Volume 11, issue 1 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Refined analytic torsion as an element of the determinant line

Maxim Braverman and Thomas Kappeler

Geometry & Topology 11 (2007) 139–213
Bibliography
1 M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 MR0397797
2 M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 MR0397798
3 N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Springer (1992) MR1215720
4 J M Bismut, W Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992) 235 MR1185803
5 M Braverman, T Kappeler, A refinement of the Ray–Singer torsion, C. R. Math. Acad. Sci. Paris 341 (2005) 497 MR2180817
6 M Braverman, T Kappeler, Comparison of the refined analytic and the Burghelea–Haller torsions (2006) arXiv:math.DG/0606398
7 M Braverman, T Kappeler, Refined analytic torsion as an element of the determinant line, IHES preprint M/05/49 (2006) arXiv:math.GT/0510532
8 M Braverman, T Kappeler, Ray–Singer type theorem for the refined analytic torsion, J. Funct. Anal. 243 (2007) 232 arXiv:math.DG/0603638
9 M Braverman, T Kappeler, Refined Analytic Torsion, J. Diff. Geom. (to appear) arXiv:math.DG/0505537
10 J Brüning, M Lesch, On the $\eta$–invariant of certain nonlocal boundary value problems, Duke Math. J. 96 (1999) 425 MR1666570
11 D Burghelea, L Friedlander, T Kappeler, Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996) 320 MR1387514
12 D Burghelea, S Haller, Torsion as a function of the space of representations (2005) arXiv:math.DG/0507587
13 D Burghelea, S Haller, Complex valued Ray–Singer torsion II (2006) arXiv:math.DG/0610875
14 D Burghelea, S Haller, Euler structures, the variety of representations and the Milnor–Turaev torsion, Geom. Topol. 10 (2006) 1185 MR2255496
15 P Deligne, Le déterminant de la cohomologie, from: "Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985)", Contemp. Math. 67, Amer. Math. Soc. (1987) 93 MR902592
16 M Farber, Absolute torsion and eta-invariant, Math. Z. 234 (2000) 339 MR1765885
17 M Farber, V Turaev, Absolute torsion, from: "Tel Aviv Topology Conference: Rothenberg Festschrift (1998)", Contemp. Math. 231, Amer. Math. Soc. (1999) 73 MR1705576
18 M Farber, V Turaev, Poincaré–Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000) 195 MR1748274
19 P B Gilkey, The eta invariant and secondary characteristic classes of locally flat bundles, from: "Algebraic and differential topology – global differential geometry", Teubner–Texte Math. 70, Teubner (1984) 49 MR792686
20 G Grubb, R T Seeley, Weakly parametric pseudodifferential operators and Atiyah–Patodi–Singer boundary problems, Invent. Math. 121 (1995) 481 MR1353307
21 V Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. in Math. 55 (1985) 131 MR772612
22 R T Huang, Refined analytic torsion and the eta-invariant, PhD thesis (in preparation)
23 R T Huang, Refined analytic torsion: comparison theorems and examples, Illinois J. Math. (to appear) arXiv:math.DG/0602231
24 A S Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs 71, American Mathematical Society (1988)
25 J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358 MR0196736
26 L I Nicolaescu, The Reidemeister torsion of 3-manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter & Co. (2003) MR1968575
27 R Ponge, Spectral asymmetry, zeta Functions and the noncommutative residue, Int. Math. J. (to appear) arXiv:math.DG/0310102
28 D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96
29 D B Ray, I M Singer, $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145 MR0295381
30 Y B Rudyak, On Thom spectra, orientability and cobordism, Springer Monographs in Mathematics, Springer (1998) MR1627486
31 R T Seeley, Complex powers of an elliptic operator, from: "Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966)", Amer. Math. Soc. (1967) 288 MR0237943
32 M A Shubin, Pseudodifferential operators and spectral theory, Springer (2001) MR1852334
33 I M Singer, Families of Dirac operators with applications to physics, Astérisque (1985) 323 MR837207
34 G Su, W Zhang, A Cheeger–Mueller theorem for symmetric bilinear torsions, arXiv:math.DG/0610577
35 V G Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240 MR832411
36 V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672 MR1013714
37 V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001) MR1809561
38 C T C Wall, Determination of the cobordism ring, Ann. of Math. $(2)$ 72 (1960) 292 MR0120654
39 M Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984) 143 MR728144
40 M Wodzicki, Noncommutative residue. I. Fundamentals, from: "$K$–theory, arithmetic and geometry (Moscow, 1984–1986)", Lecture Notes in Math., Springer (1987) 320
41 K P Wojciechowski, Heat equation and spectral geometry. Introduction for beginners, from: "Geometric methods for quantum field theory (Villa de Leyva, 1999)", World Sci. Publ., River Edge, NJ (2001) 238 MR1867735