topologies on M yA

. The explanation that follows has
nine steps.

Step 1 The inclusion M yA
!M� yA is continuous since the condition for closeness

given by (1–24) implies that given in (1–13). Thus, to prove it an embedding, it is
enough to prove that the condition for closeness in (1–13) implies that in (1–24). This
understood, the task is as follows: Fix C 2M yA

and suppose that some positive, but
small � is given. Find some positive �0 such that when C 0 2M yA

obeys the �0 version
of (1–13), then there is a diffeomorphism between C ’s model curve and that of C 0 that
makes the � version of (1–24) hold. In what follows, C0 and C0

0 are the respective
model curves for C and C 0 while � and �0 are their respective pseudoholomorphic
maps to R� .S1 �S2/.

To construct the required diffeomorphism, let # � C0 denote the set of points that are
mapped by � to singular points of C . The bundle N restricts to C0�# as the normal
bundle to the embedding. Fix " > 0 but very much less than one, and ı 2 .0; "4/. Now
let U denote the union of the radius ı disks about the points in # and the jsj � 1C1="

portions of C0 . In this regard, choose " so that the jsj � 1C 1=" part of U is far out
on the ends of C0 .
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With " and ı chosen, there is an exponential map that is defined on a small, constant
radius disk bundle in N over C0 �U so as to embed this disk bundle as a tubular
neighborhood of �.C0 �U / and to embed each fiber as a pseudoholomorphic disk.
Note that there is quite a bit of freedom here with the choice for this exponential map
and this freedom is used in what follows to fine tune things near the boundary of
C0�U . In any event, suppose that the disk bundle and the exponential map have been
fixed. Let N1�N denote the disk bundle and eW N1!R�.S1�S2/ the exponential
map.

Now if C 0 is very close to C in the sense of (1–13), then C 0 must intersect the image
of each fiber of N1 over C0�U in precisely one point with multiplicity one. Indeed,
because C and C 0 come from the same version of M yA

, the net intersection number
with any given fiber must be one. Meanwhile, all such intersection points count with
positive weight by virtue of the fact that the fibers are embedded as pseudoholomorphic
disks.

Because C 0 intersects the image of each fiber of N1 over C0�U just once, it can be
written in the tubular neighborhood of �.C0�U / as the image of e ı � where � is a
very small normed section of N1 .

The characterization of C 0 as the image of e ı� defines a diffeomorphism,  , between
C0 �U and a part C0

0 by demanding that �0 ı D e ı �. This diffeomorphism is
such as to make dist.�; �0 ı / and the ratio r. / from (1–24) both very small on the
whole of C0 �U in the case that C 0 is very close to C in the sense of (1–13). The
argument as to why r. / is small is deferred to Step 3.

Step 2 This step constitutes a digression make four points about 4–dimensional
pseudoholomorphic geometry. To set the stage, let X denote the 4–manifold and J an
almost complex structure on X . The relevant case is that where X D R� .S1 �S2/

and J is the almost complex structure that is described in Section 1. Let D denote
a standard disk in C, and suppose that an embedding of D �D into a X has been
specified with the following specific property: The image of D � 0 and the image of
each f.z �D/gz2D disk is pseudoholomorphic.

Point 1 There is a ball about the image of .0; 0/ in X with complex coordinates
.x;y/ that have three properties: First, yD 0 is in the image of the disk D�0. Second,
each constant x disk lies in the image of some disk from the collection fz �Dgz2D .
Finally, T 1;0X is spanned over this coordinate chart by the 1–forms

(5–2) � � dxC �d xx and �0 � dyC � 0d xx;

where � and � 0 vanish both at the origin and along the whole y D 0 locus.
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The proof that such coordinates exist is straightforward and left to the reader.

To make the remaining points, let B denote the coordinate chart just described, let
�� C denote a disk and let wW �! B denote a proper, pseudoholomorphic map.

Point 2 The pull-back of x to � obeys x@xC �x@xx D 0. Indeed, this follows by virtue
of the fact that w�� is a section of T 1;0�. As a consequence, jx@xj� j@xj when jyj is
small on the image of �. Note that this implies that the critical points of the pull-back
of x are the zeros of @x .

Point 3 Let z 2 � denote a zero of @x . There is holomorphic coordinate, w , for a
neighborhood of z such that @x D wqCO.jwjqC1/ where q is a positive integer.

Indeed, this can be seen from the following considerations: The holomorphic derivative
of the equation from Point 2 gives one for @x that has the form x@.@x/C@xCy@xD 0,
where  and y are smooth functions on �. This last equation implies that @x vanishes
near z to leading order as a holomorphic function.

The fourth point is an immediate consequence of the latter two:

Point 4 Viewed as mapping w�1.B/ to C, the function x looks locally like a ramified
covering map onto its image.

Step 3 This step explains why r. / is small at all points in C0�U when C 0 obeys
a sufficiently small �0 version of (1–13). To start, remark that by virtue of what is said
in Step 2, any given point in �.C0 �U / has local complex coordinates .x;y/ with
the following three properties: First, each x D constant disk is the image of a fiber of
N1 . Second, the disk where y D 0 is in C . Finally, T 1;0.R� .S1 �S2// is spanned
by the 1–forms � and �0 as in (5–2).

Let B denote the domain in R� .S1�S2/ of these coordinates. The map  �1 on the
�0–inverse image of B is the composition of �0 with the projection to the y D 0 locus.
This being the case, the fact that �0 is pseudoholomorphic implies that � must pull-back
via �0 to C0

0 as a form of type .1; 0/, and this implies that rz. /D jx@xj=j@xj is the
value of j� j at .e ı �/.z/.

Granted the preceding, there exists ."; ı/–dependent constants �0 > 0 and c0 with the
following significance: If �0 < �0 and if C 0 obeys the �0 version of (1–13), then  is
well defined on C0�U . Moreover, both dist.�; �0 ı / and r.�/. / are bounded by
an expression of the form c0�

0 at all points in C0�U .
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Step 4 To extend  , so as to make (1–24) hold for all z and very small � , note first
that topological considerations imply that the complement of  .C0�U / in C0

0 must
be diffeomorphic to U , thus a union of some number of cylinders and some number of
disks. Moreover, each cylinder must bound one of the jsj � 1=" circles in the boundary
of  .C0�U / and each disk must bound one of the radius O."/ circles in the boundary.

The cylinder story is simpler than that for the disks, so it is treated first. For this purpose,
let S �U denote one of the cylinder components, and let  denote its boundary circle.
Let  0 � C0

0 denote  . / and let S 0 � C0
0 denote the component of the complement

of  .C0 � U / whose boundary circle is  0 . When " is large, both S and S 0 are
very close to an R–invariant, pseudoholomorphic cylinder, S0 . In this regard, take
S0 so that a multiple cover of its defining Reeb orbit is the jsj ! 1 limit of the
constant jsj slices of S . Fix a point x 2 S0 and a pseudoholomorphic disk, D with
center at x that is normal to S0 . Since TS0 is an orbit of the product of R with a
1–parameter subgroup from the group T generated by @t and @' , the corresponding
R�S1 group can be used to translate a small subdisk in D centered at x to each point
in S ; and these translates foliate a tubular neighborhood of S0 in R� .S1 �S2/ by
pseudoholomorphic disks. The exponential map on N1 from Step 1 can and should be
chosen so as to map each fiber of N1 near  into one of these R�S1 translates of D .

Near  , both S and S 0 intersect each fiber the same number of times and in distinct
points. Let m denote this number. Let � denote the projection from the tubular
neighborhood of S0 to S0 that moves any given point to the center point of its
particular translate of D . As will now be explained, the restriction of � to either S or
S 0 defines a degree m, unramified covering of �.S/. To see why, use the first point in
Step 2 to put coordinates .x;y/ on a neighborhood of any given point in S0 where the
x D constant slices are the translates of D , and where the y D 0 locus corresponds
to S0 . Moreover, the 1–forms � and �0 from (5–2) span T1;0.R� .S

1 �S2// on this
neighborhood.

As set up, the projection � on the parts of S and S 0 in this neighborhood is the
function x . This understood, the fourth point of Step 2 implies that � restricts to
either S or S 0 as a degree m, ramified cover over �.S/. As such, its critical points
are isolated, and each counts positively to a ramification number. As both S and S 0

are cylinders, the ramification number must be zero and so � maps S and S 0 to �.S/
as honest degree m covers.

Now introduce the fibered product S �� S 0 , this the subspace in S �S 0 of pairs with
the same image via � in S0 . The latter is a smooth manifold with projections to S

and to S 0 . In fact, because � is non-singular on both S and S 0 , these two projections
are covering maps. Moreover, each is trivial because � has the same degree on S
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as it has on S 0 . Thus, both such projections have sections. In particular, there is a
unique section over S whose restriction to  composes with the projection to S 0 as
the map  . The latter section thus composes with projection to S 0 so as to extend  
as a diffeomorphism from S to S 0 . This extension obeys any given small � version of
(1–24) over S if " is small and then �0 very small.

Step 5 Suppose now that  is a circle in @U that lies very close to some point z 2„

and let  0 denote its  image in C0
0 . Let D denote the disk in C0 that  bounds

and let D0 � C0
0 denote the disk that  0 bounds. Since the whole of D0 is not in

 .C0 �U /, its �0 image must lie very close to �.z/ and thus very close to �.D/.
In fact, the distance between any point of �0.D0/ and any point of �.D/ will be
O."/ when " is small. As is argued in the subsequent steps, there are diffeomorphism
between D and D0 that extend  with small r. /.

To see why  can be extended to map from D to D0 with small r. /, remark that when
" is small, then the results from Step 2 can be used to find a holomorphic coordinate,
u, that is defined on the radius 4" disk centered at z , and complex coordinates .x;y/
centered at �.z/ with the following five properties: First, � on D has the form

(5–3) �.u/D
�
upC1; 0

�
CO

�
jujpC2

�
;

where p is a non-negative integer. Moreover,

(5–4) ��dx D .pC 1/upduCO
�
jujpC1

�
and ��dy DO

�
jujpC1

�
:

Second, the constant x disks and the y D 0 disk are pseudoholomorphic. Third,
the forms � and �0 from (5–2) span T 1;0.R� .S1 �S2// over the domain of these
coordinates. Finally, the x D constant disks where juj � 2ı contain the image of the
fiber disks in the bundle N1 from Step 1. Use B in what follows to denote the domain
of the .x;y/ coordinates.

Consider first the pull-back of x to ��1.B/. Take " small, and granted that x D

upC1CO.jujpC2/, if " is small, then the restriction of @x to the u coordinate chart
is non-zero away from the origin. Moreover, with W � C0 denoting the inverse image
via x of the radius "pC1 disk about 0 in C, the map x sends W to the radius "pC1

disk in C as a degree pC 1 ramified cover with a single ramification point where @x
vanishes with degree p . Note that W is a disk.

Let W 0 � C0
0 denote the inverse image via x of the same radius "pC1 disk in C.

When " and �0 are small, then W 0 is also a disk since its boundary is a small radius,
embedded circle in D0 . Since x is pulled up from W near the boundary of W 0 , it has
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degree pC 1 there as a map to the radius "pC1 circle in C. Moreover, an appeal to
the second point in Step 2 finds that

(5–5) jx@xj< c"�
0
j@xj

on the whole of W 0 where c" is determine once and for all by ". This last equation
implies that all zeros count with positive multiplicity. Note that all occur in the
complement of the  image of the juj> 2ı portion of W .

Here is the final remark for this step: According to the fourth point, x maps W 0 to C

as a degree p+1, ramified cover. As it turns out, the sum of the orders of vanishing of
@x at its zeros in W 0 is equal to p , but this fact is not proved directly.

Step 6 The argument for a small r. / extension of  over W 0 is simplest in the
case that @x on W 0 is zero at a single point and this is also the only zero of @ in
W 0 . In the latter case, define first a C 1 extension as follows: The function x on both
W and W 0 has a p ’th root, this denoted by x1=p . On both W and W 0 this p ’th root
provides a C 1 homeomorphism onto the radius " disk in C centered at 0. This function
is smooth and, in both cases, maps the complement of x�1.0/ diffeomorphically to the
complement of 0 in the centered, radius " disk. The composition of the map x1=p from
W with its inverse to W 0 thus defines a C 1 homeomorphism between W and W 0

that is smooth except at a single point. Let  0 denote the latter. Then jx@ 0j � j@ 0j

when " is small by appeal to (5–5). Moreover, j@ 0j is uniformly positive while x@ 0

is zero at the one non-smooth point. This understood, a suitable perturbation of  0

then gives a smooth diffeomorphism,  , with small r. /.

Step 7 To proceed with the general case, consider that x , when viewed as a map
from W 0 to C, pulls back the complex structure from C on the complement of the
points where @x vanishes. Indeed, this follows from (5–5). This pull-back complex
structure extends over the zeros of @x to define a complex structure on W 0 that makes
x a holomorphic map.

As will now be explained, there is a holomorphic coordinate for this new complex
structure on W 0 that makes x out to be a polynomial. To find such a coordinate,
remark that near the boundary of W 0 , x is pulled up from W . In particular, when
" is small, x has a .pC 1/’st root near the boundary of W 0 that maps the boundary
of W 0 in a 1–1 fashion to the radius " disk in C. This understood, let D1 denote
the complement in C[1 of the radius " disk about the origin, and let � denote a
holomorphic coordinate on D1 that vanishes at 0 and has constant norm 1=" on the
boundary of D1 . Now let M denote the complex curve obtained from the disjoint
union of D1 and W 0 by identifying the boundary of D1 with the boundary of W 0 by
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pairing points with 1=� D x1=.pC1/ . Of course, M is CP1 with strangely presented
holomorphic coodinate patches. The point of this construction is that x extends to the
whole of M as a degree pC 1 holomorphic map from CP1 as M to CP1 as C[1.
Moreover, this extension has the property that the inverse image by x of the point 1
is a single point, this the origin in D1 . Thus, with the complement of the origin in
D1 viewed as C �M , this extension of x is a polynomial of degree pC 1 when
written with the standard holomorphic coordinate on C.

Step 8 Granted that " and �0 are small, the next step provides a holomorphic coordi-
nate, � , on C such that

(5–6) jx.�/� �pC1
j � "pC2 and jx0.�/� .pC 1/�p

j � "pC1

at all points where jxj � .1
2
"/pC1 . Here, x0 denotes the � –derivative of x .

To see what this brings, identify W 0 with its image in C via M . On the jxj � .1
2
"/pC1

portion of W 0 , the function x is pulled up from W via  �1 . On W , jx�upC1j �

c � "pC2 where c is a fixed constant. Thus the fact that jx � �pC1j < "pC2 where
jxj � .1

2
"/pC1 implies that � can be chosen so that

(5–7) ju� �� j � "2 and jdu� �d� j � "

where jxj � .1
2
"/pC1 on W .

With this in mind, fix a favorite smooth function ˇW Œ0;1/! Œ0; 1� with value 1 on
Œ0; 5

8
�, value 0 on Œ7

8
;1/, and with jdˇj< 8. With ˇ chosen, define �W W !W 0 by

setting

(5–8) �� � D .1�ˇ.juj="// �� Cˇ.juj="/u:

Thus, � extends  . Moreover, if " is small, then the inequalities in (5–7) guarantee
that � is a diffeomorphism.

It remains now to explain why r.�/ is very small if both " and �0 are small. For this
purpose, note that r.�/ is uniformly O."/ where jxj � .1

2
"/pC1 since the differentials

of � and  differ there by O."/. On this rest of W , the function r.�/ is the ratio of
jx@� j to j@� j where x@ and @ are defined by the restriction to W 0 of the almost complex
structure from R� .S1�S2/ and � is considered here a function on W 0 . Indeed, such
is the case since the pull-back via � of � is a holomorphic function on W . To compute
this ratio, remember that x on W 0 is a holomorphic function of � so x@x D x0x@� and
@x D x0@� . Thus, jx@� j=j@� j D jx@xj=j@xj and this is very small if " and �0 are small.

Step 9 The claim that (5–7) holds when " is small is an immediate consequence of
the following lemma:
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Lemma 5.3 Fix an integer p � 0, and ", "0 > 0. There exists � 2 .0; "/ with the
following property: Let f denote a non-trivial polynomial of degree pC 1 on C such
that the locus where jf j D � is a simple closed curve. Then there is a holomorphic
coordinate � on C such that jf � �pC1j � "0"pC1 and jf 0� .pC1/�pj � "0"p where
jf j> .1

2
"/pC1 .

Proof of Lemma 5.3 A degree pC 1 polynomial determines, up to a .pC 1/0 st root
of unity, a holomorphic coordinate, � , for C and a set, ƒ, of pC 1 not necessarily
distinct complex numbers such that

(5–9) f .�/D
Y
b2ƒ

.� � b/ and such that
X
b2ƒ

b D 0:

It follows from this representation of f that there exists a constant, c0 , such that no
point in ƒ has absolute value greater than d � c0�

1=.pC1/ if the jf j D � locus is
connected. Here c0 , and constants fcj g1�j�5 that follow are independent of f .

Meanwhile, jf .�/j� c1dpC1 where j� j�2d . Thus,the locus where jf .�/j� .1
2
"/pC1

must occur where j� j> 2d in the case that � � c2"
pC1 . However, jf .�/� �pC1j �

c3d j� jp at the points j� j � 2d . Thus, jf � �pC1j � c4�
1=.pC1/"p where jf j �

.1
2
"/pC1 . This understood, there is a fifth f –independent constant, c5 2 .0; 1=c4/

such that � � .c5"
0"/pC1 makes the lemma’s claim true.

5.D The proof of Proposition 5.1

The proof of this proposition is almost verbatim that of [15, Proposition 2.13]. The
following three parts of the proof focus on the salient differences.

Part 1 Suppose that .C0; �/ defines a point in SB;c;d . This first part of the proof
describes what turns out to be the part of a complete set of local coordinates for a
neighborhood of this point in SB;c;d . To start, let Crit.C /� C0 denote the set of size
c whose elements are the critical points of � where � 2 .0; �/. If .C0

0; �0/ 2 SB;c;d

defines a point near to that of .C0; �/, then .C0
0; �0 ) is represented by a small normed

section in the .C0; �/ version of kernel.DC /. Such a representation allows the c

critical points of � on C0
0 to be partnered with the points in Crit.C / so that a C0

0

critical point maps very close to the image of its partner in R� .S1�S2/. This pairing
of critical points also preserves the conditions that are defined by the partition d . In
addition, the degree of vanishing of d� at any given critical point in C0

0 is the same
as that of its partner in C0 .

Keeping these facts in mind, let z 2Crit.C /. Fix a small ball, B , centered on z ’s image
in R� .S1 �S2/ whose closure excludes the images of any other point in Crit.C /.
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Introduce the function, r , on B as defined in (2–9). If z0 is the critical point in C0
0

that is paired with z , then the pair .�.z0/; r.z0// is well defined and in this way, some
2c functions, f.�z; rz/gz2Crit.C / , are defined on a neighborhood of .C0; �0/’s point in
SB;c;d , at least in the case where the group GC is trivial. In the case GC ¤ f1g, then
these functions are distinguishable only modulo the action of GC .

Note that the collection f�zgz2Crit.C / defines at most m independent functions on a
neighborhood of .C0; �/’s point in SB;c;d .

Part 2 This part of the proof supplies additional coordinates for a neighborhood in
SB;c;d of the point defined by .C0; �/. To start, let E � C0 denote either one of the
NC convex side ends where limjsj!1 � is neither 0 nor � , or one of the ends that
correspond to a 4–tuple in B . In any case, let .p;p0/ denote the integer pair from the
corresponding 4–tuple. Then the R=.2�Z/ valued function p' �p0t has an R valued
lift on E with a well defined jsj !1 limit. Now, as in Part 1, if .C0

0; �0/ defines
a point in SB;c;d near to that of .C0; �/, then the ends of C0

0 can be partnered with
those of C0 so that partners share the same yA 4–tuple and map very near each other in
R� .S1 �S2/. This understood, the function p' �p0t has an R–valued lift on E ’s
partner in C0

0 with a well defined jsj!1 limit that is very close to the corresponding
limit on E .

The assignment of these limits to the points near the image of .C0; �/ define a collection
of NCC jBj functions (modulo the action of GC / on a neighborhood of .C0; �/’s
point in SB;c;d . Let f$C1; : : :g denote the NC functions so defined (modulo the
GC action) from the convex side ends, and let f$�1; : : :g denote the corresponding
collection of jBj functions that come from the 4–tuples in B .

Part 3 Two more functions are defined here for a neighborhood of .C0; �/’s point
in SB;c;d . For this purpose, choose either an .1; : : :/ element from yA, or a .0;�; : : :/
4–tuple that is not from B , or a point z 2 C0 where � is zero. In all three cases, a
complex valued function, $ 0 , is defined modulo the GC action on a neighborhood of
.C0; �/’s point in SB;c;d as in the statement of [15, Proposition 2.13].

To summarize the story, the function is defined on the point defined by some pair
.C0
0; �0/ by first identifying the latter with an element near zero in kernel.DC /. This

done, then if $ 0 is defined from an end of C0 , there is a partnered end, E0 � C0
0 . If,

as before, .p;p0/ denotes the integer pair from the corresponding element in yA, then
the phase of the complex number $ 0 is proportional to the jsj !1 limit of p0'�pt

on E0 . The absolute value of the complex number is proportional to the logarithm of
the constant b that appears in the E0 version of (2–4) in the case that E0 corresponds
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to a .0;�; : : :/ element. In the case that E0 corresponds to a .1; : : :/ element form yA,
the absolute value is proportional to the logarithm of the constant yc that appears in the
E0 version of (1–9).

When $ 0 is defined from a � D 0 point z 2 C0 , the chosen kernel.DC / element
for .C0; �/ partners the � D 0 points in C0

0 with those in C0 so that the partner of
z is mapped very close to z ’s image in R � .S1 � S2/ and makes the same local
contribution as does z to the count for çC . This understood, $ 0 is assigned the value
of a holomorphic coordinate for a small disk in the � D 0 cylinder that is centered on
z ’s image.

Part 4 Granted the preceding, introduce the vector space K� � kernel.DC / as
defined in [15, (2.23)]. The asserted structure of SB;c;d near the point defined by
.C0; �/ follows via the implicit function theorem with a proof that K� D f0g. The
argument for this conclusion, and the argument that proves K� D f0g are essentially
verbatim copies of the arguments given for [15, Proposition 2.13]. Nothing new is
needed to treat the case where � is not almost everywhere 1–1.

Note that the proof that K� D f0g proves more, for it establishes the following:

Lemma 5.4 If GC is trivial, then the collection f$C1; : : :g, f$�1; : : :g;$
0 ,

frzgz2Crit.C / and a certain subset of m functions from the collection f�zgz2Crit.C /
define coordinates for SB;c;d near the point defined by .C0; �/. Here, the m functions
from the collection f�zgz2Crit.C / are chosen so that the values of the chosen versions of
�z at .C0; �/ account for the critical values of � that avoid the jsj !1 limits of � on
the concave side ends in C0 and on the ends that correspond to 4–tuples from B . In
the case that GC ¤ f1g, then the analogous collection of NCCjBjC cCm functions
give smooth orbifold coordinates on a neighborhood in SB;c;d of the point defined by
.C0; �/.

6 Slicing the strata

This section describes the structure of each component of any given stratum from
Proposition 5.1. To explain the point of view here, let Sb;c;d denote a given stratum
and let S denote a given component. The component S is then mapped to the m’th
symmetric product of .0; �/ using the critical values of � that do not coincide with
angles from ƒ yA . As is explained in Section 8, this map fibers S over a certain m–
dimensional simplex and so the structure of S is determined by that of a typical fiber.
The subsections that follow focus on the structure of such a fiber. The principle results

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1953

are in Theorems 6.2 and 6.3 and in Propositions 6.4 and 6.7. Theorems 6.2 and 6.3 are
proved in Section 7. Sections 8 and 9 use the results from this section to fully paint the
picture of S as a fiber bundle.

6.A Graphs for the stratification

The constructions from Subsection 2.A and Part 3 of Subsection 2.C associate a graph,
T.�/ , to each pair .C0; �/ from M� yA . This graph has labeled edges and vertices that
reflect the structure of the level sets of the function � on the subvariety. As it turns out,
certain aspects of these graphs are constant on any given component of any given strata
in M� yA and serve to classify these components. This subsection describes in more
detail the graphs that are involved and the manner in which they classify components
of the stratification.

To start, remember that a graph, T , of the sort under consideration is contractible and
has labeled vertices and labeled edges. What follows summarizes what is involved.

The vertex labels Each vertex in T is labeled in part by an angle in Œ0; �� subject to
various constraints, the first of which are as follows:

�(6–1) The two vertices on any given edge have distinct angles.

� No multivalent vertex angle is extremal in the set of the angles of the
vertices on the union of its incident edges.

The vertices have additional labels. To elaborate, a subset of the angle 0 vertices are
labeled via a 1–1 correspondence with the set of .1; : : :/ elements in yA. The remaining
angle 0 vertices are labeled by positive integers that sum to çC . Likewise, a subset
of angle � vertices are labeled via a 1–1 correspondence with the set of .�1; : : :/

elements in yA; and the remainder are labeled by negative integers that sum to �ç� .

Each vertex with angle in .0; �/ is labeled jointly by a subset of the .0; : : :/ elements
in yA and a certain sort of graph. To describe these labels, remark first that distinct
vertices are assigned disjoint subsets, and that the union of these subsets is the whole
set of .0; : : :/ elements in yA. The empty subset can only be assigned to vertices with
three or more incident edges. Meanwhile, a monovalent vertex must get a singleton set
with a .0;�; : : :/ element. Finally, the integer pair component of any element from an
assigned subset defines the corresponding vertex angle via (1–8). The subset of yA that
is assigned to a vertex o is denoted in what follows by yAo .

The graph that is assigned to the vertex o is denoted by �o . The latter graph is
connected, has labeled vertices and oriented, labeled arcs. Here, the edges of �o are
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called ‘arcs’ to avoid confusing them with the edges in T that are incident to o. The
first Betti number of �o must be one less than the number of incident edges in T to o.
In particular, this means that �o is a single point when o is monovalent. In addition,
each vertex in �o has an even number of incident half-arcs with half oriented so as to
point towards the vertex and half are oriented to point away.

The labeling of the vertices in �o is as follows: Each vertex is labeled with an integer,
subject to two constraints. First, the number of elements in yAo that are identical to
a given 4–tuple is equal to the number of vertices in �o where the sign of the label
is the second component of the 4–tuple and where the absolute value of the label is
the greatest commons divisor of the integer pair from the 4–tuple. Here is the second
constraint: Vertices with label 0 must have four or more incident half-arcs.

Each arc in �o is labeled by a pair of o’s incident edges subject to constraints that will
now be described. For this purpose, partition the incident edge set to o as E�[EC
where E� contains the edges on which o is the largest angle vertex and EC those on
which o is the smallest angle vertex. The label of any given arc must contain one edge
from E� and one from EC . To say more, let e denote an incident edge to o. The
collection of arcs whose label contains e concatenate to define an oriented, immersed
loop in �o such that a traverse of this loop crosses no arc more than once. Thus, this
loop is the image of an abstract, oriented, circular graph, `oe , via an immersion that
maps vertices to vertices and is 1–1 and orientation preserving on the edges. The
collection f`oege is incident to o is then constrained by the rules in (2–17). Here, and in
what follows, `oe is used to denote both the abstract circular graph and its image in �o

since the former can be recovered from the latter. For reference below: Properties 1–4
from Part 3 of Subsection 2.C are valid here; Properties 1 and 2 are assumed, while
Properties 3 and 4 then follow automatically.

The label of any given vertex in T determines an ordered pair of integers. When o

denotes a vertex, then Po or .po;po
0/ is used to denote the associated integer pair.

Here are the rules for this assignment:

�(6–2) If o is a monovalent vertex with an assigned integer m, then PoD .0;�m/.

� If o is a monovalent vertex with label .˙1; : : :/ or .0;�; : : :/, then Po is
the label’s integer pair component.

� If o is a multivalent vertex with angle in .0; �/, then Po is obtained by
subtracting the sum of the integer pair components of the .0;�; : : :/ ele-
ments in yAo from the sum of the integer pair components of the .0;C; : : :/
elements in yAo .
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The edge labels Each edge in T is labeled by an non-zero ordered pair of integers.
When e denotes an edge, its corresponding pair is denoted as Qe or as .qe; qe

0/. These
labels are determined by the branching of T and the data from yA according to the
rules that follow. Note that these rules determine the labels via an induction that starts
with the edges whose minimal angle vertices are monovalent. Note as well that this
induction uses the fact that T is a tree. Here are the rules:

�(6–3) If e is incident to a monovalent vertex, o, then Qe D˙Po where the C
sign is used in the following cases:
(a) The vertex label consists of either a .1;�; : : :/ element from yA, or a

positive integer, or a .�1;C; : : :/ element from yA

(b) The vertex angle is in .0; �/ and it is the lesser of the two vertex angles
from e .

� If o is a multivalent vertex, then
P

e2E�
Qe �

P
e2EC

Qe D Po .

There is one additional constraint:

(6–4) Let e denote a given edge, and let �� < �C denote the angles of the vertices
on e . The function ˛Qe

.�/ D .1� 3 cos2 �/qe
0 �
p

6 cos �qe is positive on
.��; �C/ and zero at an endpoint if and only if the angle is in .0; �/ and the
corresponding vertex on e is monovalent.

As done for example in [15, Section 5], this last condition can be rephrased as inequali-
ties that reference only the integer pairs from the vertex angles.

Graph isomorphisms Let T and T 0 denote graphs of the sort just described. An
isomorphism, �, from T to T 0 consists of a 1–1 and onto map from T ’s vertex set
to the vertex set of T 0 along with a compatible map from T ’s edge set to the set of
T 0 edges. Both maps must preserve all labels. Thus, the respective integer pairs of an
edge in T and its � image in T 0 agree; the respective angles of a vertex in T and its �
image in T 0 agree; and the labels of a vertex in T and its � image in T 0 are themselves
isomorphic in the following sense: First, P�.o/ D Po for all vertices o 2 T . Second,
there is an associated collection of isomorphisms that are labeled by T ’s multivalent
vertices where the version, y�o , labeled by vertex o is an isomorphism from the graph
�o to � �.o/ . Thus, y�o consists of a 1–1 and onto map from the set of vertices in �o to
the set of vertices in � �.o/ along with a compatible 1–1 and onto map from the set of
oriented arcs in �o to the corresponding set in � �.o/ . Both of these set maps must also
preserve labels. Thus,

� the vertex set map must preserve the integer labels of the vertices,
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� the arc set map sends an arc with label .e; e0/ to one with label .�.e/; �.e0//.

(6–5)

An isomorphism from T to itself is deemed an automorphism of T . The set of such
automorphisms is designated as Aut.T /. Composition makes Aut.T / into a group
and it is viewed as such in what follows.

Graph homotopy It proves useful to introduce an equivalence between graphs that
is weaker than graph isomorphism. For this purpose, graphs T and T 0 are said to
be ‘homotopic’ when there is a one parameter family, fT�g�2Œ0;1� of graphs with the
following two properties: First, T0 D T and T1 D T 0 . Second, the various T� differ
one from another only in their vertex angles, and these angles change as continuous
functions of � with the constraint that the number of distinct, multivalent vertex angles
is independent of � . In any event, only the vertex angles can change; neither edge
labeled integer pairs nor vertex labeled graphs are modified in any way.

Subsection 2.A and Part 3 of Subsection 2.C explain how a graph such as T can be
assigned to any given pair .C0; �/ from any given element in M� yA . As remarked at
the end of Subsection 2.A, the isomorphism type of the assigned graph depends only
on the given element in M� yA . The following is a consequence:

Proposition 6.1 Two elements in any given component of any given stratum have
homotopic graphs, and elements in either distinct strata or in distinct components of the
same stratum have graphs that are not homotopic.

This proposition is proved in Subsection 8.A.

The subspace M� yA;T Suppose that T is a graph of the sort just described and let
M� yA;T denote the subset of elements in M� yA that are defined by a pair whose graph
is isomorphic to T . Here is why such a space is relevant: Let S denote a component
of some stratum SB;c;d from Proposition 5.1. A map from S to the m’th symmetric
power of the interval .0; �/ is defined by taking the distinct critical values of � in
.0; �/ that do not arise via (1–8) from the integer pair of either a .0;C; : : :/ element
from yA or an element from B . The typical fiber of this map is a version of M yA;T

for
a graph T .

The rest of this section contains a description of M� yA;T .
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6.B The structure of M�
yA;T

By way of a preview for what is to come, Theorem 6.2 below asserts that M� yA;T , when
non-empty, is diffeomorphic as an orbifold to a space of the form R�OT =Aut.T /
where OT is a version of (3–12) where Aut.T / acts. As OT is connected, this implies
that M� yA;T is a connected component of a stratum of M� yA .

The detailed description of OT requires some preliminary stage setting, and this is
done next in four parts. The length of this stage setting preamble is due for the most
part to the subtle nature of the Aut.T / action.

Part 1 This part of the digression describes the relevant version of (3–12) leaving
aside the Aut.T / action. To start the story, let o denote a multivalent vertex in T and
let �o denote its assigned angle. Meanwhile, let Eo denote the set of incident edges to
o, and let Arc.�o/ denote the set whose elements are the arcs in �o . Now define �o

to be the set of maps r W Arc.�o/! .0;1/ that obey

(6–6)
X
2`o;e

r. /D 2�˛Qe
.�o/

for all multivalent vertices o 2 T and edges e 2Eo . Note that �o is a simplex whose
dimension is one less then the number of vertices on �o .

Each multivalent vertex in T is also assigned a real line. If o designates such a vertex,
then Ro is used to denote its associated line. Let R� denote an auxiliary copy of R.
Then R� �o .Ro ��o/ appears below in the role that (3–14) plays in (3–12). Here,
and in what follows, the symbol �o appears with no accompanying definition signifies
a product that is indexed by the set of multivalent vertices in T .

To define the group actions in the case at hand, it is necessary to first choose an Aut.T /
invariant vertex in T . To obtain such a vertex, note that any connected, non-empty,
Aut.T / invariant subgraph with the least number of vertices amongst all subgraphs
of this sort is necessarily a 1–vertex graph. Here is why: Were such a subgraph to
have two or more vertices, there would be one that was both monovalent as a subgraph
vertex and not Aut.T / invariant. Removing this vertex, the interior of its incident edge,
and their orbits under Aut.T / would result in a non-empty, proper, Aut.T / invariant
subgraph of the original.

Fix a smallest angle, Aut.T /–invariant vertex and denote it as }. This done, it proves
convenient to introduce V to denote the set of multivalent vertices in T �}. Each o2V
labels a copy of Z and these groups are going to act in a mutually commuting fashion
on R� � .�yo Ryo/. To describe these actions, note first that when o is a multivalent
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vertex in T �}, then T � o has a unique component that contains the vertex }. Let
To denote the closure in T of the complement of this component.

Granted this notation, then 1 2 Zo is defined to act trivially on R� and on Ryo in the
case that yo … To . In the case that yo 2 To , then 1 2 Zo acts on Ryo as the translation

(6–7) �2�
˛Qe

.�yo/

˛Qye .�yo/
;

where e and ye designate the respective edges that connect o to T �To and yo to T �Tyo .

Meanwhile, define an action of the group Z�Z on �yo2VRyo by having an integer pair
N D .n; n0/ act as the translation by

(6–8) �2�
˛N .�yo/

˛Qye .�yo/
:

This action commutes with that just defined �o2VZo .

The extension of the Z�Z action to R� and R} requires an additional choice, this
the choice of a distinguished Aut.T / orbit in the set of incident edges to }. Let yE
denote this distinguished orbit, let m yE denote the number of edges in yE , and let
Q yE D .q yE ; q yE

0/ denote the integer pair that is associated to the edges that comprise
yE . The action of N on R} is then defined by the version of (6–8) that uses } for yo

and Q yE for Qye . Meanwhile, the action of N on R� is defined so that .n; n0/ acts as
the translation by �2�m yE.n

0q yE � nq yE
0/.

Granted all of the above, set

(6–9) OT � .�o�o/�
�
R� � .�oRo/

�
=
�
.Z�Z/� .�yo2VZyo/

�
:

By way of reminder, �o here designates a product that is indexed by the full set of
multivalent vertices in T , while �yo2V designates a product that is indexed by the set
of vertices in T �}. It is left to the reader to verify that OT is a smooth manifold.
This OT is the desired version of (3–12).

Part 2 This part of the story constitutes a digression to provide a sort of inductive
description of Aut.T / using as components a subgroup of automorphisms of �} and
a collection of cyclic groups that are labeled by the multivalent vertices in T �}. To
start this description, let o denote a vertex in V . Then T � o has a one component
that contains }. Let To denote the closure of the remaining components. This is a
connected, contractible subgraph of T . The vertex o also has a distinguished incident
edge, this the edge e � e.o/ that connects o to T � To . Let `o to denote the loop
`oe.o/ .

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1959

Now, let Aut.To/� Aut.T / denote the subgroup that acts trivially on the data from
T �To . This group fixes o and so it has a canonical homomorphism in the group of
automorphisms of the pair f�o;Eog, where Eo here designates the set of incident
edges to o. Let Auto denote the image of Aut.To/ in this last group. As Auto fixes
the incident edge e.o/, so it preserves the loop `o and thus has an image in the cyclic
group of automorphisms of the abstract version of `o . In fact, Auto is isomorphic to
its image in this cyclic group. Such is the case by virtue of the following fact:

(6–10) An automorphism of �o that fixes any arc must be trivial.

Indeed, suppose that  is fixed and that e0 is one of  ’s labeling edges. Then the
automorphism must act trivially on `oe0 and so fixes all of its arcs. It then follows from
Property 3 of Part 3 in Subsection 2.C that the maximal collection of fixed arcs must
constitute the whole of �o .

Let no denote the order of the cyclic group Auto . Since the automorphism group
of `o has a canonical generator, so does Auto , this smallest power of the generator
of Aut.`o/ that resides in Auto . This generator provides a canonical isomorphism
between Auto and Z=.noZ/.

The preceding implies an exact sequence

(6–11) 1!�o0 Aut.To0/! Aut.To/! Z=.noZ/! 1;

where the product in (6–11) is indexed by the vertices in To that share some edge with
o. There is a similar exact sequence in the case that o D } but where Z=.noZ/ is
replaced by Aut} . Of course, if Aut} fixes an edge in E} , then Aut} D Z=.n}Z/.

With regards to the various versions of Auto , keep in mind the following:

(6–12) An element in Auto is trivial if it fixes more than two edges in Eo .

To see why such is the case, first construct a closed, 2–dimensional cell complex by
taking the 1–skeleton to be �o and then attaching a disk to each `o.�/ . An Euler class
computation finds that this complex is a 2–sphere. The Auto action on �o extends to
the action on the sphere if it is agreed that its action on the 2–cells is obtained by a linear
extension. This extended action is then a piecewise linear, orientation preserving action.
In particular, if an edge is fixed by some element, the action on the corresponding disk
is a rotation through a rational fraction of 2� and has the origin as its fixed point. Since
Aut.T / is finite, such an action can have at most two fixed points unless it is trivial.

The last point to make in this part of the subsection is that the various versions of (6–11)
all split and these splitting can be used to write Aut.T / as the iterated semi-direct
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product

(6–13) Aut.T /� Aut} �
�
�o

�
Z=.noZ/�

�
�o0 ŒZ=.no0Z/� � � � � � � �

���
:

Here, the left most subscripted product is indexed by the vertices that share edges with
}; meanwhile, any subscripted product, �yo0 , that appears as Z=.nyoZ/� Œ�yo0 � � � � is
indexed by the vertices in Tyo that share an edge with yo. Moreover, such an isomorphism
identifies any given o 2 T �} version of Aut.To/ with the semi-direct product

(6–14) Z=.noZ/�
�
�o0 ŒZ=.no0Z/� � � � � � � �

�
:

It is important to keep in mind that the isomorphism in (6–13) is not canonical. Rather, it
requires the choice of a ‘distinguished’ vertex in each o¤} version of `o subject to the
following constraint: Let �o denote the distinguished vertex for o and let � 2 Aut.T /.
Then �o and ���o define the same Aut.T / orbit in the set of vertices in [yo¤}`yo .
Assume in what follows that such choices have been made.

To explain how (6–13) arises, note that the effect of an automorphism on any o¤}

version of �o is determined completely by its affect on a single vertex in `o , thus
on �o . This follows by virtue of the fact that any given � 2 Aut.T / must map `o to
`�.o/ so as to preserve the cyclic order of the vertices. Granted this, a lift to Aut.T /
of any element in any given version of Auto can be defined in an iterated fashion
along the following lines: Let � denote the given element. The lift is defined to live in
Aut.To/. The first step to defining this lift specifies its action on [o0�o0 , where the
union is labeled by the vertices in To� o that share edges with o. Let o0 denote such
a vertex. Then �.o0/ is determined apriori by the action of � on o’s incident edge set.
The corresponding isomorphism from �o0 to � �.o0/ is defined by requiring that �o0 go
to ��.o0/ . Note that this now determines how � acts on the set [o0Eo0 whose elements
are the incident edges to the various vertices in To� o that share an edge with o. To
continue, suppose that o00 2 To0 � o0 shares an edge with o0 . Then �.o00/ is determined
apriori by the just defined action of � on [o0Eo0 . The isomorphism between �o00 and
� �.o00/ is again determined by the requirement that �.�o00/ D ��.o00/ . Continuing in
this vein from a given vertex yo 2 To to those in Tyo� yo that share edges with yo ends
with an unambiguous definition for the lift of �. In this regard, note that the lifts of
elements � and �0 from a given Auto must multiply to give the lift of � � �0 . Indeed, this
is guaranteed by the afore-mentioned fact that the affect of an automorphism on any
given o¤} version of �o is determined by its affect on �o .

Part 3 The desired action of Aut.T / on OT is described by first introducing a certain
central extension of Aut.T / by Z�Z and describing an action of this extension on

(6–15) .�o�o/� .R� �R}/� Œ�yo2VRyo�=Œ�yo02VZyo0 �:

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 1961

Here, the symbol �o�o designates the product of the simplices that are indexed by the
multivalent vertices in T . The desired extension of Aut.T / is denoted in what follows
by yAut.T /. It is induced from a Z� Z central extension of Aut} in the following
manner: Let yAut} denote the extension of Aut} . Then yAut.T / is the set of pairs
.�;g/ 2 yAut} �Aut.T / that have the same image in Aut} . Note that the isomorphism
given in (6–13) is covered by an analogous yAut.T / version that has yAut.T / on the
left hand side and yAut} instead of Aut} on the right.

To define yAut} , it is necessary to reintroduce the ‘blow up’ from Part 6 of Subsection
2.C of �} . For this purpose, note that the any given ��o is available if Properties
1–4 from Part 3 of Subsection 2.C are satisfied. As observed in Subsection 6.A, these
properties are present; thus any such ��o is well defined.

Granted the preceding, introduce ��} . Likewise, reintroduce the cohomology class
�} 2H 1.��}IZ�Z/ from this same Part 6 of Subsection 2.C. Use �} to define a
Z�Z covering space over ��} , this denoted in what follows by x�� . The group of
deck transformations of x�� is the group Z�Z. This understood, the group Aut} has
a central, Z�Z extension that acts as a group of automorphisms of the graph x�� . The
latter group is yAut} .

The action of yAut.T / on the space in (6–15) is defined in the five steps that follow. In
this regard, the first three steps reinterpret the various factors in (6–15).

Step 1 This first step reinterprets the factor R} ��} . For this purpose, let Vert yE
denote the set of vertices in x�� that project to some e 2 yE version of `}e . The plan
is to interpret the product R} ��} as a fiber bundle over �} , this denoted by R� .
In particular, R� is the linear subspace in Maps.Vert yE IR/��} where the pair .�; r/
obeys the following constraint: Let � and � 0 denote a pair of vertices from Vert yE and
let N 2 Z�Z denote any element that maps � to the component of x�� that contains
� 0 . Then

(6–16) �.� 0/D �.�/C 2�
1

˛Q yE
.�}/

�X


˙yr. /� 2�˛N .�}/

�
;

where the notation is as follows: First, the sum is over the arcs in x�� whose concatenated
union defines a path that takes N � to � 0 . Second, yr. /D r. / if  projects to an arc
in �} ; if not, then yr. /D 0. Third, the C sign appears when the arc is traversed in
its oriented direction and the minus sign is used when the arc is traversed opposite to
its orientation. Note that (6–6) guarantees that the expression on the right hand side of
(6–16) is independent of the precise choice for N or for the path in question granted
the given constraints on both.
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Step 2 This step reinterprets the R� factor that appears in (6–15). For this purpose,
suppose that e is an incident edge of }, and then reintroduce the lift `�}e � �

�
} of

the loop `};e . Let Le denote the set of components of the inverse image of `�}e in
x�� . In this regard, each component of this inverse image is a linear subgraph of x�� .
Note that the deck transformation group Z�Z has a transitive action on Le whereby
the stabilizer of any given element is Z �Qe . Let ƒ��

e2 yE
Le .

The plan is to identify R� as a certain subspace in Maps.ƒIR/. In particular, a map,
�� , is in R� when the following is true: Given L 2ƒ, and then N D .n; n0/ 2 Z�Z

and e 2 yE , let L0 denote the element in ƒ that is obtained from L by acting on e ’s
entry by N . Then

(6–17) ��.L
0/D ��.L/� 2�

�
n0q yE � nq yE

0
�
:

The conditions depicted here define a 1–dimensional affine line in Maps.ƒIR/. The
latter is is denoted in what follows as R� .

Step 3 This step reinterprets the factor Œ�o2VRo�=Œ�o2VZo� in (6–15). For this purpose,
suppose that e is incident to } and introduce V.e/ to denote the set of vertices in the
component of T �} that contains e�}. Set We � Œ�yo2V.e/Ryo�=Œ�yo2V.e/Zyo� and so
write

(6–18) Œ�o2VRo�=Œ�o2VZo�D�e2E}We:

Now let yUe �Maps.LeIWe/ denote the subspace of maps xW Le!We that have the
following property: If ` 2Le and N 2 Z�Z, then x.N � `/ and x.`/ have respective
lifts to �yo2V.e/Ryo whose coordinates obey

(6–19) x.N � `/yo D x.`/yo� 2�
˛N .�yo/

˛Qye .�yo/

for each yo 2 V.e/.

Note that this condition is well defined even though the integer multiples of Qe act
trivially on Le . Indeed, such is the case because Z �Qe also acts trivially on We . Since
the action on Le of Z�Z is transitive, the space yUe is diffeomorphic to We .

Step 4 The space depicted in (6–15) is diffeomorphic to

(6–20) R� �R� �

h
�e2E}

�
yUe �

�
�yo2V.e/�yo

��i
:

The group yAut.T / will act on this version of (6–15). This step describes the action of
the subgroups fZ=.noZ/go2V that appear in the semi-direct decomposition as depicted
in the yAut.T / version of (6–13).
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The definition of these actions requires an additional set of choices to be made for
each vertex in V : A ‘distinguished’ edge must be designated from each non-trivial
Z=.noZ/ orbit in Eo for each o2V . To explain, note first that (6–12) has the following
consequence: The Z=.noZ/ action on an orbit in Eo is either free or trivial. Thus,
any non-trivial orbit has no elements and a canonical cyclic ordering. The choice of
a distinguished element provides a compatible linear ordering with the distinguished
element at the end. These distinguished edges should be chosen in a compatible
fashion with the Aut.T / action. This is to say that when o 2 V and e0 2 Eo is the
distinguished edge in its Auto orbit, then the following is true: Let � 2 Aut.T / denote
an automorphism that sends the distinguished vertex in �o to that in � �.o/ . Then �.e0/
is the distinguished edge in its Aut�.o/ orbit.

Let � 2 yAut.T / now denote the generator of the Z=.noZ/ subgroup. This element
acts trivially on R� , R� . Its action is also trivial on yUe � .�yo2V.e/�yo/ unless V.e/
contains o.

The affect of � on the relevant version of yUe � .�yo2V.e/�yo/ is defined from a certain
action of � on We � .�yo2V.e/�yo/. In this regard, note that �o has the action on
�yo2V.e/�yo that sends a map r W Arc.�yo/! .0;1/ to the map ��r W Arc.� �.yo//! .0;1/

that obeys

(6–21) .� � r/.�. //D r. / for all  2 Arc.�yo/:

The action that is described momentarily on We � .�yo2V.e/�yo/ is intertwined by the
projection to �yo2V.e/�yo with the action that is depicted by (6–21). In any event, an
action of Z=.noZ/ on We�.�yo2V.e/�yo/ induces one on Maps.LeIWe/�.�yo2V.e/�yo/

by composition, thus � sends a pair .x; r/ with xW Le ! We and r 2 .�yo2V.e/�yo/

to the pair whose second component is � � r and whose first component is obtained
from x by composing with �’s affect on the We factor in We � .�yo2V.e/�yo/. As it
turns out, this action of � preserves the relation in (6–19) and so the induced action on
Maps.LeIWe/� .�yo2V.e/�yo/ induces the required action on yUe � .�yo2V.e/�yo/.

To define the action of � on We�.�yo2V.e/�yo/ consider its affect on the image of some
given point .�; r/ where � 2 �yo2V.e/Ryo . For this purpose, use �yo to denote the Ryo
coordinate of � , and use ryo to denote the �yo coordinate. Also, use Œ�; r � to denote the
image point of .�; r/ in We � .�yo2V.e/�yo/. The point � � Œ�; r � has a lift, .� 0; � � r/ with
� 0yo D �yo unless yo 2 To . Meanwhile,

(6–22) � 0o D �o� 2�
1

˛Qe.o/
.�o/

X


r. /;

where e.o/ here designates the edge that connects o to T �To and where the sum is
over the set of arcs on the oriented path in �o between ��1.�o/ and �o .
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Consider next the case that yo 2 To� o and that yo’s component of To� o is fixed by
�o . This is to say that yo’s component is connected to o by an edge that is fixed by the
Z=.noZ/ action on o’s incident edge set. Let e0.o/ denote the latter edge. Then

(6–23) � 0yo D �yo� 2�
1

no

˛Qe.o/�Qe0.o/
.�yo/

˛Qye .�yo/
;

where ye here denotes the edge that connects yo to T �Tyo .

Finally, suppose that yo is in a component of To� o that is not fixed by �. In this case,

(6–24) � 0
�.yo/
D �yo� "yo2�

˛Qe.o/
.�yo/

˛Qye .�yo/
;

where "yo D 0 unless the edge that connects yo’s component of To � o to o is a
‘distinguished’ edge in its Z=.noZ/ orbit; in the latter case, "yo D 1.

It is left for the reader to verify that action just defined for � on We � .�yo2V.e/�yo/

has �no acting as the identity. The reader is also asked to verify that the suite of these
actions as o varies through V defines compatible actions of the various versions of
(6–14) on the space in (6–20).

Step 5 This step explains how the yAut} subgroup of yAut.T / acts on the space in
(6–20). The explanation starts by describing the action on the factor R� . In this regard,
keep in mind that R� is a real line bundle over �} and that there is an Aut} action
on �} that has any given � 2Aut} acting to send a map r W Arc.�}/! .0;1/ to the
map � � r that is given by the yoD} version of (6–21). The projection map from R�

to �} will intertwine the desired action of yAut} with that of Aut} on �} . In any
event, the action on R� is induced by the action on Maps.Vert yE IR/��} that has
� 2 yAut} sending a pair .�; r/ to the pair .� � �; � � r/ where � � � is defined by setting
.� � �/.�.�//� �.�/ for all � 2 Vert yE . This action preserves the relation in (6–16) so
restricts to define an action of yAut} on R� .

To continue, consider next the action of yAut} on R� . The action in this case is induced
from the action on Maps.ƒ;R/ that has � 2 yAut} sending a given map �� to the map
� � �� whose value on any given �.L/ is that of �� on L.

The final point is that of the yAut} action on the bracketed factor that appears in (6–20).
To set the stage for the discussion, note that Aut} acts on the simplex product. Here,
the affect of � 2 Aut} on any given yo 2 V version of �o sends r 2 �o to the map
� � r 2��.o/ whose values are given by the rule in (6–21). The projection to �yo2V�yo
from the bracketed factor in (6–20) will intertwine the desired yAut} action with that
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just described on �yo2V�yo . The action of yAut} on the bracketed factor in (6–20) is
induced by an action on

(6–25) �e2E}

�
Maps.LeIWe/�

�
�
yo2V.e/�yo

��
:

To describe the latter action, let w denote a point in (6–25), thus a tuple whose coordi-
nates are indexed by }’s incident edges. The coordinate with label e 2E} consists
of a map, xe , from Le to We together with a maps, fryoW Arc.�yo/! .0;1/gyo2V.e/ .
Here, xe has lifts as a map of Le to �yo2V.e/Ryo that assigns a real number to each
.`; yo/ 2 Le � V.e/. Fix such a lift and use �yo.`/ 2 R in what follows to denote the
lift’s assignment to a given .`; yo/.

With the preceding understood, a given � 2 yAut} sends w to the tuple � �m whose
coordinate with label e is denoted by x0e . The collection fx0.�/g thus defines � �m given
the intertwining requirement vis a vis the action of Aut} on �yo�yo . This understood, the
various versions of x0.�/ are defined by requiring that any given version of x0�.e/ lift so
as to assign the real number �yo.`/ to the pair .�.`/; �.yo// for all pairs .`; yo/2Le�V.e/.

It is left as an exercise with the definitions to verify that the rule just given specifies
an action of yAut} on (6–25) that preserves the subspace from the bracketed term in
(6–20).

Granted that yAut} acts as just described on the space in (6–20), it is a straighforward
task to verify that the action is compatible vis-à-vis the yAut.T / version of (6–13) with
those defined in Step 4 of the various versions of (6–14). Such being the case, then
these various actions define an action of yAut.T / on the space in (6–20). This is the
desired action.

Part 4 Introduce as notation O�T to denote the space depicted in (6–20). Then the
space OT is diffeomorphic to the quotient of O�T by the Z�Z subgroup in yAut.T /
that maps to the identity in Aut.T /. The group Aut.T / now acts on OT with the
latter now viewed as O�T =.Z�Z/. Let yOT �OT denote the set of points where the
Aut.T / stabilizer is the identity. Thus, yOT is the Z�Z quotient of the points in (6–20)
with trivial yAut.T / stabilizer. In any event, yOT =Aut.T / is a smooth manifold whose
dimension is equal to one more than the number of vertices in [o�o ; the union here is
indexed by multivalent vertices in T . Meanwhile, OT =Aut.T / is a smooth orbifold.

With the preceding understood, consider:

Theorem 6.2 If non-empty, M� yA;T is diffeomorphic as an orbifold to R

�OT =Aut.T /. In particular the complement in M� yA;T of R is diffeomorphic to

R� yOT =Aut.T /.
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There is an analogy in this case with the story told in Proposition 3.6 as there are
orbifold diffeomorphisms from M� yA;T that give a direct geometric interpretation to
the various factors that enter the definition of R�OT =Aut.T /. An elaboration requires
a short digression for two new notions.

The first notion is that of the space M� yA;T
ƒ whose elements consist of equivalence

classes of 4–tuples .C0; �;TC / where .C0; �/ defines a point in M� yA;T while TC is
a fixed correspondence in .C0; �/. The equivalence relation equates .C0; �

0;TC
0/ with

.C0; �;TC / in the case that there is a holomorphic diffeomorphism  W C0! C0 such
that �0 D � ı , and such that TC

0 is obtained from TC as follows: If TC identifies a
given component K � C0�� with an edge e 2 T , then TC

0 identifies  �1.K/ with
e ; and if TC identifies any given arc  � � with an arc, � , in a version of �.�/ from
T , then TC

0 identifies  �1. / with � .

Note that M� yA;T
ƒ is a smooth manifold since the group GC of holomorphic diffeo-

morphisms of C0 that fix � acts freely on the set of corrrespondences of T in .C0; �/.
Note in addition that the tautological map from M� yA;T

ƒ to M� yA;T restricts over
M yA;T

as a covering space map with fiber Aut.T /.

To describe the second notion, fix a multivalent vertex o 2 T and a vertex � 2 �o with
non-zero integer label. In what follows, use . ypo; yp

0
o/ to denote the relatively prime

integer pair that defines the angle �o via (1–8). Define a map, ‰� W OT ! R=.2�Z/

as follows: Map Ro ��o to R=2�Z by the rule that sends v 2 Ro and r 2�o to

(6–26)
�
ypoqe

0
� yp0oqe

�
vC

. yp2
o C ypo

02 sin2.�o//
1=2

.1C 3 cos4.�o//1=2

X


˙r. / mod .2�Z/:

Here, the notation is as follows: First, e is the distinguished edge for o. Second, the
sum is indexed by the arcs in any ordered set of arcs from �o that concatenate end
to end so as to define a path that starts at �o ’s distinguished vertex and ends at � .
Finally, the C sign in this sum is taken if and only if the indicated arc is traversed in
its oriented direction on the path to � . By virtue of (6–6), this map is insensitive to the
choice for the concatenating set of arcs. As the map in (6–26) is also insensitive to the
group actions that define OT , so it descends as a map from OT to R=2�Z. The latter
is the map ‰� .

Theorem 6.3 There are orbifold diffeomorphisms from M� yA;T to R�OT =Aut.T /
with the following properties:

� The projection to the R factor intertwines R’s action on M� yA;T with its trans-
lation action on R.
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� The orbifold diffeomorphism is covered by a diffeomorphism from M yA;T
ƒ to

R�OT with the following property: Let o 2 T be a multivalent vertex and let
� be a vertex in �o with weight mo ¤ 0. Let .C0; �;TC / 2M� yA;T

ƒ , and
let E denote the end in C0 that corresponds via TC to � . Then the R=.2�Z/

valued function ypo' � yp
0
ot on E has a unique limit as jsj !1, and this limit

is obtained by composing the map ‰u with the map from M� yA;T
ƒ to OT .

As should be clear from the definitions in the next subsection, the other parameters
that enter OT ’s definition can also be given direct geometric meaning.

Theorems 6.2 and 6.3 are proved in Section 7.

The following proposition says something about OT �
yOT and the corresponding

stabilizers in Aut.T /.

Proposition 6.4 The Aut.T / stabilizer of any point in OT projects isomorphically
onto a subgroup of Aut} . Moreover, two stabilizer subgroups are conjugate in Aut.T /
if and only if they have conjugate images in Aut} .

The next subsection defines a version of Theorem 6.3’s map and the subsequent
subsection proves that this map is continuous. The final subsection provides a simpler
picture of the Aut.T / action on OT when Aut} fixes some incident edge to }. For
example, this is the case when T is a linear graph; and the results from this subsection
can be used to deduce Theorem 3.1 from Theorem 6.2. The final subsection also
contains the proof of Proposition 6.4.

6.C The map from M�
yA;T to R�OT =Aut.T /

Suppose that .C0; �/ gives rise to an element in M� yA;T . The image of this element
in R � OT =Aut.T / is obtained from a point that is assigned to .C0; �/ in R� �

.�o.Ro��o//. That latter assignment requires extra choices, some made just once for
all .C0; �/ and others that are contingent on the particular pair. As is explained below,
the contingent choices are not visible in R�OT =Aut.T /. The story on the map to
R�OT =Aut.T / is told in four parts.

Part 1 This part and Part 2 describe the choices that do not depend on the given point
in M� yA;T nor on its representative pair .C0; �/.

The first choice in this regard is an Aut.T / orbit, yE0 , of edges that end in vertices of
T that are labeled by the smallest angle. This angle is denoted in what follows by �� .

Geometry & Topology, Volume 10 (2006)



1968 Clifford Henry Taubes

The next series of choices involve the vertex }. The first of these involves the already
chosen Aut.T / orbit yE in the set of incident edges to }. Choose a ‘distinguished’
edge in yE , and a corresponding ‘distinguished’ vertex on the latter’s version of the
loop `}.�/ . Let `} denote the corresponding distinguished version of `}.�/ and let
�} 2 `} denote the distinguished vertex.

To continue this series of choices at }, select a concatenating path set that connects the
vertex �} to each version of `

}.�/
¤ `} . The definition of such a path set is provided

in Definition 2.2. However, the selection must be constrained by the two conditions in
the version of (2–18) where the vertex is } and e is the distinguished edge.

An analogous, but more constrained set of choices must be made for each multivalent
vertex o 2 V . To elaborate, let e denote now the edge that connects o to T � To

and let e0 ¤ e denote another incident edge to o that is fixed by the Z=.noZ/ action.
Choose a concatenating path set to connect �o to `oe0 subject to the two conditions
in (2–18). Such a concatenating path set must also be chosen when e0 is not fixed by
Z=.noZ/, but additional care must be taken. To describe what is involved here, let E

denote a non-trivial Z=.noZ/ orbit in o’s incident edge set and let e0 2E denote the
distinguished edge. Choose a concatenating path set from �o to `oe0 subject to the
constraints in (2–18). Let f�1; : : : ; �N g denote this chosen set. Now, let � 2 Z=.noZ/

and let �� � `o denote the path that starts at �o and proceeds opposite the oriented
direction along `o to its end at �.�o/. The set of paths f�.�1/ ı �

�; �.�2/; : : : ; �.�N /g

constitutes a concatenating path set that starts at �o and ends at `o�.e0/ . Here, �.�1/ı�
�

denotes the concatenation of the two paths. This new set obeys the �.e0/ version of
(2–18). Use the various versions of this set for the required concatenating paths for the
elements in E � e0 .

The preceding choices of concatenating path sets at the vertices in V must be made
so as to be compatible with the Aut.T / action in the following sense: Let o 2 V , let
e0 2Eo , and let f�1; : : : ; �N g denote the chosen concatenating path set that starts at
the vertex �o and ends on `oe0 . If � 2 Aut.T / maps the distinguished vertex on `o to
that on `�.o/ , then f�.�1/; : : : ; �.�N /g is the chosen concatenating path set that starts at
��.o/ and ends on `�.o/�.e0/ .

Part 2 Choose a vertex, y� , in x�� that projects to �} . The choice for this vertex has
three consequences. First, it trivializes the fiber bundle R� in the following manner:
Let .�; r/ 2 Maps.Vert yE IR/ � �} denote any given pair in R� . The trivializing
map then sends .�; r/ to .�.y�/; r/. With this trivialization understood, write R� as
R} ��} where R} is a copy of R.

The selection of y� identifies R� with a fixed copy of R, this labeled as R� in what
follows. To describe how the identification comes about, let e denote the chosen
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distinguished edge in yE . Then y� sits on a unique line, `, in Le . Now, let e0 denote
some other edge in yE . The e0 version of the concatenating path set defines a path in
�} that starts at �o and ends on `}e0 . This path has a canonical lift to �� and the latter
has a unique lift to a path in x�� that starts at y� and ends on a particular line in Le0 .
The collection consisting of ` and these other lines specifies a point L 2 �

ye2 yE
Lye . As

a map, �� 2 R� is determined by its value on L, so the assignment ��! ��.L/ 2 R

identifies R� with a fixed line.

The selection of y� also identifies each yUe with the corresponding space We �

Œ�yo2V.e/Ryo�=Œ�yo2V.e/Zyo� that appears in (6–18). Here is how: If e is the distinguished
edge from yE , then the lift y� sits on a unique ` 2Le . Then, the assignment to a given
x 2Maps.LeIWe/ of x.`/ 2We identifies yUe with We . If e0 is any other edge from
E} , the choice of y� and the e0 version of the concatenating path set determines a path
from y� to a line in Le0 . The values of x 2Maps.Le0 ;We0/ on the latter identify yUe0

with We0 .

Part 3 Granted this identification between (6–20) and (6–15), a point will be assigned
to the given pair .C0; �/ in R, in each copy of �o , in each copy of Ro , and in R� .
These assignments all require additional choices that must be made separately for each
pair. These choices are listed below:

Choice 1 A choice of a correspondence of T in .C0; �/.

This chosen correspondence is used implicitly in the subsequent choices.

Choice 2 A parameterization for the component in C0 � � that corresponds to the
distinguished edge in yE .

The next set of choices are labeled by the multivalent vertices in T . The choice at any
given vertex o is contingent on an apriori specification of a canonical parameterization
of the component of C0�� that corresponds to a certain edge in Eo . In the case that
the oD}, the incident edge is the distinguished edge in yE and the parameterization
is that provided by Choice 2. In the case that o 2 V , the edge in question connects o to
T �To .

Choice 3 (at o) A lift to R for the R=.2�Z/ coordinate of the point on the boundary
of the associated parametrizing cylinder that corresponds to �o .

The canonical parameterization that is used to make any given o 2 V version of this
last choice is determined in an inductive fashion by the choices for those yo 2 T where
Tyo contains o. This induction works as follows: Suppose that o is a multivalent vertex
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in T and that a canonical parameterization has been given to the component of C0��

whose labeling edge supplies the loop `o in �o . Let e0 denote any other incident edge
to o. Chosen already is a concatenating path set that obeys the corresponding version
of the constraints in (2–18). The parametrizing algorithm from Part 4 of Subsection 2.C
uses this path set with o’s version of Choice 3 to specify the canonical parametrization
for the e0 component of C0�� .

Part 4 There are three cases to distinuish in order to describe the data for the value of
the R factor in R�OT =Aut.T / on a point that comes from M� yA;T .

Case 1 In this case �� ¤ 0. The orbit yE0 corresponds to a set of convex side
ends in C where the jsj ! 1 limit of � is �� . Use yE0 to also denote this set of
ends. Associated to each end E 2 yE0 is the real number b � b.E/ that appears
in (2–3). Here, b.E/ must be positive since �� is the infimum of � on C . The
map to R assigns to .C0; �/ the real number ���1

P
E2 yE0

ln.b.E// where � �
p

6 sin2 �E.1C 3 cos2 �E/=.1C 3 cos4 �E/.

Case 2 In this case �� D 0 and there are no .1; : : :/ elements in yA. Here, yE0

corresponds to a set of disjoint disks in C0 whose centers are � D 0 points. This
understood, then the image of .C0; �/ in the R factor of R�OT =Aut.T / is the sum
of the s–coordinates of the centers of these disks.

Case 3 In this case ��D 0 and yE0 corresponds to a set of ends in C0 whose constant
jsj slices limit to the � D 0 cylinder as jsj !1. Let yE0 also denote this set of ends.
Each E 2 yE0 defines the positive constant yc � yc.E/ that appears in (1–9). Note that
the integer p and p0 that appear in (1–9) comprise the pair from the corresponding

.1; : : :/ element in yA. The image of C in R is �.
q

3
2
C

p0

p
/�1

P
E2 yE0

ln.yc.E//.

The point assigned .C0; �/ in any given version of �o is defined as follows: As a point
in �o is a map from Arc.�o/ to .0;1/, it is sufficient to provide a positive number
to any given arc subject to the constraints in (6–6). For this purpose, let  � �o denote
an arc. Then  corresponds via TC to a component of the locus � in C0 . The integral
over this component of the pull-back of .1�3 cos2 �/d'�

p
6 cos �dt is the value on

 of C0 ’s assigned point in �o .

The point assigned C0 in any given version of Ro is the chosen lift from o’s version
of Choice 3 above.

The point assigned to C0 in R� is obtained as follows: Each e0 2 yE labels a component
of C0�� ; keep in mind that each such component has been given a parametrization.
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Let we0 denote the function w that appears in the corresponding version of (2–5). Now
let � be any value that is taken by � on each e0 2 yE labeled component of C0 �� .
With � understood, then C0 ’s assigned value in R� is

(6–27) �
1

2�
˛Q yE

.�/
X

e02 yE

R
we0.�; v/dv:

6.D Continuity for the map to OT =Aut.T /

This subsection makes two key assertions. Here is the first assertion: The assignment
to .C0; �/ of its point in R�OT =Aut.T / is independent of the choices that are made
in Part 3 of the preceding subsection.

The second assertion is that the image of .C0; �/ in R�OT =Aut.T / factors through
M� yA;T . Granted that such is the case, the constructions in the preceding subsection
define a map from M� yA;T to R�OT =Aut.T / and it follows from the first assertion
using Lemma 5.4 that this is a continuous map.

The remainder of this subsection has nine parts that justify these two assertions.

Part 1 The first observation concerns Choice 3 from the preceding subsection. A
referral to the conclusions of Cases 2 and 4 of Part 5 from Subsection 2.C finds that
changes in any o 2 V version of Choice 3 are already invisible in the space that is
depicted in (6–15). A referral to these same cases in Part 5 of Subsection 2.C finds that
a change in }’s version of Choice 3 or a change in Choice 2 moves .C0; �/’s assigned
point in (6–15) along its orbit under the Z�Z action that defines the quotient in (6–9).
Note in this regard that any change in }’s version of Choice 3 will move C ’s point in
(6–15) along the Z �Q yE subgroup in Z�Z. In any event, a change in Choice 2 or any
version of Choice 3 is invisible in OT . The following lemma states this conclusion in
a formal fashion:

Lemma 6.5 The constructions in the preceding subsection defines a continuous map
from M� yA;T

ƒ to R�OT .

Proof of Lemma 6.5 The conclusions made just prior to the lemma assert that the
constructions of the preceding subsection assign a unique point in R�OT to each triple
of the form .C0; �;TC / where .C0; �/ defines an equivalence class in M� yA;T and
TC is a correspondence in .C0; �/ for T . To prove the lemma, it is enough to prove
that the point assigned this triple depends only on its equivalence class in M� yA;T

ƒ .

For this purpose, suppose that  is a holomorphic diffeomorphism of C0 and let
�0 D � ı . Let TC

0 denote the correspondence that is obtained from TC as follows:
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When e 2 T is an edge and Ke its corresponding component in C0�� as given by
TC , then TC

0 makes e correspond to  �1.Ke/. Likewise, if  � �o is an arc, then it
corresponds via TC to an arc, C , in C0 . The arc  corresponds via TC

0 to  �1.C /.
This is designed so that the � image of any TC labeled subset of C0 is identical to the
�0 image of the corresponding TC

0 labeled subset.

Granted the preceding conclusion, then .C0; �;TC / and .C0; �
0;TC

0/ have the same
image in the R factor of R�OT =Aut.T / since the respective images in this factor are
defined from the � and �0 images of respective components with the same edge labels
in the ��� and �0�� versions of C0�� . A similar line of reasoning as applied to the
arcs in any given version �o explains why the images of .C0; �;TC / and .C0; �

0;TC
0/

agree in the corresponding �o factor of OT .

To continue, let e now denote the distinguished edge in the Aut.T / orbit yE from }’s
incident edge set. The chosen canonical parametrization for Ke can be pulled back via
 and this pull-back can be used for the canonical parametrization of  �1.Ke/. If
this is done, then the other choices from Part 3 of Subsection 6.C can be made so that
the canonical parametrization for any given  �1.Kye/ is the pull-back via  of that
for Kye . Indeed, since the � image of Kye is the same as the �0 image of  �1.Kye/,
the lifts to R that are used to inductively define these parametrizations can be taken
to agree at each stage of the induction. In particular, doing so guarantees that the
respective assignments to .C0; �;TC / and .C0; �

0;TC
0/ in R� and in each Ro factor

of R� � .�oRo/ also agree.

Part 2 Left yet to discuss is the affect in a change for the correspondence of T in
.C0; �/. Now any change from the original correspondence can be viewed as the result
of using the original correspondence after acting on T by an element �2Aut.T /. Such
is the view taken here. With this understood, consider:

Lemma 6.6 The change in the original correspondence by the action of � 2 Aut.T /
changes the assigned point in R�OT by the Aut.T / action of this same �.

Note that the first of the two assertion made at the outset of this subsection is an
immediate consequence of Lemma 6.6. Meanwhile, the second of these assertions is a
direct corollary to Lemmas 6.5 and 6.6.

The remainder of this part and the subsequent parts of this subsection contain the
folowing proof.

Proof of Lemma 6.6 Consider first the case where o is a vertex in V and the auto-
morphism � generates the corresponding Z=.noZ/ subgroup. The composition of the
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original correspondence with � does not change the identification between (6–20) and
(6–15). This said, the new correspondence does not change the assignment to .C0; �/

in either R� nor in any yo 2 T �To version of Ryo ��yo .

To analyze the change of .C0; �/’s assigned point in the remaining factors Ryo ��yo ,
let yo denote a vertex in To and let  denote an arc in �yo . The original correspondence
identified .yo;  / with a component of the complement of the critical point set in the
� D �yo locus in C0 . The new one identifies the latter component now with the arc �. /
in � �.yo/ . Thus, the new map for C0 in ��.yo/ gives the value on �. / that the original
map for C in �yo gives  . This is what (6–21) asserts.

Part 3 Consider now the change in the assignment to Ro . Let e denote the edge
that connects o to T �To . Choices 2 and 3 from Part 3 of the preceding subsection
can be made for the new correspondence so that the original parametrization of Ke is
unchanged. The original correspondence identifies the distinguished vertex �o with a
particular missing or singular point on the � D �o circle of the parametrizing cylinder
for Ke . Let � denote the latter point and let � 0 denote the missing or singular point
on this same circle that is identified by the original correspondence with ��1.�o/. The
new correspondence identifes � 0 with �o . As a consequence, the o version of Choice
3 for the new correspondence can be taken to be a lift of the R=.2�Z/ coordinate of
� 0 . This is what (6–22) asserts.

Part 4 Turn next to the change in some Ryo in the case that yo is a vertex in To � o.
Here, there are two cases to consider. The first case is that where yo is in a component
of To� o that is fixed by �. Thus, the component connects to o through an �–invariant
edge in Eo . Let e0 denote the latter. The change in the assignment to Ryo is determined
up to Choice 3 modifications by the change in the canonical parametrization of Ke0 .
Indeed, if the parametrization changes due to the action of some integer pair N , then
the conclusions in Part 5 of Subsection 2.C imply that the new assignments to the
versions of Ryo that connect to o through e0 can be made so that each differs from the
original by the addition of the number depicted in (6–8).

Granted the preceding, let f�1; : : : ; �N g denote the concatenating path set that connects
�o to a vertex in `oe0 . The new parametrization can be viewed as one that is obtained
via the parametrizing algorithm of Subsection 2.C by using the original parametrization
of Ke , the original R lift of the R=.2�Z/ coordinate of the point � on the � D �o

circle in the parametrizing domain, but a different concatenating path set from �o to
a vertex on `oe0 . To explain, let �� denote the path in `o that starts at �o and runs
opposite the orientation to ��1.�o/. The new concatenating path set is f��1.�1/ ı

��; ��1.�2/; : : : ; �
�1.�N /g. Let N � �N denote the final arc. Thus, N � `oe0 . Let
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�0 � `oe0 denote the oriented path in `oe0 that starts with ��1.N / and then runs
from its ending vertex in the oriented direction on `oe0 to the end vertex of N , then
finishes by traversing N against its orientation to its start vertex. The ordered set
f��1.�1/ı�

�; ��1.�2/; : : : ; �
�1.�N /; �

0; ��1
N
; : : : ; �1

�1g is a concatenating path set that
starts at �o and has final arc ending at �o . Let � denote the oriented loop in �o that is
obtained by traversing the constituent paths from left most to right most in this ordered
set, taking into account that the the final arc of any one is the initial arc of the next.
This loop has a canonical lift, �� , to a loop in ��o . According to Lemma 2.3, the
new parametrization of Ke0 is obtained from the old by the action of the integer pair
��o.Œ�

��/ where Œ��� denotes the homology class of the oriented loop �� and �o

denotes the canonically defined class in H 1.��oIZ�Z/.

The computation of �o.Œ���/ relies on the fact that �o is Z=.noZ/ invariant. Thus, as
� is the generator,

(6–28) �o.Œ���/D
1

no
�o

�
Œ���C Œ.�.�//��C � � �C

��
�no�1.�/

�
�

��
:

This understood, the sum of homology classes that appears here is the class that is
obtained by traversing `oe0 once in its oriented direction while traversing `oe once in
the direction that is opposite to its orientation. Thus,

(6–29) �o.Œ���/D
1

no
.Qe0 �Qe/:

With the preceding understood, the resulting change in the assignment to .C0; �/ in
Ryo is that given by (6–23).

Part 5 This part considers the case that yo 2 To�o is a vertex that lies in a component
that is not fixed by the Z=.noZ/ action. Let e0 2Eo again denote the edge that connects
yo’s component of To � o to o. Let E � Eo denote the orbit of e0 for the Z=.noZ/

action. Let ye denote the edge in T that connects yo to T � Tyo . The component of
C0�� that is labeled by the new correspondence by �.ye/ is the component that the old
one assigned to ye . The parametrization of this component will change by the action
of an integer pair, N . This understood, the new assignment in R�.yo/ is thus obtained
from the old assignment in Ryo by adding the term in (6–8).

The key point now is that the integer pair N is the same for all vertices in yo’s component
of To�o. In particular, the integer pair N is the pair that changes the parameterization
of the component that is labeled by e0 using the old parametrization. Let K0 denote
the latter. To explore the parametrization change, let f�1; : : : ; �N g denote the chosen
concatenating path set that is used originally to give the canonical parametrization to
K0 . Now, there are two cases to consider. In the first, e0 is the distinguished edge in
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its orbit. In this case, �.e0/ is the first edge and the concatenating path that gives its
new orientation is f�1 ı �; �2; : : : ; �N g where � is the path that circumnavigates `o

in the direction opposite to its orientation. According to the conclusions from Part
5 of Subsection 2.C, this then implies that N D Qe . In the second case, e0 is not
the distinguished edge. In this case, the same concatenating path set as the original
gives the new parametrization of K0 and so N D 0. Thus, the affect of � on the fRyog
assignments are as depicted by (6–24).

Part 6 This and Parts 7–9 concern the effect on .C0; �/’s assigned point in
OT =Aut.T / when the change in the correspondence is obtained using an element in
(6–13)’s Aut} subgroup. Let � denote such an element. The first point to consider is the
affect of � on the assignment to the simplex �} . Let r denote the original assignment
and r 0 the new one. If the original correspondence identifies a given component of
the TC version of �} with a given arc  in the T version of �} , then the new
correspondence identifies this same component with �. /. But this means that r 0 has
the same value on �. / as r does on  . Thus, r 0 D �.r/.

This line of reasoning finds the analogous formula for the change in the assignment
to �o2V�o . To be precise, use ro to denote the original assignment to �o and r 0o the
new one. Then r 0

�.o/
.�. //D ro. / for all  2 �o .

Part 7 The story on the other aspects of .C0; �/’s assignment in OT =Aut.T / starts
here by considering the new assignment for .C0; �/ in the space depicted in (6–15). This
assigned point has a partner in the space depicted in (6–20). The original assignment
for .C0; �/ also provides a point for .C0; �/ in the space depicted in (6–20). These
two points are compared in what follows.

The new assignment in (6–15) requires new versions of Choice 2 and Choice 3 from
Part 3 of the preceding subsection. This is because � can move the distinguished edge
in yE . To make these new choices, let e denote the original distinguished edge in yE .
The component of C0 �� that corresponds via the new correspondence to e is the
component, denoted here by K , that corresponds via the original to ��1.e/. Choice 2
requires a parametrization of K . A convenient choice is the canonical parametrization
as defined by the original choices.

The } version of Choice 3 requires a lift to R of the point on the � D �} circle
of K ’s parametrizing cylinder that corresponds via the new correspondence to the
distinguished vertex �} . This is the point that corresponds to ��1.�}/ via the original
correspondence. A convenient choice is obtained as follows: Let f�1; : : : ; �N g denote
the concatenating path set that is used to define the original parametrization for K .
Note that the ending vertex of �N corresponds via the original correspondence to a
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certain point on the � D �} circle in the original parametrizing cylinder of K . Use
z to denote this point. The parametrizing algorithm from Subsection 2.C provides an
R lift of the R=.2�Z/ coordinate of z . Subtract from this the integral of dv in the
oriented direction on the � D �} circle along the segment that starts at ��1.�}/ and
ends at z . Let �new denote the resulting real number. Use �new for the new version of
}’s Choice 3.

Part 8 This same �new is the new assignment for .C0; �/ in the R} factor in (6–15).
The story on the new assignments to the other factors requires the preliminary di-
gression that follows. To start the digression, let e be an incident edge to }, and
let f�e

1; : : : ; �
e

N.e/g denote the chosen concatenating path set that connects �} to a
vertex on `oe . Let ye denote the edge that is mapped by � to the distinguished vertex in
yE . The ye version of this concatenating path set is denoted at times as in Part 7, thus

by f�1; : : : ; �N g.

To continue, let � denote the path in `oye that starts at the beginning of the final arc
in �N and, after reaching the end of this arc, then proceeds against the orientation
to the point ��1.�}/. Then both f�e

1; : : : ; �
e

N.e/g and f�1; : : : ; �N ; �
�1.��.e/1/ ı

�; ��1.��.e/2/; : : : ; �
�1.��.e/N.�.e///g define concatenating path sets that run from �}

to `}e . Let �0 denote the path in `}e that starts with the last arc in ��1.��.e/N.�.e///,
then continues in the oriented direction from the latter’s end to the start of the final arc
in �e

N.e/
and then traverses this last arc in reverse. So defined, the set

(6–30)˚
�1; :::; �N ; �

�1.��.e/1/ ı �; �
�1.��.e/2/; :::; �

�1.��.e/N.�.e///; �
0; �e

N.e/
�1
; :::; �e

1
�1	

concatenates by gluing the final arc of each constituent path to the first arc of the
subsequent one so has to give a loop that starts and ends at �} . Let �e denote this
loop.

As constructed, the loop �e as a canonical lift as a loop in ��} , this denoted by �e
� .

Let Ne D .ne; ne
0/ denote the value of ��} on Œ�e

��. According to Lemma 2.3, the
parameterization of the component of C0 � � that originally corresponded to e is
changed with the new choices by the action of the integer Ne .

As a consequence of this last conclusion, the new assignment to .C0; �/ in the R�

factor of (6–15) is obtained from the old by adding �2�
P

e2 yE
.ne
0q yE � neq yE

0/.

Here is a second consequence: The new assignment to .C0; �/ in the �o2VRo factor
can be made so that if �o denotes the original assignment in Ro and �o

0 the new one,
then

(6–31) ��.o/
0
D �o� 2�

˛Ne
.�yo/

˛Qye .�yo/
;
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where e denotes the edge that connects o’s component of T �} to }.

Note for the future that there is one more path in �} that plays an important role in
the story, this the path that is constructed from the paths in the set f�1; : : : ; �N ; �g by
identifying the final arc in any �j with the starting arc in the subsequent path. This
path is denoted below as �. It starts at �} and ends at ��1.�o/. The path � has a
canonical preimage in ��} . The latter is denoted in what follows by �� .

Part 9 It remains now to compare the new and old assignments in (6–15) by viewing
the latter as points in (6–20). There are three steps to this task.

Step 1 For this purpose, use .�; r/ 2Maps.Vert yE/��} to denote .C0; �/’s original
assignment in R� . Use .� 0; r 0/ to denote the new assignment. As noted already,
r 0 D �.r/. To see about � 0 , let y� denote the chosen point in x�� over �} . The path
�� has a lift to x�� that starts at y� and ends at some vertex y� 0 , a vertex that maps to
��1.�}/. According to (6–16), the value of � on y� 0 is �new . Meanwhile, �new is also
equal to the value of � 0 on y� . Indeed, such is the case because Part 7 found �new to be
.C0; �/’s new R} assignment in (6–15).

Now, � has a unique lift in yAut} that sends y� 0 to y� . Use y� to denote the latter. The
conclusions of the last paragraph assert that � 0.y�/D �new D �.y�

�1y�/. Thus, � 0Dy�.�/.

Step 2 To study the R� factors, let �� denote the original assignment and ��0 the
new one. The values for �� and � 0� were defined by specifying them on a particular
element in the set ƒ. Denote this element by L. To elaborate, the component of L

with label any given e 2 yE was obtained as follows: Construct the path �e in �o from
f�e

1; : : : ; �
e

N.e/g by gluing the end arc of any j <N.e/ version to the starting arc of
the subsequent version. This path has a canonical lift to ��o and thus a canonical lift
to x�� as a path that starts at y� . The end vertex of this lift lies on an inverse image of
`�}e . This is the component of L that is labeled by e .

The conclusions in Part 7 about the R� factors can now be summarized by the relation
� 0.L/D �.L/� 2�

P
e2 yE

.ne
0q yE �neq yE

0/. As will now be explained, this is also the
value of � on y��1.L/. To see why, let e 2 yE , let ` denote e ’s component of L and let
`0 denote the component for �.e/. Thus, y��1.`0/ is in Le and this is e ’s component of
y��1.L/. As such, it is obtained from ` by the action of some element in Z�Z. To find
this element, note that as ` was defined by the set f�e

1; : : : ; �
e

N.e/g, so y��1.`0/ is de-
fined by the ordered set f�1; : : : ; �N ; �

�1.��.e/1/ı�; �
�1.��.e/2/; : : : ; �

�1.��.e/N.�.e///g.
This then implies that y��1.`0/ can be obtained from ` by the action of Ne .
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Granted that such is the case for all e 2 yE , then (6–17) gives �.y��1.L// the desired
value.

Step 3 The final concern is that of the assignments to any given version of yU.�/ . For
this purpose, suppose that e is an incident edge to }. The old and new correspondences
each assign .C0; �/ a map from Le to We D .�o2V.e/Ro/=.�e2V.e/Zo/. These maps
are defined by lifts to �o2V.e/Ro . In what follows, �o.`/ and �o

0.`/ are used to denote
the respective old and new values on a given ` 2Le for the factor labeled by a given
o 2 V.e/.
Now, both maps to We are determined by their values on a particular element in
Le . The latter, `e , is determined as follows: As described previously, the paths that
comprise the set f�e

1; : : : ; �
e

N.e/g glue together in a sequential fashion so as to define
a path from �} to a vertex on `oe . This path then lifts to a path that starts at y� and
ends at a vertex on a unique preimage of `oe in x�� . This preimage is `e .

The components of � that are assigned by the new correspondence to vertices in
V.�.e// are assigned to vertices in V.e/ by the old correspondence. This understood,
let o2V.e/. Equation (6–31) describes the relationship between � 0

�.o/
.`�.e// and �o.`/.

As is explained next, (6–31) is also the formula for y�.x/ on `�.e/ . Indeed, by definition,
y�.x/.y�.`e// D x.`e/. To see what this means, note that y�.`e/ 2 L�.e/ and so `�.e/ is
obtained from y�.`e/ by the action of some integer pair. As argued at the end of Step
2 in the case when e 2 yE , this integer pair is Ne . This being the case, then (6–19)
implies that x0 equal y�.x/.

6.E More about Aut.T /

The story told by Theorems 6.2 and 6.3 simplifies to some extend when Aut} fixes
one of }’s incident edges. As is explained below, there is no need in this case to use
the space in (6–20) because the Aut.T / action is readily visible on the space in (6–9).

To begin the story in this case, let e denote an incident edge to } that is fixed by
Aut.T /. Agree to use e for the distinguished incident edge orbit. Since Aut} fixes
e , it must act as a subgroup of the group of automorphisms of the labeled graph
`}e � `} . Thus, Aut} is a cyclic group whose order is denoted by n} . This implies
that Aut.T / is isomorphic to the o D } version of (6–14). Granted these remarks,
view Aut} D Z=.n}Z/ as a subgroup of Aut.T / using this same version of (6–14).

Define the action of Aut} on the space in (6–9) via an action of yAut} on the space in
(6–15). In this regard, note that the group yAut} is isomorphic now to

(6–32)
��

1

n}
Z

�
� .Z�Z/

�
=Z;
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where the notation is as follows: The first factor in the brackets arises as the Z extension

(6–33) 1! Z!
1

n}
Z! Z=.n}Z/! 1;

where the Z action is that of the subgroup that covers the identity in Z=.n}Z/. Mean-
while, the Z action on Z�Z is the subgroup Z �Qe whereby 1 2 Z acts as �Qe . This
understood, the equivalence class in (6–32) of a pair .z;N D .n; n0// with z � n} 2 Z

and N 2 Z�Z acts on the factor R� in (6–15) as the translation by �2�.n0qe�nqe
0/.

Meanwhile, it acts on R} as the translation by the yoD} version of

(6–34) �2�
˛NCzQe

.�yo/

˛Qye .�yo/
:

The action of �D Œz;N � on the factors �o�o is such that if r 2�o and  is an arc in
�o , then the resulting �.r/.�. // equals r. /; here, �. / is the image of  under the
induced map from the set of arcs in �o to the set in � �.o/ .

The description of the action on .�o2VRo/=.�o2VZo/ requires distinguishing two
separate cases. For this purpose, keep in mind the following: When E � E} is an
Aut} orbit, then yAut} preserves the factor �e02E Œ.�o2V.e0/Ro/=.�o2V.e0/Zo/�. Up for
discussion first is the case where E is a single edge. In this regard, note that V.e/Dø
so there is at most one such E unless Aut} is trivial. Let e0 denote the fixed edge.
Then the action of .z;N / 2 yAut} comes from the following action on �o2V.e0/Ro :
Let � denote a point in this product and let yo 2 V.e0/. Then the value of �.�/ in the
factor labeled by any given �.yo/ is obtained by subtracting

(6–35)
2�

˛Qye .�yo/

�
1

n}
˛Qe�Qe0

.�yo/C˛NCzQe
.�yo/

�
from the value of � in the factor labeled by yo. Here, ye is the edge that connects yo to
T �Tyo .

If E � E} is a non-trivial orbit of Aut} , then E has n} edges and they have a
canonical cyclic ordering. The definition of the yAut} action on �e02E Œ.�o2V.e0/Ro/=

.�o2V.e0/Zo/� requires the choice of a distinguished edge in E and the definition of
a compatible linear ordering with the distinguished edge last. Granted such a choice,
define the action of .z;N / 2 yAut} from the following action on �o2V.e0/Ro : Let �
denote a point in this product and let yo 2 V.e0/. Then the value of �.�/ in the factor
labeled by any given �.yo/ is obtained by subtracting

(6–36)
2�

˛Qye .�yo/

�
"yo˛Qe

.�yo/C˛NCzQe
.�yo/

�
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from the value of � on yo. Here, "yo D 0 unless the edge that connects yo’s component
of T}�} to } is the distinguished edge in E . In this case, "yo D 1.

The identification given above between (6–15) and (6–20) intertwines these yAut.T /
actions if the various concatenating path sets are chosen in an appropriate fashion.
This understood, the version given here of the Aut.T / action on OT can be used for
yOT =Aut.T / in the statements of Theorems 6.2 and 6.3.

With regards to OT �
yOT , more can be said here than is stated in Proposition 6.4. For

this purpose, various notions must be introduced. The first is the integer, m� , this the
least common divisor of the integers that comprise the pair Qe . Next, let T F � T

denote the subgraph on which Aut.T / acts trivially. Thus, the edge e is in T F , but
T F may well be bigger. In any event, T F is connected. Let kT denote the greatest
common divisor of the integers in the set that consists of m� and the versions of no

for vertices o 2 T F .

The next notion is that of a ‘canonical diagonal subgroup’ of Aut.T /. To define this
notion, note that if o 2 T F , then Z=.noZ/ has a unique Z=.kT Z/ subgroup and the
latter has a canonical generator; this is the element that is the smallest multiple of the
generator of Z=.noZ/. Granted the preceding, a subgroup of Aut.T / is a canonical
diagonal subgroup when it has the following two properties: First, it is cyclic of order
kT . Second, it has a generator that maps to the canonical generator of each Z=.kT Z/

subgroup of each o 2 T F version of Z=.noZ/. According to Proposition 6.4, any two
canonical diagonal subgroups are conjugate in Aut.T /.

With the introduction now over, consider:

Proposition 6.7 The stabilizer in Aut.T / of any given point in OT is a subgroup
of some canonical diagonal subgroup. Conversely, if G is a subgroup of a canonical
diagonal subgroup of Aut.T /, then the fixed point set of G is the product of its
corresponding fixed point set in �o�o and a product of circles, one that corresponds to
the factor R� and the rest labeled in a canonical fashion by the various orbits of G in
T ’s multivalent vertex set.

The proof of this proposition uses arguments from the proof of Proposition 6.4 and so
the latter proof is offered first.

Proof of Proposition 6.4 To prove the first assertion, suppose for argument’s sake
that an element � 2Aut.T / maps to the identity in Aut} yet fixes a given point in OT .
This means that � is determined by its components in the versions of Aut.T.�// that
are labeled by the vertices that share an edge with }. Thus, it is sufficient to consider
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the case where � 2 Aut.To/ for some o 2 T �}. As such, it is permissable to view
OT as in (6–9). Granted this, then the arguments given in Subsection 3.C to prove
Propositions 4.4 and 4.5 can be borrowed almost verbatim to prove that � is the identity
element.

The proof of the last part of the proposition uses an induction argument that moves from
any given o 2 T to the vertices in To� o that share its incident edges. The phrasing of
the induction step uses the notion of the ‘generation number’ of a multivalent vertex in
T . Here, } is the only generation 0 vertex, and a vertex o has generation k > 0 when
it shares an edge with a generation k � 1 vertex in T �To . Use Vert.k/ to denote the
set of generation k vertices.

The lemma that follows facilitates the induction.

Lemma 6.8 Suppose that k > 0 and that � and �0 both stabilize points in OT

and have the same image in Aut.T /=.�o2Vert.k/ Aut.To//. Then, there exists some
j 2 �o2Vert.kC1/ Aut.To/ such that j �j�1 and �0 have the same image in
Aut.T /=.�o2Vert.kC1/ Aut.To//.

This lemma is proved below. The actual induction step is made using the following
generalization:

Lemma 6.9 Suppose that k > 0 and suppose that G and G0 are subgroups of Aut.T /
that stabilize points in OT and have the same image in Aut.T /=.�o2Vert.k/ Aut.To//.
Then, there exists some j 2 �o2Vert.kC1/ Aut.To/ such that jGj�1 and G0 have the
same image in Aut.T /=.�o2Vert.kC1/ Aut.To//.

Proof of Lemma 6.9 By appeal to Lemma 6.8 there are non-trivial subgroups in G

and in G0 that have the same image in Aut.T /=.�o2Vert.kC1/ Aut.To//. Take H �G

and H 0 � G0 to be a maximal group of this sort in the following sense: There is no
subgroup of G that properly contains H and has a partner in G0 with the same image
in Aut.T /=.�o2Vert.kC1/ Aut.To//. The argument that follows deriving nonsense if
H ¤G .

To start this derivation, suppose that � 2 G �H and let �0 2 G0 denote the element
that shares �’s image in Aut.T /=.�o2Vert.k/ Aut.To//. A second appeal to Lemma 6.8
finds some j 2 �o2Vert.k/ Aut.To/ such that j �j�1 D �0 . Of concern is whether the
commutators of j with the elements in H are all in �o2Vert.kC1/ Aut.To/. If such is
the case, then the group generated by H and j �j�1 contains H as a proper subgroup
and has the same image in Aut.T /=.�o2Vert.kC1/ Aut.To// as the group generated by
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H and �0 . Of course, this contradicts the assumed maximality of H . In any event,
j acts in Z=.noZ/ as the translation by some integer, here denoted by jo . Thus,
jo 2 f0; : : : ; no�1g. Note that the commutators of j with the elements of H all lie in
�o2Vert.kC1/ Aut.To/ if and only if the assignment o! jo is constant on H orbits in
Vert.k/.

To see that such must be the case, note first that � and �0 have identical actions on
Vert.k/ since their actions here are determined by their actions on the set of edges that
are incident to the vertices in Vert.k � 1/. Thus if � fixes o 2 Vert.k/, then so does �0 .
In this case, there is nothing lost by taking jo D 0. Suppose next that � does not fix o.
Now, � maps `o to `�.o/ as does �0 , and the affect of the latter is that of j�.o/�jo

�1 .

Keep this last observation on hold for the moment for the following key oberservations:
First, if u 2Aut.T /, then noD nu.o/ . Second, u induces a map from the vertex set on
`o to that on `u.o/ that respects the cyclic ordering. Third, this map intertwines the
action of i 2Z=.noZ/ with its corresponding action in Z=.nu.o/Z/. Written prosaically,
u � i D i �u.

Here now are the salient implications of these last observations: Suppose that o2Vert.k/
and that h�1�.o/D o for some h2H . By appeal to Lemma 6.8, there exists an element
io 2 Aut.To/ such that io.h

�1�/i�1
o D h�1�0 in Z=.noZ/ and so an appeal to the

conclusions of the preceding paragraph finds that h�1�Dh�1�0 in Z=.noZ/. Meanwhile,
the conclusions from the preceding two paragraphs imply that h�1�0D .jh.o/jo

�1/h�1�

in Z=.noZ/. Thus, jh.o/ D jo and so the assignment o! jo is constant on the H –
orbits in Vert.k/. This then means that j hj�1h�1 � �o2Vert.kC1/ Aut.To/ for all
h 2H .

The proof of Lemma 6.8 requires some knowledge of the conditions that allow a given
� 2 Aut.T / to have a fixed point in OT . What follows is a digression in six parts to
describe both necessary and sufficient conditions on �.

Part 1 The automorphism � has a lift in yAut.T / with a fixed point in the space that is
depicted in (6–20). Let � also denote this lift and let b denote a fixed point for this lifted
version of �, thus a point in (6–20). To determine necessary and sufficient conditions
for � to fix b , it proves useful to make the choices that are described in Parts 1 and
2 of Subsection 6.C so as to view b as a point in the space that is depicted in (6–15).
In this incarnation, b is a tuple .��; .�}; r}/; .ro; �o/o2V/ where �� and �} are real
numbers, each ro is in the corresponding simplex �o and .�o/o2V 2 .�oRo/=.�oZo/.

What follows summarizes how the choices from Parts 1 and 2 of Subsection 6.C identify
(6–20) with (6–15). To start, note that the R� factor of (6–20) is a pair whose second
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component is r} and whose first is a map from Vert yE to R. The value of this map
on the vertex y� from Part 2 in Subsection 6.C gives the R} factor in (6–15). The
correspondence between the remaining factors in (6–20) and (6–15) uses an assigned
component of the inverse image in x�� of each `�}.�/ . Use `e to denote the component
that is assigned to an edge e 2E} . The value on `e of the Ue factor in (6–20) gives
the factor �o2V.e/Ro in (6–15). Meanwhile, those f`eg

e2 yE
that are indexed by the

edges in yE provide a canonical element in ƒ and the values of (6–20)’s R� factor on
the latter provides the R� factor in (6–15).

The definition of `e is that used in Part 8 of Subsection 6.D. In brief, the concatenating
path from �} to `}e provides a unique path in x�� from y� to a vertex that projects to
`�}e . The latter vertex sits on `e .

Part 2 The most straightforward aspect of the fixed point condition concerns the
collection .ro/o2V[} . In particular, if � fixes b , then

(6–37) r�.o/.�. //D ro. /

for each o 2 V [} and for each arc  � �o . This is to say that � fixes b ’s image in
�o�o .

Part 3 Consider next the condition that �.�}/ D �} . For this purpose, construct
a path in �} that starts at �} and ends at ��1.�}/ as follows: Let e denote the
distinguished vertex in E} and let ye � ��1.e/. Introduce f�1; : : : ; �N g to denote the
chosen concatenating path set for the edge ye . Thus, the last vertex on �N lies on
`}ye . Let � denote the path that starts with the final arc in �N as it is traversed while
traveling �N ; after running along this arc, � then proceeds in the oriented direction
along `}ye to ��1.�}/. The concatenating path set f�1; : : : ; �N ; �g defines a unique
path in x�� that starts at y� and ends at a vertex on `ye that projects to ��1.�}/. Let
y�� denote this ending vertex. Meanwhile, let �� �} denote the path that is obtained
from f�1; : : : ; �N ; �g by identifying the final arc in each �k with the initial arc in the
subsequent path. Note that � is the projection to �} of the path in x�� that was used
to define y�� .

The vertex ��1.y�/ is some Z�Z translate of y�� , thus, N y�� with N 2 Z�Z. Granted
all of this, the condition for � to fix �} is:

(6–38)
X
��

˙r}. /D ˛N .�}/;

where the sum is over the arcs in �, and where the C sign is used if and only if the
arc is crossed in its oriented direction. Note that this condition concerns only r} and
�’s image in yAut} . In particular, it says nothing about the value of �} .
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Part 4 The conditions that � must satisfy to fix the rest of b involve an integer pair
that is defined for each of }’s incident edges. This integer pair is defined modulo
Z �Qe as follows: If e 2E} , then �.`e/ is a component of the inverse image of `�

}�.e/

and so is equal to a Z�Z translate of `�.e/ . Let Re D .re; r
0
e/ denote such a pair. The

condition �.��/D �� involves the collection fRege2 yE
:

(6–39)
X
e2 yE

�
r 0eq yE � req yE

0
�
D 0:

Thus, this condition concerns only �’s image in yAut} ; it says nothing about �� .

By the way, a particular version of Re is �.Ne CN /, where N is the integer pair
defined in Part 3 and where Ne is defined as in Part 8 of Subsection 6.D.

Part 5 Granted that � fixes �� , �} and .ro/, consider next the conditions for �’s
fixing of .�o/o2V . In this regard, there are two cases to consider, the first where � fixes
a given vertex yo2V and the second where �.yo/¤ yo. This part tells the story in the case
that � fixes yo. For this purpose, keep in mind the following feature of T : If yo is fixed
by �, then so is o if yo 2 To . With the preceding, let �yo 2 f0; : : : ; nyo � 1g D Z=.noZ/

denote the image of �. Then yo’s version of (6–37) requires that � acts so that

(6–40) �yo! �yo�
2�

˛Qe.yo/
.�yo/

�
�yo

nyo
˛Qe.yo/

.�yo/C
X

o

�o

no
˛Qe.o/�Qe0.o/

.�yo/C˛Re
.�yo/

�
;

where the vertex labeled sum involves only vertices o 2 V�yo where To contains yo. To
explain the notation, e.o/ and e0.o/ are both incident edges to o, the former connecting
o to T �To and the latter connecting yo’s component of To� 0 to o. Finally, e is the
incident edge to } that connects yo’s component of T �} to }.

There is a convenient way to rewrite (6–40) that uses the following observation about
T : Each vertex in T �} is a monovalent vertex in a unique subgraph of T whose
second monovalent vertex is }. Moreover, if the given vertex is in generation k , then
there are k vertices on this graph and their generation numbers increase by 1 as they
are successively passed as the graph is traversed from }. The interior vertices in the yo
version of this graph are precisely the vertices that appear in the sum on the right hand
side of (6–40). In this regard, if these interior vertices are labeled as fo1; : : : ; ok D yog

by their generation number, then e.oj / D e0.oj�1/. This understood, then (6–40)
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implies that � acts on �yo by adding

�
2�

˛Qe.yo/
.�yo/

�
�ok

nok

�
�ok�1

nok�1

�
˛Qe.ok /

.�yo/C � � �

C

�
�o2

no2

�
�o1

no1

�
˛Qe.o2/

.�yo/C

�
�o1

no1

˛Qe
.�yo/C˛Re

.�yo/

�
:

(6–41)

This last formula has the following consequence when applied to yo and to each vertex
from the collection foj g1�j<k : Each o2 fo1; : : : ; ok�1; ok D yog version of �o is fixed
by � if and only if there exists a collection, fc1; : : : ; ckg, of integers such that

(6–42) �
�o1

no1

� c1

�
˛Qe

�
�o1

�
C˛Re

�
�o1

�
D 0:�

�o2

no2

�
�o1

no1

� c2

�
˛Qe.o2/

�
�o2

�
C

�
�o1

no1

� c1

�
˛Qe

�
�o2

�
C˛Re

�
�o2

�
D 0;

and so on through�
�ok

nok

�
�ok�1

nok�1

� ck

�
˛Qe.ok /

�
�ok

�
C � � �C

�
�o2

no2

�
�o1

no1

� c2

�
˛Qe.o2/

�
�ok

�
C�

�o1

no1

� c1

�
˛Qe

�
�ok

�
C˛Re

�
�ok

�
D 0:

Part 6 The next case to consider is that where yo is not fixed by �. As before, use k
for yo’s generation number. In this case, the effect of � is to map �yo to R�.yo/ and this
map has the schematic form

(6–43) �yo! �yo� 2�
˛Zyo.�yo/

˛Qe.yo/
.�yo/
�

2�

˛Qe.yo/
.�yo/

X


ryo. / mod .2�Z/;

where Zyo is an ordered pair of rational numbers that is determined by the image of � in
yAut.T /=.�o2Vert.k/ Aut.To//. For example, when yo is a first generation vertex, then
ZyoDRe with e here denoting the edge that contains both yo and }. Meanwhile, in all
cases, the sum in (6–43) is indexed by the arcs in `yo that are crossed when traveling in
the oriented direction from ��1.��.yo// to �yo .

Proof of Lemma 6.8 The automorphisms � and �0 have identical actions on Vert.k/
since their actions on this set are determined by their image in Aut.T /=.�o2Vert.k/
Aut.To//. This understood, if � fixes a given yo2Vert.k/, then so does �0 and it follows
from (6–42) that � and �0 have identical images in Z=.nyoZ/.
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Suppose next that yo 2 Vert.k/ is not fixed by �. To study this case, note first that any
j 2 �o2Vert.k/ Aut.To/ has an image in each o 2 Vert.k/ version of Z=.noZ/, and
this image is denoted in what follows as jo , a number from the set f0; : : : ; no � 1g.
Meanwhile, the yAut.T / version of (6–13) assigns both � and �0 integers in this same set,
these are their respective factors in the Z=.noZ/ summand. The latter are denoted here
by �o and �0o . This understood, there exists j 2 �o2Vert.k/ Auto such that j �j�1 D �0

in Aut.T /=.�o2Vert.kC1/ Auto/ when there exists a collection fjo 2 Z=.noZ/go2Vert.k/
such that

(6–44) �0o� �o D�
�
j�.o/� jo

�
for each o 2 Vert.k/. To see that this equation is solvable, let yo 2 Vert.k/, let M

denote yo’s orbit under the action of �, and let m denote the number of elements in M .
If M consists only of yo, then by virtue of what was said in the previous paragraph,
�o D �

0
o and one can take jo D 0. In the case that m> 1, then (6–44) is solvable if and

only if

(6–45)
X

o2M

.�o� �
0
o/D 0 mod .2�nyoZ/:

To prove (6–45), remark that �m and �0m both fix yo and so must be equal in Z=.nyoZ/.
As �m acts in Z=.nyoZ/ as

P
o2M �o and �0m acts as

P
o2M �0o , the equality in (6–45)

follows.

Proof of Proposition 6.7 Suppose that G � Aut.T / stabilizes some point. The first
observation here stems from Proposition 6.4: Since G is isomorphic to its image in
Aut}DZ=.n}Z/, it must be a cyclic group with one generator. To see what this means,
let e denote the distinguished incident edge to }, now fixed by Aut.T /. Let � 2G be
the generator. As before, use � to also denote the lift to yAut.T / and let b denote the
point in (6–15) that is fixed by this lift.

Let .z;N / denote �’s image in (6–32). The assumption that � fixes b has the following
consequence: The factor in R� is fixed if and only if

(6–46) N D
k�

m�
Qe;

where k� 2 Z and where m� is the greatest common divisor of the pairs that comprise
Qe . Meanwhile, b ’s factor in R} is then fixed if and only if

(6–47)
�}

n}
C

k�

m�
C z D 0;
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where �} 2 f0; : : : ; n}� 1g is �’s image in Aut} D Z=.n}Z/. This requires that

(6–48)
�

k�

m�
C z

�
D�

�}

n}
mod .Z/:

To proceed, suppose next that � fixes some vertex yo 2 T �} and that yo is in generation
k � 1. Let fo1; : : : ; ok D yog denote the vertices in the yo version of (6–42). By virtue
of (6–35), these equations now imply that � fixes �yo if and only if there are integers
fc1; : : : ; ckg such that

(6–49)

�
�o1

no1

�
�}

n}
� c1

�
˛Qe.o1/

�
�o1

�
C

�
�}

n}
C

k

m�
C z

�
˛Qe

�
�o1

�
D 0:�

�o2

no2

�
�o1

no1

� c2

�
˛Qe.o2/

�
�o2

�
C

�
�o1

no1

�
�}

n}
� c1

�
˛Qe.o1/

�
�o2

�
C

�
�}

n}
C

k�

m�
C z

�
˛Qe

�
�o2

�
D 0; and so on through�

�ok

nok

�
�ok�1

nok�1

� ck

�
˛Qe.ok /

�
�ok

�
C � � �C

�
�o2

no2

�
�o1

no1

� c2

�
˛Qe.o2/

�
�ok

�
C

�
�o1

no1

�
�}

n}
� c1

�
˛Qe.o1/

�
�ok

�
C

�
�}

n}
C

k�

m�
C z

�
˛Qe

�
�ok

�
D 0:

Here, a given version of �o denotes �’s image in Z=.noZ/D f0; : : : ; no� 1g. Coupled
with (6–47), this set of equations is satisfied if and only if each of the k versions of
�o=no that appear here are identical. The preceding fact together with (6–48) implies
that � generates a canonical diagonal subgroup of Aut.T /.

The remaining assertions of Proposition 6.7 follow directly from the preceding analysis
with the various versions of the formula in (6–43). The details here are straightforward
and so left to the reader.

7 Proof of Theorems 6.2 and 6.3

As the heading indicates, the purpose of this section is to supply the proofs of the main
theorems from the previous section. The arguments to this end are much like those
used to prove Theorem 3.1. In fact, there are many places where the arguments transfer
in an almost verbatim form and, except for a comment to this effect, these parts are left
to the reader. In any event, to start, use X in what follows to denote the map that is
defined in Subsection 6.C. Theorem 6.2 is proved by establishing the following about
X:
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�(7–1) The map X lifts on some neighborhood of any given element in M� yA;T
as a local diffeomorphism from M� yA;T

ƒ onto an open set in R�OT .

� The map X is 1–1 into R�OT =Aut.T /.

� R\M� yA;T is sent to R� .OT �
yOT /=Aut.T / and its complement to

R� yOT =Aut.T /.

� The map X is proper onto R�OT =Aut.T /.

Here, M� yA;T
ƒ is defined as in Theorem 6.3 to be the space of equivalence class of

triples .C0; �;TC / where .C0; �/ defines a point in M� yA;T and TC is a correspon-
dence of T in .C0; �/.

The first subsection below proves Theorem 6.3 that given X supplies Theorem 6.2’s
diffeomorphism.

7.A The local structure of the map X

The arguments given in this subsection justify the first point in (7–1) and the assertions
of Theorem 6.3. To start, note that Lemma 6.5 asserts that the map X lifts to define
a continuous map from M� yA;T

ƒ to R�OT . This understood, Proposition 5.1 and
Lemma 5.4 imply that the lift is smooth and locally 1–1. The first point in (7–1) follows
directly from this last conclusion.

Proof of Theorem 6.3 for the map X For the purposes of this proof, assume that the
map X is one of Theorem 6.2’s diffeomorphisms. The proof of Theorem 6.3 amounts
to no more than verifying the asserted properties of X. This task is left to the reader
with the following comment: Given the form of the parametrizations from Definition
2.1, all of these properties are direct consequences of the definitions given in Subsection
6.C.

7.B Why the map X is 1–1 from M�
yA;T to R�OT =Aut.T /

The proof that X is 1–1 applies Lemma 4.1 as in Subsection 4.B. To start, suppose that
.C0; �/ and .C0

0; �0/ have the same image in R�OT =Aut.T /. By assumption, T

has respective correspondences, TC and TC
0 , in .C0; �/ and in .C0; �

0/ and these can
be fixed so that .C0; �/ and .C0

0; �0/ have the same image in R�OT . This is because
any correspondence of T in .C0; �/ can be obtained from any other by composing
the original with a suitable automorphism of T . And, noted in Lemma 6.6, such a
change in the correspondence changes the assigned point in R�OT by the action of
the relevant automorphism.
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To say more, the choices in Parts 1 and 2 of Subsection 6.C should be used to identify
OT with the space in (6–9). With the identification understood, the assignments to
.C0; �/ and .C0; �

0/ of their respective points in

(7–2) R� �
�
R} ��}

�
�
�
�o2V.Ro ��o/

�
can be made so as to agree. This is done in a sequential fashion by first arranging
that the respective R� assignments agree. For the latter purpose, let e denote the
distinguished edge in the distinguished Aut} orbit yE . The assignments to R� can be
made equal by suitably choosing the respective pararameterizations of e ’s component
in the C and C 0 versions of C0 �� . With the R� assignments equal, the next step
is to arrange so that the R} assignments agree. Since the Z �Q yE subgroup of Z�Z

acts trivially on R� and since its action on R} changes the assignment by the action
of 2�Z, the C 0 version of the lift to R that defines its point in R} can be chosen to
make it agree with C ’s assigned point. When applied inductively, versions of this last
argument prove that any given o 2 V version of the two assignments in Ro can be
made to agree. Here, the induction moves from any given o 2 V to the vertices that
share its edges in To .

Given that C and C 0 have the same assignments in (7–2), then minor modifications of
the arguments used in Part 2 of Subsection 4.B prove that the conditions in (4–1) are
met in this case.

The appeal to Lemma 4.1 also requires the condition in (4–2). To see why this condition
holds, suppose that o is a mutlivalent vertex in T and that  � �o is an arc. Now let
e denote one of the edge labels on  and let e0 denote the other. The choices made
for the .C0; �/ assignment to the space in (7–2) give parametrizations to both the e

and e0 components of C0�� . These define C0 versions of the functions we and we0

whose difference along the interior of  ’s image in � is described by some N D .n; n0/

version of (2–14) and (2–15). There are corresponding C0
0 versions of we and we0 ,

and the point here is that their difference is also described by this same N D .n; n0/

version of (2–14) and (2–15). Indeed, such is the case because the integer N is obtained
by using Lemma 2.3 to compare the respective canonical parametrizations of the e0

component of either version of C0�� and its C0
0 counterpart with the parametrization

that gives the N D 0 case of (2–14) and (2–15) across  . Since the same integer pair
appears in both the C0 and C0

0 versions of (2–14) and (2–15), so ywe D ywe0 along  .

Given that the conditions in (4–1) and (4–2) have been met, the graph G is well defined.
If G ¤ø, then Lemma 4.1 asserts that C0

0
D C0 and that �0 is obtained from � by

a constant translation along the R factor of R� .S1 �S2/. This means that � D �0

since they share the same assignment in the R factor of R� .S1 �S2/. To see that
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G ¤ø, return to the respective C0 and C0
0 versions of (6–27). Subtraction of the C0

0

version from the C0 version finds the value 0 for the integral of yw around a non-empty
union of constant � circles in C0�� . Either ywD 0 on some of these circles, in which
case G ¤ø, or else yw is negative on some and positive on others. But this last case
also implies that G ¤ø since the complement in C0 of the critical point set of cos � is
path connected.

7.C The images of M�
yA;T \R and M�

yA;T �R.

The first order of business here is to explain why M� yA;T \R is mapped to the image
in R�OT =Aut.T / of the points where Aut.T / acts with non-trivial stablizer. For this
purpose, suppose that .C0; �/ defines a point in M� yA;T and that there is a non-trivial
group of holomorphic diffeomorphisms of C0 that fix � . Let  denote an element
in this group. Let TC denote a correspondence for T in .C0; �/. Then TC defines
a point for .C0; �/ in R�OT . Meanwhile,  defines a new correspondence for T

in .C0; �/ as follows: If e is an edge of T and Ke � C0 � � the component that
originally corresponds to e , then  �1.Ke/ gives the component for e from the new
correspondence. Likewise, if o is a multivalent vertex and  is an arc in �o , then
the new correspondence assigns to  the  –inverse image of what is assigned  by
the old correspondence. As noted in Lemma 6.6, the change of the correspondence
changes the point in R�OT that is assigned to .C0; �/ by the action of �. Meanwhile,
Lemma 6.5 asserts that the new assigned point is, after all, the same as the original.
Thus the assigned point in R�OT is fixed by �.

The argument as to why M� yA;T �R is mapped to R� yOT =Aut.T / is much like
the argument in Subsection 4.D. To start, suppose that .C0; �/ defines a point in
M� yA;T �R. Fix a correspondence, TC , for T in .C0; �/. According to Lemma
6.5, this gives .C0; �/ a point in OT that defines the image of its equivalence class in
OT =Aut.T /. Now suppose that � 2 Aut.T / fixes this point in OT . The assertion to
prove is that � is the identity element. The proof has three steps.

Step 1 The isomorphism � can be used to change the correspondence TC to a new
correspondence for T in .C0; �/. The latter is denoted in what follows as TC

� and it is
defined by the following two conditions: To state the first, let e denote an edge in T and
use Ke to denote the component of C0�� that is labeled by e using TC . Meanwhile
use K�

e to denote the component that is labeled by e using the new correspondence.
Define the collection fKe

�
g so that K�

�.e/ DKe . To state the second condition, let 
denote an arc in some version of �o . Then the arc in � that corresponds via TC to 
corresponds via TC

� to �. /.
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Now, the assignment to C of a point in (7–2) using the correspondence TC required
parametrizations for each component of C0�� . Recall that these were assigned in a
sequential manner starting with an arbitrary choice for the component that corresponds
to the distinguished incident edge to }. Such a choice and the assignment in R}

assigned parametrizations to all incident edges to }. The sequential nature of the
process appears when the parametrizations were assigned to the components of C0��

that are labeled by the incident edges to a vertex o 2 V . In particular, the point in
Ro and the parametrization for the component labeled by the edge that connects o to
T �To give the parametrizations for the components that are labeled by the edges that
connect o to To� o.

Make the choices that assign a point in (7–2) for C using the correspondence TC . Let
b denote this point in (7–2). Meanwhile, a second set of choices can be made so that b

is also the assigned point in (7–2) for C using the correspondence TC
� . In this way,

each component of C0�� receives two parametrizations; one in its incarnation as Ke

and the other as K�
�.e/ . This understood, define a map,  eW Ke ! K�

e as follows:
Let �e denote the parametrizing map from the relevant cylinder to Ke , and let ��e
denote the corresponding map to K�

e . Note that the parametrizing cylinders are the
same. Set  e � �

�
e ı .�e/

�1 .

Step 2 This step proves that there is a continuous map  W C0! C0 whose restriction
to any given Ke is the map  e . The proof has two parts; the first verifies that any given
 e extends continuously to the closure of Ke . The second verifies that corresponding
extensions agree where the closures overlap.

To start the first part, remark that  e extends continuously to the closure of Ke when
the following is true: Let o 2 e be a multivalent vertex and let � be any vertex in `oe .
Then the R=.2�Z/ coordinate of the point on the � D �o boundary of the parametrizing
cylinder that corresponds via �e to � is the same as the R=.2�Z/ coordinate of the
point that corresponds via �i

e to � . Here, one need check this condition at only
one vertex since the condition in (6–37) makes the difference between the relevant
R=.2�Z/ values into a constant function on the vertex set of `oe .

To check this condition, consider first the case when either o D } and e is }’s
distinguished edge, or else o 2 V and e is the edge that connects o to T � To . In
these cases, `oe contains the distinguished vertex �o 2 �o . In particular, the value of
the R=.2�Z/ coordinate of the point that corresponds via �e to �o is the reduction
modulo 2�Z of the point, b , that C is assigned in (7–2) using the correspondence TC .
Meanwhile, the analogous ��e version of this R=.2�Z/ value is the reduction modulo
2�Z of the point that C is assigned in (7–2) using the correspondence TC

� . Since the
latter point is also b, so the desired equality holds for the relevant R=.2�Z/ values.
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Consider next the case where either oD} and e is not the distinguished edge, or else
o 2 V and e connects o to To�o. To analyze this case, remember that a concatenating
path set has been chosen whose first path starts at �o and whose last path ends at a
vertex on `oe . Let �.e/� �o denote the path that is obtained from the concatenating
path set by identifying the final arc in all but the last path with the initial arc in the
subsequent path. Note that �.e/ is a concatenated union of arcs whose last vertex is on
`oe . In particular, the R=.2�Z/ coordinate that corresponds via �e to this last vertex
is

(7–3) �oC
2�

˛Qe
.�o/

X
2�.e/

˙ro. / mod .2�Z/;

where the notation is as follows: First, �o is b’s coordinate in the Ro factor in (7–2)
and ro is b’s �o factor. Meanwhile, the sum is over the arcs that are met sequentially
in �.e/ as it is traversed from �o to its end, and where the + sign appears with an arc
if and only if it is crossed in its oriented direction. In this regard, note that a given arc
can appear more than once in (7–3), and with different signs in different appearances.

Of course, the analogous formula gives R=.2�Z/ coordinate that corresponds via ��e
to the final vertex on �e . Thus, the �e and ��e versions of the relevant R=.2�Z/

coordinate agree.

To verify that the extensions of f eg agree on the locus � � C0 , suppose that o 2 T

is a multivalent vertex, that  � �o is an arc, and that e and e0 are  ’s labeling edges.
The correspondence TC identifies  with a component of the complement in � of
� ’s critical points. Denote this component by  ı . Of course,  also corresponds via
TC

� to some other component,  �ı D .��1. //ı . The extension of  e maps  ı to
 �ı as a diffeomorphism because the R=.2�Z/ coordinate of a point that corresponds
via �e to either of its end vertices is the same as the corresponding ��e coordinate.
Likewise,  e0 maps  ı diffeomorphically onto  �ı . The agreement between these two
diffeomorpisms then follows directly from the formula in Definition 2.1. In this regard,
keep in mind that the 1–form

p
6 cos �d' � .1� 3 cos2 �/dt pulls back to the � D �o

circle in the parametrizing cylinder for Ke as the QDQe version of ˛Q.�o/dv while
its pull-back to the circle in the Ke0 cylinder is the QDQe0 version.

Step 3 Let �W C0!R� .S1�S2/ denote the tautological map onto C . With  now
defined, the plan is to prove that � ı D � . Since .C0; �/ …R, this then means that
 is the identity map and so � is trivial.

The argument for this employs Lemma 4.1. To conform with the notation used in
Lemma 4.1, let C0

0 denote C0 and TC
� as TC 0 . This understood, the fact that  is
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continuous implies that the respective parametrizations �e and ��e are compatible in
the sense of the definition in (4–1). Next, let .ae; we/ denote the functions that appear
in the �e version of (2–5) and let .ae

0; we
0/ denote the functions that appear in the ��e

version of (2–5). Now set yae � ae � ae
0 and ywe � we �we

0 . As it turns out, there
is a continuous function on the complement in C0 of the cos � critical points whose
pull-back from C0 � � via the maps f�eg gives the collection f yweg. This is to say
that the assumption in (4–2) is satisified. Indeed, the proof that the collection f yweg

comes from a continuous function is identical in all but cosmetics to the proof of the
analogous assertion in the second to last paragraph of the preceding subsection.

Let yw denote the function on C0 that gives the collection f yweg and introduce G to
denote the zero locus of yw in the complement of the cos � critical points. According
to Lemma 4.1, either G Dø or the closure of G is all of C0 . Now, G ¤ø since the
respective assignments to C0 using TC and TC

� in (7–2) agree, and so they agree
in the R� factor in particular. Thus G ’s closure is C0 and so yw � 0. Thus � ı 
is obtained from � via a constant translation along the R factor of R� .S1 � S2/.
Moreover, this constant translation must be the identity since the two maps have the
same image set. Hence � ı D � and so � must be the identity automorphism.

7.D Why the map to R� yOT =Aut.T / is proper

The proof that Subsection 6.C’s map is proper is given here in three parts, each the
analog of the corresponding part of Subsection 4.E.

Part 1 This part of the argument proves the M� yA;T version of Proposition 4.6. This
is as follows:

Proposition 7.1 Let f.C0j ; �j /gjD1;2;::: denote an infinite sequence of pairs that
defines a sequence in M�

yA;T
with convergent image in R�OT =Aut.T /. There exists a

subsequence, hence renumbered consecutively from 1, and a finite set, „, of pairs of the
form .S; n/ where n is a positive integer and S is an irreducible, pseudoholomorphic,
multiply punctured sphere; and these have the following properties with respect to the
sequence of subsets fCi � �i.C0i/g in R� .S1 �S2/:

� limj!1

R
Cj
$ D

P
.S;n/2„ n

R
S $ for each compactly supported 2–form $ .

� The following limit exists and is zero:

(7–4) lim
j!1

�
sup

z2Cj

dist
�
z;[.S;n/2„S

�
C sup

z2[.S;n/2„S

dist.Cj ; z/
�
:
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Granted for the moment Proposition 7.1, the proof that Subsection 6.C’s map is proper
is obtained by the following line of reasoning: Start with a sequence f.C0i ; �i/g with
convergent image in R�OT =Aut.T /. The next part of this subsection proves that
Proposition 7.1’s set „ contains only one element. Let .S; n/ denote this element.
The third part of the subsection proves the following:

�(7–5) If nD 1, then S 2M yA;T
and fCj g converges to S in M yA;T

.

� If n> 1, then there exists a pair .Sn; �/ where � sends Sn onto S as an
n–fold, branched cover; and this pair defines a point in M� yA;T that is the
limit point of the image in M� yA;T of f.C0j ; �j /g.

Thus, a convergent subsequence exists for any sequence in M� yA;T with convergent
image in R�OT =Aut.T / and this property characterizes a proper map.

It is assumed in the rest of this subsection that a correspondence has been chosen for
T in each .C0j ; �j /.

Proof of Proposition 7.1 As with Proposition 4.6, all but (7–4) follows from [15,
Proposition 3.7]. In this regard, (7–4) is the version of [15, Proposition 3.7] where the
compact set involved, K , is replaced by KDR�.S1�S2/. In any event, assume that
(7–4) does not hold so as to derive some patent nonsense. This derivation has six steps.

Step 1 This step proves that the conclusions in Lemma 4.7 hold if (7–4) does not
hold. The argument here is almost the same as that used for the Subsection 4.E’s
version of the lemma. To start, note that an argument in Subsection 4.E for Lemma 4.7
works as well here to prove that its conclusions hold except possibly in the case that all
subvarieties from „ are R–invariant cylinders and that one of the two points in (4–19)
hold.

To rule out the (4–19) cases, note first that the smallest vertex angle from T must be
zero in the (4–19) cases. The argument is essentially that from Subsection 4.E: The
convergence of the image of f.C0j ; �j /g in the R factor of R�OT =Aut.T / precludes
a non-zero smallest angle because there would otherwise be a sequence in M� yA;T
with the following properties: First, its j ’th element is .C0 , �j

0/ where �j
0 is obtained

from �j by a j –dependent but constant translation along the R factor of R�.S1�S2/.
Second, the limit data set for f�j

0.C0j /g from [15, Proposition 3.7] has a subvariety
that is not an R–invariant cylinder, has the same � infimum as each Cj D �j .C0j /.
Third, there is no non-zero constant b for one of the corresponding ends that makes
(2–3) hold.
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Granted the preceding, assume that the smallest vertex angle from T is equal to zero.
Let yE0 denote the Aut.T / orbit of edges in T that is used in Subsection 6.C to define
the image of f.C0j ; �j /g in the R factor of R� yOT =Aut.T /. Suppose first that yE0

corresponds to a set of disjoint disks in each C0j that intersect the � D 0 cylinder at
their center points. Note that this case occurs only when yA lacks .1; : : :/ elements. To
preclude this (4–19) case, first associate to each C0j the set of its � D 0 points that
correspond to the edges in yE0 . Let tj denote this set. Note that no sequence whose
j ’th element is from tj can remain bounded as j !1. This is to say that the set of
jsj coordinates for such a sequence cannot be bounded. Indeed, a bounded sequence
here would force „ to have a pair whose subvariety is the � D 0 cylinder. Granted
(4–19), each C0j would have an end where the jsj !1 limit of � is zero. But there
are no such ends when yA lacks .1; : : :/ elements.

Meanwhile, note that as the image of f.C0j ; �j /g in the R factor of R� yOT =Aut.T /
converges, so the sequence whose j ’th component is the sum of the s values at the
points in tj also converges. Granted the conclusions of the preceding paragraph, this
can occur only if there are two sequences whose j ’th element is in tj , and these are
such that s tends to 1 on one and to �1 on the other. However, this conclusion
leads afoul of (4–19) and the lack of .1; : : :/ elements in yA when one considers that
there is a path in C0j between the j ’th point in the one sequence and the j ’th point
in the other.

To finish the story for the current version of Lemma 4.7, assume now that yA has some
.1; : : :/ element and so the edges in yE0 correspond to ends in any given C0j where
limjsj!1 � D 0. In this case, the image of C0j in the R factor of R� yOT =Aut.T / is,
up to a positive constant factor, minus the sum of the logarithms of the versions of the
constant yc that appear in (1–9) for the ends in C0j that correspond to the edges in yE0 .
Thus, the sequence of such sums converge. As a consequence, the sequence whose
j ’th element is the minimal contribution to the j ’th sum can not diverge towards C1,
nor can the sequence whose j ’th element is the maximal contribution to the j ’th sum
diverge towards �1. This then gives the following nonsense: As in the analogous
case from the original proof of Lemma 4.7, a new sequence can be constructed with
the following mutually incompatible properties: First, its j ’th element is .C0j ; �j

0/

where �j
0 is obtained from �j by a constant, but j –dependent translation along the

R factor in R� .S1 �S2/. Second, the data set from the corresponding f�j
0.C0j /g

version of [15, Proposition 3.7] provides a subvariety that is not the � D 0 cylinder, but
has an end where the jsj !1 limit of � is 0 and is such that the respective integrals
of 1

2�
dt and 1

2�
d' about its constant jsj slices have the form 1

m
p and 1

m
p0 where

.p;p0/ is the integer pair that comes from the elements in yA that correspond to yE0 ,
and where m� 1 is a common divisor of this pair. Finally, there is no non-zero yc that
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for the resulting verions of (1–9). The argument here for the values of the integrals
of 1

2�
dt and 1

2�
d' is almost verbatim that used in the analogous part of Section 4’s

proof of Lemma 4.7. Indeed, the latter argument works because the same domain
in .0; �/�R=.2�Z/ parametrizes all yE0 labeled components of all C0j version of
C0�� ; thus this same domain parametrizes all of the yE0 labeled components of each
version of C0�� from the translated sequence.

Step 2 Lemma 4.7 provides the R–invariant cylinder S� , and given " > 0, the real
number s0 , the sequences fsj�g and fsjCg and the component Cj� of the s 2 Œsj�; sjC�

part of each large j version of C0j . The first point to make here is that � is neither 0
nor � on S� . Indeed, were this otherwise, then the mountain pass lemma would find a
non-extremal critical point of � on each large j version of C0j in Cj� . In particular,
the corresponding sequence of critical values would converge as j !1 to either 0 or
� , and this is nonsense since the critical values on any one C0j are identical to those
on any other.

Thus, � on S� must be some angle in .0; �/. Denote the latter by �� . [15, Lemma 3.9]
can be used in the present context to draw the following conclusions: Given ı0 > 0,
there exist j –independent constants ı 2 .0; ı0/ and RC;R� � 0 such that when j is
large,

�(7–6) � has values both greater than �� C ı and less than �� � ı where s D

sj�CR� in Cj� .

� Either j����j is strictly greater than ı where sD sjC�RC in Cj� or else
� takes values both greater than ��C ı and ��� ı where s D sjC�RC
in Cj� .

As no generality is lost by choosing R˙ so that both the sDsj�CR� and sDsjC�RC
are regular values of s on each Cj� and that neither locus in Cj� contains a � critical
point. Such choices for R˙ are assumed in what follows.

By contrast, the fourth point in Lemma 4.7 implies the existence of a sequence fıj g
with limit zero such that j����j< ıj where sD 1

2
.sj�CsjC/. Granted all of this, the

argument for Proposition 4.6 in Subsection 4.E works here to prove that �� is either
a critical point of � on C0j or else the jsj !1 value of � on an end in Cj0 whose
version of (2–4) has integer n.�/D 0. In either case, �� is the angle of some multivalent
vertex in T and Cj� must intersect some graph from the collection f�og. As Cj� is
connected and � has small variation on Cj� , it can intersect at most one such graph.
Let o 2 T denote the labeling vertex.
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Step 3 Let s� denote a regular value of s on Cj� that is within 1 of 1
2
.sj�C sjC/,

has transversal intersection with the � D �� locus, and is such that j� � ��j < ıj on
the s D s� slice of Cj� . By virtue of [15, Proposition 3.7], the s D s� slice of Cj� is
not null-homologous in the radius " tubular neighborhood of S� . Thus this slice is not
null-homologous in the complement of the � D 0 and � D � loci in C0j . Even so, the
following is true: If j is large, then this sD s� slice is not homologous in the � …f0; �g
part of C0j to a union of suitably oriented slices of ends of C0j where the jsj !1
limit of � is �� . Indeed, were this not the case, then (7–5) demands the impossible:
The union of the s D s� slice of Cj� and a collection of very large, but constant jsj
slices of C0j is the boundary of a subset of Cj ’s model curve where � … f0; �g and
whose interior has a local extreme point of � . This is impossible because, as noted
in Subsection 2.A, the only local minima or maxima of � on a pseudoholomorphic
subvariety occur where � is respectively 0 or � .

By the way, a component of the sD s� slice of Cj� that is homologically non-trivial in
the radius " neighborhood of S� must intersect the C0j version of the locus �o when
j is large. To explain, introduce the 1–form x D .1� 3 cos2 ��/d' �

p
6 cos ��dt .

The latter is exact in the radius " tubular neighborhood of S� so has zero integral over
any given component of the s D s� slice of Cj� . Now, let � denote a component of
the s D s� slice of Cj� . If j� � ��j> 0 on �, then � must sit as an embedded circle
in some component of the C0j version of C0�� . If � is homologically non-trivial in
this component, then it is homotopic there to a constant � slice. Thus, the integral of
x over � is ˙˛Q.��/ where Q is the integer pair that is assigned to the edge in T

that labels �’s component of C0�� . Thus, ˛Q.��/D 0. However, this is nonsense
since (7–5) requires that � D �� on the closure of this component.

Step 4 To say more about the s D s� slice of Cj� requires a digression to point out
some features of the small but positive ı versions of the j� � ��j < ı neighborhood in
C0j of the locus �o .

The first point here is that such a neighborhood is homeomorphic to a multiply punc-
tured sphere. In particular, the first homology of such a neighborhood is canonically
isomorphic to the first homology of the graph ��o . This is to say that a system of
generators for the j� ���j< ı can be obtained as follows: First take a large jsj slice of
each end of C0j that corresponds to a vertex on �o . These form a set, f`��g, where the
label � runs through the vertices in �o with non-zero integer label. Add to these the
set, f`�oeg, where the label e runs through the incident edges to o and `�oe denotes
the j����j D 1

2
ı slice of e ’s component of the C0j version of C0�� . The collection

f`�oeg[ f`
��g then generates the homology of this neighborhood of �o subject to the

one constraint in (2–22).
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The second point concerns the 1–form x D .1� 3 cos2 ��/d' �
p

6 cos ��dt where �
is near �� . As remarked previously, this form is exact near S� . To elaborate on this,
write S� as R� � where � � S1 �S2 is the relevant � D �� Reeb orbit. Now, x

is, of course, pulled back from S1 �S2 and its namesake on S1 �S2 can be written
on the radius " tubular neighborhood of � as df where f is a smooth function that
vanishes on � . Over the whole of the � D �� locus in S1 �S2 , the form x can be
written as df� where f� is a multivalued function that agrees with an R–valued lift
near � that agrees with f . The function f� is constant on each � D �� Reeb orbit
and its values distinguish the various � D �� Reeb orbits. In this regard, the values of
f� are in R=.2���Z/ where

(7–7) ��
2
D

.1C cos4 ��/

.p2Cp02 sin2 ��/
:

Here .p;p0/ is the relatively prime integer pair that determines �� via (1–8).

Step 5 This step concerns the integral of the 1–form x over any given component of
the j� � ��j> 0 portion of the s D s� slice of Cj� . To say more, let � denote such a
component. Since xD df near � and � is close to S� where f is zero, so the integral
of x over � has absolute value no greater than some j and � independent multiple of
ıj .

To see the implications of this result, note that � sits in some component of the Cj

version of C0�� whose label is an incident edge to o. Fix a parametrization of this
component, and the closure of � then corresponds to an embedded path in the closed
parametrizing cylinder whose two endpoints are on the � D �� boundary and whose
interior lies where 0< j����j< ıj . As such, this version of � is homotopic rel its end
points to an embedded path, p.�/, in the � D �� circle of the parametrizing cylinder.

The path p.�/ may or may not pass through some missing points on the � D �� circle.
Let p0.�/ � p.�/ denote the complement of any such missing points. Thus, p0.�/

corresponds to a properly embedded, disjoint set of paths in �o with two endpoints
in total, these the endpoints of the closure of �. By virtue of the second point in the
preceding step, the integral of x over p0.�/ is also bounded in absolute value by a j

and � independent multiple of ıj . Moreover, with a suitable orientation, the 1–form x

is positive on p0.�/. Thus, the integral of x over any subset of p0.�/ is also bounded
by the same multiple of ıj .

Step 6 Let V now denote the set of components of the j� � ��j > 0 part of the
s D s� locus in Cj� . Let �j denote [�2V p0.�/. This is the image in �o via a proper,
piecewise smooth map of a finite, disjoint set of copies of S1 and R. However, by
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virtue of what was said at the end of the previous step, if an arc,  , from �o is contained
in �j , then the integral of x over  is bounded by a j –independent multiple of ıj .
As a consequence, no large j version of �j contains the whole of any arc in �o . Here
is why: The integral of x over an arc in �o gives the value on the arc of .C0j ; �j /’s
assigned point in the symplex �o . Were  in �j , then this assigned point would give
an O.ıj / value to  , and were such the case for an infinite set of large j versions of
.C0j ; �j /, then the image of f.C0j ; �j /g in �o could not converge.

In the case �o D �o , then �j is compact. Since no arc is contained in �j , it defines
the zero homology class. According to the what was said in Step 4, it therefore defines
the zero homology class in the j� ���j< ı neighborhood of �o . At the same time, �j

is homologous in the j� � ��j< ı neighborhood of �o to the s D s� slice of Cj� and
Step 3 found that latter’s class is definitively not zero. This nonsense proves that �0

can not be compact.

Suppose now that �o is not the whole of �o . In this case, the closure of �j in ��o

is the image via the collapsing map of the image, ��j , of a map from a finite set of
circles into ��o . Since this ��j contains no arc inverse image from �o , its homology
class must be a multiple of sums of those generated by the vertex labeled loops from
the set f`��g. At the same time, the discussion in Step 4 identifies H1.�

�
IZ/ with the

first homology of the j� � ��j< ı neighborhood of �o and with this understood any
such ��j is homologous modulo the classes from fŒ`�� �g to the s D s� slice of Cj� .
This then means that the s D s� slice of Cj� is homologous to some union of constant
jsj slices of the � D �� ends of C0j . However, as noted in Step 3, this is definitively
not the case. This last bit of nonsense completes the proof of Proposition 7.1.

Part 2 This part of the subsection proves that „ has but a single element. The proof
borrows much from the discussion in Part 2 of Subsection 4.E. In particular, it starts
out just the same by assuming that „ has more than one element so as to derive some
patent nonsense. In this regard, note that the conclusions from Proposition 7.1 require
that „ have at least one element that is not an R–invariant cylinder and the three steps
that follow explain why there is at most one element in „ of this sort. Granted that
only one subvariety from „ is not an R–invariant cylinder the argument for precluding
R–invariant cylinders from „ can be taken verbatim from Part 2 of Subsection 4.E.

Step 1 Choose an infinite subsequence from f.C0j ; �j /g with the following property:
Let o denote a multivalent vertex in T and � a vertex in �o . For each j, let xj denote
the image in Cj of the critical point of � that corresponds to � . Then either fxj g

converges, or fs.xj /g is unbounded and strictly increasing or strictly decreasing. Here
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is the second property: Agree henceforth to relable this subsequence by the integers
starting at 1.

Define as in Part 2 of Subsection 4.E the subvariety †�R� .S1�S2/ to be the union
of the subvarieties from „ that are not R–invariant cylinders. Let Y �† denote the
critical points of cos.�/ on the irreducible components of †, the singular points in
the subvariety [.S;n/2„S , and the limit points of the sequences fxj g as defined in the
previous paragraph. So defined, Y is a finite set.

Step 2 Suppose two subvarieties from „ are not R–invariant cylinders. To obtain
nonsense from this assumption, let S and S 0 denote distinct, subvarieties from „ that
are not R–invariant. The argument in the fourth paragraph of Part 2 in Subsection 4.E
that ruled out two non-R invariant subvarieties applies here to prove that S and S 0

can be chosen to so that there is a value of � that is taken simultaneously on S and
S 0 . No generality is lost by choosing this angle to be in .0; �/, to be distinct from � ’s
values on Y , and to be distinct from the angles that are assigned to the vertices in T .
This being the case, then for each j , there are points zj and zj

0 in C0j on which �
has this same value and such that the sequence fzj g converges to a point in S while
fzj
0g converges to one in S 0 .

As C0j is irreducible, there is a path in C0j that runs from zj to zj
0 . For the present

purposes, some paths are better than others. In particular there exists R> 1 and for
each j , such a path, j , with the following properties:

�(7–8) The image of j in R� .S1 � S2/ avoids the radius 1
R

balls about any
point in Y .

� jsj �R on j .

The existence of R and fj g is proved in the subsequent two steps. Of course, granted
(7–8), then S and S 0 must coincide because Proposition 7.1 and [15, Proposition 3.7]
put the whole of every large j version of j very close to only one subvariety from „.

Step 3 The proof of the first point in (7–8) starts with the assertion that there exists
" > 0 such that the following is true:

(7–9) Let o denote a multivalent vertex in T . If j is large, then no arc in the C0j

version of �o lies entirely in the inverse image of a single radius " ball in
R� .S1 �S2/.

The first point of (7–8) follows directly from this assertion and [15, Lemma 3.10].
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To prove the assertion, suppose that  is an arc in �o whose image in Cj is in a
radius � ball. The integral of the 1–form .1� cos2 �o/d' �

p
6 cos �odt over  is

then bounded by a fixed multiple of � . Thus, if � is small, so .C0j ; �j /’s assigned
point in the simplex �o assigns a small value to  . Since the sequence f.C0j ; �j /g

has convergent image in �o , all such values enjoy a positive, j –independent lower
bound.

The proof of the second point in (7–8) requires the following assertion:

(7–10) There exists R> 1 such that when j is large, then no arc in the Cj version of
�o lies entirely where jsj �R.

To see why, note that by virtue of Proposition 7.1, if R is such that the jsj �R part of
† is contained in the ends of †, then any arc in �o where jsj is everywhere larger
than R is very close to an R–invariant cylinder where � D �o . Now, as explained in
Part 1, the closed 1–form .1� cos2 �o/d' �

p
6 cos �o can be written as df on some

fixed neighborhood of such a cylinder with f being the pull-back from a neighorhood
of the corresponding Reeb orbit of a smooth function that vanishes on the Reeb orbit.
This then means that the integral of this 1–form over any jsj �R arc is very small if R

is very large and, with R chosen, then j is sufficiently large. Thus, the point assigned
to .C0j ; �j / in �o gives a very small value to such an arc. Since the assigned values
enjoy a j –independent, positive lower bound, there is an upper bound to the minimum
value of jsj on any arc from any large j version of �o .

The assertion in (7–10) allows the large j versions of j to cross the C0j version
of the locus � � where jsj enjoys a j –independent upper bound. Proposition 7.1
then implies that the large j versions of j can be chosen so that jsj also enjoys a
j –independent upper bound on the portions of j in the C0j version of C0�� . To
elaborate on this, keep in mind that Proposition 7.1 finds a lower bound to jsj on any
large j version of j at angles that are uniformly bounded away from the jsj !1
limits of � on the ends of †. To choose j with a j –independent upper bound for jsj
as � nears such a limit, first set the stage by letting �� denote the angle in question and
write .1� 3 cos2 ��/d' �

p
6 cos ��dt as df� where f� is the multivalued function

that is described in the fourth step in Part 1. As f� is constant on the � D �� Reeb
orbits, so the ends of † where limjsj!1 � D �� account for only a finite set of values
for f� . Thus, jsj on j will enjoy a j –independent upper bound if j is chosen so
that it approaches and crosses the � D �� locus where f� is uniformly far from its
values on the ends of † where �� is the jsj !1 limit of � . Granted (7–10), such
a version of j can be chosen in a component of the C0j version of C0�� using a
parametrization as depicted in (2–5). In this regard, the case where f� approaches a
constant as � ! �� on a given component can be avoided since it occurs if and only if
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the part of the component where � is nearly �� is entirely in the large jsj part of some
end of C0j .

Part 3 Let .S; n/ denote the single element in „. This last part of the story explains
why (7–5) is true. The story here starts by making the following point: Because the
image of f.C0j ; �j /g converges in OT =Aut.T /, the choices in Part 2 of Subsection
6.C can be made for each .C0j ; �j / so that the resulting sequence in .�o�o/� .R� �

R}/� Œ�o2VRo� also converges. These choices are assumed in what follows.

Let S0 denote the model curve for S and let �0 denote the tautological, almost
everywhere 1–1 map from S0 onto S in R � .S1 � S2/. The complement of the
inverse image of Y in S0 is embedded in R� .S1 �S2/ and so has a well defined
normal bundle, this denoted by N in what follows.

Now, fix " > 0 but very small and with the following considerations: First, the various
points in Y are pairwise separated by a distance that is much greater than ". View
the latter distance as O.1/ relative to ". Second, given a point p 2 Y , there is only
one value of � on the set Y that is also a value of � on the radius " ball about p , this
being �.p/. Finally, the jsj � 1=" portion of S0 is far out in the ends of S0 and is far
from any point that maps to Y .

Given such ", let S" denote the portion of the jsj � 1=" part of S0 that is mapped by
�0 to where the distance from Y is at least "4 . There is a subdisk bundle, N" �

N , over a submanifold of S that has S" in its interior and an exponential map
eW N" ! R � .S1 � S2/ with the following properties: First, it embeds N" as a
tubular neighborhood of this larger submanifold. Second, it embeds each fiber as a
pseudoholomorphic disk. Finally, the function � is constant on each such fiber disk. In
what follows, N" is not distinguished notationally from its image in R� .S1 �S2/

via e .

If " is fixed in advance and j is large, then �j .C0j / intersects N" as an immersed
submanifold such that the composition of �j followed by the projection to S" defines
a degree n, unramified covering map from �j

�1.N"/ to S" . Let �j denote the latter
map. Granted that �j is a covering map, then (7–5) follows by analyzing the behavior
of �j .C0j / where jsj � 1=" and also where the distance to Y is less than ". This
analysis is presented in fourteen steps. The first six describe the parts of the large j

versions of C0j that map to where the distance to Y is less than ".

Step 1 Let z denote a point in S0 that maps to Y� and let B �R� .S1�S2/ denote
the radius " ball centered on z ’s image. Let �� denote the value of � at z and assume
here that �� > 0. If z is a critical point of � , let m denote degz.d�/, otherwise set
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mD 0. Fix an embedded circle, � � S0 , around z so that its image lies in B , so that
it intersects the � D �� locus transversally in 2mC2 points, and so that all points in �
are mapped by �0 to where the distance to z ’s image is greater than "2 . Let ı denote
the maximum of j� � ��j on � . It follows from (2–11) that � can be chosen so that
ı � c.z/ � "2 where c.z/ depends only on z . With " small, the image of � in S has
� –preserving preimages via �j in every large j version of C0j . Let �0 denote such a
circle. Let k denote the degree of �i on �0 . The loop �0 intersects the � D �� locus in
C0j transversely in k.2mC 2/ points. The upcoming parts of the story explain why
this is possible when " is small and j is large only if �0 bounds an embedded disk in
�j
�1.B/ that contains a single critical point of � , one where d� vanishes with degree

m.

Step 2 A digression is need for some preliminary constructions. For this purpose,
fix attention on a component, �, of the � � �� > 0 portion of �0 . The interior of �
lies in a component of C0j ’s version of C0 � � . After parametrizing the latter, �
can be viewed as an embedded path in the corresponding parametrizing cylinder with
both endpoints on the � D �� circle but otherwise disjoint from this circle. Remark
next that � is homotopic rel its endpoints in the parametrizing cylinder to a path, �� ,
on the � D �� circle. In fact, the concatenation of � and �� bounds a topologically
embedded disk in the parametrizing cylinder. Use D� to denote both the interior of
this disk and its image in Cj . If 0 � � � �� on �, then 0< � � �� < ı on D� , and if
0� � � �� on �, then 0> � � �� > �ı on D� .

As is explained next, the path �� must be contained in �j
�1.B/ when " is small and

j is large. To see why, introduce the 1–form x � .1� 3 cos2 ��/d' �
p

6 cos ��dt .
This form is positive on �� and this leads to nonsense if " is small, j is large and ��
exits B . To demonstrate the nonsense, let B1 denote the ball centered at z ’s image
in R� .S1 � S2/ whose radius is the minimum of 1 and half the distance between
z ’s image and any other point of Y . Introduce the function f on B1 that obeys
df D x and that vanishes on the image of z . The integral of x over � is the difference
between the values of f on �’s endpoints, and so is bounded in absolute value by a
j –independent multiple of ". Since �� and � are homotopic real boundary in the
parametrizing cylinder, the integral of x over �� is likewise bounded in absolute value
by ".

Keeping this in mind, note that x is positive on the � D �� locus in S \ .B1 �B/.
In particular, when " is small, there is a positive and "–independent number that is
less than the integral of x over each such component. When j is large, Proposition
7.1 requires that this same number serve as a lower bound to the integral of x in
C0j \ �

�1.B1 �B/. Now, if a large j version of �� leaves �j
�1.B/, then it must
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leave �j
�1.B1/ also since a large j version of �� in �j

�1.B1�B/ is a � –preserving
preimage of a portion of the � D �� locus in S" . Thus, the O."/ integral of x over
the large j versions of �� precludes it leaving �j

�1.B/.

There are 2k.mC 1/ versions of �, �� and D� , one for each component of the part
of �0 where j� � ��j> 0. Each such �� is in �j

�1.B/.

Step 3 The fact that each �� is in �j
�1.B/ implies the following: If " > 0 is chosen

sufficently small, then any sufficiently large j versions of �0 is homotopically trivial in
C0j . To elaborate, note first that any loop in the j� ���j< ı part of C0j is homotopic
to one that sits entirely in the � D �� locus except at points far out on ends of C0j

where the jsj!1 limit of � is �� . The fact that any given version of �� lies entirely
in �j

�1.B/ implies that �0 is homotopic to the loop in the � D �� circle that is obtained
by the evident concatenation of the k.2mC2/ versions of �� . This is a loop, �� , that
lives entirely in the � D �� locus.

If �� is not the angle of a multivalent vertex in T , then �� lies in some component
of C0j �� . Let e denote its labeling edge from T . If �� is not null-homotopic, then
the integral of x � .1� 3 cos2 ��/d' �

p
6 cos ��dt over �� is a non-zero, integer

multiple of the QDQe version of ˛Q.��/. However, as �j .�
0/ sits in a small ball,

the integral of x over �0 is therefore tiny if " is small, and so the integral of x over
�� must be zero.

If �� is a multivalent vertex angle from T and if �� is not null homotopic, then it must
contain at least one arc from some version of �o . Such an arc thus sits in �j

�1.B/.
However, if an arc is mapped into B , then the integral of x � .1� 3 cos2 ��/d' �
p

6 cos ��dt over the arc is smaller than a j –independent, constant multiple of ". This
means that the arc is assigned a very small number by .C0j ; �j /’s image in �o�o

if " is small and j is large. However, such arc assignments enjoy a j –independent,
positive lower bound, and so there is no arc in D0 if " is too small and j is large. Thus,
�� is null-homotopic and so is �0 .

Step 4 As each version �� is in ��1.B/, it follows that all version of D� approach
�0 from the same side, and therefore the union of the 2k.mC 1/ version of D� define
an embedded disk in C0j with boundary �0 . Let D0 denote this disk. As j� � ��j � ı ,
this disk must lie in ��1.B/ when ı is small and j is large. Indeed, were D0 to exit
��1.B/, it would have to intersect a � –preserving preimage in C0j of an analog of �
around some other point in S0 that maps to the same point as z . Since D0 is embedded,
it would then contain this circle and thus contain a point where j� � ��j> ı .

As constructed, the complement in D0 of the �D �� locus is the union of the 2k.mC1/

versions of D� . Since all D� are disks, this implies that the � D �� locus in D0 is
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connected. Moreover, if either m or k is greater than 1, then there are at least 4 such
disks and so there is a critical point of � inside D0 . If both m and k equal 1, then there
is no critical point of � in D0 .

If " is small and j is large, there can be at most one such critical point in D0 . To see
this, note first that any two � critical points in D0 are joined in D0 by a constant �
path since the � D �� locus in D0 is connected. A constant � path between two �
critical points is a union of arcs in some C0j version of a graph from the set f�.�/g.
However, as noted in the previous step, no such arc can be mapped by �j into B if "
is small.

Granted that there is but one � critical point in D0 , then the degree of vanishing of
d� there must be k � .mC 1/� 1 since there are 2k.mC 1/ disk components to the
complement of the � D �� locus in D0 . Indeed, this follows from (2–11).

Step 5 If n � 2, then the loop � can have more than one � –preserving preimage.
Suppose �0 and �00 are two distinct � –preserving preimages in a large j version of C0j .
As is explained next, no path in C0j from �0 to �00 is contained entirely in �j

�1.B/ if
" is small and j is taken very large. To see why this is the case, note that were such a
path to exist, the variation of � on it would be bounded by a j –independent multiple
of ". As a consequence, �0 and �00 would have to intersect the same component of the
� D �� locus in C0j and so there would be a path on this locus between them. Now,
the disk D0 is contained in �j

�1.B/ and �00 cannot be in D0 as the � values on �00

are identical to those on � . Thus this hypothetical path from �0 to �00 would have to
travel from �0 on the portion of the � D �� locus that avoids D0 . This part of the locus
is in the tubular neighborhood N" and as it projects to the � D �� locus in S" , it can
not hit a � –preserving preimage of � before it exits the larger ball B1 .

Step 6 This step describes the large j versions of �j .C0j / near points where S

interects the � D 0 locus. A similar story can be told for the points near the � D �
locus. To start, suppose that z 2 S0 is a point where � is 0. In this case, choose a loop
� in ��1

0
.B/ that bounds a disk in S0 whose center is z . In this regard, choose � so

that the maximum value of � on � is much less than that of � on the boundary of
S \B . Take j large and let �0 � C0j again denote a � –preserving preimage of � . As
before, this is an embedded circle. As can be seen using Proposition 7.1 and the C0j

versions of the parametrizations from Definition 2.1, the circle �0 is embedded in a
component of the C0j version of C0�� whose closure contains a point where � D 0.
As a consequence, �0 bounds a disk in this closure on which the maximum of � is
achieved on �0 . Let D0 denote this disk. Were D0 to leave �j

�1.B/, its �j –image
would by necessity intersect the boundary of B very near some component of S \B .
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But, a large j version of such a disk would then have interior points where � was
larger than its maximum on �0 . Thus D0 is in �j

�1.B/.

Here is one more point: Let k denote the degree of the covering map from �0 to � . If
the local intersection number at z between S0 and the � D 0 locus is denoted as qz ,
then the local intersection number between D0 and the � D 0 locus is k � qz .

Step 7 Let E � S0 denote an end, let �� denote the jsj !1 limit of � on E , and
let nE denote the integer that appears in E ’s version of (2–4). Assume until told
otherwise that �� 2 .0; �/. Take R0� 1 so that jsj takes the value R0 on E and so
that R0 is much greater than the value of jsj on any point from the set Y . As can be
seen from (2–4), it is also possible to choose R0 so that the jsj �R0 portion of the
� D �� locus consists of 2nE properly embedded, half open arcs on which ds restricts
without zeros. Take R0 so that this last condition holds. In what follows, it is assumed
that 1=" is much greater than R0 .

It follows from E ’s version of (2–4) that when " is sufficiently small, there exists an
embedded loop, � , in the jsj 2 Œ 1

2"
C 2; 1

"
� 2� part of E with the following properties:

First, � is homotopic to the jsj D 1
2"

slice of E . Second, � intersects the � D �� locus
transversely, and in 2nE points. Third, the maximum on � of j� � ��j is less than ".
Use ı in what follows to denote this maximum.

If j is sufficiently large, then � has � –preserving preimages in Cj . Let �0 denote such
a preimage. Thus, �0 also intersects the � D �� locus transversely, and the maximum
of j� � ��j on �0 is also ı . Finally, with k denoting the degree of the covering map �j

on �0 , then �0 intersects the � D �� locus 2knE times, each in a transversal fashion.
Note that by virtue of Proposition 7.1, the loop �0 is homotopically non-trivial in the
complement in C0j of the � 2 f0; �g locus.

Let � denote the closure of a component of the j� ���j> 0 portion of �0 . This � can
be viewed as an embedded path in a parametrizing cylinder for the component of the
C0j version of C0�� that contains �’s interior. Viewed in the parametrizing cylinder,
� lies in the interior save for its two boundary points. In the parametrizing cylinder,
� is homotopic rel boundary to a path, �� , that runs between the two endpoints of
� on the � D �� circle. This is to say that the concatenation of � and �� bounds a
topological disk in the parametrizing cylinder. Let D� denote the interior of this disk,
and also its image in C0j . As before, 0< � ��� < ı on the disk D� when 0� � ���
on �, and 0> � � �� > ı on D� when 0� � � �� on �.

The parametrizing cylinder that contains �� may or may not have missing points on its
� D �� circle. In the case that some such points lie in �� , let ��0 � �� denote their
complement. The latter has a corresponding image in C0j . The concatenation of ��0

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R� .S1 �S2/ 2007

and � is a piecewise smooth, properly embedded submanifold of C0j that bounds the
closure of the disk D� . In this regard, the complement of the � –critical points in ��0
is smoothly embedded, and a component of this complement that lacks an endpoint
of � is the whole of the interior of an arc in some graph from the C0j version of the
collection f�.�/g

Step 8 When " is small, and with " chosen, j is sufficiently large, the disk D� lies
entirely in the jsj> 1

2"
portion of C0j . To see why, note first that if R0 is large, then

the jsj �R0 part of any end in S0 where limjsj!1 � D �� lies in a small radius tubular
neighborhood of a � D �� pseudoholomorphic cylinder. In this tubular neighborhood,
the 1–form x � .1� 3 cos2 ��/d' �

p
6 cos ��dt is the pull-back by the projection

to S1 �S2 of an exact form, df , where f is a function that vanishes on the Reeb
orbit and is constant on any nearby � D �� Reeb orbit. This understood, the integral
of x along any part of the jsj � 1

2"
>R0C3 portion of the � D �� locus in any given

end of S0 is very small in absolute value with the bound going to zero as "! 0. On
the other hand, there exists � > 0 with the following significance: If  is a connected
portion of the � D �� locus in an end of S0 , and if  runs from where jsj D 1

2"
to

jsj DR0C 1, then the integral of x over  is greater than � .

If " is sufficiently small, then the integral of x over � will be less than � since the
integral is the difference between the values of f at the two endpoints. This then
means that the integral over �� of the pull-back of x to the parametrizing cylinder is
also less than � . In this regard, note that x pulls back as ˛Q.��/dv where Q is the
integer pair that is associated to the edge label from �’s component of C0�� .

Now, if j is very large and jsj � 1
2"

on ��0 , then this part of ��0 must be a � –
preserving preimage in C0j of a component of the � D �� locus in S0 in an end of S0

where limjsj!1 � D �� . As all such components run from where jsj > 1
2"

to where
jsjDR0 , so must �� . Granted the conclusions of the preceding paragraph, Proposition
7.1 demands that x have integral greater than � on x� . Hence, ��0 can not enter the
jsj � 1

2"
part of C0j . This implies that the disk D� is also forbidden from the jsj � 1

2"

part of C0j .

Step 9 There are 2k � nE versions each of �, �� and D� . Since jsj > 1
2"

on all
versions of ��0 , they all leave �0 from the same side of �0 ; and this implies that
the closure in C0j of the union of the 2k � nE versions of D� is a submanifold of
C0j with a piecewise smooth boundary. One boundary component is �0 , and were
there more, they would sit inside the union of the 2k � nE versions of ��0 . However,
when 1

2"
is large and j also, then �0 is the only boundary component. Indeed, the

last remarks of Step 7 imply that any second component would necessarily contain
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the whole interior of an arc in some graph from the C0j version of the collection �0 .
By virtue of Proposition 7.1, this arc would sit very close to the end E when " is
small and when j is very large. As explained in the preceding step, taking " small
and j large makes the integral of the 1–form x over such an arc less than any given,
positive number. But the integral of x over an arc from C0j ’s version of f�.�/g enjoys
a j –independent, positive lower bound since the image of the sequence f.C0j ; �j /g in
�o�o converges.

Let C 0 denote the closure of the union of these 2k �nE versions of D� . When " is small
and j is large, this smooth submanifold of C0j is homeomorphic to the complement of
the origin in the closed unit disk; thus a half open cylinder with boundary �0 . Indeed,
C 0 is not a disk because �0 is homologically non-trivial in the complement of the � D 0

and � D � loci. Here is why C 0 has but one puncture: Each puncture corresponds
to an end of C0j where the jsj !1 limit of � is �� . Thus, each corresponds to a
vertex on a graph from C0j ’s version of f�.�/g. Since � is nearly �� on C 0 and C 0 is
connected, all such vertices are on the same graph. Let o denote the corresponding
vertex. Since the complement of the � D �� locus in C 0 is a union of disks, the part of
�o in C 0 has connected closure in �o . Thus, any two vertices in �o that label ends
in C 0 are joined by an arc in �o whose interior lies entirely in C 0 . As argued in the
preceding paragraph, there are no such arcs when " and j are large.

The argument just used explains why C 0 has no critical points of � on C0j .

Step 10 The conclusions of the preceding step imply that the end E � S0 where
the jsj ! 1 limit of � is in .0; �/ corresponds to a set of ends of C0j that are all
very close to E in R � .S1 � S2/. This collection is in 1–1 correspondence with
the � –preserving preimages of � in the sense that each pre-image bounds a properly
embedded, half open cylinder in C0j whose large jsj part coincides with the large jsj
part of its corresponding end. If �0 is a � –preserving preimage of � , let E0 � C0j

denote the corresponding end. If k is the degree of the projection from � 0 to � , then
the integer nE0 in the E0 version of (2–4) is k �nE .

Consider next the behavior of C0j near an end E � S0 where the jsj !1 limit of �
is 0. The pair .p;p0/ are used in what follows to designate the integers that appear in
E ’s version of (1–9).

To start story in this case, take R0� 1 so that jsj takes the value R0 on E and so
that R0 is much greater than the value of jsj on any point in Y and any � D 0 point
in S . In particular, choose R0 so that (1–9) describes the jsj �R0 portion of E . It is
assumed here that " is such that 1

2"
�R0 .
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Now let � denote a constant � slice of E that lives where jsj 2 Œ 1
2"
C 2; 1

"
� 2�. Let

ı > 0 denote the value of � on � . As before, ı < " when " is small. When j is very
large, the circle � has � –preserving preimages in C0j . Let �0 denote such a preimage,
and let k denote the degree of the restriction of �j as a map from �0 to � .

As can be seen using Proposition 7.1 and the C0j versions of the parametrizations
from Definition 2.1, any small " and large j version of �0 bounds a cylinder in C0j

on which � is strictly positive but limits to zero as jsj !1. As such, the large jsj
part of this cylinder is the large jsj part of an end of C0j whose associated integer pair
is .kp; kp0/. A cylinder in C0j of the sort just described is denoted in what follows
by C 0 .

The part of C0j that maps near an end of S where the jsj !1 limit of � is � looks
much the same as the description just given for the part near an end of S where the
jsj !1 limit of � is 0. To summarize: Each end of S0 where limjsj!1 � is either 0
or � corresponds to one or more ends of each large j version of C0j . If the given
end of S0 is characterized by the 4–tuple .ı D˙1; "D˙; .p;p0//, then each of the
associated ends of C0j is characterized by a 4–tuple with the same ı and ", and with
an integer pair that is some positive multiple of .p;p0/. Moreover, these multiples
from the associated ends to each S0 end add up to the integer n.

Step 11 The step considers assertion in (7–5) for the case that the integer n is 1. To
argue this case, let TS denote the graph that is assigned to the pair .S0; �/. Granted
that TS is isomorphic to T , it follows that .S0; �/ defines a point in M yA;T

and
Proposition 7.1 asserts that f.C0j ; �j /g converges to .S0; �/ in M yA;T

. As noted in
Theorem 1.3, this means that f.C0j ; �j /g converges to .S0; �/ in M� yA;T which is
the desired conclusion.

With the preceding understood, what follows explains why TS is isomorphic to T .
The explanation starts with a summary of results from the 10 steps just completed. The
first point here is that the ends of S0 and those of the large j versions of C0j enjoy a
1–1 correspondence whereby corresponding pairs determine the same 4–tuple and map
very near each other in R� .S1 �S2/ when j is large. The second point is that the
respective sets of � D 0 points in S0 and in the large j versions of C0j enjoy a 1–1
correspondence whereby corresponding pairs have identical local intersection numbers
and map very near each other in this locus when j is large. A similar correspondence
exists between the respective sets of � D � points in S0 and in C0j . Granted these
two points, it follows that .S0; �/ 2M yA

.

In the case that the integer n is 1, the set of non-extremal critical points of � on S0

enjoy a 1–1 correspondence with the analogous set in any large j version of C0j . This
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correspondence is such that partnered critical points have the same critical value and
the same degree of vanishing of d� . Moreover, corresponding critical points map very
close to each other when j is large. Granted these conclusions and those of the first
paragraph of this Step 11, it follows that the respective vertices in the graph TS and in
the graph T enjoy a 1–1 correspondence that partners pairs with equal angle.

To compare the edges of the graphs TS and T , remark that by virtue of Proposition
7.1, the components of S0 � � enjoy a 1–1 correspondence between those of any
large j version of C0j �� that pairs components that map very close to each other
in R� .S1 � S2/. Moreover, the respective ranges of � on paired components are
identical, and the respective integrals of 1

2�
dt and of 1

2�
d' about the constant � slices

of paired components are equal. It follows from this that the edges of TS and T enjoy
a 1–1 correspondence that is consistent with the aforementioned vertex correspondence
and preserves integer pair assignments.

It remains now to consider the respective TS and T versions of the graphs f�.�/g that
are assigned to paired, multivalent vertices. For this purpose, let o denote a multivalent
vertex in T and also its partner in TS . The correspondence between the respective
sets of non-extremal critical points of � in S0 and in C0j together with that between
the respective sets of ends in S0 and in C0j defines a 1–1 correspondence between the
vertices in the S0 and C0j versions of �o . Moreover, the latter correspondence pairs
vertices with the same labels and with the same number of incident half-arcs.

The conclusions of Step 4 imply that any compact portion of the interior of any arc
in the S0 version of �o has a unique � –preserving preimage in any sufficiently large
j version of C0j . This correspondence pairs the arcs in the S0 and C0j versions of
�o so that partnered arcs have the same edge pair labels. The conclusions of Steps 4
and 9 together imply that this arc correspondence is consistent with the just described
pairing of the vertices of �o . As a result, the two versions of �o are isomorphic via
an isomorphism that respects the correspondences described previously between the
respective edge and vertex sets of TS and those of T .

Taken together, these correspondences describe the desired isomorphism between TS

and T .

Step 12 This step establishes the n> 1 cases of (7–5). To start the argument for this
case, fix " to be very small and note that each large j version of �j defines �j

�1.N"/

as a degree n, proper covering space over S" . The first task in this step is to explain
why the sequence whose j ’th component is the supremum over �j

�1.N"/ of the ratio
jx@�j j=j@�j j limits to zero as j !1. To see this, let z 2 S" . As explained in the first
point of Step 2 in Subsection 5.C, there is a neighborhood of �.z/ in R�.S1�S2/ with
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complex valued coordinates .x;y/ and a disk D�S" with center z such that the yD 0

slice is the �–image of D , the x D constant slices are the fibers over D of the bundle
N" , and the 1–forms in (5–2) span T 1;0.R� .S1 � S2// over the coordinate patch.
With D identified via � with the yD 0 slice, the function x restricts as a holomorphic
coordinate on D, and �j on �j

�1.D/ is the composition x ı �j . This understood,
it follows that the ratio jx@�j j=j@�j j on �j

�1.D/ is the ratio jx@xj=j@xj D j� j. As �
vanishes where y D 0, Proposition 7.1 implies that the sequence whose j ’th element
is the supremum over �j

�1.D/ of j� j converges to zero as j !1.

The assertion that the sequence whose j ’th element is the supremum over �j
�1.S"/

of jx@�j j=j@�j j limits to zero as j !1 follows from this analysis on disks by virtue
of the fact that S" is compact.

The next task is to extend each large j version of �j as a degree n, ramified cover of
the whole of C0j to S0 so that

(7–11) lim
j!1

sup
C0j

�
jx@�j j=j@�j j

�
D 0:

To do so, remark that the complement in C0j of �j
�1.N"/ consists of a disjoint union

of disks and cylinders. The set of disks is partitioned into subsets that are labeled by the
disk components of S0�S" . Likewise, the set of cylinders is partitioned into subsets
that are labeled by the cylindrical components of S0�S" .

What with the conclusions from Steps 9 and 10, the desired extension of each large
j version of �j over the cylindrical components of C0j ��j

�1.S"/ is obtained by
copying in an almost verbatim fashion the construction that is described in Step 4 of
Subsection 5.C. In this regard, note that this construction extends �j as an unramified
cover over the cylindrical components of C0j ��j

�1.S"/.

The map �j is extended over the disk components of C0j � �j .N"/ momentarily.
Granted that this has been done, here is how to complete the argument for (7–5).
Remark first that by virtue of (7–11), the large j versions of �j can be used to pull-
back the complex structure from S0 and so define a new complex structure on C0j

that makes �j into a holomorphic map. Let Snj denote C0j with this new complex
structure. Note that the pair .Sn;j ; � ı �j / defines an equivalence class in M� yA;T .
Furthermore, the points that are defined by the pairs .S0j ; � ı�j / and .C0j ; �j / are
very close in M� yA;T . Indeed, to see this, take  in (1–24) to be the identity map.
Proposition 7.1 asserts that �ı�j and �j ı are very close when j is large. Meanwhile,
r. /D jx@�j j=@�j j, and this is very small when j is large by virtue of (7–11).

To finish the argument, note that the ramification points for the map �j converge in
S0 as j !1 since none occur in the cylindrical components of S0�S" . Thus, the
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sequence of complex curves fSnj g has a subsequence that converges to a complex
curve. Let Sn denote the latter. The corresponding subsequence of holomorphic maps
from the sequence f�j g likewise converges to a degree n, holomorphic, ramified
covering, � W Sn! S0 . This pair .Sn; � ı�/ defines an equivalence class in M� yA;T
that is a limit of the sequence that is defined by the pairs f.S0j ; � ı�j /g. Granted what
was said in the preceding paragraph, the point defined by .Sn; � ı�/ is necessarily the
limit of the sequence f.C0j ; �j /g.

The final two steps explain how �j is extended as a branched cover over the disk
components of each large j version of C0j ��j

�1.S"/ so as to satisfy (7–11).

Step 13 To start, let z denote the center point of a disk from S0�S" and suppose first
that �.z/ is neither 0 nor � . Let B denote the radius " ball centered at z . Introduce
the function r on B as defined in (2–9). As noted in the ensuing discussion,

(7–12) dr D J � d� C rd�

on B where jr j � c � dist.�; �.z// with c being a constant.

Now, let D � S0 denote a disk with center z whose boundary is in S" and whose �
image is in B . According to Property 5 from Subsection 2.B, if " is small, there is a
holomorphic coordinate on D such that the function r C i� defined on B pulls back
as indicated in (2–11) with �� set equal to �.z/ and with m� 0 denoting degz.d�/.
This understood, let x � � C i r � �.z/. As a consequence of (2–11), � � x1=.mC1/

defines a class C 1 , complex valued coordinate on D when " is small. Moreover, by
virtue of (7–12),

(7–13) jx@� j � c�j@� j

at the points whose image in B has distance � or less from �.z/. Here, c is independent
of � when � is small.

To continue, let D0�C0j denote the disk that bounds a given component of �j
�1.@D/

and let k denote the degree of �j as a map from @D0 to @D . When j is large, D0

contains a single disk component of C0j � �j
�1.N"/ and is mapped into B by �j .

Also, D0 contains inside it a single critical point of � on C0j . The aforementioned
Property 5 in Subsection 2.B provides D0 a holomorphic coordinate such that (2–11)
holds with k � .mC 1/� 1 replacing m. This understood, there is a complex valued
constant, xj , such that x � xj has a k � .mC 1/ fold root on D0 . This is to say that
� 0 � .x�xj /

1=k.mC1/ defines a C 1 , complex valued function on D0 when " is small
and j is large. In fact, it follows from (7–12) and the D0 version of (2–11) that � 0

defines a C 1 , complex coordinate on D0 and that (7–13) holds with � 0 replacing � .
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Let �j be such that the value of � at the � 0 D 0 point in D0 is �.z/C �j . thus, �j D 0

in the case that m> 0. Next, define  W D0!D by declaring that

(7–14)  � � � �j D �
0k :

This C 1 map realizes D0 as a degree k branched cover over D with a single branch
point. Moreover, this map restricts near @D0 so as to have the following property: The
maps � ı and �j send any given point to the same constant � , pseudoholomorphic
submanifold in B . Indeed, such is the case by virtue of the fact that r as well as � are
constant on any � D constant submanifold in R� .S1 �S2/. It follows from this last
conclusion that � 0 can be changed via multiplication by a k ’th root of unity so that it
agrees with �j near @D0 . Thus,  extends �j over D0 as a C 1 , ramified cover.

Here is one last point about this extension of �j : By virtue of (7–13) and its � 0 analog,
jx@ j � j@ j over the whole of D0 , and the sequence whose j ’th element is the
supremum of jx@ j=j@ j over the j ’th version of D0 has limit zero as j !1. Since
 is differentiable and smooth save at  �1.z/, it has a deformation that extends �j

over D0 as a smooth map with jx@�j j � j@�j j at all points. Moreover, these extensions
can be made for each large j version of  so that the resulting sequence of supremums
of jx@�j j=j@�j j has limit zero as j !1.

Step 14 To finish the story about �j ’s extension to the disk components of C0j �

��1
j .S"/, suppose now that z is a point in a disk component of S0�S" where � is

zero. Let B denote the radius " ball in R� .S1 �S2/ centered at �.z/. The ball B

has smooth complex coordinates .x;y/ where

(7–15) x D sin � exp
�
�i

�
' �

p
6 cos �

.1� 3 cos2 �/
yt

��
and y D s� iyt I

here yt is the R–valued lift of the function t to B that vanishes at �.z/: These coordi-
nates are such that each x D constant disk is pseudoholomorphic and the x D 0 disk
lies entirely in the � D 0 cylinder. In this regard, there is a complex valued function �
on B that vanishes at x D 0 and is such that dxC �d xx spans T 1;0.R� .S1 �S2//

over the whole of B .

Now, let D � S0 denote a disk centered at z with boundary in S" that is mapped by �
into B . Let q denote the intersection number between D and the � D 0 locus. Since
� is holomorphic, there is a holomorphic coordinate, u, on D such that x pulls back
via � as uqCO.jujqC1/. Thus, � � x1=q defines a C 1 , complex coordinate on D .
Moreover, � obeys (7–13) where the constant c is furnished by the expression for x

in (7–15).
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Now fix some very large j and let D0�C0j denote a disk that bounds a component of
�j
�1.@D/. Let k denote the degree of �j ’s restriction to @D0 . Applying the argument

just given to D0 finds that � 0 � x1=kq defines a C 1 , complex coordinate on D0 that
obeys its own version of (7–13) with the constant c used for the � version. Granted all
of this, define a map,  W D0!D by requiring that  � � D � 0k . Arguing as in the
case where �.z/¤ 0 finds that such a map  can be modified by multiplication by
a k ’th root of unity so as to provide a C 1 extension of �j over D0 . Moreover, this
extension has a smooth perturbation as a degree k ramified cover with jx@�j j � j@�j j.
Finally, these extensions can be made for each large j so that the sequence whose
j ’th element is the supremum of jx@�j j=j@�j j limits to zero as j !1.

8 The strata and their classification

This section completes the story started in Section 5 by describing in more detail the
strata of M� yA . The following is a brief summary of the contents: The first subsection
describes each stratum as a fiber bundle over a product of simplices whose typical fiber
is some M� yA;T . This result is stated as Proposition 8.1. Theorem 6.2 and Proposition
8.1 thus give an explicit picture of any given component of any given stratum in M� yA .

Meanwhile, Subsection 8.B describes necessary and sufficient conditions on a graph
T that insure a non-empty M� yA;T . These are stated as Proposition 8.2. The final
subsection proves Proposition 6.1, this the assertion that the homotopy type of a graph
T arises from at most one component of at most one stratum of M� yA . Together,
Propositions 6.1 and 8.2 provide a complete classification of the components of the
strata that comprise M� yA .

8.A The structure of a stratum

As in Sections 5.A, let SB;c;d denote a stratum of M� yA and let S � SB;c;d denote
a connected component. A graph of the sort introduced in Subsection 6.A from any
equivalence class in S has some m distinct, multivalent vertex angles that do not
arise via (1–8) from any .0;C; : : :/ element in yA nor from an element in B . This
understood, a function, p, from S to the m’th symmetric product of .0; �/ is defined
as follows: The value of p on the equivalence class defined by .C0; �/ is the set of
� –values of the m compact but singular � level sets in C0 . If non-empty, then the
inverse image via p of any given point in the m’th symmetric product of .0; �/ is a
version of M� yA;T where T is has precisely m distinct, multivalent vertex angles that

do not come via (1–8) from an integer pair of any .0;C; : : :/ element in yA nor any
element in B .
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With the preceding understood, consider:

Proposition 8.1 If non-empty, then S is fibered by p over a product of open simplices.

Proof of Proposition 8.1 It follows from Lemma 5.4 with (2–4), (2–11) and the
implicit function theorem that the map p is a submersion. Granted this, then Theorem
6.2 implies that p fibers S over its image in the m’th symmetric product of .0; �/.

To picture the image of S via p, return to the definition in Subsection 5.A of SB;c;d .
The definition involved the subspace SB;c �M� yA whose elements are defined by
pairs .C0; �/ where the following two conditions are met: First, C0 has precisely c

critical points of � where � is neither 0 nor � . Second, the ends in C0 that correspond
to elements in B are the sole convex side ends of C0 where the jsj !1 limit of � is
neither 0 nor � and whose version of (2–4) has a strictly positive integer nE . Letting
d DNCCjBjC c and Id the d ’th symmetric product of .0; �/, then SB;c;d consists
of the inverse image of the stratum in Id indexed by d via the map that assigns to a
given .C0; �/ the angles of the critical points in .0; �/ of � as well as the angles in
.0; �/ that are jsj !1 limits of � on the concave side ends in C0 and the ends that
correspond to 4–tuples from B . As in Subsection 5.A, denote the map from Sb;c to
Id as f .

Only m angles in the image of f can vary and their values define the map p. To say
more, let ƒC;B denote the angles that are defined via (1–8) by the integer pairs from
the .0;C; : : :/ elements in yA and from the elements in B . The complement of ƒC;B
in .0; �/ is a union of open segments. The image of f consists of the set ƒC;B and
then m angles that are distributed .0; �/�ƒC;B . Each of the latter angles can vary as
a function on S , but only in a single component of .0; �/�ƒC;B . However, keep in
mind that two such angles in the same component can not coincide. Furthermore, the
angles from f that lie in a given component of .0; �/�ƒC;B need not sweep out the
whole component as functions on S . The picture just drawn implies that the image of
p is a product of simplices.

As is explained below, there are additional constraints on the range of variation of the
angles from f .

8.B An existence theorem

A component of any given stratum of M� yA has an associated homotopy type of graph.
Though yet to be proved, Proposition 6.1 asserts that these homotopy types classify the
components of the strata. The next proposition gives necessary and sufficient conditions
for a given homotopy type of graph to arise as the label of a component of some stratum
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of M� yA . In this proposition and subsequently, the angle that is assigned to a given
vertex o of a graph T is denoted by �o . As before, when e is an edge of T , then e ’s
assigned integer pair is denoted by Qe or .qe; qe

0/.

Proposition 8.2 Let T denote a graph of the sort that is described in Subsection
6.A. Then the space M� yA;T is non-empty if and only if the following conditions are
met: Let e denote an edge of T and let o and o0 denote the vertices at the ends of e

where the convention taken has �o0 > �o . Then the QDQe version of ˛Q is positive
on .�o; �o0/, and it is zero at an endpoint if and only if the corresponding vertex is
monovalent and labeled by a .0;�; : : :/ element from yA.

To comment on these conditions, remark that if e is an edge, then its integer pair, Qe ,
may or may not define an angle via (1–8). In any event, at least one of ˙Qe defines
such an angle. In the case that Qe defines an angle, denote the latter as �e , and in the
case that �Qe defines an angle, denote the latter by ��e . These angles are the zeros of
the function ˛Q . Moreover, since the derivative of ˛Q is positive at �e and negative
at ��e , the following conditions are necessary and sufficient for ˛Q to be positive on
.�o; �

0
o/:

�(8–1) �o > �e if only �e is defined.

� �o0 < ��e if only ��e is defined.

� �e < �o < �o0 < ��e if both �e and ��e are defined and �e > ��e .

� Either �o0 < ��e or �o > �e if both �e and ��e are defined and ��e < �e .

In this regard, note that ��e is not defined when qe > 0 and qe=jqe
0j<

q
3
2

. On the

otherhand, �e is not defined when qe < 0 and �qe=jqe
0j <

q
3
2

. If both are defined,
then �e < ��e if qe

0 is positive, and �e > ��e if qe
0 is negative.

Note that angle inequalities can be interpreted directly in terms of integer pairs. To
elaborate, suppose that �Q is defined via (1–8) from an integer pair .q; q0/ and that
�P is defined from another integer pair, .p;p0/. Then

�(8–2) If p is negative and q0 is positive, then �P > �Q .

� If p0 and q0 have the same sign, then �P > �Q if p0q�pq0 < 0.

With (8–2) in hand, the conditions in (8–1) can be written directly in terms of the data
given in yA and T .
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Proof of Proposition 8.2 The beginning of Subsection 2.A explains why the stated
conditions are necessary. The strategy to prove that the stated conditions are sufficient
is as follows: A given graph T is approximated by a sequence of graphs, all mutually
homotopic, and chosen so that the corresponding versions of M� yA;.�/ are nonempty.
A sequence is constructed whose j ’th element is from the j ’th version of M� yA;.�/ .
The latter sequence is then seen to converge to an element in M� yA;T . The four steps
that follow give the details. In this regard, note that the convergence arguments are
very much the same as those in Subsection 7.D and so only the novel points are noted.

Step 1 To start, say that a graph T of the sort that is described in Subsection 6.A is
generic when it has the following properties: All multivalent vertices are either bivalent
or trivalent, the trivalent vertex angles are pairwise distinct, and they are distinct from
all bivalent vertex angles. [15, Theorem 1.3] asserts that M� yA;T is nonempty when
T is generic and obeys the stated conditions in Proposition 8.2.

Step 2 Let T denote a graph from Subsection 6.A and let o 2 T denote a bivalent
vertex. Consider modifying T by replacing the graph �o by a ‘less valent’ graph, �o

0 .
This is done as follows: Suppose first that �o has a vertex with valency greater than 4.
Let � denote the latter. The new graph, �o

0 , is obtained from �o�� by attaching the
now dangling incident half-arcs that are incident to � to the vertices in a graph with
two vertices and one arc between them. Three of the dangling half-arcs are attached to
one of these two vertices and the remaining half-arcs are attached to the other. Now
care must be taken here with the choice of the first three so as to insure that the arcs in
the new graph have consistent labels by pairs of edges. In particular, this is done as
follows: Take the first incident half-arc to be oriented as an incoming arc, and let .e; e0/
denote its edge pair label. The second incident half-arc must be the arc that follows the
first in `oe . Note that it must also be distinct from the first arc. As a consequence, its
pair label has the form .e; e00/. This second incident half-arc is outgoing. The third
incident half-arc should be the arc that follows the first on `oe0 . I t must also be distinct
arc from the first arc. Thus, its edge label has the form .e000; e0/. It too is outgoing.
Note that the case e000 D e is allowed. The new arc that runs between the two new
vertices is oriented as an incoming half-arc and labeled by the edge pair .e000; e00/. One
of the two new vertices should be labeled with the integer 0, the other with the integer
that labels � . Note that there is a completely analogous construction that has all arc
orientations reversed. The operation just described can be performed on any vertex
with valency greater than four.

Suppose next that �o has only 4–valent and bivalent vertices, but at least one 4–valent
vertex with a non-zero integer label. Let � denote one of the latter vertices. In this
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case, �o
0 is obtained from �o�� in the manner just described. One of the vertices

in the new graph is bivalent and the other is 4–valent. The bivalent vertex should be
given � ’s integer label and the other should be labeled with 0.

Consider now:

Lemma 8.3 Suppose that T 0 is obtained from T by modifying one version of �.�/ as
just described. Then M� yA;T is nonempty if and only if M� yA;T 0 is nonempty.

Proof of Lemma 8.3 Suppose first that M� yA;T 0 is nonempty. Let o 2 T denote the
vertex involved and � the vertex in �o . Consider a sequence, f�j g, in the T 0 version of
the space in (6–15) whose coordinates are j –independent but for the coordinate in the
T 0 simplex �0o . In the latter, the coordinate for the arc between the two vertices in �o

0

that replace � should converge to zero. The remaining arc coordinates should converge
as j !1 so as to define a point in �o . Use a j –independent value in R and the
image of f�j g in OT 0=Aut.T 0/ to define a sequence of equivalence classes in M� yA;T 0 .
The discussion in Subsection 7.D can be repeated now with a minor modification to
prove that the sequence in M� yA;T 0 converges to an element in M� yA;T . The salient
modification replaces (7–9) and (7–10) with the assertion that only the one arc in �o

0

that does not come from �o�� can correspond to an arc in C0j that either lies entirely
in a radius " ball or where jsj �R.

Suppose next that M� yA;T is nonempty. The fact that M� yA;T 0 is nonempty follows
using Lemma 5.4 with (2–4), (2–11) and the implicit function theorem.

Step 3 Suppose now that each version from T of �.�/ has only bivalent or 4–valent
vertices and that all 4–valent vertices are labeled by zero. Thus, no modifications as
described in Part 2 are possible. However, suppose that o is a multivalent vertex in T

and that �o contains two or more vertices with one being a 4–valent vertex. In this
case, T is modified to produce a graph T 0 as follows: To start, let � 2 �o denote a
4–valent vertex in �o . The arc segments that are incident to � are labeled by pairs of
edges, but there are either 3 or 4 edges in total involved. In any case, two connect o to
respective vertices whose angles are either both smaller or both larger than �o . What
follows assumes the former; the argument in the latter case is omitted since it differs
only cosmetically.

Let e and e0 denote the two edges that connect o to vertices with larger angle. The
complement in T of the interiors of e and e0 is disconnected, with three components,
these denoted as Te , Te0 and T� . The graph T� contains o, while Te contains the
vertex opposite o on the edge e and Te0 contains the vertex opposite o on the edge
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e0 . The graph T 0 is the union of Te , Te0 , T� and a trivalent graph, Y , with one
vertex and three edges. The two vertices at the top of the Y are identified in T 0 with
the respective e and e0 vertices in Te and Te0 . The vertex at the bottom of the Y is
identified in T 0 with the vertex o in T� . The vertex at the center of the Y is denoted
by o0 , and its angle, �o0 , is slightly larger than �o . The corresponding graph, �o0 , is a
figure 8 where the two small circles are the versions of `o0.�/ that are labeled by the two
top edges of the Y graph. Meanwhile, the loop that traces the figure 8 is the version of
`o0.�/ that is labeled by the bottom edge in the Y graph.

Let yo denote the vertex in T 0 that corresponds to o 2 T� . The vertex angle of yo is that
of o, thus �o . The graph �yo is obtained from �o�� as follows: Attach the incoming
arc segment to � with label e to the outgoing arc segment with label e0 . Likewise,
attach the incoming arc segment with label e0 to that outgoing arc segment with label
e . Then, replace e and e0 in all arc labels by the label of the bottom edge in the figure
Y .

As can be readily verified, a graph T 0 as just described satisfies the conditions in
Proposition 8.2 if T does, and if the vertex angle �o0 is sufficiently close to �o . This
understood, consider:

Lemma 8.4 Suppose that T 0 is a graph as just described, with �o0 very close to �o .
Then M� yA;T is nonempty if and only if M� yA;T 0 is nonempty.

This lemma is proved momentarily.

Proposition 8.2 is a corollary to Lemmas 8.3 and 8.4 together with [15, Theorem 1.3].
The reason is that any given T can be sequentially modifed as described first by Lemma
8.3 and then as in Lemma 8.4 so as to obtain a graph that is generic in the sense that is
used by Step 1.

Step 4 This step contains the following proof.

Proof of Lemma 8.4 Suppose first that M� yA;T 0 is nonempty when �o0 is sufficiently
close to �o . Take a sequence of angles f�j gjD1;2;::: that converges to �o from above
with each very close to �o . Let fTj gjD1;2;::: denote a corresponding sequence of graphs
where the j ’th version is T 0 with �o0 D �j . The plan is to define a corresponding
sequence in M� yA whose j ’th element is a point in the T 0 = Tj version of M�

yA;T 0

by using Theorem 6.2 and a point in the Tj version of the space in (6–15). For this
purpose, it is necessary to first make the choices that are described in Parts 1 and 2
of Subsection 6.C. Since the Tj ’s are pairwise homotopic, these choices can be made
for all at once. Granted that this is done, choose a corresponding sequence, f�j g, with
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�j a point in the Tj version of the space in (6–15). This sequence should be chosen
so that all of the factors are independent of the index j . Now define a corresponding
sequence in M� yA whose j ’th element is in the T 0 D Tj version of M� yA;T 0 and
is obtained from �j using the Tj version of Theorem 6.2 with some j –independent
choice for the R factor. Arguments that are much like those in Subsection 7.D can be
employed to prove that such a sequence converges in M� yA and that the limit is in
some M� yA;T 00 where T 00 is a graph of a rather special sort. In particular, if T 00 is not
isomorphic to T, then it has a vertex, yo, with angle �o such that the replacement of �yo
with �o makes a graph that is isomorphic to T . As is explained next, a careful choice
for the constant sequence f�j g gives a version of T 00 that is isomorphic to T .

Care must be taken only with the coordinates of �j in the Ryo ��yo and Ro0 factors
in (6–15). To specify the latter, return to the construction of the graph �yo in T 0 from
�o . Let ye denote the bottom edge of the Y –graph portion of T 0 . There is a map
from �yo to �o that is 1–1 except for two points on `yoye that are both mapped to the
vertex � . Let � denote the latter map. By assumption, there is another vertex besides
� in `oe [ `oe0 . For the sake of argument, suppose `oe has a second vertex, then let
�0 denote the vertex on `oe that starts the arc in `oe that ends at � . Meanwhile, the
abstract version of the loop `o0ye from the figure 8 graph �o0 has two vertices. Let �1

and �2 denote the latter where the convention has the arc that starts at �1 and ends at
�2 mapping to `o0;e in �o0 .

The next step to choosing the coordinates of �j requires the introduction of the map
from �o to �yo0 that is defined so that r 2�o sends  � �yo to

P
 0��./ r. 0/. Fix

r 2�o and use its image under this map for �j ’s factor in �yo . Also, fix � 2 Ryo . To
define the coordinate of �j in the Ro factor, observe first that the concatenating path set
for the loop `yoye in �yo can be used to assign a value in R to the vertex ��1.�0/ from
any given � 2 Ryo . This value is defined by starting with � and adding or subtracting
suitable multiples of the values given by the image of r in �yo to the arcs on a certain
path from the distinguished vertex in �yo to ��1.�0/. In particular, the path uses the
concatenating path set to get to `yoye and then proceeds in the oriented direction on `yoye
to the vertex ��1.�0/. All of this is done so as to be compatible with the parametrizing
algorithm as described in Section 2. Let �0 denote the R value defined in this way
from the pair .�; r/. Now let �1 denote the result of adding to �0 the value that the
image of R assigns to the arc in `yoye that starts at ��1.�0/. Use 1

2
.�0C �1/ for �j ’s

coordinate in Ro0 .

Arguments that are much like those used in Subsection 7.D prove that the sequence
f�j g as just described defines a sequence in M� yA whose limit is in M� yA;T . The
proof that M� yA;T 0 is nonempty if M� yA;T is obtained using Lemma 5.4 with (2–4),
(2–11) and the implicit function theorem.
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8.C Proof of Proposition 6.1

In order to prove Proposition 6.1, it is necessary to return to the milieu of Proposition
8.1 and obtain a more refined picture of the image of the map p. For this purpose,
remember that there are m angles in the image of the map f that can vary on a given
stratum component S . These angles are distributed amongst the various components
of .0; �/�ƒC;B . If T and T 0 are homotopic graphs, and if o 2 T and o0 2 T 0 are
corresponding vertices, then either �o D �o0 and this angle is in ƒC;B , or else �o and
�o0 are in the same component of .0; �/�ƒC;B .

With this last point in mind, suppose that T1 and T2 are homotopic graphs with the
following property: Let �1 2 .0; �/�ƒC;B and suppose that there are multivalent
vertices in T1 with angle �1 . Let V � T1 denote the latter set, and also the corre-
sponding set in T2 . Suppose that the vertices in the T2 version of V are assigned
angle �2 > �1 . In addition, assume that both the T D T1 and T D T2 versions of
M� yA;T are nonempty. For each angle � 2 .�1; �2/, let T� denote the version of T

that is obtained from T1 by assigning the angle � to the vertices in V . Thus, each T�
is homotopic to T .

Proposition 6.1 is now a consequence of the following:

Lemma 8.5 If both the T1 and T2 versions of M� yA;T are nonempty, then such is
the case for each T D T� version in the case that � 2 Œ�1; �2�.

Proof of Lemma 8.5 Consider the following scenario:

Scenario 1 An angle � lies in �1 ’s component of .0; �/ � ƒC;B , the T D T�
version of M� yA;T is empty, but all T D T� versions of M� yA;T are nonempty when
� 2 Œ�1; �/.

Note that Proposition 8.1 finds some such � when the T D T1 version of M� yA;T is
nonempty. As is explained momentarily, Scenario 1 occurs if and only if � coincides
with ��e in the case that e is an edge that connects a vertex from the T1 version of V

to a vertex with angle less than �1 .

Here is a second scenario:

Scenario 2 An angle � 0 lies in �1 ’s component of .0; �/ � ƒC;B , the T D T� 0

version of M� yA;T is empty, but all T D T� versions of M� yA;T are nonempty when
� 2 .� 0; �2�.
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A cosmetic modification to the arguments given below to prove the assertion just made
about Scenario 1 prove the following: Scenario 2 occurs if and only if � 0 coincides
with �e in the case that e is an edge that connects a vertex from the T2 version of V

to a vertex with angle greater than �2 .

Note that Scenario 1 precludes Scenario 2, and vice versa. Indeed, were both scenarios
to occur, then both T1 and T2 would be in violation of the conditions in Proposition
8.2. Lemma 8.5 is a consequence of this fact that the two scenarios cannot both occur.

To explain the assertion about Scenario 1, note first that if � D ��e with e as described,
then the T D T� version of M� yA;T is empty because T� violates the conditions
stated in Proposition 8.2. Suppose next that � is some as yet undistinguished angle
that gives Scenario 1. By virtue of the fact that the various � 2 Œ�1; �/ versions of
T� differ only in their vertex angle labels, the choices that are made in Parts 1 and 2
of Subsection 6.C can be made in a � –independent fashion. This then identifies all
T D T� versions of the space that is depicted in (6–15). Fix some element in this
space, �, and a real number, s0 . Next, let T D T� and use .s0; �/ in R�OT =Aut.T /
to define via Theorem 6.2 a point in this same T D T� version of M� yA;T . Let c�
denote the latter sequence. As will now be explained, arguments much like those used
in Subsection 7.D prove the following: The sequence fc�g converges as � ! � in
M� yA to a point in the T D T� version of M� yA;T unless � D ��e with e an edge
that connects a vertex in V to a vertex with angle less than �1 . Indeed, all of the
arguments in Subsection 7.D can be made in this situation except possibly those in
Step 3 in Subsection 7.D from the proof of Proposition 7.1. Moreover, the arguments
in Step 3 from the proof of Proposition 7.1 can also be made if the angle � (this is the
angle to use for �� in Step 3 of Subsection 7.D) is such that ˛Q.�/ > 0 when Q is
the integer pair for any edge that is incident to a vertex in V .

9 Geometric limits

The purpose of this last section is to indicate how the various codimension 1 strata fit
one against another to make the whole of M� yA . The resulting picture of M� yA is by
no means complete, and perhaps not very illuminating. However, what follows should
indicate how tools from the previous sections can be used to add missing details.

This story starts with the codimension 0 strata, and so let S denote a component of
such a stratum in M� yA . What follows summarizes some of results about S from
the previous sections. To start, introduce k to denote N�C yN C ç�C çC � 2. The
component S lies in a stratum of the form SB;c;d where B Dø and c D k , and d is
the partition of NCC k with the maximal number of elements. As a consequence,
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Proposition 5.1’s integer m is equal to k also. Thus, if T is a graph that arises from
an element in S , then T has k trivalent vertices, with no two angles identical and
none an angle from an integer pair of any .0;C; : : :/ element in yA. If o is a trivalent
vertex, then �o is compact, a figure 8 with one vertex. The other multivalent vertices
are bivalent. If o is a bivalent vertex in T , then �o is a circular graph whose vertices
correspond to the .0;C; : : :/ elements in yA with integer pairs that define o’s angle, �o ,
via (1–8).

This all translates into the following geometry: Suppose that .C0; �/ defines an element
in S . Then the pull-back of � to C0 has non-degenerate critical points; the critical
values are pairwise distinct, and none is an jsj ! 1 limit of � on a concave side
end of C0 where limjsj!1 � 2 .0; �/. If E is such a concave side end, then E ’s
version of (2–4) has integer nE D 1. On the otherhand, if E is a convex side end
where limjsj!1 � 2 .0; �/, then the integer nE is zero. Finally, C0 has transversal
intersections with the � D 0 and � D � cylinders.

To picture S , note first that the image of Subsection 8.A’s map p can be viewed as
a k –dimensional product of simplices in �k..0; �/ �ƒC;ø/, this denoted in what
follows as �k . Then Subsection 6.C’s map provides an orbifold diffeomorphism that
identifies S as R �O, where O is fibered by p over �k . In addition, the typical
fiber has the form OT =Aut.T / with T as just described. Because all such fibers have
homotopic graphs, the fibration pW O!�k can be trivialized. This is to say that there
is an orbifold diffeomorphism from S to

(9–1) R�O=A��k ;

where ODOT and AD Aut.T / for a some fixed graph T .

The behavior of the codimension 0 strata near a given codimension 1 stratum component
is rather benign by virtue of the fact that the codimension 1 strata are submanifolds
where smooth and suborbifolds otherwise. To elaborate, remark that the p–image of a
path in S to a codimension 1 or larger stratum will limit to a boundary point of the
closure of �k in �k..0; �/�ƒC; ø/. As explained below, each codimension 1 stratum
component in the closure of S correspond in a natural fashion to a codimension 1 face
in this closure of �k . In particular, if S1 denotes a codimension 1 stratum component,
then S1 fibers over some k � 1 dimensional product of simplices, thus some �k�1 .
In particular, S1 is diffeomorphic as an orbifold to R�O1=A1 ��k�1 where O1

is some OT 1 and A1 the corresponding Aut.T 1/ with T 1 some fixed graph. In all
cases, the group A1 has a representation in Z=2Z, and this understood, a neighborhood
of S1 in M� yA;T is diffeomorphic as an orbifold to

(9–2) R� .O1 � .�1; 1//=A1
��k�1;
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where A1 acts on .�1; 1/ through the multiplicative action of Z=2Z as ˙1. In all
cases, the stratum S1 appears in (9–2) as the locus where the coordinate in the .�1; 1/

factor is 0.

As it turns out, there is much more to say about how various codimension 0 and 1 strata
fit around the codimension 2 strata in their closure. This aspect of the stratification is
the focus of Subsection 9.A that follows.

Most of the rest of this section focuses on what can be viewed as the codimension
1 strata in a certain natural compactification of M� yA . To elaborate for a moment
on this point, remark that the identification given by Theorem 6.2 provides a natural
compactification of any given M� yA;T , this obtained from the compactification of OT

that replaces each open simplex in (6–9) with the corresponding closed symplex. This
and the replacement of �k in (9–1) with its closure defines, up to an obvious factor of
R, a stratified space compactification of M� yA . As it turns out, each added stratum
in this compactification has a natural geometric interpretation in terms of multiply
punctured sphere subvarieties. This interpretation is presented below in Sections 9.B
for the additional codimension 1 strata in the compactifications of the various versions
of M� yA;T . Subsection 9.C goes on to describe Subsection 1.B’s compactification of

the N�C yN C ç�C çC D 2 versions of M yA
. The added codimension 1 strata for the

compactification of M� yA when N�C yN C ç�C çC > 2 are described in Sections 9.D
and 9.E.

9.A The codimension one strata

The components of the codimension 1 strata in the case that N�C yNC çCC ç��kC2

are characterized in part by the structure of the graph that arises from a typical element.
Here are the four possibilities for a component of a codimension 1 stratum:

�(9–3) The graph has k trivalent vertices where precisely one pair have identical
angles. Even so, no trivalent vertex angle comes via (1–8) from an integer
pair of a .0;C; : : :/ element in yA.

� The graph has k � 2 trivalent vertices and one 4–valent vertex. No two
have the same angle and none comes via (1–8) from an integer pair of a
.0;C; : : :/ element in yA. In addition, the 4–valent vertex is assigned a
graph with two vertices.

� The graph has k � 1 trivalent vertices and none comes via (1–8) from an
integer pair of a .0;C; : : :/ element in yA. Meanwhile, there are NCC 1

bivalent vertices.
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� The graph has k trivalent vertices with pairwise distinct angles, and pre-
cisely one such angle comes via (1–8) from an integer pair of a .0;C; : : :/
element in yA. The latter has a graph with one vertex labeled with 0.

These four cases correspond to the following sorts of codimension 1 faces in the
symplex �k that appears in (9–1). The first and second points in (9–3) arise when two
or more trivalent vertex angles lie in the same component of .0; �/�ƒC;ø . The first
point can arise when there are no multivalent vertex angles between the angles of a
pair of trivalent vertices from distinct edges in T . The second point can arise when no
multivalent vertex angle lies between the angles of two trivalent vertices that share an
edge.

The third point in (9–3) can arise when no multivalent vertex angle lies between the
angles of a monovalent and trivalent vertex from a single edge. The fourth point in
(9–3) can occur when no multivalent vertex angle lies between the angles of a bivalent
and trivalent vertex from a single edge.

There is a corresponding geometric interpretation to the four strata in (9–3). To say
more in this regard, suppose that .C0; �/ defines an element in a codimension 1 stratum.
If the component is characterized by the first or second points in (9–3), then there are
two critical points of � on C0 with the same critical value in .0; �/. In the case of the
first point, the corresponding � level sets are disjoint; and they are not disjoint in the
case of the second point. In the case of the third point, a convex side end version of
(2–4) has nE D 1. In the case of the fourth point, a critical value of � coincides with
the jsj !1 limit of � on some concave side end.

As is explained in the final subsection, sequences in a top dimensional stratum where
a trivalent vertex angle limits to 0 or � can not converge to a codimension 1 stratum
in M� yA . Faces of the closure of �k in �k Œ0; �� that lie on the boundary of �k Œ0; ��

can give rise to codimension 2 strata.

The subsequent five parts of this subsection describe how the codimension 0 and the
codimension 1 strata fit together inside M� yA . The proofs of the assertions that are
made below are omitted except for the comment that follows because the arguments
in all cases are lengthy yet introduce no fundamentally new ideas. Here is the one
comment: The proofs use the implicit function theorem to establish the pictures that
are presented below of the relevant strata of M� yA . In this regard, the arguments use
the techniques that have already been introduced in Subsection 7.D, in much the same
manner as they are used in Subsection 7.D, to prove that the picture that is provided by
the implicit function theorem contains a full neighborhood of the stratum in question.
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Part 1 This part describes a neighborhood of the strata whose elements have graphs
that are described by the first point in (9–3). There are two cases to consider; the
distinction is whether the group A1 that appears in (9–2) is larger than the automorphism
group of the graphs that arise from elements in the nearby codimension 0 strata.
To elaborate, the automorphism group of a graph from a codimension 0 stratum
element must fix all trivalent vertices since these have distinct angles. However, the
automorphism group of the codimension 1 stratum can, in principle, interchange the two
trivalent vertices that share the same angle. Granted this, let A denote the automorphism
group of a graph from an element in a nearby codimension zero stratum and A1 denote
that for a graph from an element in the codimension 1 stratum. The two cases under
consideration here are those where A1 �A and where A1 is the semi-direct product
of Z=2Z with A. In the former case, A1 acts trivially on the .�1; 1/ factor in (9–2).
In the other case, A1 acts via its evident projection to Z=2Z.

To explain how this dichotomy of automorphism groups arises, let T 1 denote the
graph from a typical element in the codimension 1 stratum. Thus, A1 is isomorphic to
Aut.T 1/. The graph T 1 has an A1 –invariant, trivalent vertex o with the following
property: Let T1 , T2 and T3 denote the closures of the three components of T 1�o.
The labeling is such that T1 and T2 each contain one of the two trivalent vertices with
equal angle. If T1 is not isomorphic to T2 , then A1 �A. If T1 is isomorphic to T2 ,
then the distinguished Z=2Z subgroup in A1 switches T1 with T2 .

Part 2 This part and the next part of the subsection consider the components of the
codimension 1 stratum whose elements have graphs that are characterized by the second
point in (9–3). There are also various cases to consider here. To elaborate, let T 1

denote such a graph, and let o 2 T 1 denote the 4–valent vertex. Introduce E� and EC
to denote the sets of incident edges to o that respectively connect o to vertices with
smaller angle and with larger angle. In the first case, either EC or E� has a single
edge. In the second case, both have two edges. Note that in the first case, the graph �o

associated to o has the form:

(9–4)

when EC and E� each have two edges, then the associated graph �o can be either
the graph in (9–4) or the graph that follows.

(9–5)
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This part of the subsection focuses on the case where E� has three of o’s incident
edges. The story when EC has three edges is identical but for notation to that told here.
Part 3 of the subsection considers the case when both E� and EC have two edges.

To start, label the three edges in E� as fe1; e2; e3g. The corresponding versions of `o.�/

label the three circles depicted in (9–4). Note that the central circle is distinguished,
and each of the three edges here can have the central circle for its version of `o.�/ . This
is an important fact in what follows because it indicates that there can be three distinct
codimension 1 stratum components involved.

Suppose that e2 occupies the central circle. The image of A1 D Aut.T 1/ in Auto is
either trivial or Z=.2Z/. In this regard, let T1 , T2 and T3 denote the closures in T 1 of
the respective components of T 1� o that contain the interiors of e1 , e2 and e3 . The
case where the Auto image of A1 is Z=.2Z/ arises when T1 and T3 are isomorphic.

Let S1 denote the corresponding codimension 1 stratum of M� yA . In either case, a
neighborhood of S1 in M� yA is diffeomorphic as an orbifold to the space depicted
in (9–2). In this case, the group A1 acts on the .�1; 1/ factor via its image in Auto ,
either trivially or as the Z=.2Z/ action as multiplication by ˙1.

There is more to the picture just presented by virtue of the fact that any one of the
three edges in E� can label the middle circle in (9–4) and so there can be from 1 to
3 distinct codimension one strata involved here. What follows describes how these
codimension 1 strata and their neighborhoods fit together in M� yA .

To start, consider a graph, T , as described in the second point of (9–3) save that its
4–valent vertex, o, has a version of �o with only one vertex. Thus, �o is the union
of three circles that intersect at a single point. These circles are the e D e1; e2 and
e3 versions of `oe . In this case, Auto is a subgroup of Z=.3Z/, thus trivial if T1 , T2

and T3 are not mutually isomorphic. Note that there are two distinct versions of �o

in any case, these are distinguished as follows: Let ye denote the single edge in EC .
Then `oye has three vertices and three arcs. Each arc is labeled by e1 , e2 and e3 ; and
the two versions of �o are distinguished by the two possible cyclic orderings of the
arcs that comprise `oye . Thus, there are, in fact, two possibilities for T . However, the
two versions are isomorphic when two or more from the collection fTj gjD1;2;3 are
isomorphic.

The homotopy type of a graph T as just described labels a codimension 2 stratum
component, this diffeomorphic as an orbifold to R�O2=A2 ��k�2 . Here, O2 is
diffeomorphic to OT and A2 isomorphic to Aut.T /.

Now introduce Z � CP1 D C[1 to denote the complement of the three cube roots
of �1. Thus, Z is a model for a standard ‘pair of pants’. Let Z1 �Z\CP1 denote
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the three rays that go through 0, 1, and the respective cube roots of 1. The drawing in
(1–27) depicts Z1 in the finite part of Z .

There are three cases to consider. In the first, T1 , T2 and T3 are pairwise non-
isomorphic. In this case, there are three distinct codimension 1 strata components
involved; and a neighborhood in M� yA of their union is diffeomorphic as an orbifold
to

(9–6) R�O2=A2
�Z ��k�2:

Here, the three codimension 1 strata correspond to the loci Z1�f0;1g, and the two
codimension 2 strata correspond to 0 and 1.

The second case occurs when two of the three graphs from fTj gjD1;2;3 are isomorphic.
In this case, there can be as few as two distinct codimension 1 strata components
involved. To describe a neighborhood of the union of these strata, note that the image
of A2 in Auto in this case is Z=2Z. Thus, A2 acts on C[1 through the action
of Z=2Z on C[1 whose generator sends z! xz . Note that this action commutes
with the Z=2Z action on C[1 as z!�xz�1 and whose orbit space is RP2 . As a
consequence A2 acts on RP2 as well. With all of this understood, a neighborhood of
their union in M� yA is diffeomorphic as an orbifold to

(9–7) R� .O2 �
xZ/=A2

��k�2;

where xZ � RP2 is the image of Z . Here, the two codimension 1 strata correspond
to the image in RP2 of Z1�f0;1g and the codimension 2 stratum to the image of
f0;1g. In this regard, note that the rays of Z1 through the non-trivial cube roots of 1
have the same image in RP2 , this distinct from the ray through 1.

The final case occurs when T1 , T2 and T3 are pairwise isomorphic. To picture this
case, introduce the six element permutation group G of the set f1; 2; 3g. This group
has the Z=3Z subgroup of elements that preserves the cyclic order. The quotient of
G by the latter group gives the parity homomorphism G! Z=2Z. The group G acts
on CP1 as the group of complex automorphisms that permutes the cube roots of �1.
In the latter guise, G has generators z ! 1=z and z ! �z where � is a favorite,
non-trivial cube root of 1. Note that G also permutes the cube roots of 1. In any event,
G acts on Z � CP1 . This understood, a neighborhood of the codimension 2 stratum
in M� yA is diffeomorphic as an orbifold to

(9–8) R�
�
.O2 �G/=A2

�G Z
�
��k�2;

where A2 acts on G on its left side through Auto D Z=.3Z/. Meanwhile, G acts on
itself on its right side and on Z as noted above. The codimension 1 stratum appears in
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(9–8) as the image of Z1�f0;1g. The codimension 2 strata appear as the image of 0
and 1 from Z .

Part 3 What follows here is a description of a neighborhood in M� yA of the compo-
nents of the codimension 1 strata whose elements have graphs that are characterized
by the second point in (9–3) in the case that the 4–valent vertex has two edges that
connect it to vertices with larger angle and two that connect it to vertices with smaller
angle. To set the stage, let T 1 denote the graph in question and o the 4–valent vertex.
Let e� and e�

0 denote the edges in E� and let eC and eC
0 denote those in EC . In

what follows, ˛� , ˛�0 , ˛C and ˛C0 denote ˛Q.�o/ in the case that QDQe with e

respectively the edges e� , e�
0 , eC and eC

0 . Each of these functions is positive at �o ,
and by virtue of (2–17),

(9–9) ˛�C˛�
0
D ˛CC˛C

0:

A distinction must now be made between the cases when the unordered sets f˛�; ˛�0g
and f˛C; ˛C0g are distinct, and when they agree. Considered first as Case 1 is that
when these two sets are distinct.

Case 1 Make the convention that ˛� � ˛�0 and that ˛C � ˛C0 . At least one of these
is a strict inequality. Since ˛� ¤ ˛C , one or the other is larger; and as the description
for the ˛� >˛C case is identical to that when ˛C >˛� , the former is left to the reader.
Thus, in what follows,

(9–10) ˛C > ˛� � ˛�
0 > ˛C

0:

As noted briefly above, the graph �o can be either as depicted in (9–4) or as in (9–5).
In the case of (9–4), the assumption in (9–10) implies that there are only two consistent
labelings of the arcs with pairs of incident edges. These are as follows:

�(9–11) Both of the middle circle’s arcs are labeled by .e�; eC/, and the other two
arcs are labeled by .e�; eC0/ and .e�0; eC/.

� Both of the middle circle’s arcs are labeled by .e�0; eC/, and the other two
arcs are labeled by .e�0; eC0/ and .e�; eC/.

Let T� , T�
0 , TC and TC

0 denote the closures of the four components of T 1�o, here
labeled so as to indicate which contains which incident edge. By virtue of (9–10), the
graphs TC and TC

0 are not isomorphic. However, T� and T�
0 may be isomorphic. In

the latter case, the two versions of T 1 that correspond to the two labelings in (9–11)
are isomorphic. Otherwise, the two versions are not isomorphic. In any event, the
image of Aut.T 1/ in Auto is trivial.
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Granted what has just been said, a component of a stratum whose typical element has
a graph such as either version of T 1 as just described is diffeomorphic as an orbifold
to what is depicted in (9–2) with A1 D Aut.T 1/ acting trivially on .�1; 1/.

When the graph �o is as depicted in (9–5), there is, up to isomorphism, only one way
to label the arcs with pairs of edges. From right to left, the labeling is:

(9–12)
�
e�; eC

�
;

�
e�; eC

0
�
;

�
e�
0; eC

0
�
;

�
e�
0; eC

�
:

In the case that T� is not isomorphic to T�
0 , the image of Aut.T 1/ in Auto is trivial.

In the case that these two graphs are isomorphic, the image is Z=2Z. In the latter case,
the element �1 acts so as to rotate the diagram in (9–5) by � radians.

A neighborhood in M� yA of a component of a codimension 1 stratum that yields a
the graph T 1 is diffeomorphic as an orbifold to the space in (9–2). In this regard, the
action of A1DAut.T 1/ on .�1; 1/ is trivial if T� and T�

0 are not isomorphic. If they
are isomorphic, then the action on .�1; 1/ is via its image in Auto as the multiplicative
action of f˙1g D Z=2Z.

A particularly intriguing point here concerns how the codimension 0 and 1 strata fit
around a codimension 2 stratum. The intrigue stems from the fact that the closures
of the respective (9–4) and (9–5) cases for S1 intersect. In this regard, the relevant
graph that describes the intersection obeys the second point of (9–3) save that the
graph for the 4–valent vertex has but one vertex. Thus, the latter graph, �o , consists
of three circles that meet at a single point. Such a graph is obtained from (9–4) by
shrinking either of the two arcs in the middle circle. The same graph is produced by
shrinking either arc. However, the two labeled versions of (9–11) produce distinctly
labeled versions of such a 1–vertex and 3–circle �o . In particular, the respective top
and bottom versions of (9–11) produce such a �o whose arcs are labeled by

(9–13)
�
e�; eC

0
�
;
�
e�; eC

�
;
�
e�
0; eC

�
and

�
e�
0; eC

0
�
;
�
e�
0; eC

�
;
�
e�; eC

�
:

Meanwhile, (9–5) yields a one vertex and three circle graph in two ways since either
of the arcs labeled with eC

0 can be shrunk. Note that the shrinking of an eC labeled
arc is prohibited by the assumption in (9–10). There are two resulting versions of �o ,
these distinguished by the arc labelings in (9–13).

Note that in the case that T� and T�
0 are isomorphic, the two versions of T that

correspond to the two versions of �o with the respective arc labelings in (9–13) are
isomorphic. Otherwise, they are not isomorphic graphs.

Granted all of this, a picture of a neighborhood in M� yA of all of these strata is obtained
as follows: Let T denote one or the other of the graphs that result from the two cases
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in (9–13), and let O2 denote OT and A2 denote Aut.T /. Next, let Z � C denote
the complement of 2 and �2. Let Z1 �Z denote the union of the circles of radius 1
centered at 2 and �2 together with the arc Œ�1; 1� along the real axis between them.
The drawing in (1–28) depicts Z1 in Z . In the case that T� is not isomorphic to T�

0 ,
a neighorhood of the codimension 1 and 2 strata just described is diffeomorphic as an
orbifold to

(9–14) R�O2=A2
�Z ��k�2:

Here, the codimension 1 strata correspond to the complement in Z1 of 1 and �1,
while the latter correspond to the codimension 2 strata. In this regard, subvarieties that
map to the arc .�1; 1/ � Z1 have the 4–valent vertex graph in (9–5). Those on the
two circular parts of Z1 have graphs as in (9–4), and the two circles are distinguished
by the two labelings in (9–11). Meanwhile, the subvarieties in the codimension 2 strata
that map to +1 are distinguished from those that map to �1 by the two labelings in
(9–13).

In the case that T� and T�
0 are isomorphic, then a neighborhood of the strata is

diffeomorphic as an orbifold to

(9–15) R�O2=A2
� xZ ��k�2;

where xZ is the quotient of Z via the action by multiplication of f˙1g on C.

Case 2 Consider now the case that the sets f˛�; ˛�0g and f˛C; ˛C0g are identical.
Agree to label things so that ˛� � ˛�0 and ˛C � ˛0C . Assume first that these are strict
inequalities. In this case, the version of �o in (9–4) has but one allowable arc labeling,
this where the middle arcs are labeled by .e�; eC/ and the outer two by .e�; eC0/ and
.e�
0; eC/. Shrinking either of the two middle arcs yields a graph with three circles and

one vertex. The two graphs so obtained have identical edge labels, .e�; eC/; .e�; eC0/
and .e�0; eC/. The corresponding two versions of T are thus isomorphic.

In the case that the version of �o is given by (9–5), there is, as before, only one way to
label the graph in (9–5) by incident half-arcs. Note that maps in the corresponding �o

must assign a greater value to the .e�; eC/ arc than to the .e�0; eC0/ arc. Meanwhile,
the arc labeled by .e�; eC0/ must be assigned the same value as the .e�0; eC/ arc. This
being the case, the boundary of �o can be reached either by shrinking the value of the
.e�
0; eC

0/ arc or by simultaneously shrinking the values of the .e�; eC0/ and .e�0; eC/
arcs. The face that corresponds to giving the .e�0; eC0/ arc value zero corresponds
to the codimension 2 stratum whose elements have a graph T as just described in
the preceding paragraph. The other face of �o does not correspond to an element in
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M� yA . Indeed, according to Lemma 9.6 to come, points on the latter face correspond
to reducible subvarieties.

Granted this, here is a picture of a neighborhood in M� yA of these strata. Let Z � C

denote the complement of the circle of radius 1 centered at 1, and let Z1�Z denote the
union of this circle with the negative real axis. Let T denote the graph that is referred
to in the preceding paragraph. Set O2 D OT and A2 D Aut.T /. Then the strata in
question have a neighborhood in M� yA that is diffeomorphic as an orbifold to (9–14)
with Z as just described. In this new version, the codimension 1 strata correspond
to Z1� 0 and the codimension 2 stratum corresponds to 0. Here, the circular part of
Z1 corresponds to the component of the codimension 1 stratum whose elements have
4–valent vertex graphs as depicted in (9–4). The negative real axis corresponds to the
component whose elements have 4–valent graphs as depicted in (9–5).

The final case to consider is that where ˛�D˛0�D˛CD˛C
0 . In this case, the 4–valent

vertex in the codimension 1 stratum must have the form depicted in (9–5). Just one
component is involved. The image of the corresponding version of A1 D Aut.T 1/

in Auto is either trivial, Z=2Z or Z=2Z� Z=2Z. The last case occurs when T� is
isomorphic to T�

0 and when TC is isomorphic to TC
0 . The Z=2Z case occurs when

one or the other of these pairs consist of isomorphic graphs, but not both. The trivial
case occurs when neither pair has isomorphic graphs. A neighborhood in M� yA is
diffeomorphic as an orbifold to what is depicted in (9–2) where A1 acts on .1;�1/

via its image in Auto , thus via its image in the group Z=2Z�Z=2Z. Here, the action
of the latter on .�1; 1/ has both the Z=2Z generators multiplying by �1. Note that in
this case, neither boundary face of the �o factor in O2 corresponds to a subvariety in
M� yA ; both correspond to reducible subvarieties.

Part 4 This part describes the neighborhood of the codimension 1 strata in M� yA
whose elements have graphs that are characterized by the third point in (9–3). If .C0; �/

defines a point on such a stratum, then the extra bivalent vertex in TC has graph �o

that is a single circle with one vertex. As noted previously, the latter vertex corresponds
to a convex side end of C0 where the jsj!1 limit of � is neither 0 nor � , and whose
version of (2–4) has nE D 1. Let o denote this vertex and �o its angle. Elements near
this stratum have a trivalent vertex, yo, that is very nearly �o . If �yo > �o , the yo version
of E� has two of the three incident edges; if �yo < �o , then the corresponding EC has
two of the three incident edges. The graphs from elements on the two sides of this
stratum would otherwise be homotopic.

Suppose that f.C0j ; �j /gjD1;2;::: is a sequence in M� yA with limit .C0; �/ and if this
sequence is not on the stratum in question, then each C0j has a unique � critical point
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that is very close to �o . Let zj denote the latter point. Then f�.zj /gjD1;2;::: converges
to �o but fs.zj /gjD1;2;::: is unbounded from below. To put this in a colloquial fashion,
the position of this one critical point moves as j !1 to more and more negative
values of s .

Part 5 This part describes the neighborhoods of the codimension 1 strata whose
elements have graphs that are characterized in the fourth point of (9–3). There are now
two cases to consider. In the first case, the graph T for C0 has NC bivalent vertices.
This is to say that � on C0 has k non-degenerate critical points with one having �
value in ƒC . However, the constant � level set through this critical point is compact
like the others; thus still a figure 8. In this case, a neighborhood of the stratum is not
very interesting and won’t be discussed further except to say that the union of the two
abutting codimension zero strata are described by a version of (9–1).

The more interesting case occurs when there are NC� 1 bivalent vertices. Assuming
that this is the situation, let o denote the trivalent vertex in T whose angle is in ƒC;ø .
The corresponding graph �o is a figure 8 with one 4–valent vertex labeled with o and
with all other vertices being bivalent and having positive integer labels. These bivalent
vertices are in 1–1 correspondence with the .0;C; : : :/ elements in yA whose integer
pair defines �o via (1–8).

The various versions of �o are characterized by the manner in which these bivalent
vertices are distributed on the two circles that comprise the figure 8. In this regard, the
possible isomorphism types for �o are described momentarily with the help of an or-
dered pair .}0; }00/ of linearly ordered sets that partition the set of .0;C; : : :/ elements
in yA whose integer pairs define �o in (1–8). For the purposes of this description, label
the incident edges to o as e , e0 and e00 with the convention that e0 and e00 connect o

to vertices with both angles either greater than �o or both angles less than �o . The pair
.}0; }00/ defines a version of �o by using }0 to label the bivalent vertices that are met
when circumnavigating `oe0 in the oriented direction starting at the 4–valent vertex.
The elements in }00 have the analogous interpretation with regards to `oe00 . Note that
this labeling of the versions of �o can be redundant. In particular, such will be the
case when yA has multiple copies of some .0;C; : : :/ whose integer pair gives �o via
(1–8). The labeling is also redundent when Qe and Qe0 agree, for then the respective
versions of �o that are defined by .}0; }00/ and .}00; }0/ are identical.

The closures of these various strata components intersect in codimension 2 strata and it
is intriguing to see how all of these strata fit together. Since the story in general can be
complicated, attention is restricted in what follows to the case when �o is determined
by the integer pair from a single .0;C; : : :/ element in yA. To describe this case, let T

denote the graph that is described by the fourth point in (9–3) but where the version of
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�o has a single 4–valent vertex with positive label. Let Te , Te0 and Te00 denote the
closures of the components of T�o, these labeled so as to indicate which incident edge
is in which component. Now, let Z � C denote the complement of f1;�1g and let
Z1 �Z denote the figure 8 locus where jz2� 1j D 1. This is depicted schematically
in (1–26). In the case that Te0 is not isomorphic to Te00 , a neighborhood in M� yA of
the strata involved is diffeomorphic as an orbifold to the space depicted in (9–4) with
Z as just described, with O2 DOT , and with A2 D Aut.T /. In the case at hand, the
two codimension 1 strata are the two components of Z1� 0, and the codimension 2
stratum corresponds to 0.

In the case that Te0 D Te00 , there is but a single codimension 1 stratum component and
one codimension 2 stratum component involved. To describe a neighborhood in M� yA
of these strata, note that in this case Aut.T / has image Z=2Z in Auto . Thus, Aut.T /
acts on C via this image and the Z=2Z action is via multiplication by f˙1g on C.
This understood, a neighborhood in M� yA of the codimension 1 and codimension 2
strata is diffeomorphic as an orbifold to R� .O2 �Z/=A2 ��k�2 where O2 DOT ,
A2 D Aut.T / and Z is as described in the preceding paragraph. In this case, the
codimension 1 stratum is the image of Z1� 0 and the codimension 2 stratum is the
image of 0.

9.B Limits of sequence in M�
yA;T that do not converge in OT =Aut.T /

The space OT =Aut.T / has a natural compactification as a stratified space that is
obtained by replacing each open symplex in (6–9) by the corresponding closed symplex.
All of the added points in this compactification label subvarieties that are geometric
limits of elements in M� yA;T . The two parts of this subsection describe the various
limits for sequences that converge to the added codimension 1 strata of the compacti-
fication. Analogous assertions for the codimension greater than 1 added strata when
N� C yN C ç� C çC > 2 are more complicated and so left to the more industrious
readers.

The proofs of the lemmas that appear are omitted but for some sporadic comments.
This is because the argument in each case would lengthen an already long exposition;
in any event, but for straighforward modifications, each argument repeats the those that
appear in Subsection 7.D.

Part 1 To set the scene for this part of the subsection, a multivalent vertex o 2 T has
been fixed along with an arc  � �o . In addition, a sequence f�j gjD1;2;::: has been
specified in T ’s version of the space depicted in (6–9) that is constant but for the �o

factor. In this regard, the �o part of �j maps  to a number, rj , such that the resulting
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sequence frj gjD1;2;::: converges to zero. Meanwhile, the analogous sequences that are
defined by the remaining arcs in �o converge as j !1 to positive numbers. With
f�j g so chosen, fix s0 2 R and then use the image of .s0; �j / in R �OT =Aut.T /
with the inverse of the map from Subsection 6.C to define a sequence in M� yA;T . This
scenario is assumed implicitly in the statements of Lemmas 9.1–9.4 that follow.

By the way, the arc  can not start and end at the same vertex because each element in
�o assigns the same value to any given arc that starts and ends at the same vertex. To
explain, note that such an arc defines a non-trivial class in H1.�oIZ/, and the latter
can be written as

P
e ce Œ`oe � with fceg a collection of integers. Let QD

P
e ceQe .

As a consequence of (6–6), each element in �o must assign ˛Q.�o/ to  .

Here is one comment with regards to proving Lemmas 9.1–9.4: Proposition 7.1 is
still valid under the assumptions just made. In fact, what follows are assumptions that
guarantee the validity of Proposition 7.1.

(9–16) Let f�j gjD1;2;::: denote a sequence from T ’s version of the space in (6–15)
that is constant but for the �o factor. Meanwhile, let frj g denote the corre-
sponding sequence of �o factors. This sequence of maps should converge
so that the following is true: Let A denote the set of arcs in �o for which
limj!1 rj .�/ is zero. Then [2A is simply connected.

As illustrated by what is discussed in Case 2 of Part 3 in Subsection 9.A, there may
be codimension 1 faces of �o whose maps assign 0 to two or more arcs from �o .
As explained in Part 2 of this subsection, limits to these faces violate the preceding
assumption. In any event, such faces are considered in Part 2.

In the various cases described below, a certain graph, T 0 , is defined from T by
collapsing  to a point and suitably interpreting the result. In all of the cases, T 0 is a
graph that has the properties stated in Subsection 6.A. In what follows, yA0 denotes the
corresponding asymptotic data set.

In the meantime, a stratum in the compactified version of OT =Aut.T / arises as the
image of the face of the compact version of �o whose maps send  to zero. This
stratum has a natural interpretation as OT 0=Aut.T 0/. In each case that follows, the
explanation of this interpretation is straightforward and left to the reader. Granted this
interpretation, the sequence f�j g in each of the cases that follow has a well defined limit
point in OT 0=Aut.T 0/. This point is denoted by Œ�0�. The T 0 versions of Theorem
6.2 and the inverse of the map from Subsection 6.C assign a point in M� yA the pair
.s0; Œ�0�/. Use .C0; �0/ to denote the latter point in M� yA .

In the first lemma that follows, T 0 is identical to T but for the graph assigned to o.
The latter, �o

0 , is obtained from �o by removing the interior of the arc  and replacing
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its two vertices with a single vertex whose label is the sum of the integers that label the
vertices on  .

Lemma 9.1 Assume that at least one vertex on  is labeled by the integer 0. In this
case, the sequence in M� yA converges in M� yA to the point defined by .C0; �0/ in
M� yA;T 0 .

The next lemma, assumes that the two vertices on  have either both positive or
both negative integer assignments. Let m1 and m2 denote their respective integer
assignments. The two vertices on  correspond to respective 4–tuples a1 and a2

in yA of the form .0; "; jm1jP / and .0; "; jm2jP / where P is the relatively prime
integer pair that defines �o via (1–8) and "D sign.m1/. Let yA0 denote the asymptotic
data set that is obtained from yA by first removing both a1 and a2 , and then adding
a0 D .0; "; jm1Cm2jP /. Meanwhile, let T 0 denote the graph that is identical to T

but for the graph assigned to o. This new assignment, �o
0 , is obtained from �o by

removing the interior of  and replacing its two vertices by a single vertex whose
integer assignment is m1Cm2 .

Lemma 9.2 With the circumstances as just indicated, the sequence converges to
the element defined by .C0; �/ in M� yA0;T 0 in the following sense: The sequence in
M� yA;T comes from a sequence f.C0j ; �j /gjD1;2;::: such that

� limj!1 sC0j
��j $ D

R
C0
��$ for each compactly supported 2–form $ .

� The following limit exists and is zero:

lim
j!1

h
sup

z2C0j

dist
�
�j .z/; �.C0/

�
C sup

z2C0

dist
�
�j .C0j /; �.z/

�i
:

Moreover, there exists an end, E � C0 , that gives the 4–tuple a0 and has the following
significance: Given R� 1 and any sufficiently large j , there is a smooth, proper
embedding,  j , from the complement in C0 of the jsj>R portion of E into C0j ; and
these are such that

� The complement of the image of  j is a properly embedded, thrice punctured
sphere that contains two ends of C0j , these supplying the elements a1 and a2 to
yA.

� limj!1 dist.�j ı j .z/; �.z//D 0 for all z in the domain of  j .

� jx@ j j � j@ j j and limj!1 supdomain. j / j
x@ j j=j@ j j D 0.
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The final two lemmas in this Part 1 assume that both vertices on  have nonzero integer
assignments with differing signs. Let m1 and �m2 denote the two integers with the
convention here that m1> 0 and m2> 0. The two vertices on  correspond to 4–tuples
a1 and a2 in yA where a1 D .0;C;m1P / and a2 D .0;�;m2P /. Here, as before, P

is the relatively prime pair that defines �o via (1–8).

The following lemma assumes that m1 ¤ m2 . Let " D sign.m1 �m2/ and m D

jm1�m2j. For this case, let yA0 denote the asymptotic data set that is obtained from
yA by removing both a1 and a2 , and replacing them with a0 D .0; ";mP /. As in the

previous cases, T 0 denotes the graph that is identical to T but for the graph assigned
to o; and the latter is obtained from �o by removing the interior of  and replacing
its two vertices by a single vertex whose integer assignment is m1Cm2 .

Lemma 9.3 With the circumstances as just indicated, the sequence converges to the
element defined by .C0; �/ in M� yA0;T 0 in the following sense: There is an R–invariant
cylinder, S , at angle �o and a sequence f.C0j ; �j /g that defines the given sequence,
and these are such that

� limj!1

R
C0j

��j $ D sC0
��$ C min.m1;m2/

R
S $ when $ has compact

support

� The following limit exists and is zero:

lim
j!1

h
sup

z2C0j

dist
�
�j .z/; �.C0/[S

�
C sup

x2�.C0/[S

dist
�
�j .C0j /;x

�i
:

Moreover, there exists an end, E � C0 , that gives the 4–tuple a0 and has the following
significance: Given R� 1 and any sufficiently large j , there is a smooth, proper
embedding,  j , from the complement in C0 of the jsj>R portion of E into C0j ; and
these are such that

� The jsj ! 1 limit of the constant jsj slices of E converge as a degree m

multiple cover of the Reeb orbit in S1 �S2 that defines the cylinder S .

� The complement of the image of  j is a properly embedded, thrice punctured
sphere that contains two ends of C0j , these supplying the elements a1 and a2 to
yA.

� The constant jsj slices of the latter ends converge as jsj !1 as multiple covers
of a � D �o Reeb orbit, �j ; and the resulting sequence, f�j g, of Reeb orbits
converges as j !1 to the Reeb orbit that defines S .

� limj!1 dist.�j ı j .z/; �.z//D 0 for all z in the domain of  j .
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� jx@ j j � j@ j j and limj!1 supdomain. j / j
x@ j j=j@ j j D 0.

Lemma 9.4 that follows assumes that the integers m1 and m2 are equal. In this case,
yA0 is obtained from yA by removing both a1 and a2 . Nothing is added. The versions

of T 0 in this case depend on certain properties of �o . There are three cases. In the first
case, the graph �o has only two vertices and both are bivalent. In this case, the vertex
o has just two incident edges and T 0 is obtained from T by removing the vertex o

and concatenating these two edges as one. In the second case, �o has more than two
vertices, but the two vertices on  are bivalent. In this case, T 0 differs from T only in
the graph assigned to o. Here, the T 0 version is obtained from �o by removing the
whole of  and concatenating the resulting free ends as a single arc in the new graph.
This arc is labeled by the same pair of edges that label  . In the third case, �o may or
may not have two vertices, but at least one of the vertices on  has valency 4 or more.
In this case, the interior of  is removed from �o , and its two vertices are replaced by
a single vertex whose integer assignment is zero. In any of these cases, write the sum
of the valencies of the two vertices on  as kC 4.

Lemma 9.4 With the circumstances as just indicated, the sequence converges to the
element defined by .C0; �/ in M� yA0;T 0 in the following sense: There is an R–invariant
cylinder, S , at angle �o and a sequence f.C0j ; �j /g that defines the given sequence,
and these are such that

� limj!1

R
C0j

��j $ D
R

C0
��$ Cm1 sS $ when $ has compact support

� The following limit exists and is zero:

lim
j!1

h
sup

z2C0j

dist
�
�j .z/; �.C0/[S

�
C sup

x2�.C0/[S

dist
�
�j .C0j /;x

�i
:

Moreover, there exists a point z 2 C0 with the following significance: Given small but
positive " and any sufficiently large j , there is a smooth, proper embedding,  j , from
the complement in C0 of the radius "2 disk about z in C0 into Coj ; and these are such
that:

� If kD 0, then d� jz¤ 0. If k > 0, then z is a critical point of � and deg.d� jz/D
k . In either case, �.z/ 2 S .

� The complement of the image of  j is a properly embedded, thrice punctured
sphere that contains two ends of C0j , these supplying the elements a1 and a2 to
yA.
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� The constant jsj slices of the latter ends converge as jsj !1 as multiple covers
of a � D �o Reeb orbit, �j ; and the resulting sequence, f�j g, of Reeb orbits
converges as j !1 to the Reeb orbit that defines S . The third end of this
thrice punctured sphere is mapped by �j to the radius " ball in R� .S1 �S2/

about �.z/.

� limj!1 dist.�j ı j .z/; �.z//D 0 for all z in the domain of  j .

� jx@ j j � j@ j j and limj!1 supdomain. j / j
x@ j j=j@ j j D 0.

Part 2 The preceding four lemmas require that f�j g provide a convergent sequence
with non-zero limit to each arc but one in �o . As seen in the previous subsection, there
can arise situations where a codimension 1 face of �o can not be reached by such a
sequence. This can happen when the constraints in (6–6) require some collection of
arcs in �o to have identical assignments for each r 2�o .

To say more about this phenomena, note that when r 2�o and a vertex � 2 �o are
given first, and then a number with sufficiently small absolute value is chosen, a new
point in �o is obtained from r by adding the chosen number to r ’s value on each
outward pointing arc at � while subtracting the number from r ’s value on each inward
pointing arc. This observation has the following implication: Let  and  0 denote arcs
in �o . Then r. /� r. 0/ is independent of r 2�o if and only if  and  0 share the
same starting vertex and also the same ending vertex.

To see what r. /� r. 0/ can be in this case, remark that the loop defined by traversing
 in its oriented direction and  0 in reverse defines a primitive homology class from
H1.�oIZ/ and so can be written as a linear combination

P
e ce Œ`oe � where fceg is a

collection of integers that are defined modulo adding a constant to each e 2 EC version
of ce and subtracting the same constant from each e 2E� version. This implies that

(9–17) r. /� r. 0/D 2�
X

e

ce˛Qe
.�o/:

Since the collection fceg are integers, this last identity has the following implication:

(9–18) The values of r. / and r. 0/ are equal for all r 2�o for at most two values
of �o unless

P
e ceQe D 0.

Indeed, with Q �
P

e ceQe ¤ 0, then r. /� r. 0/ D 2�˛Q.�o/; and this is zero
when Q¤ 0 if and only if either Q or �Q defines the angle �o via (1–8).

The following lemma about the set of integers fceg plays a role in what follows.
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Lemma 9.5 Let  and  0 denote arcs that share the same starting vertex and share the
same ending vertex. Then the homology class of the loop that is obtained by traversing
 in its oriented direction and then  0 in reverse can be written as

P
e ce Œ`oe � where

ce D 1 or 0 when e 2E� and where ce D�1 or 0 if e 2EC . Moreover, ce ¤ 0 for at
least one e 2E� and for at least one e 2EC .

Proof of Lemma 9.5 Let Z denote the free Z–module generated by the arcs in �o ,
and let � denote an arc. Introduce the homomorphism f �W Z! Z that sends � to 1
and all other arcs to 0. Now, let .e; ye/ denote the edges that label  with the convention
that e 2E� and ye 2EC . As f  . � 0/D 1, it follows that ceCcyeD 1 since only `oe

and `oye contain  . As a consequence, (2–17) can be used to choose the coefficients
fc.�/g so as to make ce D 1 and cye D 0. Now let .e0; ye0/ denote the edges that label  0

with e0 2E� and ye0 2EC .

As is explained next, ce0 can not equal �1. To see why such is the case, introduce �
to denote the vertex where  and  0 start. An incident half-arc to � is called a 1�
half-arc when c.�/ D�1 on the E� component of its labeling pair. Meanwhile, a 1C
half-arc has c.�/ D 1 on the EC component of its labeling pair. Note that there are an
even number of 1� half-arcs and and even number of 1C half-arcs. Also, every 1�
half-arc except  0 in the case that ce0 D�1 is a 1C half-arc. On the other hand, a 1C
half-arc is also a 1� half-arc because f 

0

. �  0/D�1. Granted these obervations,
then parity considerations forbid ce0 from having value �1.

A very similar argument now proves that ce0 D 0 and cye0 D 1. To see how this
comes about, say that an incident half-arc to � is a 0� half-arc if c.�/ D 0 on the E�
component of its labeling pair. Meanwhile, a 0C half-arc has c.�/ D 0 on the EC
component of its labeling pair. There are an even number of 0� half-arcs and and even
number of 0C half-arcs. Also, every 0C half-arc except  is a 0� half-arc. On the
other hand, every 0� half-arc is a 0C half-arc except  0 if ce0 D 0. Granted these
obervations, then parity considerations require ce0 D 0 and then cye0 D �1 because
f 
0

. �  0/D�1.

Having established that ce D 1, cye D 0, ce0 D 0 and cye0 D�1, define a sequence of
sets, A1�A2� � � � �A;

0

of arcs in �o�f ,  0g as follows: The arcs that comprise
A1 are the arcs from `oe[`oye0�f; 

0g Those in any k � 2 version of Ak are labeled
by an edge from e that also labels an arc from Ak�1 . If e labels an arc in A; 0 , then
ce D 1 when e 2 E� , and ce D �1 when e 2 EC . If e does not label an arc from
A; 0 , then ce D 0. As a parenthetical remark, note that the sets A; 0 and A 0; are
complementary: An arc from �o � f; 

0g in the former is not in the latter and vice
versa.
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To lay more groundwork for the assertions to come, suppose that an ordered pair of
distinct vertices in �o have been specified and let A denote a set of arcs that start at the
first vertex of the pair, end at the second and are all assigned equal value by every map
in �o . Other arcs can connect these vertices if there is a map in �o that assigns them
values that differ from its value on the arcs in A . It is assumed in what follows that A

has two or more arcs. Now, define a new graph, �o
0 , from �o by identifying the arcs

in A to a single vertex. This single vertex, � 0 , is labeled by the sum of the integers that
label the two vertices on the arcs in A . To obtain the other labels for �o

0 , declare that
the collapsing map from �o to �o

0 induce an isomorphism between �o�[2A and
�o
0
�� 0 that preserves all integer labels to vertices and the edge label pairs of the arcs.

Since A has more than one arc, the graph �o
0 has the wrong Euler number for a graph

that arises from a pair .C0; �/ with C0 a multiply punctured sphere. Indeed, let n

denote the number of incident edges to o and let a denote the number of arcs in A . The
Euler number of �o

0 is 1�nC .a�1/ where as 1�n is the correct number were �o
0

to come from a multiply punctured sphere. As a consequence, the image in H1.�o
0
IZ/

of the classes fŒ`oe �g must satisfy a > 1 constraints, thus more than the one that is
depicted in (2–17). Of course, these extra constraints are generated by a set whose
elements are labeled by distinct, unordered pairs of arcs from A . In this regard, the
constraint labeled by such a pair, f;  0g, asserts that

(9–19)
X

e

ce Œ`oe �D 0 in H1.�o
0
IZ/;

where the collection fceg comes from the f;  0g version of Lemma 9.5.

The next task is to make some sense out of this. To start, fix an arc  2 A and let
e denote the edge from E� that labels  . Define sets A


1
� A


2
� � � � � A� of arcs

in �o
0 as follows: The arcs from `oe comprise A


1

. Meanwhile, those in the k � 2

version of A


k
are labeled by an edge in EC that also labels an arc in A



k�1
. Note that

A \A
0

Dø if  ¤  0 . To see this, first return to the proof of Lemma 9.5 to see that
A � A;

0

. Since A;
0

is disjoint from A
0; , so A and A

0

are also disjoint.

Let E denote the set of o’s incident edges that label arcs in A . Note that E is
disjoint from E 0 in the case that  ¤  0 . Indeed, such is the case since the former set
have c.�/ D˙1 in the f ,  0g version of Lemma 9.5, while the latter set have c.�/ D 0

in this same version. Granted this, let E

˙

denote E˙\E . It follows from Lemma
9.5 that the union of the arcs in A define a subgraph, �o


� �o

0 , whose Z homology
is generated by the collection f`oye W ye 2E g subject to the one constraint,

(9–20)
X
ye2E�

Œ`oye ��
X
ye2E


C

Œ`oye �D 0:
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The various  2 A versions of (9–20) generate the constraint in (2–17) and the full
collection of the various f;  0g versions of the constraint in (9–19).

Return now to the graphs in the collection f�o

g. Remark first that any two such

graphs with distinct arc labels intersect only at � 0 . On the other hand, [2A�o
 is the

whole of �o
0 . These obervations follow from Property 3 from Part 3 of Subsection

2.C.

Each arc in �o
 already has an edge pair label, and all but one vertex has an integer

label. The one as yet unlabeled vertex is the one that maps to � 0 in �o
0 . What follows

explains how to deal with the latter so that the result, �o
 , comes from the label of a

vertex in a graph as described in a version of Subsection 6.A. To start, define

(9–21) Q
�

X
ye2E�

Qe �

X
ye2E


C

Qe:

It follows from (9–18) that �o is defined via (1–8) by some relatively prime integer
pair if Q is non-zero; and then Q is a multiple of this pair. Let ym denote the latter
multiple when Q is non-zero, and set ym D 0 otherwise. Meanwhile, let m denote
the sum of the integers that label the vertices in �o


� � 0 .

Now there are two cases to consider. If ym �m is non-zero or if the vertex in �o


that maps to � 0 has more than two incident edges, then the vertex that maps to � 0 is
viewed in �o

 as an honest vertex with integer label ym �m . If the vertex in �o


that maps to � 0 is bivalent and if ym �m D 0, then this vertex is invisible in �o


and its incident arc are viewed as a single arc.

The corresponding Subsection 6.A graph is denoted in what follows as T  , and it
is characterized as follows: There is a multivalent vertex, o , in T  whose angle is
�o and graph label is �o

 . Meanwhile, T  � o is isomorphic to the union of the
components of T � o that contain the interiors of the edges from the set E . The
corresponding asymptotic data set for T  is denoted below by yA .

All of this background is assumed in the upcoming Lemma 9.6. In addition, this lemma
assumes that a sequence, f�j gjD1;2::: , has been specified in T ’s version of the space
depicted in (6–15) with the following properties: The sequence is constant but for the
�o factor. Let frj g denote the corresponding sequence in the �o factor. Then frj g
converges and A is the set of arcs in �o where limj!1 rj .�/ is zero. With f�j g so
chosen, fix a sequence fsj g 2R and then use the image of .sj ; �j / in R�OT =Aut.T /
with the inverse of the map from Subsection 6.C to define a sequence in M� yA;T .

Lemma 9.6 With the circumstances as just indicated, there exists the following: First,
a pair, .S ; � /, that defines an element in each  2 A version of the space M�

yA ;T 
.
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Second, a subsequence of f�j g, hence renumbered consecutively from 1, and a sequence
f.Cj0; �j /g that defines the corresponding subsequence in M� yA;T . Third, a finite set,
„, of pairs of the form .S; �/ where each .S; �/ 2„ is one of the following

� An R–invariant cylinder at an angle in ƒ yA or at the angle �o .

� An element from the set f.S ; � /g2A .

Here is the significance: Given a compact set K � R� .S1 �S2/, then

� limj!1

R
Cj0

��j $ D
P
.S;�/2„

R
S �
�$ for each 2–form $ with compact

support in K .

� The following limit exists and is zero:

lim
j!1

�
sup

z2��1
j
.K /

dist
�
�j .z/;[.S;�/2„�.S/

�
C sup

z2[.S;�/2„��1.K /

dist
�
�j .Cj0/; �.z/

��
:

Moreover, there is a subset A0 � A and two versions of „ that arises from suitable
choices of fsj g such that the first contains only and all of the  2 A0 versions of
.S ; � /, and the second contains only and all of the  2 A�A0 versions.

A story can be told in the manner of Lemmas 9.1–9.4 that gives a much more detailed
account of the convergence of the sequence in question. In particular, a part of this
story describes a subvariety in �2AOT  =Aut.T  / that maps in a proper, finite to one
fashion onto the given codimension 1 stratum of the compactification of OT =Aut.T /.
In any event, this more detailed account is left to the reader except for the following
comment: As with Lemmas 9.1 and 9.4, various cases must be distinguished. In the
present circumstances, these are characterized by

� the integers that are assigned the two vertices on the arcs in A ;

� whether or not � 0 is represented by a vertex in the various versions of �o
 ;

� in the cases that � 0 is so represented, the integer label of the corresponding
vertex.

9.C The compactification of M yA in the case that N�C yN C ç�C çCD 2

The purpose of this subsection is to describe a compactification of the whole of M yA

in the case that yA is an asymptotic data set with N�C yN C ç�C çC D 2.

The proofs of the various assertions that follow are omitted as they can be obtained in
a straightforward manner using variations of arguments from Section 4 and Section 7.
In this regard, (9–16) should be used to obtain the conclusions of Proposition 7.1.
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To start the discussion, return to Theorem 1.2 where M yA
is described as yO yA=Aut yA

with yO yA sitting in the space OA in (1–21) as the subset where the Aut yA action is free.
The compactification here is as described in Part 2 of Subsection 1.B, thus O

yA=Aut yA

where

(9–22) OA
� ŒR� �Maps. yACIR/�=

�
.Z�Z/�Maps. yACIZ/

�
:

As indicated in Part 2 of Subsection 1.B, the points in O
yA
� yO

yA describe bonafide
subvarieties, but these lie in yA0 ¤ yA versions of M yA0

. This story is told in the two

parts of the subsection that follow. The first part discusses the points in O
yA � yO

yA

while the second considers those in O
yA
�O

yA .

Part 1 The following summarizes most of the story on O
yA� yO

yA :

Proposition 9.7 The map described in Subsection 3.C extends to define an orbifold
diffeomorphism between R�O

yA=Aut yA and M� yA .

This proposition is a corollary of Theorem 6.2. To elaborate some on how Proposition
9.7 arises, suppose that o denotes a bivalent vertex in T

yA and let yAo denote the
set of elements in yAC whose integer pair gives �o via (1–8). Let Cyco denote the
set of cyclic orderings of yAo . As noted in Subsection 4.C, the components of O

yA

are in 1–1 correspondence with the points in �o Cyco . Let v denote a point in the
latter space and let O

yA
v denote the corresponding component. Borrowing again from

Subsection 4.C, let Auto;v denote the group of permutations of yAo that preserve the
cyclic ordering from v while permuting only elements with identical 4–tuples, and
set Autv � �o Auto;v . This is the subgroup of Aut yA that preserves O

yA
v . As such,

the image of O
yA
v in O

yA=Aut yA is diffeomorphic as an orbifold to O
yA
v=Autv . The

component O
yA
v=Autv corresponds in the present contex to one of Section 5’s top

dimensional strata in M� yA .

To say something more about the points in O
yA � yO

yA , suppose that v is as above
and that Autv has a nontrivial, canonical Z=kZ subgroup. In this case, O

yA
v will

have points where the Aut yA action is not free; and, of course, these give points in
O
yA=Aut yA that are not in yO yA=Aut yA . Now, let G denote a nontrivial subgroup of

some canonical Z=kZ subgroup of Autv . Define yA0C to be the quotient of yAC by G .
Thus, yA0C is obtained from yAC by replacing each G orbit in yAC by a single point.
Note that the given cyclic ordering v for yAC induces one for yA0C ; the latter is denoted
in what follows by v0 .
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Meanwhile, both ç� and çC must vanish when Aut yA has a nontrivial, canonical
Z=kZ subgroup. Moreover, yA � yAC must consist of two 4–tuples that are of the
form .0;�;Q/ or .˙1; �;Q/ where k evenly divides both components of Q. This
understood, augment yA0C with the 4–tuples that are obtained from the latter two by
replacing Q with 1

jGj
Q. Here, jGj denotes the size of the group G . Use yA0 to denote

this augmented set. Note that yA0 defines a graph, T
yA0 , of the sort described in (1–15)

that satisfies the condition stated in (1–16). In this regard, the vertices of T
yA0 enjoy an

angle preserving 1–1 correspondence with those of T
yA . This correspondence induces

one between the respective edges that has the following property: If Q is an integer
pair from an edge in T

yA , then 1
jGj

Q is the integer pair of its partner in T
yA0 .

Now, let O
yA
v;G denote the subset of points in O

yA
v whose Autv stabilizer is G . Then

the quotient of of O
yA
v;G by Autv is diffeomorphic to yO yA

0

v0 =Autv0 . Here, Autv0 is the

subgroup of Aut yA
0

that preserves the cyclic order of yA0C that is inherited from v ’s

ordering of yAC . This diffeomorphism is induced by a map from O
yA
v to yO yA

0

v0 that
intertwines the action of Autv with that of Autv0 . To describe the desired map, fix a
point in each of the G orbits in yAC . Now, let � denote a point in R��Maps. yACIR/
whose image lies in O

yA
v;G . Define from � a point �0 2R��Maps. yA0CIR/ by taking

its R� factor to be 1
jGj

times that of � while defining its value on any element in yA0C
to be the value that � assigns to the chosen inverse image in yAC . This assignment
of �0 to � defines a smooth map from O

yA
v;G to O

yA0

v0 that intertwines the Autv
action with the Autv0 action. The image of this map is yO yA

0

v0 and the induced map,

� W O
yA
v;G=Autv! yO

yA0

v0 =Autv0 , is the desired diffeomorphism

With the preceding understood, consider now the following scenario: Let �0 2O
yA
v;G

and let f�j g 2
yO
yA
v denote a sequence that converges to �0 . Fix s0 2 R and let .C; �/

denote the point in M yA0
that is defined by .s0 , �.�0//. Because C has genus zero,

there is a unique holomorphic covering of C with the following properties: First,
the covering space is a punctured sphere and the group of deck transformations is
Z=.jGjZ/. Second, the covering is trivial over each concave side end of C where the
jsj !1 limit of � is in .0; �/. Third, the covering restricts over the other two ends
of C as a connected covering space. Use C0 to denote the covering space and let
�0W C0! R� .S1 �S2/ denote the composition of the map � with the holomorphic
covering map to C . Thus, .C0 , �0/ defines a point in M� yA . Meanwhile, use f.Cj0 ,
�j /g to denote the sequence in M yA

that corresponds via the map from Section 3 to
the sequence f.s0; �j /g. Theorem 6.2 implies that f.Cj0; �j /g converges in M� yA to
.C0; �0/.
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Part 2 This part of the subsection discusses the geometric significance of the points in
O
yA
�O

yA . The story here starts with the definition of an Aut yA invariant stratification
of O

yA . In this regard, a given stratum of the stratification is labeled by a partition, } ,
of yAC of the following sort: Each partition subset consists of elements whose integer
pair components define the same angle via (1–8). The stratum O} �O

yA comes via
(9–22) from the subset maps from yAC to R that have the following two properties:
First, the map assigns the same value in R=.2�Z/ to elements from the same partition
subset. Second, the map assigns distinct values in R=.2�Z/ to elements from distinct
partition subsets when their associated integer pair components define the same angle
via (1–8). The set O

yA consists of the components of the strata where } consists solely
of single element sets. In general, the stratum labeled by } has dimension n} C 2,
where n} denotes the number of sets that comprise the partition } .

Associated to } is an asymptotic data set, yA0 ; this is defined as follows: The integers
.ç�; çC/ for yA are used for yA0 as are any 4–tuples of the form .˙1; : : :/ or .0;�; : : :/.
Meanwhile, the 4–tuples from yA0C are in 1–1 correspondence with the partition subsets
of } . In particular, each is of the form .0;C; : : :/. The integer pair component for the
4–tuple labeled by a given partition subset is the sum of those that label its elements.
Thus, all such integer pairs define the same angle via (1–8).

The next order of business is to define a certain map from O} to O
yA0 . For this purpose,

let � denote a point in R� �Maps. yACIR/. Define �0 2 R� �Maps. yA0CIR/ by using
�’s factor in R� for the R� factor of �0 , and by using �’s value on any element from
any given partition subset for the value of �0 on the corresponding 4–tuple in yA}C .
This map induces a diffeomorphism between O} and O

yA0 and thus defines a map, � ,

from O}=Aut yA to O
yA0=Aut yA

0

. Note here that Aut yA is, in all cases, a subgroup of
AutA

0

.

Points in O
yA0 where Aut yA

0

acts freely parametrize M yA0
. As was just asserted in

Proposition 9.7, the whole of R�O
yA0=Aut yA

0

parametrizes M� yA0 .

With all of this as background, consider now the following scenario: Fix �0 2O} and
s0 2 R; and let .C0; �/ define the point in M�

yA0
that is defined from .s0; �.�0// as

given by the yA0 version of Proposition 9.7. Use the asymptotic data from the ends of
C0 to define a 1–1 correspondence between this set of ends and the 4–tuples in yA0 .

In the mean time, let f�j g 2 O
yA denote a sequence that converges to �0 ; and let

f.Cj0 , �j /g denote the sequence in M� yA that is defined from f.s0; �j /g as described
in Proposition 9.7.
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Lemma 9.8 The following limit exists and is zero:

lim
j!1

h
sup

z2C0j

dist
�
�j .z/; �.C0/

�
C sup

z2C0

dist
�
�j .C0j /; �.z/

�i
:

Moreover, let R be such that the jsj>R portion of C0 lies in the ends of C0 . Define
CR � C0 to be the complement in C0 of the jsj > R portion of those ends whose
associated yA0 label corresponds to a partition subset with size greater than 1. Then, for
all j sufficently large, there exists an embedding,  j W CR! Cj0 , with the following
properties:

� limj!1 dist.�j ı j .z/, �.z//D 0 for all z in the domain of  j .

� jx@ j j � j@ j j and limj!1 supdomain. j / j
x@ j j=j@ j j D 0.

� The complement in C0j of the image of  j consists of a disjoint union of
multiply punctured spheres, each embedded in a tubular neighborhood of an
R–invariant cylinder so that the projection to the cylinder defines an orientation
preserving, ramified covering map with finitely many ramification points.

9.D The codimension 1 strata in the compactification of M�
yA

This subsection describes the codimension 1 strata in the compactification of M� yA
in the case that N�C yN C ç�C çC > 2. To start, remark that there are two sorts of
codimension 1 strata in these cases. Strata of the first sort arise from the codimension 1
strata in the compactifications of those OT =Aut.T / that appear in the various versions
of (9–1). The geometric interpretation of these strata are described in Lemmas 9.2–9.4.
In this regard, keep in mind that only circular versions of �o are involved in the cases
when the added strata are of codimension 1.

The second sort of stratum arises by adding certain dimension k�1 faces to the simplex
product �k in (9–1). This section and the final section explore the geometry of the
subvarieties in the codimension 0 strata that are near this second kind of added strata.

To start the discussion, let S denote the codimension 0 stratum involved. The space
�k for S is a k –dimensional product of simplices in �k..0; �/�ƒC;ø /. The com-
pactification of S contains an added codimension 1 stratum when the following occurs:
The homotopy type of graph for S has an edge, e , with a trivalent vertex whose angle
values on S limit to the angle defined via (1–8) by Qe , or to that defined by –Qe .
Denote the latter angle by �� ; it is the angle that defines the relevant codimension 1
face in the closure of �k . The relevant trivalent vertex is denoted in what follows by
o.
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The upcoming Lemma 9.9 describes some of the basic features of sequence in S whose
image in �k approach the face just described. To set the stage for the lemma, let T

denote a graph whose homotopy type arises from the elements in S . The other two of
o’s incident edges are denoted by e0 and ye with the one distinguished from the other
in the following manner: The second vertices on e , e0 and ye have angles that bracket
�o in the interval .0; �/; and under the circumstances, the second angle on e is on the
same side of �o as the second angle on one of the other two edges. The convention
takes this other edge to be e0 .

Let Te denote the closure of the component of T � o that contains the interior of e ,
and let T 0 denote the component of T � int.e/ that contains o. Thus, Te and T 0 are
closed subgraphs in T that intersect only at o. Both can be viewed as graphs that are
described by versions of Subsection 6.A. To elaborate, the labeling of Te is as follows:
This graph has a monovalent vertex, oe , at angle �� such that Te�oe is isomorphic to
the component of T � o that contains the interior of e. Meanwhile, T 0 has a bivalent
vertex, o0 , at angle �� with the property that T 0 � o0 is isomorphic to the other two
components of T � o. Let yA0 denote the asymptotic data set that is defined by T 0 and
let yAe denote the corresponding set that comes from Te .

Because the graphs that arise from the elements in S are all homotopic to a single
graph, the choices that are offered in Parts 1 and 2 of Subsection 6.C can be made
once so as to hold for all fibers of the projection map in (9–1) to �k . This done,
consider a sequence in the space depicted in (9–1) whose factors are constant save
for the coordinate in o’s factor of �k . The latter angle for the j ’th element of the
sequence is denoted �j , and the corresponding sequence of angles converges with limit
�� . The inverse of the map in Subsection 6.C takes such a sequence and provides a
sequence in S with no limit in M� yA . Let f.C0j ; �j /gjD1;2;::: denote a sequence of
pairs that defines this sequence in S .

With the preceding as background, consider:

Lemma 9.9 Under the circumstances as just described, there exists the following:

� Pairs .C0
0; �0/ and .Ce0; �e/ that define respective points in the . yA0;T 0/ and

. yAe;Te/ versions of M�.�;�/ .

� Sequences fr 0j gjD1;2;::: and frej gjD1;2;::: of real numbers, the former increasing
without limit and the latter decreasing without limit.

� Sequences fs0j gjD1;2;::: and fsej gjD1;2;::: of real numbers, such that the former
converges and the latter is decreasing and unbounded, or else the former is
decreasing and unbounded while the latter converges.
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� For all sufficiently large j , a proper embedding,  0j , into C0j from the com-
plement in C0

0 of the s > r 0j part of end in C0
0 that corresponds to the vertex

o0 2 T 0 .

� For all sufficently large j , a proper embedding,  ej , into C0j from the com-
plement in Ce0 of the s < �rej part of the end in Ce0 that corresponds to the
vertex oe 2 Te .

Here is the significance: First, the image via  0j of the s D r 0j boundary of its domain
coincides with the image via  ej of the s D rej boundary of the latter’s domain.
Otherwise, the images of the two maps are disjoint. Second,

� limj!1 dist.�j ı  
0
j .z/, �

0
j .z// D 0 for any fixed z 2 C0

0 . Here, �0j is
obtained from �0 by composing with the translation by s0j along the R factor of
R� .S1 �S2/.

� jx@ 0j j � j@ 
0
j j and limj!1 supdomain. 0j /

jx@ 0j j=j@ 
0
j j D 0.

Finally,

� limj!1 dist.�j ı  ej .z/, �ej .z// D 0 for any fixed z 2 Ce0 . Here, �ej is
obtained from �e by composing with the translation by sej along the R factor
of R� .S1 �S2/.

� jx@ ej j � j@ ej j and limj!1 supdomain. ej /
jx@ ej j=j@ ej j D 0.

More can be said about the sorts of pairs .C0
0; �0/ and .C0e; �e/ that appear here. For

example, if the vertex oe 2 Te is fixed by Aut.Te/, then the subset of such pairs in

(9–23) M� yA0;T 0 �M
�
yAe;Te

is a smooth, codimension 2 suborbifold that can be defined as a fiber product using the
maps that are depicted in [15, (2.19) and (2.20)]. The task of filling in the details is left
to the reader.

The story told by Lemma 9.9 has analogues in higher codimensions. This can occur
when some version of �.�/ has an arc that begins and ends on the same vertex. By way
of elaboration, suppose that o is a multivalent vertex in T and that  � �o is such an
arc. As noted previously, the maps in �o are identical on  ; they send  to ˛Q.�o/

where QD
P

e ceQe with the constants fceg defined by writing  ’s homology class
as
P

e ce Œ`oe �. Because the maps in �o must send  to a positive number, situations
arise where the angle �o varies on graphs homotopic to T so that ˛Q.�o/ limits to
zero. Lemma 9.9 concerns the case that �o is a figure 8 graph with a single 4–valent
vertex. However, the event just described can occur in a more general context.
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But for one comment, the general context is left for the reader to describe. Here is
the comment: The techniques used in Steps 2 and 3 from the proof of Proposition 8.2
in Subsection 8.B can be used to prove that the event in question occurs only in the
case that M� yA;T lies in the closure of a codimension zero stratum of the sort that was
just discussed. In particular, the angle where ˛Q is zero defines a codimension 1 face
of the space �k that appears in the corresponding version of (9–1); this a face that
provides one of the added strata in the closure of M� yA .

9.E Faces of �k where � D 0 or �

There are versions of M� yA that have top dimensional strata whose elements define
a graph with an edge that has a trivalent vertex on one end and a � D 0 or � D �
vertex on the other. There can be strata in this case where the trivalent vertex angle
limits to 0 or � as the case may be. This subsection discusses the behavior of the
subvarieties where the graph has a very small trivalent vertex angle. The discussion for
the case where the angle is close to � is not given since it is essentially identical to
what follows.

Let S denote the top dimensional stratum involved. In this case, one of the faces in
�k is characterized by a � D 0 assignment to a trivalent vertex. To start the story, note
that as before, the choices in Parts 1 and 2 of Subsection 6.C can be made once so as
to hold for all graphs that arise from elements in S . This understood, let o denote the
multivalent vertex involved and let e denote its edge. The assumption here is that there
are no other vertex angles between �o and 0.

Fix a graph from an element in S to call T , and then construct a sequence of homotopic
graphs, fTj gjD1;2;::: , where Tj varies from T only in the angle assigned to o. The latter
angle is denoted now as �j and the assumption in what follows is that limj!1 �j D 0.
The choices from Parts 1 and 2 of Subsection 6.C identify all T D Tj versions of
(6–15). This understood, fix a point, �, in (6–15) and let .C0j ; �j / denote a pair that
gives rise to the image of � in the T D Tj version of M� yA;T via the inverse of the
map from Subsection 6.C.

There are now two cases to consider. In the first, two of o’s incident edges connect o

to respective vertices with larger angle. In the second case, e and another edge connect
o to angle 0 vertices. The two parts to this subsection discuss these two cases.

Part 1 Let e0 and e00 denote the two incident edges that connect o to vertices with
larger angles. It must be assumed here that neither the QDQe0 nor QDQe00 version
of ˛Q has a zero between 0 and �o . Since ˛Q.�o/ > 0, this occurs when Q does not
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define an angle via (1–8) or, if it does, then so does –Q, the former is greater than the
latter and both are greater than �o .

The limiting behavior of f.C0j ; �j /g is described below in terms of a pair of graphs,
T 0 and T 00 , that are obtained from T in the following manner: Let Te0 and Te00 denote
the closures in T of the respective components of T � o that contain the interiors
of e0 and e00 . The graph T 0 is characterized as follows: It has an edge, ye0 , with a
� D 0 monovalent vertex such that the closure of T 0� ye0 in T 0 is isomorphic to the
closure of Te0 � e0 in T . In addition, Qye0 DQe0 . There is a similar characterization
of T 00 : It has an edge, ye00 , with a monovalent vertex such that the closure of T 00� ye00

in T 00 is isomorphic to that of Te00 � e00 in T . Moreover, Qye00 DQe0 . Let yA0 and yA00

denote the respective asymptotic data sets for the graphs T 0 and T 00 . Note that these
respective sets are determined from T and T 0 via the rules in (6–3).

Lemma 9.10 With the scenario just described, there exist exist the following:

� Pairs .C0
0; �0/ and .C0

00; �00/ that define respective elements in M� yA0;T 0 and
M� yA00;T 00 .

� Sequences fs0j gjD1;2;::: and fs00j gjD1;2;::: of real numbers.

� For all sufficiently large j , a proper embedding,  0j , into C0j of the comple-
ment in C0

0 of the � < 2�j part of the component of the C0
0 version of C0��

that corresponds to the edge ye0 � T 0 .

� For all sufficently large j , a proper embedding,  00j , into C0j of the complement
in C0

00 of the � < 2�j part of the component of the C0
00 version of C0 �� of

Ce0 that corresponds to the edge ye00 � T 00 .

Here is the significance: First, the images of  0j and  00j are disjoint and their
complement in C0j is the � < 2�j part of the closure of the components of the C0j

version of C0�� that correspond to the edges e , e0 and e00 . Second,

� limj!1 dist.�j ı  
0
j .z/, �

0
j .z// D 0 for any fixed z 2 C0

0 . Here, �0j is
obtained from �0 by composing with the translation by s0j along the R factor of
R� .S1 �S2/.

� jx@ 0j j � j@ 
0
j j and limj!1 supdomain. 0j / j

x@ 0j j=j@ 
0
j j D 0.

Finally,

� limj!1 dist.�j ı  
00
j .z/, �

00
j .z// D 0 for any fixed z 2 C0

0 . Here, �00j is
obtained from �00 by composing with the translation by s00j along the R factor
of R� .S1 �S2/
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� jx@ 00j j � j@ 
00
j j and limj!1 supdomain. 00j / j

x@ 00j j=j@ 
00
j j D 0.

As in the case with Lemma 9.9, the set of pairs in M� yA0;T 0 �M
�
yA00;T 00

that arise can
be described rather explicitly.

Part 2 In this case, the limit of f.C0j ; �j /g defines a point in M� yA only in the case
that both integer pairs that connect o to � D 0 vertices have the form .0; �/. The
resulting stratum in M� yA has codimension 2 rather than codimension 1. Without this
integer pair condition, the limit is described with the help of a point in some yA0 ¤ yA
moduli space M� yA0 .

In any case, to say more about the limit, introduce the graph T 0 that is characterized
as follows: Let ye denote the edge in T that connects the vertex o to a larger angled
vertex. The graph T 0 has an edge, ye0 , with a monovalent vertex at angle 0 such that
the closure in T 0 of T 0 � ye0 is isomorphic to the closure in T of the component of
T � o that contains the interior of T � ye . In addition, Qye0 DQye . Let yA0 denote the
asymptotic data set that is determined by T 0 .

Lemma 9.11 With the scenario just described, there exist exist the following:

� A pair .C0
0; �0/ that defines an element in M� yA0;T 0 .

� A sequence fsj gjD1;2;::: of real numbers.

� For all sufficiently large j , a proper embedding,  0j , into C0j of the comple-
ment in C0

0 of the � < 2�j part of the component of the C0
0 version of C0��

that corresponds to the edge ye0 � T 0 .

Here is the significance: First, the complement of the image of  0j in C0j is the
� < 2�j part of the closure of the components of the C0j version of C0 � � that
correspond to the edges e , e0 and e00 . Second,

� limj!1 dist.�j ı  
0
j .z/, �

0
j .z// D 0 for any fixed z 2 C0

0 . Here, �0j is
obtained from �0 by composing with the translation by sj along the R factor of
R� .S1 �S2/.

� jx@ 0j j � j@ 
0
j j and limj!1 supdomain. 0j / j

x@ 0j j=j@ 
0
j j D 0.

In the case that both Qe and Qe0 have first component zero, the sequence fsj g can be
taken to be constant and the domain of  0j can be taken to be the whole of C0

0 . In
this case, the range of  0j is the whole of C0j . In particular, the sequence in M� yA
defined by f.C0j ; �j /g converges in M� yA to the point defined by .C0

0; �0/.

Techniques of [15, Section 3] can be used to prove that every element in M� yA0;T 0
arises as a limit in the sense just described of a sequence in the stratum S .
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