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We define and study a certain class of spaces which includes p–completed classifying
spaces of compact Lie groups, classifying spaces of p–compact groups, and p–
completed classifying spaces of certain locally finite discrete groups. These spaces are
determined by fusion and linking systems over “discrete p–toral groups”—extensions
of .Z=p1/r by finite p–groups—in the same way that classifying spaces of p–local
finite groups as defined in our paper [7] are determined by fusion and linking systems
over finite p–groups. We call these structures “p–local compact groups”.

55R35; 55R40, 57T10

In our earlier paper [7], we defined and studied a certain class of spaces which in many
ways behave like p–completed classifying spaces of finite groups. These spaces occur
as “classifying spaces” of certain algebraic objects called p–local finite groups. The
purpose of this paper is to generalize the concept of p–local finite groups to what we
call p–local compact groups. The motivation for introducing this family comes from
the observation that p–completed classifying spaces of finite and compact Lie groups,
as well as classifying spaces of p–compact groups (see Dwyer and Wilkerson [11]),
share many similar homotopy theoretic properties, but earlier studies of these properties
usually required different techniques for each case. Moreover, while p–completed
classifying spaces of finite and, more generally, compact Lie groups arise from the
algebraic and geometric structure of the groups in question, p–compact groups are
purely homotopy theoretic objects. Unfortunately, many of the techniques used in the
study of p–compact groups fail for p–completed classifying spaces of general compact
Lie groups. With the approach presented here, we propose a framework general enough
to include p–completed classifying spaces of arbitrary compact Lie groups as well as
p–compact groups.

The new idea here is to replace fusion systems over finite p–groups, as handled in [7],
by fusion systems over discrete p–toral groups. A discrete p–toral group is a group
which contains a discrete p–torus (a group of the form .Z=p1/r for finite r � 0) as
a normal subgroup of p–power index. A p–local compact group consists of a triple
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.S;F ;L/, where S is a discrete p–toral group, F is a saturated fusion system over S

(a collection of fusion data between subgroups of S arranged in the form of a category
and satisfying certain axioms), and L is a centric linking system associated to F (a
category whose objects are a certain distinguished subcollection of the object of F ,
and of which the corresponding full subcategory of F is a quotient category). The
linking system L allows us to define the classifying space of this p–local compact
group to be the p–completed nerve jLj^p . If S is a finite p–group, then the theory
reduces to the case of p–local finite groups as studied in [7].

We hope that working with this setup will make it possible to prove results of interest in
a uniform fashion for the entire family. In this paper (Theorem 7.1), we give a combina-
torial description of the space of self equivalences of jLj^p in terms of automorphisms
of the category L, and a description of the group Out.jLj^p / of homotopy classes
of self equivalences in terms of “fusion preserving automorphisms” of S . We also
show that a p–local compact group .S;F ;L/ is determined up to isomorphism by the
homotopy type of its classifying space jLj^p . One future goal is to show that the mod
p cohomology of the classifying space jLj^p of a p–local compact group .S;F ;L/
can always be described in terms of the fusion system F , as a ring of “stable elements”
in the cohomology of S . Other goals are to define connected p–local compact groups,
and understand their properties and their relation to connected p–compact groups and
to characterize algebraically (connected) p–compact groups among all (connected)
p–local compact groups. Finally, a more general question which is still open is whether
the p–completion of the classifying space of every finite loop space is the classifying
space of a p–local compact group.

As one might expect, passing from a finite to an infinite setup introduces an array
of problems one must deal with in order to produce a coherent theory. Some of the
basic properties of fusion systems over discrete p–toral groups are analogous or even
identical to the finite case, whereas other aspects are more delicate. Once the definition
of a saturated fusion system over a discrete p–toral group is given and their basic
properties are studied, one defines associated centric linking systems and p–local
compact groups in a fashion more or less identical to the finite case. However, while in
the finite case, any finite group G gives rise automatically to a saturated fusion system
and an associated centric linking system, the corresponding construction for compact
Lie groups is less obvious. Similar complications present themselves when dealing
with the fusion system and the centric linking system associated to a p–compact group.
It is for that reason that the only aims of this paper are to establish the setup, study
some basic properties, and prove that the classifying spaces which are the obvious
candidates to give rise to p–local compact groups indeed do so.
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We proceed by describing the contents of the paper in some detail. In Section 1, we
define and list some properties of discrete p–toral groups. We show why this class
of groups is a natural one to consider for our purposes, and study some of its useful
properties. Then in Section 2, we define saturated fusion systems over discrete p–toral
groups. The definitions in this section are very similar to those given in [7] for the
finite case, but some modifications are needed due to having given up finiteness.

Much of the work on p–local finite groups makes implicit use of the fact that the
categories one works with are finite. If S is an infinite discrete p–toral group, then any
fusion system over it will have infinitely many objects. In Section 3 we show that any
saturated fusion system F over a discrete p–toral group S contains a full subcategory
with finitely many objects, which in the appropriate sense determines F completely.
More precisely, we show that F contains only finitely many objects which are both
centric and radical, and then prove the appropriate analog of Alperin’s fusion theorem.
The latter, roughly speaking, says that in a saturated fusion system, every morphism
can be factored into a sequence of morphisms each of which is the restriction of an
automorphism of a centric radical subgroup.

Linking systems associated to fusion systems over discrete p–toral groups are defined
in Section 4. In fact, the definition is identical to that used when working over a finite
p–group, and the proof that the nerve jLj of a linking system is p–good is essentially
identical to that in the finite case. The connection between linking systems associated
to a given fusion system F and rigidifications of the homotopy functor P 7! BP on
the orbit category Oc.F/ is then studied.

Higher limits over the orbit category of a fusion system are investigated in Section 5.
We first describe how to reduce the general problem to one of higher limits over a finite
subcategory, and then show how those can be computed with the help of the graded
groups ƒ�.�IM / introduced in Jackowski, McClure and Oliver [19; 20]. These
general results are then applied to prove the acyclicity of certain explicit functors whose
higher limits appear later as obstruction groups.

Spaces of maps Map.BQ; jLj^p / are studied in Section 6, when Q is a discrete p–toral
group and jLj^p is the classifying space of a p–local compact group, and the space
of self equivalences of jLj^p is handled in Section 7. In both cases, the descriptions
we obtain in this new situation (in Theorem 6.3 and Theorem 7.1) are the obvious
generalizations of those obtained in [7] for linking systems over finite p–groups. We
also prove (Theorem 7.4) that a p–local compact group is determined by the homotopy
type of its classifying space: if .S;F ;L/ and .S 0;F 0;L0/ are p–local compact groups
such that jLj^p ' jL0j^p , then they are isomorphic as triples of groups and categories.
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We finish with three sections of examples: certain infinite locally finite groups in
Section 8, including linear torsion groups; compact Lie groups in Section 9; and p–
compact groups in Section 10. In all cases, we show that the groups in question fit
into our theory: they have saturated fusion systems and associated linking systems,
defined in a unique way (unique up to isomorphism at least), and the classifying spaces
of the resulting p–local compact groups are homotopy equivalent to the p–completed
classifying spaces of the groups in the usual sense.
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1 Discrete p–toral groups

When attempting to generalize the theory of p–local finite groups to certain infinite
groups, the first problem is to decide which groups should replace the finite p–groups
over which we studied fusion systems in [7]. The following is the class of groups we
have chosen for this purpose. Let Z=p1 Š ZŒ 1

p
�=Z denote the union of the cyclic

p–groups Z=pn under the obvious inclusions.

Definition 1.1 A discrete p–toral group is a group P , with normal subgroup P0CP ,
such that P0 is isomorphic to a finite product of copies of Z=p1 , and P=P0 is a finite
p–group. The subgroup P0 will be called the identity component of P , and P will be
called connected if P D P0 . Set �0.P /

def
DP=P0 : the group of components of P .

The identity component P0 of a discrete p–toral group P can be characterized as the
subset of all infinitely p–divisible elements in P , and also as the minimal subgroup of
finite index in P . Define rk.P /D k if P0 Š .Z=p

1/k , and set

jP j
def
D .rk.P /; j�0.P /j/D .rk.P /; jP=P0j/ :

We regard the order of a discrete p–toral group as an element of N2 with the lexico-
graphical ordering. Thus jP j � jP 0j if and only if rk.P / < rk.P 0/, or rk.P /D rk.P 0/
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and j�0.P /j � j�0.P
0/j. In particular, P 0 � P implies jP 0j � jP j, with equality only

if P 0 D P .

The obvious motivation for choosing this class is the role they play as “Sylow p–
subgroups” in compact Lie groups and p–compact groups. But in fact, it seems
difficult to construct fusion systems with interesting properties over any larger class
of subgroups. The reason for this is that discrete p–toral groups are characterized by
certain finiteness properties, which are needed in order for fusion systems over them
to be manageable, and for related homotopy theoretic phenomena to be controlled by
p–local information.

A group G is locally finite if every finitely generated subgroup of G is finite, and is a
locally finite p–group if every finitely generated subgroup of G is a finite p–group.
The class of locally finite (p–)groups is closed under subgroups and quotient groups. It
is also closed under group extensions, since finite index subgroups of finitely generated
groups are again finitely generated.

A group G is artinian (satisfies the minimum condition in the terminology of Wehrfritz
[29]) if every nonempty set of subgroups of G , partially ordered by inclusion, has a
minimal element. Equivalently, G is artinian if its subgroups satisfy the descending
chain condition. The class of artinian groups is closed under taking subgroups, quotients,
and extensions. Every artinian group is a torsion group (since an infinite cyclic group
is not artinian). If G is artinian and ' 2 Inj.G;G/ is an injective endomorphism of G ,
then ' is an automorphism, since otherwise f'n.G/g would be an infinite descending
chain. This is just one example of why it will be important that the groups we work
with are artinian; the descending chain condition will be used in other ways later.

It is an open question whether every artinian group is locally finite (see Kegel and
Wehrfritz [23, pp 31–32] for a discussion of this). If one restricts attention to groups
all of whose elements have p–power order for some fixed prime p , then artinian
groups are known to be locally finite if p D 2 [23, Theorem 1.F.6], but this seems to
be unknown for odd primes. However, any counterexample to these questions would
probably be far too wild for our purposes. Hence it is natural to restrict attention to
locally finite groups, and since we are working with local structure at a prime p , to
locally finite p–groups. The next proposition tells us that in fact, this restricts us to
the class of discrete p–toral groups. It is included only as a way to help motivate this
choice of groups to work with.

Proposition 1.2 A group is a discrete p–toral group if and only if it is artinian and a
locally finite p–group.
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Proof The group Z=p1 is clearly a locally finite p–group and artinian. Since both
of these properties are preserved under extensions of groups, they are satisfied by every
discrete p–toral group.

Conversely, assume G is artinian and a locally finite p–group. By [23, Theorem 5.8],
every locally finite artinian group is a Černikov group; in particular, it contains a normal
abelian subgroup with finite index. By [14, Theorems 25.1 & 3.1], every abelian artinian
group is a finite product of groups of the form Z=qm where q is a prime and m�1.
Thus G is an extension of the form

1 ���!A �����!G �����! � ���! 1;

where � is a finite p–group, and A is a finite product of groups Z=pm for m�1.
The subgroup of A generated by the factors Z=p1 is the subgroup of infinitely p–
divisible elements, thus a characteristic subgroup of A, and a normal subgroup of G

of p–power index. It follows that G is a discrete p–toral group.

We next note some of the other properties which make discrete p–toral groups conve-
nient to work with.

Lemma 1.3 Any subgroup or quotient group of a discrete p–toral group is a discrete
p–toral group. Any extension of one discrete p–toral group by another is a discrete
p–toral group.

Proof These statements are easily checked directly. They also follow at once from
Proposition 1.2, since the classes of locally finite p–groups and artinian groups are
both closed under these operations.

Clearly, the main difficulty when working with infinite discrete p–toral groups, in-
stead of finite p–groups, is that they have infinitely many subgroups and infinite
automorphism groups. We next investigate what finiteness properties these groups do
have.

Lemma 1.4 The following hold for each discrete p–toral group P .

(a) For each n � 0, P contains finitely many conjugacy classes of subgroups of
order pn .

(b) P contains finitely many conjugacy classes of elementary abelian p–subgroups.
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Proof Clearly, for each n, P0 contains finitely many subgroups of order pn , since
they are all contained inside the pn –torsion subgroup of P0 which is finite. So to prove
(a), it suffices, for each finite subgroup A�P0 and each subgroup BD zB=P0�P=P0 ,
to show that there are finitely many P –conjugacy classes of subgroups Q� P such
that Q\P0 DA and QP0 D

zB . Let Q be the set of all such subgroups, and assume
Q¤ ∅. Then Q 2 Q if and only if Q=A\P0=AD 1 and QP0=P0 D B ; and this
implies that ACQP0 D

zB and that Q=A is the image of a splitting of the extension

1 �! P0=A �! zB=A �! B �! 1:

In other words, Q is in one-to-one correspondence with the set of splittings of this
extension. The set of P0 –conjugacy classes of such splittings (if there are any)
is in one-to-one correspondence with the elements of H 1.BIP0=A/ (see Brown
[8, Proposition IV.2.3]). Since this cohomology group is finite, so is the set of conjugacy
classes of such extensions.

This proves point (a). Point (b) follows from (a), together with the observation that for
any elementary abelian subgroup E � P , rk.E/� rk.P /C rkp.P=P0/.

We next check what can be said about finiteness in automorphism groups.

Proposition 1.5 Let P be a discrete p–toral group.

(a) Any torsion subgroup of Aut.P / is an extension of an abelian group by a finite
group.

(b) Any torsion subgroup of Out.P / is finite.

(c) For each Q� P , OutP .Q/ is a finite p–group.

Proof Assume first that P Š .Z=p1/r : a discrete p–torus of rank r � 0. Then
Aut.P / Š GLr .bZp/, and it is well known that the subgroup .1Cp2Mr .bZp//

� of
matrices which are congruent modulo p2 to the identity is torsion free. This follows,
for example, from the inverse bijections

.1Cp2Mr .bZp//
�

log
������!
 ������

exp
p2Mr .bZp/

defined by the usual power series: while log is not a homomorphism, it does satisfy the
relation log.X r /D r log.X /. So if H is a torsion subgroup of Aut.P / (equivalently,
of GLr .bZp/), then the composite

H �����!GLr .bZp/
=p2

�����!GLr .Z=p
2/
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is injective, and thus H is finite.

Now let P be an arbitrary discrete p–toral group with connected component P0 and
group of components � D P=P0 . There is an exact sequence

0 ����!H 1.� IP0/ ����! Aut.P /=AutP0
.P / ����! Aut.P0/�Aut.�/

(cf Suzuki [28, 2.8.7]), where AutP0
.P / D fcx 2 Aut.P / jx 2 P0g. We have just

seen that every torsion subgroup of Aut.P0/ is finite, and H 1.� IP0/ and Aut.�/
are clearly finite. Hence every torsion subgroup of Aut.P /= InnP0

.P / is finite. This
proves (b); and also proves (a) (every torsion subgroup of Aut.P / is an extension
of an abelian group by a finite group) since AutP0

.P / is abelian. Point (c) follows
immediately from (b), since P is a torsion group all of whose elements have p–power
order.

In the next section (in Definition 2.2), we will need some more precise bounds on the
size of normalizers and centralizers.

Lemma 1.6 Let S be any discrete p–toral group, and set N D j�0.S/j
rk.S/C1 . Then

for all P � S ,

j�0.CS .P //j �N; j�0.NS .P /=P /j �N; and j�0.NS .P //j �N � j�0.P /j:

Proof Set T D S0 for short, and set QD PT=T . Let NQW T ! T be the norm
map for the Q action: NQ.x/D

Q
gT2Q gxg�1 . The image of NQ is connected and

centralizes P , and thus Im.NQ/� CS .P /0 D CT .P /0 . If x 2 CT .P /, then

xjQj DNQ.x/ 2 CT .P /0:

Thus every element in CT .P /=CT .P /0 has order dividing jQj, and it follows that

j�0.CT .P //j D jCT .P /=CT .P /0j � jQj
rk.S/
� j�0.S/j

rk.S/:

Thus j�0.CS .P //j � j�0.CT .P //j � jS=T j �N .

If x 2NT .P /, then

xjQj DNQ.x/ �
Y

gT2Q

Œx;g� 2 CT .P /0 �P �NT .P /0 �P:

Thus
ˇ̌
NT .P /

ı�
NT .P /0 � .T \P /

�ˇ̌
� jQjrk.S/ � j�0.S/j

rk.S/;

and hence j�0.NS .P /=P /j �N , by the same arguments as those used for �0.CS .P //.
The last inequality is now immediate.
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Note that discrete p–toral groups are all solvable, but (in contrast to finite p–groups)
need not be nilpotent. For instance, the infinite dihedral group, a split extension of
Z=21 by Z=2, is a discrete 2–toral group which is not nilpotent (since the nilpotency
class of D2n is n� 1).

The following lemma contains some generalizations of a standard theorem about
automorphisms of finite p–groups: if ˛ 2 Aut.P / is the identity on QC P and on
P=Q, then it has p–power order.

Lemma 1.7 The following hold for any discrete p–toral group P and any automor-
phism ˛ 2 Aut.P /.

(a) Assume, for some QC P , that ˛jQ D IdQ and ˛ � Id (mod Q). Then every
˛–orbit in P is finite of p–power order. If, in addition, ŒP WQ� <1, then ˛
has finite order.

(b) ˛ has finite order if and only if ˛jP0
has finite order.

(c) Set P.1/ D fg 2 P0 jg
p D 1g. If ˛jP.1/ D Id and ˛ � Id (mod P0 ), then each

orbit of ˛ acting on P has p–power order.

Proof (a) The proof is identical to the proof for finite p–groups (see Gorenstein
[16, Theorem 5.3.2]), and in fact applies whenever all elements of Q have p–power
order. For any g 2 P , ˛.g/ D gx for some x 2 Q (since ˛ � Id (mod Q)), and
˛.x/D x since ˛jQD Id. Thus ˛n.g/D gxn for all n, and ˛pk

.g/D g if pk D jxj.
Since the order of f˛i.g/g depends only on the coset gQ, this also shows that j˛j is
finite (and a power of p ) if P=Q is finite.

(b) If ˛jP0
has finite order, then there is n � 1 such that ˛njP0

D Id and ˛n � Id
(mod P0 ). Then ˛n has finite order by (a), so ˛ also has finite order.

(c) For each m � 1, let P.m/ � P0 be the pm –torsion in P0 . Fix g 2 P , and set
x D g�1˛.g/, pk D jxj, and QD hg;P.k/i. The P.m/ are all ˛–invariant, and so Q

is also ˛–invariant since g�1˛.g/ 2 P.k/ . Also, ˛ acts via the identity on P.1/ by
assumption, hence on P.i/=P.i�1/ for all 1 � i � k , and also on Q=P.k/ . So by (a)
(and since Q is a finite group), ˛jQ has p–power order. In particular, the ˛–orbit of
g has p–power order.

The next lemma is another easy generalization of a standard result about finite p–
groups.

Lemma 1.8 If P ˆQ are distinct discrete p–toral groups, then P ˆNQ.P /.
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Proof When ŒQWP � <1, this follows by the same proof as for finite p–groups. More
precisely, when Q=P is finite, the action of P on Q=P (defined by x.gP /D xgP

for x 2P and g 2Q) factors through a finite quotient group P=N of P . Also, P=N

is a p–group since P is a p–torsion group. Thus

jNQ.P /=P j D j.Q=P /
P=N
j � jQ=P j � 0 .mod p/;

and so NQ.P /=P ¤ 1.

Now assume that ŒQWP � is infinite; ie that P0 ˆQ0 . Set An D fx 2Q0 jx
pn

D 1g,
for each n. Then An CQ, and in particular is normalized by P . For n large enough,
An—P , so P ˆPAn�Q, P ˆNPAn

.P / since ŒPAnWP �<1. Thus P ˆNQ.P /.

We will also need the following well known result about finite subgroups of discrete
p–toral groups.

Lemma 1.9 For any discrete p-toral group P , there is a finite subgroup Q� P such
that P DQP0 . There is also an increasing sequence Q1 �Q2 �Q3 � � � � of finite
subgroups of P such that P D

S1
nD1 Qn . More generally, for any finite subgroup

K � Aut.P /, the Qi can be chosen to be K–invariant.

Proof Fix any (finite) set X of coset representatives for P0 in P , and set Q D

h˛.g/ j˛ 2K; g 2X i. Then Q is K–invariant, Q is finite since P is locally finite,
and P D QP0 by construction. For each n � 1, let Pn � P0 be the pn –torsion
subgroup, and set Qn D QPn . Then the Qn are also finite and K–invariant, and
P D

S1
nD1 Qn .

To finish the section, we consider maps between the p–completed classifying spaces
of discrete p–toral groups. This following lemma is implicit in Dwyer and Wilkerson
[11; 12] (the spaces in question are classifying spaces of p–compact groups). But it
does not seem to be stated explicitly anywhere there.

Lemma 1.10 For any pair P;Q of discrete p–toral groups,

BW Rep.P;Q/ �������! ŒBP^p ;BQ^p �

is a bijection. In particular, any homotopy equivalence BP^p
'
��! BQ^p is induced by an

isomorphism P ŠQ. Also, for any homomorphism �W P ��!Q, the homomorphism

CQ.�.P //�P
.incl;�/
����!Q

induces a homotopy equivalence

BCQ.�.P //
^
p

'
������! Map.BP^p ;BQ^p /B�:
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Proof For any pair G;H of discrete groups,

ŒBG;BH �Š Rep.G;H / and Map.BG;BH /B� ' BCH .�.G//

for each � 2 Hom.G;H /. See, for example, Broto and Kitchloo [5, Proposition 7.1]
for a proof.

By [12, Proposition 3.1], the homotopy fiber of the map BQ ��! BQ^p is a K.V; 1/

for some bQp –vector space V . Using this, together with standard obstruction theory
and the fact that eH �.BQIQ/D 0, one checks that

ŒBP^p ;BQ^p �Š ŒBP;BQ�Š Rep.P;Q/:

Now fix some �2Hom.P;Q/. The space Map.BP^p ;BQ^p /B� is the classifying space
of some p–compact group X by [11, Propositions 5.1 & 6.22], and in particular is
p–complete. Since Map.BP;BQ/B� ' CQ.�.P // (P and Q are both discrete), we
will be done upon showing that the completion map

(1) Map.BP;BQ/B� �����! Map.BP;BQ^p /B�

is a mod p homology equivalence.

Fix a sequence of finite subgroups P1�P2�� � � whose union is P . Since Q is artinian,
CQ.�.Pn//D CQ.�.P // for n sufficiently large. Also, the space Map.BP;BQ^p /B�
is the homotopy inverse limit of the mapping spaces Map.BPn;BQ^p /B� . So if (1) is a
mod p equivalence upon replacing P by Pn for each n, it is also a mod p equivalence
for P . In other words, it suffices to prove this when P is a finite p–group.

Let X be the homotopy fiber of the completion map BQ ���! BQ^p . As noted above,
X is a K.V; 1/ where V is a rational vector space. Since the map from Map.BP;BQ/

to Map.BP;BQ^p / is a bijection on components, the homotopy fiber of the map in (1)
is X hP for a proxy action of P on X (in the sense of Dwyer and Wilkerson [11])
induced by � .

Consider the fibration sequence

X hP
�����! Map.BP;XhP /f1g

pr ı�
�����! Map.BP;BP /Id;

where pr denotes the projection of XhP to BP , and the total space is the set of all maps
f W BP ���!XhP such that pr ıf ' Id. Since XhP is the total space of a fibration
over BP with fiber X , it is a K.�; 1/ where V C � and �=V Š P . Since P is a
finite p–group and V is a rational vector space, this extension splits, and the splitting
is unique up to conjugacy by elements of V .

It follows that ŒBP;XhP �
ŠRep.P;�/

�����! ŒBP;BP �
ŠRep.P;P/
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is a bijection. Also, the induced map

�1.Map.BP;XhP /f1g/
ŠC� .P/

�����! �1.Map.BP;BP /Id/
ŠZ.P/

is surjective, and its kernel V P (where the action of P on V is induced by the action
on X ) is a rational vector space.

Thus X hP 'K.V P ; 1/. It follows that X hP is mod p acyclic, and hence that (1) is
a mod p equivalence. This finishes the proof.

2 Fusion systems over discrete p–toral groups

We now define saturated fusion systems over discrete p–toral groups and study
their basic properties. The definitions are almost identical to those in the finite case
[7, Section 1].

Definition 2.1 A fusion system F over a discrete p–toral group S is a category
whose objects are the subgroups of S , and whose morphism sets HomF .P;Q/ satisfy
the following conditions:

(a) HomS .P;Q/� HomF .P;Q/� Inj.P;Q/ for all P;Q� S .

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Two subgroups P;P 0 � S are called F –conjugate if IsoF .P;P 0/¤∅.

Definition 2.2 Let F be a fusion system over a discrete p–toral group S .

� A subgroup P � S is fully centralized in F if jCS .P /j � jCS .P
0/j for all

P 0 � S which is F –conjugate to P .

� A subgroup P � S is fully normalized in F if jNS .P /j � jNS .P
0/j for all

P 0 � S which is F –conjugate to P .

� F is a saturated fusion system if the following three conditions hold:

(I) For each P � S which is fully normalized in F , P is fully centralized in
F , OutF .P / is finite, and OutS .P / 2 Sylp.OutF .P //.

(II) If P � S and ' 2HomF .P;S/ are such that '.P / is fully centralized, and
if we set

N' D fg 2NS .P / j'cg'
�1
2 AutS .'.P //g;

then there is x' 2 HomF .N' ;S/ such that x'jP D ' .
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(III) If P1 � P2 � P3 � � � � is an increasing sequence of subgroups of S , with
P1 D

S1
nD1 Pn , and if ' 2 Hom.P1;S/ is any homomorphism such that

'jPn
2 HomF .Pn;S/ for all n, then ' 2 HomF .P1;S/.

By Lemma 1.6, there is a global upper bound for j�0.CS .P //j and j�0.NS .P //j,
taken over all subgroups P of any given S . In particular, for any given subgroup
P � S , jCS .P

0/j and jNS .P
0/j take on maximal values among all P 0 which are

F –conjugate to P . This proves that the conjugacy class of P always contains fully
centralized subgroups and fully normalized subgroups.

It is very convenient, in the above definition, to be working with a class of groups
where the concept of “order” of subgroups is defined. However, there are other ways
to define fully normalized and fully centralized subgroups in a fusion system, and
hence to define saturation; and this property was not a factor in our decision to restrict
attention to fusion systems over discrete p–toral groups. The crucial properties of
these groups, which seem to be needed frequently when developing the theory, are that
they are artinian and locally finite.

When F is a saturated fusion system over the discrete p–toral subgroup S , then by
(I), OutF .P /DAutF .P /= Inn.P / is finite for fully normalized P � S , and hence for
all P � S . Since Inn.P / is discrete p–toral (being a quotient group of P ), AutF .P /
inherits many of the properties of discrete p–toral groups. In particular, it is artinian,
locally finite, and contains a unique conjugacy class of maximal discrete p–toral
subgroups. This condition that OutF .P / be finite does simplify slightly the definition
of a saturated fusion system, but it is in fact unnecessary, as is shown by the following
proposition.

Proposition 2.3 Let F be a fusion system over the discrete p–toral group S . Assume
that axiom (II) in Definition 2.2 holds, and that (I) holds for all finite fully normalized
subgroups of S . Then OutF .P / is finite for all P � S .

Proof Fix P �S . For all m�1, set P.m/Dfg2P0 jg
pm

D1g. By Proposition 1.5(b),
to show that OutF .P / is finite, it suffices to show that AutF .P / is a torsion group.

Fix ˛ 2 AutF .P /. We want to show that ˛ has finite order; by Lemma 1.7(b), it
suffices to do this when P D P0 is connected. After replacing ˛ by ˛n for some
appropriate n�1, we can assume that ˛jP.1/D Id. Then by Lemma 1.7(c), ˛m

def
D˛jP.m/

has p–power order for all m. For each m, there is 'm 2 HomF .P.m/;S/ such that
'm.P.m// is fully normalized, and by (I), 'm.P.m// is fully centralized, and 'm can
be chosen such that 'm˛m'

�1
m 2AutS .'m.P.m///. Also, by (II), 'm can be extended

to x'm 2 HomF .S0;S/, so 'm.P.m//� S0 , and hence jAutS .'m.P.m///j � jS=S0j.
Thus .˛m/

jS=S0j D IdP.m/ for each m, so ˛jS=S0j D IdP , and ˛ has finite order.
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In fact, one can show that in the definition of a saturated fusion system, it suffices to
require that (I) holds for all finite fully normalized subgroups P � S ; it then follows
that (I) holds for all fully normalized subgroups.

When F is a (saturated) fusion system over a discrete p–toral group S , we think of
the identity component S0 as the “maximal torus” of the fusion system, and think
of AutF .S0/ as its “Weyl group”. The following lemma describes how morphisms
between subgroups of the maximal torus are controlled by the Weyl group.

Lemma 2.4 Let F be a saturated fusion system over a discrete p–toral group S with
connected component T D S0 . Then the following hold for all P � T .

(a) For every P 0�S which is F –conjugate to P and fully centralized in F , P 0�T ,
and there exists some w 2 AutF .T / such that wjP 2 IsoF .P;P 0/.

(b) Every ' 2 HomF .P;T / is the restriction of some w 2 AutF .T /.

Proof We first prove the following statement.

(c) For each ' 2HomF .P;S/ such that P 0
def
D'.P / is fully centralized in F , there

exists w 2 AutF .T / such that wjP D ' .

By assumption, P � T � CS .P /. By condition (II) in Definition 2.2, there is x' in
HomF .CS .P /;S/ such that x'jP D' . Then x'.T /�T since T is connected (infinitely
p–divisible), and so x'.T /D T since T is artinian. Thus w def

D x'jT 2AutF .T / is such
that wjP D ' . This proves (c), and also proves (a) since P 0 D w.P /� T .

Now fix any ' 2 HomF .P;T /. Let Q be a fully centralized subgroup of S in the
F –conjugacy class of P and '.P /, and choose  2 IsoF .'.P /;Q/. By (c), there
are elements u; v 2 AutF .T / such that ujP D  ı ' and vj'.P/ D  . So if we set
w D v�1u, then wjP D ' .

By Proposition 2.3, OutF .P / is finite for every subgroup P �S . The following lemma
extends this statement.

Lemma 2.5 Let F be a saturated fusion system over a discrete p–toral group S .
Then for all P;Q� S , the set RepF .P;Q/

def
D Inn.Q/nHomF .P;Q/ is finite.

Proof As just noted, OutF .P / is finite for all P � S . Also, if '; '0 2 HomF .P;Q/

and Im.'/ D Im.'0/, then '0 D ' ı ˛ for some ˛ 2 AutF .P / by condition (b) in
Definition 2.1. So there is a bijection

(2) RepF .P;Q/=OutF .P /
Š
�!

˚
P 0 �Q

ˇ̌
P 0 F –conjugate to P

	ı
.Q–conjugacy/;
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which sends the class of a homomorphism to the conjugacy class of its image.

By Lemma 2.4, the F –conjugacy class .P0/ of P0 is just its orbit under the action
of AutF .S0/, and hence a finite set. By Lemma 1.4(a), for any given Q 2 .P0/, there
are only finitely many NS .Q/=Q–conjugacy classes of subgroups of order jP=P0j

in NS .Q/=Q. Hence there are only finitely many S –conjugacy classes of subgroups
P 0 � S which are F –conjugate to P and such that P 0

0
D Q. This shows that the

target set in (2) is finite, and hence that RepF .P;Q/ is also finite.

The definitions of centric and radical subgroups in a fusion system over a discrete
p–toral group are essentially the same as those in the finite case.

Definition 2.6 Let F be a fusion system over a discrete p–toral group S . A subgroup
P � S is called F –centric if P and all its F –conjugates contain their S –centralizers.
A subgroup P � S is called F –radical if Op.OutF .P //D 1; ie if OutF .P / contains
no nontrivial normal p–subgroup.

Notice that any F –centric subgroup is fully centralized. Conversely, if P � S is fully
centralized and centric in S ; that is, Z.P /D CS .P /, then it is F –centric. The next
proposition says that the set of F –centric subgroups is closed under overgroups.

Proposition 2.7 Let F be a saturated fusion system over the discrete p–toral group
S , and let P �Q� S be such that P is F –centric. Then Q is also F –centric.

Proof Fix any Q0 which is F –conjugate to Q, choose ' 2 IsoF .Q;Q0/, and set
P 0 D '.P /. Then

CS .Q
0/� CS .P

0/� P 0 �Q0;

where the second inequality holds since P is F –centric. So Q is also F –centric.

The next proposition gives another important property of F –centric subgroups; one
which is much less obvious.

Proposition 2.8 Let F be a saturated fusion system over the discrete p–toral group
S . Then for each P �Q�S such that P is F –centric, and each '; '0 2HomF .Q;S/

such that 'jP D '0jP , there is some g 2Z.P / such that ' D '0 ı cg .

Proof The hypothesis implies that ' ı'0�1j'0.P/ D Id'0.P/ , and we must show that
' ı '0�1 D Id'0.Q/ . It thus suffices to prove, for P �Q � S and ' 2 HomF .Q;S/

where P is F –centric, that 'jP D IdP implies ' D cg for some g 2Z.P /.
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Assume first that P C Q. Then for each x 2 Q, c'.x/jP D cxjP . Thus '.x/ � x

(mod CS .P /), and CS .P /� P since P is F –centric. In particular, this shows that
'.Q/DQ, and thus that ' 2 AutF .Q/. It also shows that ' induces the identity on
Q=P . Since Q=P has finite order, ' has p–power order by Lemma 1.7(a).

Without loss of generality, we can replace Q by any other subgroup in its F –conjugacy
class. In particular, we can assume that Q is fully normalized, and hence that
OutS .Q/ 2 Sylp.OutF .Q//. So every p–subgroup of AutF .Q/ is conjugate to a
subgroup of AutS .Q/. Thus there is � 2 AutF .Q/ such that � ı ' ı ��1 D cy for
some y 2NS .Q/. Since 'jP D IdP , cy acts as the identity on '.P /, which is also
F –centric, hence y 2 CS .'.P //D '.Z.P //. Set x D ��1.y/; then ' D cx .

Now assume P is not normal in Q. Let Q be the set of subgroups Q0 �Q containing
P such that 'jQ0 D cgjQ0 for some g 2 Z.P /. If P � Q0 ˆ Q and Q0 2 Q, then
NQ.Q

0/ ‰Q0 by Lemma 1.8, and NQ.Q
0/ 2Q since the proposition holds for the

normal pair Q0 C NQ.Q
0/. Hence if Q contains a maximal element, it must be Q

itself.

Let Q1 � Q2 � � � � be any increasing chain in Q, and set Q1 D
S1

nD1 Qn . Let
gn 2Z.P / be such that 'jQn

D cgn
jQn

. Since P is F –centric, so are the Qn , and
thus Z.Q1/�Z.Q2/� � � � is a decreasing sequence of subgroups. Since S is artinian,
there is some k such that Z.Qn/DZ.Qk/ for all n� k . This shows that gn � gk

(mod Z.Qk/) for all n � k , hence that 'jQ1 D cgk
jQ1 , and hence that Q1 2Q.

Thus by Zorn’s lemma, Q contains a maximal element, so Q 2Q, and this finishes
the proof.

3 A finite retract of a saturated fusion system

A fusion system F over a discrete p–toral group S generally has infinitely many
isomorphism classes of objects. In this section, we construct a subcategory F� of
F with only finitely many isomorphism classes of objects, together with a retraction
functor from F to F� which is a left adjoint to the inclusion. This means that in
many cases, it will suffice to work over the “finite” subcategory F� rather than the full
fusion system F . As a first application, we show that Ob.F�/ contains all F –centric
F –radical subgroups, and hence that there are only finitely many conjugacy classes
of such subgroups. A second application is Alperin’s fusion theorem in this setting:
restriction to F� allows us to repeat the same inductive argument as that used for fusion
systems over a finite p–group.
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Following the group theorists’ usual notation, whenever � is a group of automorphisms
of a group G and H �G , we write

C�.H /D f
 2 � j 
 jH D IdH g:

The following definitions were motivated by some constructions of Benson [2], which
he in fact used to prove a version of Alperin’s fusion theorem for compact Lie groups.

Definition 3.1 Let F be a saturated fusion system over a discrete p–toral group S ,
let T D S0 be the identity component of S , and set W D AutF .T /D OutF .T / (the
“Weyl group”). Set

pm
D exp.S=T /

def
D minfpk

jxpk

2 T for all x 2 Sg:

(a) For each P � T , set

I.P /D T CW .P/
D
˚
t 2 T

ˇ̌
w.t/D t for all w 2W such that wjP D IdP

	
;

and let I.P /0 be the identity component of I.P /.

(b) For each P � S , let P Œm� D hgpm

jg 2 P i � T , and set

P� D P � I.P Œm�/0
def
Dfgt jg 2 P; t 2 I.P Œm�/0g:

(c) Set H.F/D fI.P /0 jP � T g and H�.F/D fP� jP � Sg;

and let F� � F be the full subcategory with object set H�.F/.

Thus for P �T , I.P / is the maximal subgroup of T such that for all w2W , wjP D Id
if and only wjI.P/D Id. In particular, for all v and w in W , vjP DwjP if and only if
vjI.P/DwjI.P/ . Together with Lemma 2.4(b), this implies that every ' 2HomF .P;T /

extends to a unique I.'/ 2HomF .I.P /;T /, which is obtained by first extending ' to
T and then restricting to I.P /. In other words, every F –isomorphism 'W P ! Q

between subgroups of T extends to a unique F –isomorphism I.'/W I.P /! I.Q/.

For an arbitrary subgroup P � S , P Œm� is a subgroup of T , and the above arguments
apply. Since P Œm� C P , any x 2 P normalizes P Œm� , and hence also normalizes
I.P Œm�/. Thus P normalizes I.P Œm�/0 , and this shows that the subset P�

def
DP �

I.P Œm�/0 is a group.

More generally, for any k �m, we could define subgroups P�k � P for each P � S

by setting P�k D P �I.P Œk�/. This can be different from P� , but P 7! P�k has all
of the same properties which we prove here for P� . However, the only way in which
this generalization might be needed would be if we wanted to compare these “bullet
functors” for two different fusion systems over two different discrete p–toral groups,
and that will not be needed in this paper.
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Lemma 3.2 The following hold for every saturated fusion system F over a discrete
p–toral group S .

(a) The set H.F/ is finite, and the set H�.F/ contains finitely many S –conjugacy
classes of subgroups of S .

(b) For all P � S , .P�/� D P� .

(c) If P �Q� S , then P� �Q� .

(d) If P � S is F –centric, then Z.P�/DZ.P /.

Proof Let T D S0 C S be the identity component, and set W D AutF .T / and
pm D exp.S=T /. Note that for any P � Q � T , CW .P / � CW .Q/, and hence
I.P /� I.Q/. Also, CW .I.P //D CW .P / by definition, and hence I.I.P //D I.P /.

(a) By definition, each subgroup in H.F/ has the form I.P /0 D .T
K /0 for some

P � T , where K D CW .P / � W . Since the finite group W D OutF .T / has a
finite number of subgroups, this shows that H.F/ is finite. Also, for any P � S ,
P0 �P Œm� � I.P Œm�/, and so .P�/0D I.P Œm�/0 2H.F/. In particular, there are only
finitely many possibilities for identity components of subgroups in H�.F/.

Fix P � S , and set K D CW .P
Œm�/. Since P Œm� is generated by all pm –powers in

P (and pm D exp.S=T /), P Œm� � T and

ŒP WP Œm��D ŒP W.P\T /� � Œ.P\T /WP Œm��� jS=T j �pm�rk.T /:

Here, the last inequality holds since .P \T /=P Œm� is abelian with exponent at most
pm and rank at most rk.T /. Also, since P Œm� � I.P Œm�/0 D P Œm� � .T K /0 � T K ,

j�0.P
�/j D j�0.P �.T

K /0/j � j�0.P
Œm�
�.T K /0/j � jP=P

Œm�
j

� j�0.T
K /j � jP=P Œm�

j � j�0.T
K /j � jS=T j �pm�rk.T /:

We have already seen that .T K /0 is the identity component of P� , and we have just
shown that the number of components of P� is bounded by an integer which depends
only on K (and on S ). Since NS ..T

K /0/=.T
K /0 has only finitely many conjugacy

classes of finite subgroups of any given order (Lemma 1.4(a)), this shows that there
are only finitely many conjugacy classes of subgroups in H�.F/ corresponding to any
given K �W ; and thus (since W is finite) only finitely many conjugacy classes of
subgroups in H�.F/.

(b) Fix P � S . Since P normalizes I.P Œm�/0 , for any g 2P and any x 2 I.P Œm�/0 ,
.gx/p

m

2 gpm

�I.P Œm�/0 � P Œm� �I.P Œm�/0 . This proves the second inequality on the
following line:

P Œm�
� .P�/Œm� � P Œm�

�I.P Œm�/0 � I.P Œm�/:
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The others are clear. Since I.�/ is idempotent and preserves order, this shows that
I..P�/Œm�/D I.P Œm�/. Hence .P�/� D P� �I.P Œm�/0 D P� .

(c) If P �Q, then P Œm� �QŒm� , so I.P Œm�/� I.QŒm�/, and hence P� �Q� .

(d) For any P � S , we have P � P� . Thus if P is F –centric, then so is P� , and
Z.P�/�Z.P /. To see that this is an equality, it suffices to show that every element in
Z.P / commutes with I.P Œm�/. For all x2Z.P /, cx (as an element of W DAutF .T /)
lies in CW .P

Œm�/, hence commutes with all elements of I.P Œm�/D T CW .P Œm�/ , and
in particular with all elements of I.P Œm�/0 .

We are now ready to prove the main, crucial, property of these subgroups P� .

Proposition 3.3 Let F be a saturated fusion system over a discrete p–toral group S .
Fix P;Q � S and ' 2 HomF .P;Q/. Then ' extends to a unique homomorphism
'� 2 HomF .P

�;Q�/; and this makes P 7! P� into a functor from F to itself.

Proof The functoriality of P 7! P� and ' 7! '� (ie the fact that .IdP /
� D IdP� and

. ı'/� D  � ı'� ) follows immediately from the existence and uniqueness of these
extensions. So this is what we need to prove.

As usual, we set T D S0 and W D AutF .T /. For all Q� T , CW .Q/D CW .I.Q//

by definition of I.�/. This will be used frequently throughout the proof.

We first check that there is at most one morphism '� which extends ' . Assume that
 ; 0 2HomF .P

�;Q�/ are two such extensions. By Lemma 2.4(b), there are elements
w;w0 2W such that

 jP Œm��I.P Œm�/0 D wjP Œm��I.P Œm�/0 and  0jP Œm��I.P Œm�/0 D w
0
jP Œm��I.P Œm�/0

:

Since wjP Œm� D w0jP Œm� , we have w�1w02CW .P
Œm�/DCW .I.P

Œm�//, so wjI.P Œm�/D
w0jI.P Œm�/ as well. It follows that  D  0 , since they take the same values on P and
on I.P Œm�/0 .

It remains to prove the existence of '� . By Lemma 3.2(c), it suffices to prove this
when ' 2 IsoF .P;Q/. Recall that P� D P �I.P Œm�/0 . Fix u 2W D AutF .T / such
that ujP Œm� D 'jP Œm� . Define '� by setting, for all g 2 P and all x 2 I.P Œm�/0 ,

'�.gx/D '.g/u.x/:

After two preliminary steps, we show in Step 3 that '� is well defined and a homomor-
phism, and in Step 4 that it is a morphism in F .

Step 1 Fix A;A0 � T , and w 2W such that w.A/DA0 . We show here that

(3) A� B � I.A/;  2 HomF .B;T /;  jA D wjA H)  D wjB;
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and also that

(4) A�B�A�I.A/0;  2HomF .B;S/;  jADwjA H)  .B/�T and  DwjB:

If  .B/�T , then  Dw0jB for some w0 2W by Lemma 2.4(b), w�1w0 2CW .A/D

CW .I.A//, and thus  D w0jB D wjB . This proves (3).

Now assume B �A �I.A/0 . By Lemma 2.4(a), there is w0 2W such that w0.B/ is
fully centralized in F . It thus suffices to prove (4) when B is fully centralized. Set
B0 D  .B/ for short.

Now, B0 �A0 and B0 is abelian. So for all x 2B0 , if we regard cx as an element of
W DAutF .T /, then cx 2CW .A

0/DCW .I.A
0//. Thus I.A0/Dw.I.A//�CS .B

0/.
By axiom (II) (and since B D  �1.B0/ is fully centralized),  �1 extends to an F –
morphism defined on B0 �CS .B

0/, and in particular to ˇ 2HomF .B
0 �I.A0/;S/. Since

ˇjA0 D w
�1jA0 and ˇ.I.A0/0/� T , ˇjA0�I.A0/0 D w

�1jA0�I.A0/0 by (3).

Thus for all x 2 B0 , ˇ.x/ D  �1.x/ 2 B � A �I.A/0 D ˇ.A
0 �I.A0/0/. Since ˇ is

injective, this shows x 2A0 �I.A0/0 � T . So B0 � T , and (4) now follows from (3).

Step 2 We next show that for all x 2 I.P Œm�/ and all g 2 P , the following identity
holds:

(5) u.gxg�1/D '.g/u.x/'.g/�1;

or equivalently that c�1
'.g/ ı u ı cg.x/ D u.x/. Set w D c�1

'.g/ ı u ı cg 2 W for short.
Then (5) holds for x 2 P Œm� since 'jP Œm� D ujP Œm� , and thus wjP Œm� D ujP Œm� . So
wjI.P Œm�/ D ujI.P Œm�/ by (3), and this proves (5) for all x 2 I.P Œm�/.

Step 3 Recall that we defined '�.gx/D'.g/u.x/ for all g2P and x2I.P Œm�/0 . By
assumption, 'jP Œm�DujP Œm� . Hence the restrictions of ' and u to P Œm��.P\I.P Œm�

0
//

are equal by (4), and this shows that '� is well defined.

For all g;g0 2 P and all x;x0 2 I.P Œm�/0 ,

'�..gx/.g0x0//D '.gg0/ �u.g0�1xg0x0/D '.gg0/ �
�
'.g0/�1u.x/'.g0/

�
�u.x0/

D '.g/u.x/'.g0/u.x0/D '�.gx/ �'�.g0x0/;

where the second equality follows from Step 2. Thus '� is a homomorphism.

Step 4 It remains to show that '� 2 IsoF .P�;Q�/; ie that '� is a morphism in the
category F . By condition (III) in Definition 2.2, together with Zorn’s lemma, there
is a maximal subgroup P 0 � P� containing P such that '�jP 0 2 HomF .P

0;Q�/.
Assume P 0 ˆ P� ; and set '0 D '�jP 0 and P 00 DNP�.P

0/‰ P 0 . By condition (II) in
Definition 2.2, '0 extends to some morphism  2 HomF .P

00;S/ (the existence of the
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homomorphism '� shows that N'0 � P 00 ). By (4) again, the restrictions of  , u, and
'� to P 00\ .P Œm� �I.P Œm�/0/ are equal. Since P 00 D P �.P 00\ I.P Œm�/0/, this shows
that  D '�jP 00 . This contradicts the maximality assumption about P 0 ; so P 0 D P� ,
and we are done.

Note in particular that by Lemma 3.2(c), the functor F
.�/�

���! F� of Proposition 3.3
sends inclusions of subgroups to inclusions.

Corollary 3.4 The functor .�/� is a left adjoint to the inclusion of F� as a full
subcategory of F .

Proof Fix any P in F and any Q in F� . Since QDQ� by Lemma 3.2(b), every
' 2 HomF .P;Q/ extends to a unique '� 2 HomF .P

�;Q/ by Proposition 3.3. The
restriction map

HomF .P
�;Q/

Res
������! HomF .P;Q/

is thus a bijection, and this proves adjointness.

Corollary 3.4 will later be extended to orbit and linking categories associated to F and
F� .

Corollary 3.5 Let F be a saturated fusion system over a discrete p–toral group S .
Then all F –centric F –radical subgroups of S are in H�.F/, and in particular there
are only finitely many conjugacy classes of such subgroups.

Proof Assume P is F –centric and F –radical. We claim that I.P Œm�/0 � P , and
thus that P D P� 2H�.F/.

Assume otherwise. Then P� ‰ P , and hence NP�.P / ‰ P by Lemma 1.8. Thus
NP�.P /=P ¤ 1, and since P is F –centric, this group can be identified with a p–
subgroup of OutF .P /. By Proposition 3.3, any ˛ 2 AutF .P / extends to an auto-
morphism of P� , and in particular to an automorphism of NP�.P /. This shows that
NP�.P /=P C OutF .P /, which contradicts the assumption that P is F –radical.

The last statement now follows since H�.F/ contains only finitely many conjugacy
classes by Lemma 3.2(a).

As a third consequence of Proposition 3.3, we now prove Alperin’s fusion theorem
in our context. This theorem was originally formulated for finite groups in [1], and
then for saturated fusion systems over finite p–groups by Puig [27] (see also our paper
[7, Theorem A.10]). Our approach here (and our definition of P� ) is modelled on
Benson’s proof of the theorem for fusion in compact Lie groups [2].
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Theorem 3.6 (Alperin’s fusion theorem) Let F be a saturated fusion system over
a discrete p–toral group S . Then for each ' 2 IsoF .P;P 0/, there exist sequences of
subgroups of S

P D P0;P1; : : : ;Pk D P 0 and Q1;Q2; : : : ;Qk ;

and elements 'i 2 AutF .Qi/, such that

(a) Qi is fully normalized in F , F –radical, and F –centric for each i ;

(b) Pi�1;Pi �Qi and 'i.Pi�1/D Pi for each i ; and

(c) ' D 'k ı'k�1 ı � � � ı'1 .

Proof For each P �S , let �.P / be the number of F –conjugacy classes of subgroups
in H�.F/ which contain P . We prove the theorem by induction on �.P /. Using
Proposition 3.3, we can assume that P;P 0 2H�.F/. The claim is clear when �.P /D 1

(ie P D S ).

Assume P ˆ S . Let P 00 � S be any subgroup which is F –conjugate to P and fully
normalized in F , and fix  2 IsoF .P;P 00/. The theorem holds for ' 2 IsoF .P;P 0/
if it holds for  and for  ı '�1 2 IsoF .P 0;P 00/. So we are reduced to proving the
theorem when the target group P 0 is fully normalized in F .

Since P 0 is fully normalized, the p–subgroup ' ı AutS .P / ı '�1 of AutF .P 0/ is
conjugate to a subgroup of AutS .P 0/. Let � 2 AutF .P 0/ be such that the subgroup
.� ı '/ ıAutS .P / ı .� ı '/�1 � AutS .P 0/. By condition (II) in Definition 2.2, there
exists x' 2HomF .NS .P /;S/ such that x'jP D�ı' . Since NS .P /‰P (since P ˆS )
and P 2H�.F/, �.NS .P // < �.P /, and the theorem holds for x' (as an isomorphism
to its image) by the induction hypothesis. So it holds for ' if and only if it holds for
�. Hence it now remains only to prove it when P D P 0 is fully normalized in F ,
P 2H�.F/, and ' 2 AutF .P /.

In particular, this implies that P is fully centralized in F . So if P is not F –centric, then
' extends to an automorphism x' 2AutF .CS .P / �P / by condition (II) in Definition 2.2.
Since �.CS .P / �P / < �.P /, the theorem holds for ' by the induction hypothesis.

Now assume that P is not F –radical. Let K � AutF .P / be the subgroup such that
K= Inn.P / D Op.OutF .P // ¤ 1. Since P is fully normalized in F , OutS .P / is
contained in Sylp.OutF .P //, and so K � AutS .P /. In particular,

N K
S .P /

def
D
˚
g 2NS .P /

ˇ̌
cgjP 2K

	
‰ P

since K ‰ Inn.P /. Also, for each g 2 N K
S
.P /, we have 'cg'

�1 2 K (since K

is normal in AutF .P /), and hence 'cg'
�1 D ch for some h 2 N K

S
.P /. So by

Geometry & Topology, Volume 11 (2007)



p–local homotopy theory of compact Lie groups and p–compact groups 337

condition (II) in Definition 2.2, ' extends to an automorphism of N K
S
.P /‰ P , and

the theorem again holds for ' by the induction hypothesis.

Finally, if ' 2 AutF .P / and P 2H�.F/ is a fully normalized F –centric F –radical
subgroup of S , then the theorem holds for trivial reasons.

4 Linking systems over discrete p–toral groups

We are now ready to define linking systems associated to a fusion system over a discrete
p–toral group, and to study the relationship between linking systems and certain finite
full subcategories.

Definition 4.1 Let F be a fusion system over the discrete p–toral group S . A
centric linking system associated to F is a category L whose objects are the F –centric
subgroups of S , together with a functor

� W L ������! Fc

and “distinguished” monomorphisms P
ıP
��! AutL.P / for each F –centric subgroup

P � S , which satisfy the following conditions.

(A) � is the identity on objects and surjective on morphisms. More precisely, for
each pair of objects P;Q2L, Z.P / acts freely on MorL.P;Q/ by composition
(upon identifying Z.P / with ıP .Z.P //�AutL.P /), and � induces a bijection

MorL.P;Q/=Z.P /
Š

������! HomF .P;Q/:

(B) For each F –centric subgroup P �S and each g2P , � sends ıP .g/2AutL.P /
to cg 2 AutF .P /.

(C) For each f 2MorL.P;Q/ and each g 2 P , the following square commutes in
L:

P
f
! Q

P

ıP .g/
#

f
! Q

ıQ.�.f /.g//
#

More generally, if F0�Fc is any subcategory, then a linking system associated to F0 is
a category L0 , together with a functor L0

�0
��! F0 and distinguished monomorphisms

P
ıP
��! AutL0

.P / for P 2 Ob.F0/D Ob.L0/, which satisfy conditions (A), (B), and
(C) above.
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It is now clear, by analogy with the finite case, how to define p–local compact groups.

Definition 4.2 A p–local compact group is a triple .S;F ;L/, where S is a discrete
p–toral group, F is a saturated fusion system over S , and L is a linking system
associated to F . The classifying space of such a triple .S;F ;L/ is the p–completed
nerve jLj^p .

The following very basic lemma about linking systems extends [7, Lemma 1.10] to
this situation.

Lemma 4.3 Fix a p–local compact group .S;F ;L/, and let � W L ��! Fc be the
projection. Fix F –centric subgroups P;Q;R in S . Then the following hold.

(a) Fix any sequence P
'
��!Q

 
��!R of morphisms in Fc , and let z 2 ��1

Q;R
. /

and e ' 2 ��1
P;R

. '/ be arbitrary liftings. Then there is a unique morphism
z' 2MorL.P;Q/ such that

z ı z' De ';
and furthermore �P;Q.z'/D ' .

(b) If z'; z'0 2 MorL.P;Q/ are such that the homomorphisms ' def
D�P;Q.z'/ and

'0
def
D�P;Q.z'

0/ are conjugate (differ by an element of Inn.Q/), then there is a
unique element g 2Q such that z'0 D ıQ.g/ ı z' in MorL.P;Q/.

Proof Part (a) is an easy application of axiom (A) for a linking system. Part (b) is first
reduced to the case where ' D '0 using axiom (B), and this case then follows from
(A) and (C). For more detail, see the proof of [7, Lemma 1.10].

We next show that the nerve of a linking system is p–good, and hence that the classifying
space of a p–local compact group is p–complete.

Proposition 4.4 Let .S;F ;L/ be any p–local compact group at the prime p . Then
jLj is p–good. Also, the composite

S
�1.�/

��������! �1.jLj/ ����! �1.jLj^p /

induced by the inclusion BS
�
���! jLj, factors through a surjection

�0.S/ �� �1.jLj^p /:
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Proof For each F –centric subgroup P � S , fix a morphism �P 2MorL.P;S/ which
lifts the inclusion (and set �S D IdS ). By Lemma 4.3(a), for each P �Q� S , there is
a unique morphism �

Q
P
2MorL.P;Q/ such that �Q ı �

Q
P
D �P .

Regard the vertex S as the basepoint of jLj. Define

!W Mor.L/ �����! �1.jLj/

by sending each ' 2MorL.P;Q/ to the loop formed by the edges �P , ' , and �Q (in
that order). Clearly, !. ı'/D !. / �!.'/ whenever  and ' are composable, and
!.�

Q
P
/D !.�P /D 1 for all P �Q � S . Also, �1.jLj/ is generated by Im.!/ since

any loop in jLj can be split up as a composite of loops of the above form.

By Theorem 3.6 (Alperin’s fusion theorem), each morphism in F , and hence each
morphism in L, is (up to inclusions) a composite of automorphisms of fully normalized
F –centric subgroups. Thus �1.jLj/ is generated by the subgroups !.AutL.P // for
all fully normalized F –centric P � S .

Let KC �1.jLj/ be the subgroup generated by all infinitely p–divisible elements. For
each fully normalized F –centric P � S , AutL.P / is generated by its Sylow subgroup
NS .P / together with elements of order prime to p . Hence �1.jLj/ is generated by
K together with the subgroups !.NS .P //; and !.NS .P //� !.S/ for each P . This
shows that ! sends S surjectively onto �1.jLj/=K , and hence (since the identity
component of S is infinitely divisible) factors through a surjection of �0.S/ onto
�1.jLj/=K . In particular, this quotient group is a finite p–group.

Set � D�1.jLj/=K for short. Since K is generated by infinitely p–divisible elements,
the same is true of its abelianization, and hence H1.KI Fp/D 0. Thus, K is p–perfect.
Let X be the cover of jLj with fundamental group K . Then X is p–good and X^p
is simply connected since �1.X / is p–perfect [3, VII.3.2]. Also, since � is a finite
p–group, it acts nilpotently on Hi.X I Fp/ for all i . Hence X^p ��! jLj^p ��! B�

is a fibration sequence and jLj^p is p–complete [3, II.5.1]. So jLj is p–good, and
�1.jLj^p /Š � is a quotient group of �0.S/.

Recall, from Section 3, that for any saturated fusion system F , we defined a finite
subcategory F� such that the inclusion F� �F has a left adjoint .�/� . We next show
that we can do the same on the level of linking systems.

Proposition 4.5 Let F be a saturated fusion system over a discrete p–toral group S ,
and let Fc� � Fc be the full subcategory whose objects are the F –centric subgroups
contained in H�.F/.
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(a) Let L be a centric linking system associated to F , and let L� � L be the full
subcategory with Ob.L�/ D Ob.Fc�/. Then the inclusion L� ,! L has a left
adjoint, which sends P to P� for each F –centric P � S . In particular, the
inclusion jL�j � jLj is a homotopy equivalence.

(b) Let L� be a linking system associated to Fc� . Let L be the category whose
objects are the F –centric subgroups of S , and where

MorL.P;Q/D
˚
' 2MorL�.P�;Q�/

ˇ̌
��.'/.P /�Qg:

Let ıP W P ���! AutL.P / be the restriction of �P� . In other words, L is the
pullback category in the following square:

L ! L�

Fc

�
#

.�/�
! Fc�

��

#

Then L is a centric linking system associated to F .

Proof (a) For each F –centric subgroup P � S , fix a morphism �P 2MorL.P;S/
such that �.�P / is the inclusion (and such that �S D IdS ). For any pair of F –centric
subgroups P �Q� S , the same group Z.P / acts freely and transitively on the sets
of morphisms in L covering the inclusions P �Q and P � S , and hence there is a
unique morphism �

Q
P
2MorL.P;Q/ such that �Q ı �

Q
P
D �P .

Now let ' 2HomF .P;Q/ be any morphism in Fc . By Proposition 3.3, ' has a unique
extension to '� 2 HomF .P

�;Q�/. Also, by Lemma 3.2(d), Z.P�/DZ.P /. Hence
by condition (A) in the definition of a linking system, restriction sends the morphisms
in ��1.'�/ bijectively to the morphisms in ��1.'/. Thus for any  2MorL.P;Q/
such that �. / D ' , there is a unique “extension”  � 2MorL.P�;Q�/ of  ; ie a
unique morphism such that  � ı �P

�

P
D �

Q�

Q
ı .

Thus, if we define � W L ��! L� by setting �.P /DP� and �. /D � , then � is well
defined. This also shows that MorL.P;Q/DMorL.P�;Q/ when QDQ� , and thus
that � is a left adjoint functor to the inclusion. Since the inclusion has a left adjoint, it
follows that it induces a homotopy equivalence jL�j ' jLj.

(b) Since Z.P /DZ.P�/ for all F –centric P �S (Lemma 3.2(d) again), axiom (A)
for L follows from the same axiom applied to L� . Axioms (B) and (C) for L follow
immediately from axioms (B) and (C) for L� by restriction.

We finish the section with a description of the relation between linking systems associ-
ated to a full subcategory F0 � Fc of a given fusion system F , and rigidifications of
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the homotopy functor BW O.F0/ ���! hoTop defined by setting B.P /DBP . Here,
O.F0/ stands for the orbit category of F0 ; that is, the quotient category of F0 with
same objects and morphisms divided out by inner automorphisms of target groups
(see Section 5). Each linking system L0 induces a rigidification of B, which in
turn defines a decomposition of jL0j as a homotopy colimit. More precisely, by a
“rigidification of the homotopy functor B” in the following proposition is meant a
functor zBW O.F0/ ���! Top together with a natural homotopy equivalence of functors
(in hoTop) from B to ho ı zB ; ie a natural transformation of functors to hoTop which
defines a homotopy equivalence BP ���! zB.P / for each P . A natural homotopy
equivalence of rigidifications from zB to zB0 is a natural transformation

zB
�

�����! zB0

of functors to Top such that ho.�/ commutes with the functors from B. Two rigidifica-
tions zB1 and zB2 are equivalent if there is a third rigidification zB0 and natural homotopy
equivalences zB1 ���!

zB0 ���
zB2 ; this is seen to be an equivalence relation by taking

pushouts.

By a linking system L0 in the following proposition is always meant the category
L0 together with the projection to the associated fusion system and the distinguished
monomorphisms. Hence an isomorphism of linking systems means an isomorphism of
the categories which is natural with respect to these other structures.

Proposition 4.6 Fix a saturated fusion system F over a discrete p–toral group S ,
and let F0 � Fc be any full subcategory. Then there are mutually inverse bijections:8<:

linking systems
associated to F0

up to isomorphism

9=; KE
�����!
 �����

LS

8<:
rigidifications O.F0/ ! Top

of the homotopy functor B
up to natural homotopy equivalence

9=;
More precisely, the following hold for any linking system L0 associated to F0 and any
rigidification zB of the homotopy functor B on O.F0/.

(a) The left homotopy Kan extension ke.L0/ of the constant functor L0
�
�! Top

along the projection z�0W L0 ��!O.F0/ is a rigidification of B, and there is a
homotopy equivalence

(6) jL0j ' hocolim
�����!
O.F0/

.ke.L0// :

(b) There is a linking system ls. zB/ associated to F0 , and a natural homotopy
equivalence of functors

ke.ls. zB//
'

�����! zB:

Geometry & Topology, Volume 11 (2007)



342 Carles Broto, Ran Levi and Bob Oliver

Furthermore, if zB0 is another rigidification of B, any natural homotopy equiva-
lence of rigidifications �W zB! zB0 induces an isomorphism �]W ls. zB/! ls. zB0/
of linking systems.

(c) There is an isomorphism L0 Š ls.ke.L0// of linking systems associated to F0 .

We define KE.ŒL0�/D Œke.L0/� for each L0 , and LS.Œ zB�/D Œls. zB/� for each zB .

Proof The left homotopy Kan extension is natural with respect to isomorphisms
L0 ��! L0

0
of linking systems. Thus ke sends isomorphic systems to natural homotopy

equivalent functors O.F0/ ��! Top, these are rigidifications of B by (a), and hence
KE is well defined. Point (b) implies that LS is well defined, and it also implies that
LS ı KE is the identity. Finally, (c) implies that KE ı LS is the identity. Hence the
Proposition follows once we prove (a), (b), and (c).

(a) Fix L0 , and set zB D ke.L0/ for short. Recall that we write RepF .P;Q/ D
MorO.F/.P;Q/. By definition, for each P in F0 , zB.P / is the nerve (homotopy
colimit of the point functor) of the overcategory z�0#P , whose objects are pairs .Q; ˛/
for Q in L0 and ˛ 2 RepF .Q;P /, and where

(7) Morz�0#P

�
.Q; ˛/; .R; ˇ/

�
D
˚
' 2MorL.Q;R/

ˇ̌
˛ D ˇ ı z�0.'/

	
:

Since jL0j Š hocolim
�����!L0

.�/, (6) holds by [17, Theorem 5.5].

It remains to show that zB is a rigidification of the homotopy functor B. Fix a sec-
tion z� W Mor.O.F0// ��! Mor.L0/ of z�0 which sends identity morphisms to identity
morphisms. For each P , let B.P / be the category with one object oP and morphism
group P (so jB.P /j Š BP ), and define functors

B.P /
�P

������! z�0#P
‰P

������! B.P /

as follows. Let �P .oP / D .P; Id/, and �P .g/ D ıP .g/ (as a morphism in z�0#P

using (7)) for all g 2 P . Set ‰P .Q; ˛/ D oP ; and let ‰P send each morphism
' 2Morz�0#P ..Q; ˛/; .R; ˇ// to the unique element g 2P (unique by Lemma 4.3(b))
such that the following square commutes:

Q
'
! R

P

z�.˛/
#

ıP .g/
! P

z�.ˇ/
#

Clearly, ‰P ı �P D IdB.P/ . As for the other composite, define f W Id ��! �P ı‰P by
sending each object .Q; ˛/ to the morphism z�.˛/ 2MorL.Q;P /. This is clearly a
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natural transformation of functors, and thus

zB.P /D jz�0#P j ' jB.P /j ' BP:

To finish the proof that zB is a rigidification of the homotopy functor B, we must
show, for any ' 2 HomF .P;Q/, that the following square commutes up to natural
transformation:

B.P / �P
! z�0#P

B.Q/

B'
#

�Q
! z�0#Q

x'ı�
#

Here, Œ'� 2 RepF .P;Q/ denotes the class of ' . This means constructing a natural
transformation F1

ˆ
���! F2 of functors B.P / ��! z�0#Q, where F1 D .Œ'� ı�/ ı �P

and F2 D �Q ıB' are given by the formulas:

F1.oP /D .P; Œ'�/ F2.oP /D .Q; Id/

F1.g/D ıP .g/ F2.g/D ıQ.'.g//

Let z' 2MorL.P;Q/ be any lifting of ' . Then by condition (C), ˆ can be defined by
sending the object oP to the morphism z' 2Morz�0#P

�
.P; Œ'�/; .Q; Id/

�
.

(b) We first fix some notation. For any space X and any x;x0 2 X , �1.X Ix;x
0/

denotes the set of homotopy classes of paths in X (relative endpoints) from x to x0 .
For any u 2 �1.X Ix;x

0/, u� denotes the induced isomorphism from �1.X;x/ to
�1.X;x

0/. Also, for any map of spaces f W X ! Y , f� denotes the induced map from
�1.X Ix;x

0/ to �1.Y If .x/; f .x
0//.

Now fix a rigidification zBW O.F0/ �! Top; we want to define a linking system
L0 D ls. zB/ associated to F . Since zB is a rigidification of the homotopy functor B,
we are given homotopy equivalences BP

�P
���! zB.P / such that the following square

commutes up to homotopy for each ' 2 HomF .P;Q/:

BP
�P
! zB.P /

BQ

B'
#

�Q
! zB.Q/

zB.Œ'�/
#

Here, Œ'� 2 RepF .P;Q/ denotes the class of ' (mod Inn.Q/). For each P in F0 , let
�P 2

zB.P / be the image under �P of the base point of BP , and let


P W P
Š

������! �1. zB.P /;�P /
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be the isomorphism induced by �P on fundamental groups.

Let L0 D ls. zB/ be the category with Ob.L0/D Ob.F0/ and with

MorL0
.P;Q/D

˚
.';u/

ˇ̌
' 2 RepF .P;Q/; u 2 �1. zB.Q/I zB'.�P /;�Q/

	
:

Composition is defined by setting

. ; v/ ı .';u/D . '; v � zB �.u//;

where paths are composed from right to left. Let �0W L0 ��! F0 be the functor which
is the identity on objects, and which sends .';u/ 2MorL0

.P;Q/ to the composite

P

P
���!
Š

�1. zB.P /;�P /
zB'�
���! �1. zB.Q/; zB'.�P //

u�
���! �1. zB.Q/;�Q/


�1
Q

���!
Š

Q:

Also, for each P , define

ıP W P ����! AutL0
.P / by setting ıP .g/D .IdP ; 
P .g//:

Axioms (A), (B), and (C) for a centric linking system are easily seen to hold for L0 .
For example, (C) follows as an immediate consequence of the definition of �0 .

Now set B1 D ke.L0/ D ke.ls. zB//, the left homotopy Kan extension along the
projection z�0W L0 �!O.F0/ of the constant point functor on L0 . Thus for each P ,
we have B1.P /D jB1.P /j, where B1.P / is the category with objects the pairs .Q; ˛/
for ˛ 2 RepF .Q;P /, and with morphism sets

MorB1.P/

�
.Q; ˛/; .R; ˇ/

�
D
˚
y' 2MorL0

.Q;R/
ˇ̌
˛ D ˇ ı z�0.y'/

	
D
˚
.';u/

ˇ̌
' 2 RepF .Q;R/; ˛ D ˇ ı'; u 2 �1. zB.R/I zB'.�Q/;�R/

	
:

We define a natural homotopy equivalence of functors ‰W B1 �!
zB as follows. For all

P , maps ‰P W B1.P / �! zB.P / are defined inductively, one skeleton at a time, (and
simultaneously for all P ) as follows.
� Each vertex .Q; ˛/ in B1.P /D jB1.P /j is sent to zB.˛/.�Q/ 2 zB.P /.

� For each edge � D
�
.Q; '/

.';u/
���! .P; Id/

�
in B1.P /, where

' 2 RepF .Q;P / and u 2 �1. zB.P /I zB'.�Q/;�P /;

ˆP j� D yu for some path yu in the homotopy class of u.

� For each edge � D
�
.Q; '/

.';u/
���! .R; ˇ/

�
in B1.P /, where ˇ ¤ IdP , write

� 0 D
�
.Q; '/

.';u/
���! .R; Id/

�
(an edge in B1.R/), and set ˆP j� D

zB.ˇ/ ı .‰Rj� 0/.
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� Consider a simplex of dimension m� 2 in B1.P / of the form

� D
�
.Q0; ˛0/ ���! .Q1; ˛1/ ���! � � � ���! .Qm; ˛m/

�
:

If .Qm; ˛m/D .P; Id/, then let ‰P j� be any singular simplex in zB.P / whose
boundary is as already defined. Otherwise, let � 0 be the unique simplex in
B1.Qm/ representing a chain ending in .Qm; Id/ such that � D B1.˛m/.�

0/,
and set ‰P j� D

zB.˛m/ ı .‰Qm
j� 0/.

Since B1.P / ' zB.P / ' BP (where P is given the discrete topology), the above
construction is always possible, and defines a homotopy equivalence. It induces
the identity on fundamental groups, under their given identifications with P . By
construction, the ˆP form a natural morphism of functors ‰ from B1 to zB .

Let
�
zB0; f�0P g

�
be another rigidification of B, and let �W zB ���! zB0 be a natural

homotopy equivalence of rigidifications. We have already chosen our basepoint �P D

�P .�/, where � 2BP is a fixed basepoint, and we now set �0P D �
0
P .�/. Fix, for each

P , a homotopy HP between �P ı �P and �0P . The restriction of HP to the base point
of BP provides a canonical path in zB0.P / from �P .�P / to �0P , whose homotopy
class we denote wP 2 �1.eP I �P .�P /;�

0
P /. We now define

�]W L0 �����! L00

to be the identity on objects, and for .';u/ 2MorL0
.P;Q/,

�].';u/D .'; wP � �Q�.u/ � zB
0'�.wP /

�1/ :

It is straightforward to show that � is a well defined isomorphism of linking systems;
ie an isomorphism of categories which is natural with respect to the projections to F0

and the distinguished monomorphisms.

(c) Now assume L0 is given; it remains to construct an isomorphism L0Š ls.ke.L0//

of linking systems associated to F0 . Set zB D ke.L0/ and L1 D ls. zB/ for short.
By definition, L0 and L1 have the same objects, and a morphism in L1 from P to
Q is a pair .';u/, where ' 2 RepF .P;Q/ and u 2 �1. zB.Q/I zB'.�P /;�Q/. Also,
zB.P / D jz�0#P j where z�0 is the projection of L0 onto O.F0/; in particular, we
choose �P to be the vertex of .P; Id/. Define ‰W L0 ! L1 by sending each
object to itself, and by sending ˛ 2 MorL0

.P;Q/ to .z�0.˛/; Œ˛�/, where Œ˛� is the
homotopy class of ˛ , regarded as an edge in jz�0#Qj from .P; z�0.˛// D z�0˛.�P /

to .Q; Id/D �Q . This is easily checked to be an isomorphism of categories, and to
commute with the distinguished monomorphisms and the projections to F0 .

Geometry & Topology, Volume 11 (2007)



346 Carles Broto, Ran Levi and Bob Oliver

5 Higher limits over orbit categories

If F is any fusion system over a discrete p–toral group S , then O.F/ will denote its
orbit category: the category whose objects are the subgroups of S , and where

MorO.F/.P;Q/D RepF .P;Q/
def
D Inn.Q/nHomF .P;Q/:

Also, we write Oc.F/DO.Fc/ to denote the full subcategory of O.F/ whose objects
are the F –centric subgroups of S ; and more generally write O.F0/ to denote the full
subcategory of O.F/ corresponding to any full subcategory F0 of F .

By Lemma 2.5, the morphism sets in the orbit category are all finite. There is a
canonical projection functor F ! O.F/ which is the identity on objects and the
natural projection HomF .P;Q/! RepF .P;Q/ on morphisms.

Throughout this section, when C is a category, we frequently write C–mod to denote
the category of functors Cop ���!Ab. This notation will not be used in the statements
of results here, but it is used in several of the proofs.

Lemma 5.1 Let F be a saturated fusion system over a discrete p–toral group S , and
let F0 � F be any full subcategory such that P 2 Ob.F0/ implies P� 2 Ob.F0/. Set
F�

0
D F0\F� . Then there are well defined functors

Oc.F/
.�/�

������!
 ������

incl
O.Fc�/ ;

where .�/� sends P to P� and Œ'� to Œ'��. Also, .�/� is a left adjoint to the inclusion.

Proof This follows from Corollary 3.4. The only thing to check is that .�/� is well
defined on morphisms in the orbit category. If '1; '2 2 HomF .P;Q/ represent the
same morphism in the orbit category, then '1D cg ı'2 for some g 2Q, so '�

1
D cg ı'

�
2

by functoriality, and hence Œ'�
1
�D Œ'�

2
� in RepF .P

�;Q�/.

The following proposition shows that the problem of describing higher limits over
the orbit categories we are considering can always be reduced to one over a finite
subcategory.

Proposition 5.2 Let F be a saturated fusion system over a discrete p–toral group
S . Let F0 � F be any full subcategory such that P 2 Ob.F0/ implies P� 2 Ob.F0/,
and set F�

0
D F0\F� . Then for any F W O.F0/

op ��! Z.p/–mod, restriction to F�
0

induces an isomorphism

lim
 �
�

O.F0/

.F /Š lim
 �
�

O.F�
0
/

.F jO.F�
0
// :
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Proof Consider the functors

O.F0/–mod
R

������!
 ������

T

O.F�0 /–mod ;

where R is given by restriction and T by composition with the functor .�/� . Then T

is a left adjoint to R, since .�/� is a left adjoint to the inclusion by Lemma 5.1. Also,
T and R are both exact functors, and R sends injectives to injectives since it is right
adjoint to an exact functor.

Let Z be the constant functor on O.F�
0
/ which sends all objects to Z. Then T .Z/ is

the constant functor on O.F0/, and hence for any functor F on O.F0/,

lim
 �
O.F0/

.F /D HomO.F0/–mod.T .Z/;F /

Š HomO.F�
0
/–mod.Z;R.F //D lim

 �
O.F�

0
/

.R.F // :

Since R is exact and sends injectives to injectives, it sends injective resolutions to
injective resolutions, and thus induces an isomorphism between higher limits over
O.F0/ and over O.F�

0
/.

We next want to show that the techniques which we have already developed for handling
higher limits over orbit categories in the finite case [7, Section 3] also apply in this
new situation. The proof of this is similar to the proof in [7] of the analogous result
for fusion systems over finite p–groups, and is in fact a special case of a very general
result which we prove here.

For any group � (not necessarily finite), and any set H of subgroups of � , we define
OH.�/ to be the corresponding orbit category of � : the category with Ob.OH.�//D
H , and with morphism sets

MorOH.�/.H;H
0/DH 0nN�.H;H

0/ŠMap�.�=H; �=H
0/:

Here, N�.H;H
0/ is the transporter set

N�.H;H
0/D fg 2 � jgHg�1

�H 0g:

If 1 2H , then for any ZŒ��–module M , we define

ƒ�H.�IM /D lim
 �
�

OH.�/
.FM / ;

where FM W OH.�/op ���!Ab is the functor defined by setting FM .H /D0 if H ¤1,
and FM .1/DM .
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It is important to distinguish between the orbit category of a group and the orbit category
of a fusion system. When G is a finite group and S 2 Sylp.G/, the orbit category
of the fusion system FS .G/ is not the same as the orbit category OS .G/ (the orbit
category of G with objects the subgroups of S ).

Proposition 5.3 Fix a category C , a group � , a set H of subgroups of � such that
1 2H , and a functor

˛W OH.�/ ������! C:
Set c0 D ˛.1/. For each object d in C , we regard the set MorC.c0; d/ as a � –set via
˛ and composition. Assume that the following conditions hold:

(a) ˛ sends � D AutOH.�/.1/ bijectively to EndC.c0/.

(b) For each d 2 Ob.C/ such that d 6Š c0 , all isotropy subgroups of the � –action
on MorC.c0; d/ are nontrivial and conjugate to subgroups in H .

(c) For each � 2 Mor.OH.�//, ˛.�/ is an epimorphism in the categorical sense:
' ı˛.�/D  ı˛.�/ implies ' D  .

(d) For any H 2H , any d 2Ob.C/, and any ' 2MorC.c0; d/ which is H –invariant,
there is some x' 2MorC.˛.H /; d/ such that ' D x' ı˛.inclH1 /.

Let ˆW Cop
������!Ab

be any functor which vanishes except on the isomorphism class of c0 . Then the natural
map

lim
 �
C

�.ˆ/
˛�

������!
Š

lim
 �
�

OH.�/
.ˆ ı˛/Dƒ�H.�Iˆ.c0//

is an isomorphism.

Proof Consider the functors

OH.�/–mod
˛�

 ������
������!

R˛

C–mod;

where ˛� is composition with ˛op , and R˛ is the right Kan extension of ˛op . Specifi-
cally, for d 2 Ob.C/, let ˛#d be the overcategory whose objects are pairs .H; '/ for
' 2MorC.˛.H /; d/, and where a morphism from .H; '/ to .K;  / is a morphism � in
MorOH.�/.H;K/ such that  ı˛.�/D ' . Let �d W ˛#d ���!OH.�/ be the forgetful
functor. Then .˛#d/op D d#˛op (the undercategory), and for F W OH.�/op ���!Ab,
R˛.F / is defined by setting

R˛.F /.d/D lim
 �

.˛#d/op

.F ı �d
op/:
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On morphisms, R˛.F / sends f 2MorC.d; d 0/ to the morphism induced by the functor�
˛#d

f ı�
����! ˛#d 0

�
. By Mac Lane [24, Section X.3, Theorem 1], R˛ is right adjoint to

˛� . In particular, since ˛� preserves exact sequences, R˛ sends injectives to injectives.

Fix H 2H and d 2 Ob.C/. Consider the map

�W MorC.˛.H /; d/ ������! MorC.c0; d/

defined by composition with the “inclusion” morphism ˛.inclH1 /. This map is injective
by (c), and Im.�/�MorC.c0; d/

H by (d). Also, Im.�/ is contained in MorC.c0; d/
H

since inclH1 ıx D inclH1 for all x 2H . Thus � induces a bijection

(8) MorC.˛.H /; d/
�0

������!
Š

MorC.c0; d/
H :

Fix representatives f'd
i gi2Id

for the � –orbits in MorC.c0; d/, and let �d
i � � be the

stabilizer subgroup of 'd
i . By (b), we can choose the 'd

i such that �d
i 2H for all i . By

(8), each 'd
i has a unique “extension” to  d

i 2MorC.˛.�d
i /; d/; ie there is a unique

 d
i such that 'd

i D  
d
i ı ˛.incl�

d
i

1 /. Also, for any .H; �/ in ˛#d , there is a unique
i 2 Id and a unique morphism �0 2MorOH.�/.H; �

d
i / such that � D  d

i ı �0 . So
each object .�d

i ;  
d
i / is a final object in its connected component of the overcategory

˛#d . Thus for any F in OH.�/–mod,

(9) R˛.F /.d/Š
Y
i2Id

F.�d
i /:

In particular, R˛ is an exact functor.

Let Z denote the constant functor on Cop which sends each object to Z and each mor-
phism to the identity. Then ˛�Z is the constant functor on OH.�/op . If F W Cop!Ab

is any functor, then
lim
 �
C
.F /Š HomC–mod.Z;F /

and similarly for functors in OH.�/–mod.

Assume H 2H is such that ˛.H /Š ˛.1/D c0 . Since all endomorphisms of c0 are
automorphisms (by (a)), MorC.c0; ˛.H // contains only isomorphisms, and in particular
˛.inclH1 / is an isomorphism. Also, inclH1 ıx D inclH1 for all x 2H , so ˛.x/D Idc0

for all x 2H . By (a) again, this implies that H D 1.

The functor ˛�ˆ D ˆ ı ˛opW OH.�/op ! Z.p/–mod thus sends the object 1 to
ˆ.c0/ (with the given action of � ), and sends all other objects to 0. Then R˛ sends
an injective resolution I� of ˛�ˆ to an injective resolution R˛.I�/ of R˛.˛

�ˆ/. It
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follows that

ƒ�H.�Iˆ.c0//
def
D lim
 �
�

OH.�/
.˛�ˆ/ŠH�

�
MorOH.�/–mod.˛

�Z; I�/
�

ŠH�
�
MorC–mod.Z;R˛.I�//

�
Š lim
 �
C

�.R˛.˛
�ˆ//:

It remains only to show that R˛.˛
�ˆ/ Š ˆ. For each d 2 Ob.C/, if d 6Š c0 , then

MorC.c0; d/ is a disjoint union of orbits �=�d
i , where 1¤ �d

i 2H by (b). So by (9),

R˛.˛
�ˆ/.d/DR˛.ˆ ı˛/.d/Š

Y
i

ˆ.˛.Hi//D 0 ;

where the last equality holds since we already showed that H ¤ 1 implies ˛.H / 6Š c0 .
If d Š c0 , then MorC.c0; d/ consists of one free orbit of � (by (a)), and hence
R˛.˛

�ˆ/.d/Šˆ.˛.1//Šˆ.c0/. This finishes the proof that R˛.˛
�ˆ/Šˆ.

Our first application of Proposition 5.3 is to the case where C is the orbit category
of a saturated fusion system over a discrete p–toral group. As in [19; 20] and [7],
when � is finite and H is the set of p–subgroups of � (or the set of subgroups of
a given Sylow p–subgroup), we write ƒ�.�IM /Dƒ�H.�IM / (and the prime p is
understood).

Proposition 5.4 Let F be a saturated fusion system over S . Let

ˆW Oc.F/op
������! Z.p/–mod

be any functor which vanishes except on the isomorphism class of some fixed F –centric
subgroup Q� S . Then

lim
 �
�

Oc.F/
.ˆ/Šƒ�.OutF .Q/Iˆ.Q//:

Proof It suffices to do this when Q is fully normalized. Set � D OutF .Q/ and †D
OutS .Q/ 2 Sylp.�/, and let H be the set of subgroups of †. Since †ŠNS .Q/=Q,
each subgroup of † has the form OutP .Q/ for some unique P �NS .Q/ containing
Q. Define

˛W O†.�/ �����!Oc.F/
on objects by setting ˛.OutP .Q//DP for Q�P �NS .Q/. If ' 2AutF .Q/ is such
that Œ'� 2 N�.OutP .Q/;OutP 0.Q// (the set of elements which conjugate OutP .Q/
into OutP 0.Q/), then ' can be extended to some x' 2HomF .P;P

0/ by axiom (II), the
class of x' in the orbit category is uniquely determined by ' by Proposition 2.8, and ˛
sends the class of Œ'� to the class of x' .
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We apply Proposition 5.3 to this functor ˛ . Condition (a) is clear, (c) holds for Oc.F/
by Proposition 2.8, and (d) holds by axiom (II) of a saturated fusion system. As for (b),
since every morphism in F is the composite of an isomorphism followed by an inclusion,
it suffices to prove that the stabilizer in � of an inclusion inclPQ 2HomF .Q;P /, where
Q ˆ P , is a nontrivial p–subgroup. But the stabilizer is OutP .Q/ Š NP .Q/=Q,
which is nontrivial by Lemma 1.8. All of the hypotheses of Proposition 5.3 thus hold,
and the result follows.

Using the terminology of [7], we say that a category C has bounded limits at p if there
is k > 0 such that for any functor ˆW Cop ���! Z.p/–mod, lim

 �
i.ˆ/D 0 for all i > k .

The following is a first corollary of Proposition 5.4.

Corollary 5.5 Let F be a saturated fusion system over a discrete p–toral group S ,
and let F0 � Fc be a full subcategory such that P 2 Ob.F0/ implies P� 2 Ob.F0/.
Then the orbit category O.F0/ has bounded limits at p .

Proof By Proposition 5.2, it suffices to prove this when F0 �F� ; in particular, when
F0 has only finitely many isomorphism classes. By [21, Proposition 4.11], for each
finite group � , there is some k� such that ƒi.�IM /D 0 for all Z.p/Œ��–modules M

and all i > k� . Let k be the maximum of the kOutF .P/ for all P 2 Ob.F0/. Then by
Proposition 5.4, for each functor ˆW O.F0/

op ���! Z.p/–mod which vanishes except
on one orbit type, lim

 �
i.ˆ/D 0 for i > k . The same result for an arbitrary p–local

functor ˆ on O.F0/ now follows from the exact sequences of higher limits associated
to short exact sequences of functors.

In practice, when computing higher limits over orbit categories Oc.F/, it is useful to
combine Proposition 5.2 and Proposition 5.4, as illustrated by the following corollary.

Corollary 5.6 Let F be a saturated fusion system over a discrete p–toral group S .
Let F W Oc.F/op �!Z.p/–mod be a functor with the property that for each F –centric
subgroup P 2H�.F/, ƒ�.OutF .P /IF.P //D 0. Then lim

 �
�.F /D 0.

Proof Let F0W Oc.F�/op �!Z.p/–mod be the restriction of F . By Proposition 5.2,

lim
 �
�

Oc.F/
.F /Š lim

 �
�

Oc.F�/
.F0/:

Assume first that F0 vanishes except on the conjugacy class of one subgroup P in
H�.F/. Let F 0 be the functor on Oc.F/ which takes the same value on the conjugacy
class of P and vanishes on all other subgroups. Then

lim
 �
�

Oc.F�/
.F0/Š lim

 �
�

Oc.F/
.F 0/Šƒ�.OutF .P /IF.P //

Geometry & Topology, Volume 11 (2007)



352 Carles Broto, Ran Levi and Bob Oliver

by Proposition 5.2 and Proposition 5.4, and this is zero by assumption.

By Lemma 3.2(a), the category Oc.F�/ contains only finitely many isomorphism
classes. Hence there is a sequence

0Dˆ0 �ˆ1 � � � � �ˆk D F0

of subfunctors defined on Oc.F�/, with the property that for each i , ˆi=ˆi�1 vanishes
except on the conjugacy class of one subgroup P , and .ˆi=ˆi�1/.P /Š F.P /. We
have just seen that lim

 �
�.ˆi=ˆi�1/ D 0 for all i ; and hence lim

 �
�.F0/ D 0 by the

relative long exact sequences of higher limits.

The following lemma will be useful in showing that certain functors on the orbit
category are acyclic. As usual, when F is a fusion system over S , a subgroup P � S

will be called weakly closed in F if it is the only subgroup in its F –conjugacy class.

Lemma 5.7 Let F be any saturated fusion system over a discrete p–toral group
S , and let Q C S be any F –centric subgroup which is weakly closed in F . Set
� D OutF .Q/, and let F�Q � Fc be the full subcategory whose objects are the
subgroups which contain Q. Define the functor

‚W O.F�Q/
op
������!Op.�/

by sending an object P to OutP .Q/�� , and by sending a morphism ' 2RepF .P;P
0/

to the class of 'jQ 2N�.‚.P /;‚.P
0//. Then for any pair of functors

F W Oc.F/op
������! Z.p/–mod and ˆW Op.�/

op
������! Z.p/–mod

such that ˆ ı‚Š F jO.F�Q/ , and such that OutQ.P /ŠNPQ.P /=P acts trivially on
F.P / for all P � S ,

lim
 �
�

Oc.F/
.F /Š lim

 �
�

Op.�/

.ˆ/:

Proof Define a functor

F 0W Oc.F/op
������! Z.p/–mod

by setting F 0.P /DF.P / if P �Q and F 0.P /D 0 otherwise. Regard F 0 as a quotient
functor of F , and set F 00 D KerŒF �� F 0�.

If P � S is F –centric and P � Q, then OutQ.P / Š NPQ.P /=P ¤ 1, and by
assumption this group acts trivially on F.P /Š F 00.P /. Hence the kernel of the action

Geometry & Topology, Volume 11 (2007)



p–local homotopy theory of compact Lie groups and p–compact groups 353

of OutF .P / on F 00.P / has order a multiple of p , and so ƒ�.OutF .P /IF 00.P //D 0

by [20, Proposition 5.5]. Thus lim
 �
�.F 00/D 0 by Corollary 5.6, and hence

lim
 �
�

Oc.F/
.F /Š lim

 �
�

Oc.F/
.F 0/:

Recall that � DOutF .Q/. Since Q is fully normalized in F (it is the unique subgroup
in its F –conjugacy class), ‚.S/D OutS .Q/ 2 Sylp.�/. Also, ‚ defines a bijection
between subgroups of ‚.S/Š S=Q and subgroups of S which contain Q. For all
Q� P;P 0 � S ,

RepF .P;P
0/

.�/jQ
�������! MorOp.�/.‚.P /;‚.P

0//

is injective by Proposition 2.8. If g 2N�.‚.P /;‚.P
0// is any element in the trans-

porter, and g D Œ'� for ' 2 AutF .Q/, then for all x 2 P there is y 2 P 0 such that
'cx'

�1 D cy as automorphisms of Q. Hence by condition (II) in Definition 2.2, '
extends to a homomorphism x' 2 HomF .P;P

0/, and ‚ sends Œx'� 2 RepF .P;P
0/ to

the class of g .

This proves that ‚ induces bijections on all morphism sets, and thus is an equivalence
of categories. Hence if ˆ is such that ˆ ı‚Š F jO.F�Q/ , then

lim
 �
�

Op.�/

.ˆ/Š lim
 �
�

O.F�Q/

.F jO.F�Q//Š lim
 �
�

Oc.F/
.F 0/Š lim

 �
�

Oc.F/
.F /:

This can now be applied to prove the acyclicity of certain explicit functors.

Proposition 5.8 Let F be any saturated fusion system over a discrete p–toral group
S . Define

F1;F2W Oc.F/op
������! Z.p/–mod

on objects by setting F1.P /DZ.P /0 and F2.P /D �2.B.Z.P //
^
p /. On morphisms,

each Fi sends the class of ' 2 HomF .P;P
0/ to the homomorphism induced by the

inclusion of Z.P 0/ into Z.'.P // followed by '�1jZ.'.P// . Then F1 and F2 are
both acyclic.

Proof Set T DS0 (the “maximal torus” in F ), QDCS .T /CS , and �DOutF .Q/.
Then Q is F –centric, and is weakly closed in F since T is. Let

‚W O.F�Q/ ������!Op.�/

be the functor of Lemma 5.7. For each p–subgroup … � � , regarded as a group
of automorphisms of Q, let N… be the norm map for the action of … on T ; ie
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N….t/D
Q

2… 
 .t/ for t 2 T . Define

ˆ1.…/DN….T / and ˆ2.…/D Hom.Z=p1;T /…:

These define functors ˆi W Op.�/
op �! Z.p/–mod.

For each P � S which contains Q, NP=Q.T / is connected (ie infinitely p–divisible),
and has finite index in Z.P / since Z.P /\T DT P and T P=NP=Q.T / has exponent
at most jP=Qj. Hence NP=Q.T / is equal to the identity component Z.P /0 , and we
have

F1.P /DZ.P /0 DNP=Q.T /Dˆ1.‚.P //:

In general, for any discrete p–toral group P ,

�2.BP^p /D ŒS
2;BP^p �Š ŒBS1;BP^p �Š Hom.Z=p1;P /:

Here, the last equivalence follows from Lemma 1.10, while the middle one follows
by obstruction theory (since �i.BP^p /D 0 for i > 2). Hence for any P � S which
contains Q,

F2.P /D�2.BZ.P /^p /ŠHom.Z=p1;Z.P //ŠHom.Z=p1;T /P=QDˆ2.‚.P //:

Thus ˆi ı‚ŠFi jO.F�Q/ (for i D 1; 2). Also, for each P �S , OutQ.P / acts trivially
on Fi.P / for i D 1; 2 since Q centralizes Z.P /0 � T . So by Lemma 5.7,

lim
 �
�

Oc.F/
.Fi/Š lim

 �
�

Op.�/

.ˆi/:

The functors ˆ1 and ˆ2 are both Mackey functors on Op.�/ [18, Proposition 5.14;
20, Proposition 5.2], and hence are acyclic.

As in Section 4, when F is a saturated fusion system over S , we let B denote the
homotopy functor B.P /D BP , and by extension let B^p denote the functor B^p .P /D
BP^p . The following proposition is a first application of Proposition 5.8. It shows that
there is a bijective correspondence between rigidifications of these two functors.

Proposition 5.9 Let F be a saturated fusion system over a discrete p–toral group S ,
and let F0�Fc be any full subcategory which contains Fc�. Let yBW O.F0/! Top be
any rigidification of the homotopy functor B^p . Then there is a functor zBW O.F0/! Top

such that zB.P / ' BP for all P , together with a natural transformation of functors
zB! yB which is a homotopy equivalence after p–completion. Moreover, there is a

bijection between equivalence classes of rigidifications of B and equivalence classes of
rigidifications of B^p .
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Proof Let �W B ���! B^p be the natural transformation of homotopy functors which
sends BP to BP^p by the canonical map. We want to apply Theorem A.3, which is
a relative version of the Dwyer–Kan theorem [10] for rigidifying centric homotopy
diagrams. We first check that � is relatively centric in the sense of Theorem A.3. This
means showing, for each ' 2MorO.F0/.P;Q/, that the square

Map.BP;BP /Id
B'ı�

! Map.BP;BQ/B'

Map.BP;BP^p /�.P/

�.P/ı�
#

B'ı�
! Map.BP;BQ^p /�.Q/ıB'

�.Q/ı�
#

is a homotopy pullback. By a classical result, the top row is a homotopy equivalence,
and both mapping spaces have the homotopy type of BZ.P / (cf [5, Proposition 7.1]).
By Lemma 1.10, the second row is also a homotopy equivalence, and both mapping
spaces have the homotopy type of BZ.P /^p . So the square is a homotopy pullback.

For each i � 1, let ˇi W O.F0/
op ���!Ab be the functor defined in Theorem A.3,

where for each P ,

ˇi.P /D �i

�
hofiber

�
Map.BP;BP /Id

'BZ.P/

�.P/ı�
������!Map.BP;BP^p /�.P/

'BZ.P/^p

��
:

By [12, Proposition 3.1], this homotopy fiber is a K.V; 1/ for some bQp –vector space
V . In particular, the fiber is connected, ˇ1.P / is abelian for all P , and ˇi D 0 for all
i � 2. Also, by the homotopy exact sequence for the fibration, there is a short exact
sequence of functors

0 ���! F2 �����! ˇ1 �����! F1 ���! 0;

where F1 and F2 are the functors of Proposition 5.8. By Proposition 5.2, for all i � 1

and j D 1; 2,

lim
 �

i

O.F0/

.Fj /Š lim
 �

i

O.F�/
.Fj /Š lim

 �
i

Oc.F/
.Fj /;

where the last group vanishes by Proposition 5.8. Thus lim
 �

i.ˇ1/D 0 for all i � 1.

The proposition now follows directly from Theorem A.3.

In Section 8, we will also need to work with higher limits over orbit categories of certain
infinite groups. For any (discrete) group G , let Odpt.G/ denote the orbit category
of G whose objects are the discrete p–toral subgroups of G ; and define (for any
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ZŒG�–module M ),

ƒ�dpt.GIM /D lim
 �

Odpt.G/

.FM / where FM .P /D

(
M if P D 1

0 if P ¤ 1.

We are now ready to give a second application of Proposition 5.3.

Lemma 5.10 Fix a group G , a discrete p–toral subgroup Q � G , and a functor
ˆW Odpt.G/

op�!Ab with the property that ˆ.P /D 0 except when P is G –conjugate
to Q. Let ˆ0W Odpt.NG.Q/=Q/

op �!Ab be the functor ˆ0.P=Q/Dˆ.P /. Then

lim
 �
�

Odpt.G/

.ˆ/Š lim
 �
�

Odpt.NG.Q/=Q/

.ˆ0/Šƒ�dpt.NG.Q/=QIˆ.Q// :

Proof We apply Proposition 5.3, where C DOdpt.G/, � DNG.Q/=Q, and H is the
set of discrete p–toral subgroups of � . A functor

˛W Odpt.�/ �����!Odpt.G/

is defined by setting ˛.P=Q/D P , and by sending each morphism set

.P 0=Q/nN�.P=Q;P
0=Q/

to P 0nNG.P;P
0/ in the obvious way.

The hypotheses of Proposition 5.3 follow easily from the definition of the orbit cate-
gories, and so the isomorphisms between higher limits follow from the proposition.

The following very general lemma will help in certain cases to reduce computations of
higher limits to those taken over finite subcategories.

Lemma 5.11 Let C be a (small) category, and let C1 � C2 � � � � be an increasing
sequence of subcategories of C whose union is C . Let F W Cop ���!Ab be a functor
such that for each k ,

lim
 �

i

1
�

lim
 �
Ci

k.F jCi
/
�
D 0:

Then the homomorphism

lim
 �
C

k.F /
Š

������! lim
 �

i

�
lim
 �
Ci

k.F jCi
/
�

induced by the restrictions is an isomorphism for all k .
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Proof For any category D and any functor ˆW Dop�!Ab, lim
 �
�.ˆ/ is the homology

of the chain complex .C �.DIˆ/; d/, defined by setting

C n.DIˆ/D
Y

c0!� � �!cn

ˆ.c0/;

where the product is taken over composable n–tuples of morphisms in D , and where

d.�/.c0
˛
�! c1!� � �! cnC1/D˛

��.c1!� � �! cnC1/C

nC1X
iD1

�.c0!� � � bci � � �! cnC1/:

See, for example, Gabriel and Zisman [15, Appendix II, Proposition 3.3] or Oliver
[26, Lemma 2]. If D0 �D is a subcategory, then the restriction homomorphism from
lim
 �
D

�.ˆ/ to lim
 �
D0

�.ˆjD0
/ is induced by the obvious surjections C �.DIˆ/�C �.D0Iˆ/.

In the above situation, the chain complex .C �.CIF /; d/ is the limit of an inverse system
of chain complexes .C �.Ci IF jCi

/; d/ with surjections, where the inverse system of
homology groups of these chain complexes has vanishing lim

 �
1.�/. Since lim

 �
1.�/

vanishes for a (countable directed) inverse system with surjections, we conclude that
the cohomology of .C �.CIF /; d/ is isomorphic to the inverse limit of the cohomology
of the complexes .C �.Ci IF jCi

/; d/.

The next lemma describes how, in some cases, the computation of ƒ�dpt.GIM / can
be reduced to the case where G is finite. When G is a finite group and M is a ZŒG�–
module, we let ƒ�.GIM / denote the ƒ–functor taken with respect to p–subgroups
of G .

Lemma 5.12 Let G be a locally finite group. Assume there is a discrete p–toral
subgroup S � G such that every discrete p–toral subgroup of G is conjugate to a
subgroup of S . Fix a ZŒG�–module M , and assume that for some finite subgroup
H0 � G , ƒ�.H IM / D 0 for all finite subgroups H � G which contain H0 . Then
ƒ�dpt.GIM /D 0. In particular, ƒ�dpt.GIM /D 0 if M is a Z.p/ŒG�–module and the
kernel of the action of G on M contains an element of order p .

Proof By [20, Proposition 5.5], for any finite group H and any Z.p/ŒH �–module M

such that the kernel of the H –action on M has order a multiple of p , ƒ�.H IM /D 0.
Hence the last statement follows as a special case of the first.

Fix a Sylow p–subgroup S 2 Sylp.G/, and let OS .G/�Odpt.G/ be the full subcate-
gory whose objects are the subgroups of S . Since each discrete p–toral subgroups of
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G is G –conjugate to a subgroup of S , these categories are equivalent, and so we can
work over OS .G/ instead. Define

FM W Cop
���!Ab by setting FM .P /D

(
M if P D 1

0 if P ¤ 1.

By definition, ƒ�dpt.GIM /D lim
 �
�.FM /, and we must show that this vanishes in all

degrees.

Step 1 To simplify the notation, we write C D OS .G/, and let C0 � C be the full
subcategory whose objects are the finite subgroups of S . For each subgroup Q� S

and each abelian group A, let IA
Q

in C–mod be the functor

IA
Q.P /DMap.MorC.Q;P /;A/Š

Y
MorC.Q;P/

A:

For any F in C–mod, HomC–mod.F; I
A
Q
/ŠHomZ.F.Q/;A/. Hence IA

Q
is injective

if A is injective as an abelian group, and each functor on C injects into a product of
such injectives. Also, when Q is finite,

lim
 �
C0

.IA
QjC0

/Š lim
 �
C
.IA

Q/ŠA ;

where the second isomorphism holds for arbitrary Q� S .

Choose a sequence of functors

(10) 0 ���! FM

d0
����! I0

d1
����! I1

d2
����! � � �

where each Ik is a product of injective functors IA
Q

for finite subgroups Q� S and
injective abelian groups A, and where (10) is exact after restriction to C0 . We claim
that this is an injective resolution of FM . In other words, the sequence

(11) 0 ���! FM .P / ����! I0.P / ����! I1.P / ����! � � �

is exact for all finite P � S , and we want to show it is exact for all P � S . Fix
an infinite subgroup P � S , and choose finite subgroups P1 � P2 � � � � such that
P D

S1
jD1Pj (Lemma 1.9). Then FM .P /D 0D lim

 �
j

FM .Pj /. For all finite Q� S

and all A,

IA
Q.P /DMap.MorC.Q;P /;A/D lim

 �
j

�
Map.MorC.Q;Pj /;A/

�
since MorC.Q;P / is the union of the MorC.Q;Pj /; and furthermore this is an inverse
system of surjections. Hence (11) is the inverse limit of the corresponding exact
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sequences for the Pj , all restriction maps Ik.PjC1/ ���! Ik.Pj / are surjective, and
so (11) is also exact. Thus

ƒ�dpt.GIM /D lim
 �
C

�.FM /ŠH�.lim
 �
C
.Ik/; dk/

ŠH�.lim
 �
C0

.Ik jC0
/; dk/Š lim

 �
C0

�.FM jC0
/:

Step 2 Fix a sequence S1 � S2 � S3 � � � � of finite subgroups of S such that S DS1
jD1 Sj (Lemma 1.9). We first construct inductively a sequence of finite subgroups

H1 �H2 � � � � of G containing H0 such that for each j � 1, Hj � Sj , and Op.Hj /

contains the full subcategory with object set the p–subgroups of Hj�1 . Fix j � 1,
and assume that Hj�1 has been constructed. Let Cj be the full subcategory of Ofin

p .G/

whose objects are the p–subgroups of hHj�1;Sj i (a finite group since G is locally
finite). Choose a finite set of morphisms in Cj which generate it, let Xj �G be a finite
set of elements which induce those morphisms, and set Hj D hXj i. Since G is locally
finite, Hj is a finite subgroup. By construction, Op.Hj / � Cj ; and hence contains
both O.Sj / and the full subcategory with the same objects as Op.Hj�1/.

Set C0 def
D
S1

jD1Op.Hj /. This is a full subcategory of Ofin
p .G/ which contains all finite

subgroups of S as objects. In particular, C0 is equivalent to C0 , and hence

lim
 �
C0

�.FM /Š lim
 �
C0

�.FM jC0/:

Since lim
 �
�

Op.Hj /

.FM jOp.Hj //D 0 for all j , lim
 �
C0

�.FM jC0/D 0 by Lemma 5.11.

6 Mapping spaces

We now look at the spaces of maps from BQ to jLj^p , when Q is a discrete p–toral
group and L is a linking system. In general, for any p–local compact group .S;F ;L/
and any discrete p–toral group Q, we define

Rep.Q;L/D Hom.Q;S/=�;

where � is the equivalence relation setting �� �0 if there is � 2HomF .�.Q/; �
0.Q//

such that �0 D � ı � . We want to show that ŒBQ; jLj^p �Š Rep.Q;L/.
The following lemma will be needed to reduce this to the case where Q is finite. The
functor .�/� of Section 3 plays an important role when doing this.

Lemma 6.1 Fix a discrete p–toral group Q, and let Q1 � Q2 � � � � � Q be a
sequence of finite subgroups such that Q D

S1
nD1 Qn . Let .S;F ;L/ be a p–local

compact group. Then the following hold.
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(a) The natural map

RW Rep.Q;L/ Š
������! lim

 �
n

Rep.Qn;L/ ;

induced by restriction, is a bijection.

(b) Assume Q� S . Then for n large enough, Q�nDQ� �Q, and hence restriction
induces a bijection HomF .Q;P /Š HomF .Qn;P / for all P 2 Ob.F�/.

Proof In general, for any homomorphism ' 2Hom.H;K/, we let Œ'� denote its class
in Rep.H;K/.

(a) Assume first that '; 2 Hom.Q;S/ are such that R.Œ'�/ D R.Œ �/. Thus
'jQn

and  jQn
are F –conjugate for each n; ie  jQn

D ˛n ı'jQn
for some unique

˛n 2 IsoF .'.Qn/;  .Qn//. In particular, Ker.'/ \Qn D Ker. / \Qn for each
n, so Ker.'/ D Ker. /, and  D ˛ ı ' for some unique ˛ 2 Iso.'.Q/;  .Q//.
Then ˛jQn

D ˛n is in F for each n, so ˛ 2 IsoF .'.Q/;  .Q// by axiom (III), and
Œ �D Œ'� 2 Rep.Q;F/.

This proves the injectivity of R, and it remains to prove surjectivity. Fix some

fŒ'n�gn�1 2 lim
 �

n

Rep.Qn;L/:

Thus for each n, 'n 2 Hom.Qn;S/, and 'nC1jQn
is F –conjugate to 'n . By

Lemma 3.2(a), the set f'n.Qn/
� j n � 1g contains finitely many conjugacy classes.

Since for all n, 'n.Qn/ is F –conjugate to a subgroup of 'nC1.QnC1/, 'n.Qn/
� is

F –conjugate to a subgroup of 'nC1.QnC1/
� by Lemma 3.2(b) and Proposition 3.3.

Hence for some m, 'n.Qn/
� is F –conjugate to 'm.Qm/

� for all n�m.

We now construct inductively homomorphisms '0n 2 Hom.Qn;S/ for all n > m

such that Œ'0n�D Œ'n� in Rep.Qn;L/, and '0njQn�1
D '0

n�1
. Assume '0

n�1
has been

constructed, and set ˛n D 'n ı .'
0
n�1

/�1 2 HomF .'
0
n�1

.Qn�1/; 'n.Qn//. Again by
Proposition 3.3, this extends to a unique morphism

˛�n 2 HomF .'
0
n�1.Qn�1/

�; 'n.Qn/
�/;

which must be an isomorphism since it is injective and the two groups are abstractly iso-
morphic and artinian. Set '0nD .˛

�
n/
�1
ı'n ; then '0njQn�1

D'0
n�1

. Let ' 2Hom.Q;S/
be the union of the '0n ; then Œ'� 2R�1.fŒ'n�g/, and this proves the surjectivity of R.

(b) Now assume Q� S . By Lemma 3.2(a,b), for all n, Q�n �Q�
nC1
�Q� , and the

set fQ�n j n � 1g is finite. Hence Q�n � Q for n sufficiently large, and this implies
Q�n D Q� . If P D P� � S , then every ' 2 HomF .Qn;P / extends to a unique
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'� 2 HomF .Q
�
n;P / by Proposition 3.3, and thus HomF .Q;P / Š HomF .Qn;P /

whenever Q�n DQ� .

For any linking system L and any discrete p–toral group Q, we let LQ be the category
whose objects are the pairs .P; ˛/ for P 2 Ob.L/ and ˛ 2 Hom.Q;P /, and where

MorLQ

�
.P; ˛/; .P 0; ˛0/

�
D
˚
' 2MorL.P;P 0/

ˇ̌
˛0 D �.'/ ı˛ 2 Hom.Q;P 0/

	
:

We next show that Map.BQ; jLj^p /' jLQj^p in this situation.

Proposition 6.2 Fix a p–local compact group .S;F ;L/ and a discrete p–toral group
Q. Let F0 � Fc be any full subcategory which contains all F –centric F –radical
subgroups of S , and such that P 2 Ob.F0/ implies P� 2 Ob.F0/. Let L0 � L and
LQ

0
� LQ be the full subcategories where Ob.L0/D Ob.F0/, and Ob.LQ

0
/ is the set

of pairs .P; ˛/ 2 Ob.LQ/ such that P 2 Ob.L0/. Then there is a bijection

(12) �0.jLQ
0 j/

Š
������! Rep.Q;L/

which sends a vertex .P; ˛/ to the class of ˛ as a homomorphism to S . If, furthermore,
we define ˆW LQ

0
�B.Q/ ���! L0 by setting

ˆ
�
.P; ˛/; oQ

�
D P and ˆ

�
.P; ˛/

'
��! .P 0; ˛0/ ; x

�
D ' ı ıP .˛.x// ;

then the map

(13) jˆj0W jLQ
0 j
^
p �����! Map.BQ; jL0j

^
p /

adjoint to jˆj is a homotopy equivalence.

Proof Every vertex .P; ˛/ in jLQ
0
j is connected by an edge to the vertex .S; inclSP ı˛/.

Furthermore, by the assumption that F0 contains all F –centric F –radical subgroups,
together with Alperin’s fusion theorem (Theorem 3.6), two vertices .S; ˛/ and .S; ˛0/
in jLQ

0
j are in the same connected component if and only if ˛ and ˛0 represent the

same element of Rep.Q;L/. This proves (12).

Since ˆ.';x/D ' ı ıP .˛.x//D ıP 0.˛0.x// ı' by condition (C), ˆ is a well defined
functor. It remains to prove the homotopy equivalence (13). Step 1, where we handle
the case Q is finite, is essentially the same as the corresponding proof in [7]. In Step
2, we extend this to the general case.

By assumption, for each P 2 Ob.L0/, P� 2 Ob.L0/. So the functor .�/� of
Proposition 4.5 restricts to a functor from L0 to L�

0
, and also induces a functor from

LQ
0

to L�Q
0

. All of these are left adjoint to the inclusion functors, and hence induce
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homotopy equivalences between their geometric realizations. Thus, without loss of
generality, we can assume that L0 D L�

0
; ie that P D P� for all P in L0 . This

assumption will be needed at the end of each of Steps 1 and 2 below.

Step 1 Assume that Q is a finite p–group. Let O.F0/ � Oc.F/ be the full
subcategory with Ob.O.F0// D Ob.F0/ D Ob.L0/, and let z� W L0 ��!O.F0/ be
the projection functor. Let z�QW LQ

0
��!O.F0/ be the functor z�Q.P; ˛/ D P and

z�Q.'/D z�.'/. Let
zBQ; zBW O.F0/ �����! Top

be the left homotopy Kan extensions over z�Q and z� , respectively, of the constant
functors �. Then

(14) jL0j ' hocolim
�����!
O.F0/

. zB/ and jLQ
0 j ' hocolim

�����!
O.F0/

. zBQ/

(cf Hollender and Vogt [17, Theorem 5.5]).

For each P in O.F0/, zB.P / is the nerve of the overcategory z�#P , whose objects
are the pairs .R; �/ for R 2 Ob.L0/D Ob.O.F0// and � 2 RepF .R;P /, and where

Morz�#P

�
.R; �/; .R0; �0/

�
D
˚
' 2MorL0

.R;R0/ j�D �0 ı z�.'/
	
:

Let B0.P / be the full subcategory of z�#P with the unique object .P; Id/, and with
morphisms the group of all ıP .g/ for g 2 P .

Similarly, zBQ.P / is the nerve of the category z�Q#P , whose objects are the triples
.R; ˛; �/ for R 2 Ob.L0/ D Ob.O.F0//, ˛ 2 Hom.Q;R/, and � 2 RepF .R;P /;
and where

Morz�Q#P

�
.R; ˛; �/; .R0; ˛0; �0/

�
D
˚
'2MorL0

.R;R0/ j˛0D�.'/ı˛; �D�0ız�.'/
	
:

Let B0
Q
.P / be the full subcategory of z�Q#P with objects the triples .P; ˛; Id/ for

˛ 2 Hom.Q;P /.

Fix a section z� W Mor.O.F0// ��! Mor.L0/ which sends identity morphisms to iden-
tity morphisms. Retractions

z�#P
‰
���! B0.P / and z�Q#P

‰Q

���! B0Q.P /

are defined by setting

‰.R; �/D .P; Id/ and ‰Q.R; ˛; �/D .P; �z�.�/ ı˛; Id/I

and by sending ' in Morz�#P ..R; �/; .R
0; �0// or Morz�Q#P ..R; ˛; �/; .R

0; ˛0; �0//

to the automorphism ıP .g/ 2 AutL0
.P /, where g 2 P is the unique element such
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that z�.�0/ ı ' D ıP .g/ ı z�.�/ in MorL0
.R;P / (Lemma 4.3(b)). There are natural

transformations

Idz�#P �����! incl ı‰ and Idz�Q#P �����! incl ı‰Q

of functors which send an object .R; �/ to � 2Morz�#P ..R; �/; .P; Id// and similarly
for an object .R; ˛; �/. This shows that jB0.P /j � jz�#P j and jB0

Q
.P /j � jz�Q#P j

are deformation retracts.

We have now shown that for all P 2 Ob.L0/,

(15) zB.P /' jB0.P /j ' BP and zBQ.P /' jB0Q.P /j :

All morphisms in B0
Q
.P / are isomorphisms, two objects .P; ˛; Id/ and .P; ˛0; Id/ are

isomorphic if and only if ˛ and ˛0 are conjugate in P , and the automorphism group
of .P; ˛; Id/ is isomorphic to CP .˛Q/. Thus

(16) zBQ.P /'
a

˛2Rep.Q;P/

BCP .˛Q/:

Denote by zB^p and zBQ
^
p be the p–completions of zB and zBQ ; ie . zB^p /.P /D . zB.P //

^
p

and . zBQ
^
p /.P /D .

zBQ.P //
^
p . By (14), and since the spaces zB.P / and zBQ.P / are all

p–good by (15) and (16),

jL0j
^
p '

�
hocolim
�����!
O.F0/

. zB^p /
�
^
p and jLQ

0 j
^
p '

�
hocolim
�����!
O.F0/

. zBQ
^
p /
�
^
p :

Consider the commutative triangle:

LQ
0 �B.Q/

ˆ //

z�Qıpr1 ''PPPPPPPPPPPP
L0

z�yysssssssssss

O.F0/

The left homotopy Kan extension over z�Q ıpr1 of the constant functor � is the functor
zBQ �BQ, and so the triangle induces a natural transformation of functors

ˆ0W zBQ �BQ ������! zB:
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The map ẑ W zBQ ��! Map.BQ; zB/ adjoint to ˆ0 is also a natural transformation of
functors from O.F0/ to Top, and induces a commutative diagram:

�
hocolim
�����!
O.F0/

. zBQ/
^
p

�
^
p

hocolim. ẑ /
!

�
hocolim
�����!
O.F0/

Map.BQ; zB^p /
�
^
p

!
! Map

�
BQ; hocolim
�����!
O.F0/

. zB/^p
�

jLQ
0 j
^
p

'

#
jˆj0

! Map.BQ; jL0j
^
p /

'

#

For each P � S and Q0 �Q, Lemma 1.10 (together with (15)) implies that each com-
ponent of Map.BQ0;B.P /^p / has the form BCP .�.Q0//

^
p for some �2Hom.Q0;P /.

So all such mapping spaces are p–complete and have finite mod p cohomology in
each degree. Also, O.F0/ is a finite category (it has finitely many isomorphism classes
of objects by Lemma 3.2(a) and has finite morphism sets by Lemma 2.5), and it
has bounded limits at p by Corollary 5.5. Hence ! is a homotopy equivalence by
[7, Proposition 4.2].

It remains only to show that ẑ .P / is a homotopy equivalence for each P 2 Ob.L0/.
By (15), this means showing that ẑ .P / restricts to a homotopy equivalence

ẑ 0.P /W jB0Q.P /j ������! Map.BQ; jB0.P /j/ :

Since jB0.P /j Š BP , and since ẑ 0.P / is induced by the homomorphisms .incl �˛/
from CP .˛.Q//�Q to P , this follows from (16).

Step 2 Now let Q be an arbitrary p–toral group. Let Q1 � Q2 � � � �Q be an
increasing sequence of finite subgroups whose union is Q (Lemma 1.9). Then

�0.jLQ
0 j/Š lim

 �
n

�0.jLQn
0 j/Š lim

 �
n

ŒBQn; jL0j
^
p � :

The first bijection holds by Lemma 6.1 and (12), and the second by Step 1.

Fix ' 2Hom.Q;S/, and set 'nD 'jQn
. Let Map.BQ; jL0j

^
p /y' be the space of maps

f W BQ ���! jL0j
^
p such that f jBQn

'B'n for each n. (This contains the connected
component of B' , but could, a priori, contain other components.) Let .LQ

0
/' � LQ

0

and .LQn
0
/' � LQn

0
be the full subcategories with objects those .P; ˛/ such that ˛ is

F –conjugate to ' or to 'n , respectively. Thus j.LQ
0
/' j is the connected component of

jLQ
0
j which contains .S; '/, and j.LQn

0
/' j is the connected component which contains

.S; 'n/.
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Consider the following commutative diagram, for all n� 1:

(17)

j.LQ
0 /' j

^
p ! Map.BQ; jL0j

^
p /y'

j.LQn
0 /' j

^
p

#
'
! Map.BQn; jL0j

^
p /'n

#

We want to show that the top row is a homotopy equivalence; the proposition then
follows by taking the union of such maps as ' runs through representatives of all
elements of Rep.Q;L/. The bottom row is a homotopy equivalence by Step 1. So we
will be done if we can show that the vertical maps are homotopy equivalences for n

large enough.

By Lemma 6.1(b), there is some m such that for all n �m, '.Qn/
� D '.Q/� , and

restriction induces a bijection RepF .'.Q/;P /ŠRepF .'.Qn/;P / for all P 2Ob.L0/.
(Recall that we are assuming L0 D L�0 .) This implies that j.LQ

0
/' j Š j.LQn

0
/' j for

all n�m. Hence the components Map.BQn; jL0j
^
p /B'n

are all homotopy equivalent
for n�m by Step 1, so Map.BQ; jLj^p /y' 'Map.BQn; jLj^p /B'n

for n�m, and this
proves that the vertical maps in (17) are equivalences.

The following theorem gives a more explicit description of the set ŒBQ; jLj^p � of
homotopy classes of maps, as well as of the individual components in certain cases.

Theorem 6.3 Fix a p–local compact group .S;F ;L/, and let � W BS ! jLj^p be the
natural inclusion followed by completion. Then the following hold, for any discrete
p–toral group Q.

(a) The natural map

Rep.Q;L/ Š
������! ŒBQ; jLj^p �

is a bijection. Thus each map BQ ��! jLj^p is homotopic to � ıB� for some
� 2 Hom.Q;S/. If �; �0 2 Hom.Q;S/ are such that � ıB�' � ıB�0 as maps
from BQ to jLj^p , then there is � 2 HomF .�.Q/; �

0.Q// such that �0 D � ı � .

(b) For each � 2 Hom.Q;S/ such that �.Q/ is F –centric, the composite

BZ.�.Q//�BQ
incl �B�
������! BS

�
������! jLj^p

induces a homotopy equivalence

BZ.�.Q//^p
'

�����! Map.BQ; jLj^p /�ıB�:
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(c) The evaluation map induces a homotopy equivalence

Map.BQ; jLj^p /triv ' jLj^p :

Proof We refer to the category LQ and to the homotopy equivalence

jˆj0W jLQ
j
^
p

'
������! Map.BQ; jLj^p /

of Proposition 6.2. Point (a) is an immediate consequence of point (12) in the proposi-
tion, and (c) holds since the component of LQ which contains the objects .P; 1/ is
equivalent to L.

If � 2 Hom.Q;S/ is such that �.Q/ is F –centric, then the connected component of
jLQj which contains the vertex .�.Q/; �/ contains as deformation retract the nerve of
the full subcategory with that as its only object. Since AutLQ

.�.Q/; �/ŠZ.�.Q//,
this component has the homotopy type of BZ.�.Q//, which proves point (b).

7 Equivalences of classifying spaces

We next describe the monoid Aut.jLj^p / of self homotopy equivalences of jLj^p in
Theorem 7.1; and also show that p–local compact groups which have homotopy
equivalent classifying spaces are themselves isomorphic (Theorem 7.4). There is some
overlap between the proofs in this section and those of the corresponding results for
p–local finite groups in [7, Sections 8 & 7]; but they differ in some key respects, mostly
due to the fact that we do not have a way to recover the category L from the space
jLj^p via a functor from spaces to categories.

We first recall some notation from [6] and [7]. For any space X , Aut.X / denotes the
monoid of self homotopy equivalences of X , and Out.X /D �0.Aut.X // is the group
of homotopy classes of self equivalences. For any discrete category C , Aut.C/ is the
category whose objects are the self equivalences of C and whose morphisms are the
natural isomorphisms between self equivalences, and Out.C/D �0.jAut.C/j/ is the
group of isomorphism classes of self equivalences. We consider Aut.C/ as a discrete
strict monoidal category, in the sense that composition defines a strictly associative
functor

Aut.�/�Aut.�/ ������!Aut.�/

with strict identity. The nerve of Aut.C/ is thus a simplicial monoid, and its realization
jAut.C/j is a topological monoid.

Consider the evaluation functor

evW Aut.C/� C ������! C
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which sends a pair of objects .‰; c/ to ‰.c/ 2 Ob.C/, and which is defined on mor-
phisms by setting

ev
�
‰

�
���!‰0; c

'
���! d

�
D

�
‰.c/

‰0.'/ı�.c/
��������!
D�.d/ı‰.'/

‰0.d/
�
:

Upon taking geometric realizations, this defines a map of spaces from jAut.C/j � jCj
to jCj, which is adjoint to a homomorphism of topological groups

�C W jAut.C/j ���! Aut.jCj/:

Recall that part of the structure of a centric linking system L associated to a fusion
system is a homomorphism P

ıP
���! AutL.P / for each P in L. We write Pı D

Im.ıP /, which we think of as a “distinguished subgroup” of AutL.P / which can be
identified with P . For the purposes of this paper, an equivalence of categories L ‰

��! L
will be called isotypical if for each P , ‰P;P sends the subgroup Pı �AutL.P / to the
subgroup ‰.P /ı � AutL.‰.P //. Let Auttyp.L/ be the full subcategory of Aut.L/
whose objects are the isotypical equivalences, and set Outtyp.L/D �0.jAuttyp.L/j/.

By [7, Lemma 8.2], when L is a linking system over a finite p–group, an equivalence
‰W L ���! L is isotypical if and only if the triangle involving ‰ and the forgetful
functor from L to groups commutes up to natural isomorphism. The same proof applies
for linking systems over discrete p–toral groups, although we won’t be using that here.

Clearly, any equivalence which is naturally isomorphic to an isotypical equivalence
is itself isotypical, and any inverse to an isotypical equivalence (inverse up to natural
isomorphism of functors) is also isotypical. The subcategory Auttyp.L/ is thus a union
of connected components of Aut.L/, and Outtyp.L/ is a subgroup of Out.L/.

The main result of this section is the following theorem:

Theorem 7.1 Fix a p–local compact group .S;F ;L/, and set � D �L . Then the
composite

�^p W jAuttyp.L/j
�

�����! Aut.jLj/
.�/^p
�����! Aut.jLj^p /

induces a homotopy equivalence of topological monoids from

jAuttyp.L/j^p to Aut.jLj^p /:

In particular, if we let �i.BZ^p / denote the functor Oc.F/op!Ab which sends P to
�i.BZ.P /^p / (each i � 1), then

Out.jLj^p /Š Outtyp.L/ ;
�i.Aut.jLj^p //Š lim

 �
0

Oc.F/
.�i.BZ^p // for i D 1; 2 ; and �i.Aut.jLj^p //D 0 for i � 3:
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Proof We prove the isomorphism between groups of components in Step 2, and the
homotopy equivalence between the individual components in Step 3. In Step 1, we
outline the general procedure for describing the mapping space Aut.jLj^p /.

Assume we have fixed inclusion morphisms �P 2 MorL.P;S/ for each P . If ‰ is
an isotypical self equivalence of L, then clearly ‰.S/ D S , and hence ‰S;S is an
automorphism of AutL.S/ which sends Sı (D Im.ıS /) to itself. Set

 D ı�1
S ıˆS;S jSı ı ıS 2 Aut.S/:

For each P 2 Ob.L/, axiom (C) and the functoriality of ‰ imply that the following
diagram commutes for all g 2 P :

‰.P /
‰.�P /

! S

‰.P /

‰.ıP .g// 2‰.P/ı
#

‰.�P /
! S

‰.ıS .g//DıS . .g//
#

Hence �.‰.�P //.‰.P //D  .P / (by axiom (C) again). So ‰.�P /D � .P/ ı˛P for a
unique ˛P 2 IsoL.‰.P /;  .P // by Lemma 4.3(a). Thus ‰ is naturally isomorphic
to an automorphism ‰0 of L such that ‰0

S;S
D ‰S;S , and ‰0.P / D  .P / and

‰0
P;S

.�P /D � .P/ for each P . This shows that every object in Auttyp.L/ is isomorphic
to an isotypical automorphism of L which sends inclusions to inclusions, and from
now on we restrict attention to such automorphisms.

Step 1 Consider the decomposition

prW hocolim
�����!
Oc.F/

. zB/
'

������! jLj

of Proposition 4.6(a), where zBW Oc.F/ ��! Top is a rigidification of the homotopy
functor P 7! BP . In the following constructions, we regard hocolim

�����!
. zB/ as the union

of skeleta:

hocolim
�����!
Oc.F/

.n/. zB/D
� na

iD0

a
P0!���!Pn

zB.P0/�Di
�.
�

where we divide out by the usual face and degeneracy relations.

Define functors Z;Z0W Oc.F/op ���!Ab and BZ^p W Oc.F/op ���! Top by setting

Z.P /DZ.P /; Z0.P /DZ.P /0; and BZ^p .P /D BZ.P /^p ;
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and by sending Œ'� 2 MorOc.F/.P;Q/ to '�1jZ.Q/ or B
�
'�1jZ.Q/

�
^
p . For any

element

fD
�
fP

�
P2Oc.F/ 2 lim

 �
Oc.F/

ŒB�; jLj^p �;

let Map.jLj^p ; jLj^p /f be the union of the components of the mapping space which
restrict to f. By Wojtkowiak [30], the obstructions to this space being nonempty lie in
the groups

lim
 �

iC1

Oc.F/

�
�i.Map.B�; jLj^p /f�/

�
Š lim
 �

iC1

Oc.F/
.�i.BZ^p //

for i � 1; the functor vanishes for i > 2, and the higher limits vanish for i D 2 by
Proposition 5.8. Also, if Map.jLj; jLj^p /f ¤∅, then the filtration of the mapping space

Map.jLj^p ; jLj^p /'Map
�

hocolim
�����!
Oc.F/

. zB/; jLj^p
�

by the skeleta of the homotopy colimit defines a spectral sequence with E2 –term

E2
�i;j D lim

 �
i

Oc.F/

�
�j .Map.B�; jLj^p /f�/

�
;

which converges to �j�i

�
Map.jLj; jLj^p /f

�
.

By Theorem 6.3(b),

�j .Map.B�; jLj^p /f�/Š �j .BZ.�/^p /Š

8̂<̂
:
Z=Z0 if j D 1

�2.BZ^p / if j D 2

0 if j � 3.

Since �2.BZ^p / is acyclic by Proposition 5.8, the only obstruction to the space
Map.jLj^p ; jLj^p /f being nonempty lies in lim

 �
2.Z=Z0/; while the spectral sequence

takes the form

E2
�i;j Š

8̂<̂
:

lim
 �

i.Z=Z0/ if j D 1

lim
 �

0.�2.BZ^p // if .i; j /D .0; 2/

0 otherwise.

Step 2 Let Autfus.S/ be the group of fusion preserving automorphisms of S ; ie the
group of those ˛ 2 Aut.S/ which induce an automorphism of the fusion system F by
sending P to ˛.P / and '2HomF .P;Q/ to .˛jQ/ı'ı.˛jP /�12HomF .˛.P /; ˛.Q//.
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The proof that Out.jLj^p /Š Outtyp.L/ is based on the following diagram:

(18)

1 ! lim
 �

1.Z/ �0
! Outtyp.L/

�0
! Outfus.S/

!0
! lim
 �

2.Z/

1 ! lim
 �

1.Z=Z0/

!1 Š#

�
! Out.jLj^p /

�0.�
^
p /
#

�
! lim
 �

IRep.�;F/

!2 Š
#

!
! lim
 �

2.Z=Z0/

!3 Š#

Here, IRep.P;F/�Rep.P;F/ denotes the set of classes of injective homomorphisms.
All limits are taken over Oc.F/, and !1 and !3 are induced by the natural surjection
of functors from Z onto Z=Z0 . They are isomorphisms since lim

 �
i.Z0/D 0 for all

i � 1 (Proposition 5.8). Also, !2 is induced by the inclusion of the outer automor-
phisms Outfus.S/D Autfus.S/=AutF .S/ into IRep.S;F/D Aut.S/=AutF .S/, and
by definition of fusion preserving Im.!2/D lim

 �
IRep.�;F/ (thus !2 is a bijection). It

remains to define the two rows, and prove that they are exact and the diagram commutes.
It will then follow immediately that �0.�

^
p / is an isomorphism. Note that this does

not require us to know that lim
 �

IRep.�;F/ is a group or that !0 is a homomorphism;
only that Im.�/D!�1.0/, Im.�0/D!0�1.0/, and the inverse image under � of each
element in the target is a coset of Im.�/.

We first consider the top row, where �0 is defined by restricting an isotypical equivalence
of L to the image of ıS . Any fusion preserving automorphism ˛2Autfus.S/ defines an
isotypical automorphism x̨ of F , and !0.˛/ is the obstruction of [7, Proposition 3.1] to
lifting x̨ to an automorphism of L. (The proof in [7] applies without change to the case
of a linking system over a discrete p–toral group.) Finally, the description of Ker.�0/
is identical to that shown in [6, Theorem 6.2]. More specifically, a reduced 1–cocycle
" 2 Z1.Oc.F/IZ/ sends each morphism Œ'� 2 MorOc.F/.P;Q/ to ".'/ 2 Z.P /

(where ".IdP / D 1), and �0.Œ"�/ is represented by the automorphism A" 2 Aut.L/
defined by setting A".P /D P for all P , and A". /D  ı ıP .".Œ�. /�//

�1 for all
 2MorL.P;Q/. This proves the exactness of the top row.

As for the bottom row in (18), let � be the homomorphism defined by restriction:

�W Out.jLj^p /
Res
�����! ŒBS; jLj^p �Š IRep.S;F/:

We want to compare

Map.jLj^p ; jLj^p /'Map
�

hocolim
�����!
Oc.F/

. zB/; jLj^p
�

with lim
 �
Oc.F/

ŒB.�/; jLj^p �Š lim
 �
Oc.F/

IRep.�;F/:
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By Step 1, the only obstruction to extending any given ˛ in this last set to an automor-
phism of jLj^p lies in lim

 �
2.Z=Z0/, while if there are liftings, then the set of homotopy

classes is in bijective correspondence with lim
 �

1.Z=Z0/. This proves the exactness of
the bottom row in the sense explained above.

The second square in (18) clearly commutes. To prove that the first square commutes, fix
some "2Z1.Oc.F/IZ/. Then �0.Œ"�/D ŒA"� where A" 2Aut.L/ is the automorphism
defined above; and jA"j 2 Aut.jLj/ sends each BP � B.AutL.P // � jLj to jLj by
the inclusion. For each ' 2 HomFc .P;Q/, let C' � L be the subcategory with two
objects P and Q, whose morphisms are those morphisms in L which get sent to ŒIdP �,
ŒIdQ�, or Œ'� in Oc.F/. Then jC' j � jLj is homeomorphic to the mapping cylinder
of B'W BP ���! BQ; and jA"j sends jC' j to itself by a map which differs from
the identity via a loop in Map.BP;BQ/B' ' BZ.P / which represents the element
".Œ'�/ 2Z.P /. After taking the p–completion, this shows that ŒjA"j^p �D �.Œx"�/, where
x" 2Z1.Oc.F/IZ=Z0/ is the class of " modulo Z0 . This proves that the first square
in (18) commutes.

Fix ˛ 2 Outfus.S/, and let y̨ be the automorphism of the fusion system F induced by
˛ . Choose maps

MorL.P;Q/
˛�

P;Q

�����! MorL.˛.P /; ˛.Q//

which lift those defined by y̨; then !0.˛/ is the class of the 2–cocycle ˇ2Z2.Oc.F/IZ/
which measures the deviation of the ˛�

P;Q
from defining a functor. These same liftings

˛�
P;Q

allow us to define a map of spaces

˛�W hocolim
�����!
Oc.F/

.1/. zB/ �����! jLj;

and the obstruction to extending this to hocolim
�����!

.2/. zB/ is precisely the class of the
same 2–cocycle ˇ : but regarded as a 2–cocycle with coefficients in

Z=Z0 Š �1.Map.B�; jLj^p /˛/:

This proves that the third square commutes, and finishes the proof that �0.�
^
p / is an

isomorphism.

Step 3 Set Z.F/D lim
 �
.Z/, regarded as a subgroup of S . Let

�W B.Z.F//�L �����! L

be the functor which sends .x;P
'
���!Q/ to ' ı ıP .x/. This is adjoint to a functor

from B.Z.F// to Aut.L/, which in turn induces a map

�0W BZ.F/ ���! jAut.L/jId
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upon taking geometric realizations. On the other hand, if we first take geometric
realizations, then p–complete, and then take the adjoint, we get a map � from BZ.F/^p
to Aut.jLj^p /Id . These maps now fit together in the following commutative square:

(19)

BZ.F/ �0

'
! jAut.L/jId

BZ.F/^p

.�/^p
#

�

'
! Aut.jLj^p /Id

�
#

Since we are restricting attention to automorphisms of L (as opposed to working
with all equivalences), Aut.L/ is a groupoid, and so �1.jAut.L/j/ is the group of
natural isomorphisms of functors from IdL to itself. A natural equivalence ˛ sends
each object P to an element ˛.P / 2 AutL.P /, such that for each ' 2MorL.P;Q/,
' ı˛.P /D ˛.Q/ı' . In particular, upon restricting to the case P DQ and ' 2 ıP .P /,
we see that �.˛.P // D IdP for each P , and thus ˛.P / 2 ıP .Z.P // Š Z.P /. The
other relations are equivalent to requiring that ˛ 2 lim

 �
0.Z/ D Z.F/. This proves

that �1.jAut.L/j/ Š Z.F/; and since jAut.L/jId is aspherical, shows that �0 is a
homotopy equivalence.

The E2 –term of the spectral sequence for maps defined on a homotopy colimit was
described in Step 1: it vanishes except for the row coming from lim

 �
�.Z=Z0/, and

the position E2
0;2
Š lim
 �

0.�2.BZ^p //. Hence from the spectral sequence, one sees
immediately that for i � 1,

�i.Aut.jLj^p //Š lim
 �
Oc.F/

.�i.BZ^p //Š �i.BZ.F/^p /:

By naturality, these isomorphisms are induced by �, and so � is a homotopy equivalence.

It now follows from (19) and from Step 1 that �^p induces a homotopy equivalence
Aut.jLj^p /' jAuttyp.L/j^p .

We also note here the following result, which was shown while proving Theorem 7.1.

Proposition 7.2 For any p–local compact group .S;F ;L/, there is an exact sequence

0 ���! lim
 �

1

Oc.F/
.Z=Z0/ �����! Out.jLj^p / �����! Outfus.S/ �����! lim

 �
2

Oc.F/
.Z=Z0/;

where Z0�ZW Oc.F/op�!Ab are the functors Z.P /DZ.P / and Z0.P /DZ.P /0 .

In Section 9, we will show that for any compact Lie group G , there is a p–local
compact group .S;F ;L/D .S;FS .G/;Lc

S
.G// such that jLj^p 'BG^p . Hence when
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G is connected, the exact sequence of Proposition 7.2 gives a new way to describe
Out.BG^p /, which is different from but closely related to the descriptions in [19; 20]
and [22].

We now turn our attention to maps between p–completed nerves of different linking
systems. We first look at the case where the linking systems in question are associated
to the same fusion system. As usual, when we talk about an isomorphism of linking
systems, we mean an isomorphism of categories which is natural with respect to the
projections to the fusion system and with respect to the distinguished monomorphisms.

Lemma 7.3 Let F be a saturated fusion system over a discrete p–toral group S , and
let F0 � Fc be any full subcategory which contains Fc� . Let L0 and L0

0
be two

linking systems associated to F0 . Assume that there is a map f W jL0j
^
p ���! jL00j

^
p

such that the triangle
BS

�

||yy
yy

yy
yy

� 0

""EE
EE

EE
EE

jL0j
^
p

f // jL00j
^
p

is homotopy commutative. Here, � and � 0 are the maps induced by the inclusion of
B.S/ into L0 or L0

0
. Then L0 and L0

0
are isomorphic linking systems associated to

F0 . Furthermore, we can choose an isomorphism L0
Š
���! L0

0
of linking systems that

induces f on p–completed nerves.

Proof Let ke.L0/ and ke.L0
0
/ be the left homotopy Kan extensions of the constant

point functors along the projections z�0W L0!O.F0/ and z� 0
0
W L0

0
!O.F0/ respec-

tively. Let �P W ke.L0/.P / �! jL0j
^
p be induced by the forgetful functor from z�0#P

to L0 , and similarly for �0
P
W ke.L0/.P / �! jL00j

^
p . Then � and � 0 factor through �S

and �0
S

, and we have a homotopy commutative diagram:

ke.L0/.P / // ke.L0/.S/
�S // jL0j

^
p

f

��

BP //

'

99ssssssssssss

'
%%KKKKKKKKKKKK BS

'

77pppppppppppppp

'
''NNNNNNNNNNNNNN

�

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

� 0

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVV

ke.L00/.P / // ke.L00/.S/
�0

S // jL00j
^
p

Hence the maps fP W ke.L0/.P / �! jL00j
^
p and f 0

P
W ke.L0

0
/.P / �! jL0

0
j^p , defined as

the obvious composites shown in the above diagram satisfy the following:

Geometry & Topology, Volume 11 (2007)



374 Carles Broto, Ran Levi and Bob Oliver

(a) The composites

BP
'
��! ke.L0/.P /

fP
��! jL00j

^
p and BP

'
��! ke.L00/.P /

f 0
P
��! jL00j

^
p

are homotopic, and are centric after p–completion by Theorem 6.3(b).

(b) fQıke.L0/.'/'fP and f 0
Q
ıke.L0

0
/.'/'f 0

P
for each morphism 'W P �!Q

of O.F0/.

Thus ke.L0/
^
p and ke.L0

0
/^p are equivalent rigidifications of B^p by Corollary A.5; and

so ke.L0/ and ke.L0
0
/ are equivalent rigidifications of B by Proposition 5.9. Hence

by Proposition 4.6, L0 and L0
0

are isomorphic linking systems associated to F0 .

More precisely, there is a third rigidification zB of B, and a commutative diagram of
natural transformations between functors O.F0/ ���! Top of the following form:

ke.L0/
 

! zB  
 0 ke.L00/

jL0j
^
p

#
f
! jL00j

^
p

f1

'
! X

#

 
f2

'
jL00j

^
p

#

Here,  .P / and  0.P / are homotopy equivalences for each P ; X is some space
homotopy equivalent to jL0

0
j^p ; all functors in the bottom row of the diagram are

constant functors on O.F0/ (sending all objects to the given space and all morphisms
to the identity); and f1 and f2 are homotopy equivalences. Upon taking homotopy
colimits of the functors in the top row, we get the homotopy commutative diagram:

hocolim
�����!
O.F0/

�
ke.L0/

� '
! hocolim
�����!
O.F0/

. zB/ 
' hocolim
�����!
O.F0/

�
ke.L00/

�

jL0j
^
p

'
#

f
! jL00j

^
p

f1

'
! X

#

 
f2

'
jL00j

^
p

'
#

Here, the left and right vertical maps are homotopy equivalences by Proposition 4.6(a).
This proves that f is a homotopy equivalence. The last statement (an isomorphism
L0 Š L0

0
can be chosen to induce f ) now follows since by Theorem 7.1, every

homotopy equivalence from jL0
0
j^p to itself is induced by some self equivalence of

L0
0

.

An isomorphism .S;F ;L/ ��! .S 0;F 0;L0/ of p–local compact groups consists of a
triple .˛; ˛F ; ˛L/, where

S
˛

����! S 0; F
˛F
����! F 0; and L

˛L
����! L0
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are isomorphisms of groups and categories which satisfy the following compatibility
conditions:

(a) ˛F .P /D ˛L.P /D ˛.P / for all P � S .

(b) ˛F and ˛L commute with the projections � W L! F and � 0W L0! F 0 .

(c) ˛L commutes with the distinguished monomorphisms ıP W P ! AutL.P / and
ı0
P
W P ! AutL0.P /.

We are now ready to show that the isomorphism class of a p–local compact group is
determined by the homotopy type of its classifying space. This was shown for p–local
finite groups in [7, Theorem 7.4].

Theorem 7.4 If .S;F ;L/ and .S 0;F 0;L0/ are two p–local compact groups such
that jLj^p ' jL0j^p , then .S;F ;L/ and .S 0;F 0;L0/ are isomorphic as p–local compact
groups.

Proof If jLj^p
f
��! jL0j^p is a homotopy equivalence, then by Theorem 6.3(a), there

are homomorphisms ˛ 2 Hom.S;S 0/ and ˛0 2 Hom.S 0;S/ such that the squares

BS
B˛
! BS 0

B˛0
! BS

jLj^p

�
#

f
! jL0j^p

� 0
#

f 0
! jLj^p

�
#

commute up to homotopy, where f 0 is any homotopy inverse to f . The composites
˛0 ı˛ and ˛ ı˛0 are F –conjugate to IdS and IdS 0 by Theorem 6.3(a) again, and thus
˛ is an isomorphism.

By yet another application of Theorem 6.3(a), for any P;Q� S ,

HomF .P;Q/D
˚
' 2 Inj.P;Q/

ˇ̌
� jBQ ıB' ' � jBP

	
:

From this, and the corresponding result for HomF 0.˛.P /; ˛.Q//, we see that ˛ induces
an isomorphism of categories from F to F 0 .

Upon replacing S 0 and F 0 by S and F , we can now assume that L and L0 are
two linking systems associated to F , for which there is a homotopy equivalence
jLj^p

f
���! jL0j^p such that f ı � ' � 0 . Then LŠ L0 (as linking systems associated to

F ) by Lemma 7.3.
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8 Fusion and linking systems of infinite groups

We now want to find some general conditions on an infinite group G which guarantee
that we can associate to G a p–local compact group .S;FS .G/;Lc

S
.G// such that

jLc
S
.G/j^p ' BG^p . This will be done in as much generality as possible. For example,

we prove the saturation of the fusion system FS .G/ in sufficient generality so that the
result also applies to the case where G is a compact Lie group.

At the end of the section, to show that the theory we have built up does contain some
interesting examples, we show that it applies in particular to all linear torsion groups in
characteristic different from p .

We say that a group G “has Sylow p–subgroups” if there is a discrete p–toral subgroup
S �G which contains all discrete p–toral subgroups of G up to conjugacy. For any
such G , we let Sylp.G/ be the set of such maximal discrete p–toral subgroups.

Lemma 8.1 Fix a group G , a normal discrete p–toral subgroup Q C G , and a
subgroup K � G such that G DQK . Assume that K has Sylow p–subgroups. Then
G has Sylow p–subgroups, and

Sylp.G/D fQS jS 2 Sylp.K/g:

Proof Let Syl0p.G/ D fQS jS 2 Sylp.K/g. All subgroups in Syl0p.G/ are G–
conjugate since all subgroups in Sylp.K/ are K–conjugate. If P �G is an arbitrary
discrete p–toral subgroup, then QP is also discrete p–toral (since Q and QP=Q are
discrete p–toral), and

QP DQK\QP DQ � .K\QP /:

Thus P �QP �QS 2 Syl0p.G/ for any S 2 Sylp.K/ which contains K\QP . This
shows that G has Sylow p–subgroups, and that they are precisely the subgroups in
Syl0p.G/.

We first establish some general conditions on an infinite group G with Sylow p–
subgroups, which imply that FS .G/ is a saturated fusion system for S 2 Sylp.G/.
The following technical lemma will be needed when doing this.

Lemma 8.2 Fix a group G , and normal subgroups N;Q C G , with the following
properties:

(a) Q is a discrete p–toral group.

(b) G=QN is a finite group.
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(c) For each H � G such that H � N and H=N is finite, H has Sylow p–
subgroups.

(d) Each coset gN 2G=N contains at least one element of finite order.

Then G has Sylow p–subgroups. If P � G is any discrete p–toral subgroup, then
P 2 Sylp.G/ if and only if P �Q, P \N 2 Sylp.N / and PN=QN 2 Sylp.G=QN /.

Proof Fix any G0 �G such that G0 �QN and G0=QN 2 Sylp.G=QN /. For every
discrete p–toral subgroup P �G , PQN=QN is conjugate to a subgroup of G0=QN ,
hence P is G –conjugate to a subgroup of G0 . Hence G has Sylow p–subgroups if G0

does, and in that case, Sylp.G
0/ is the set of subgroups of G0 which are in Sylp.G/.

It thus suffices to prove the lemma when G DG0 ; ie when G=QN is a finite p–group;
and we assume this from now on.

Step 1 Assume first that Q D 1, and thus that jG=N j is a finite p–group. Then
G has Sylow p–subgroups by (c). Throughout this step, we fix some S 2 Sylp.G/.
We first prove that NS D G (hence NS=N 2 Sylp.G=N /) and S \N 2 Sylp.N /.
Afterwards, we prove the converse: P \N 2 Sylp.N / and NP D G imply P is
G –conjugate to S , and hence P 2 Sylp.G/.

If NS ˆ G , then NS=N ˆ G=N , where the latter is a finite p–group. Since every
proper subgroup of a p–group is contained in a proper normal subgroup, there is a
proper normal subgroup bN C G which contains NS . By (d), there is an element
g 2 GX bN of finite order. Write jgj D mpk where p − m, and set g0 D gm . Then
g0 2 GX bN since bN has p–power index, and jg0j D pk . This means that hg0i is a
finite p–subgroup of G which is not conjugate to a subgroup of S , which contradicts
the assumption that S 2 Sylp.G/. Thus NS DG .

For all S 0 2Sylp.N /, there are elements x 2G and y 2N such that xS 0x�1�S\N

and y.S\N /y�1 �S 0 . Thus .yx/S 0.yx/�1 �S 0 , and this must be an equality since
S 0 is artinian. It follows that S \N D xS 0x�1 2 Sylp.N /.

Now let P � G be any subgroup such that P \N 2 Sylp.N / and PN D G . Fix
x 2 G such that xPx�1 � S . Then .xPx�1/N D xPN x�1 D G , xPx�1 \N D

x.P \N /x�1 � S \N , and this last must be an equality since P \N 2 Sylp.N /. It
follows that

jG=N j D jxPx�1
�N=N j D jxPx�1=.xPx�1

\N /j

� jS=.S \N /j D jSN=N j � jG=N j;

So these are all equalities, and P D x�1Sx 2 Sylp.G/.
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Step 2 Now consider the general case. By assumption, G=N is an extension of the
discrete p–toral group QN=N by the finite p–group G=QN , and hence is discrete
p–toral. So by Lemma 1.9, there is a finite p–subgroup G0=N � G=N such that
.G0=N /�.QN=N /DG=N , and thus QG0DG (since G0 �N ). Then G0 has Sylow
p–subgroups by (c). Hence G has Sylow p–subgroups by Lemma 8.1. Also, by Step
1 applied to the pair N CG0 (recall G0=N is a p–group),

P 2 Sylp.G0/ ” P \N 2 Sylp.N / and PN DG0:

Let P �G be any discrete p–toral subgroup which contains Q, and set P0DP \G0 .
In general, for any A;B �G and C CG with C �A, C �.A\B/DA\CB . Thus

QP0 DQ �.P \G0/D P \QG0 D P \G D P

P0N D .P \G0/ �N D PN \G0 .
(20)

Also, by Lemma 8.1 again, Sylp.G/D fQS jS 2 Sylp.G0/g. Hence

P 2 Sylp.G/ ” P0 D P \G0 2 Sylp.G0/

” P0\N 2 Sylp.N / and P0N DG0(Step 1)

” P \N 2 Sylp.N / and PN DG ;

where the last equivalence holds by (20) and since P0\N DP\.G0\N /DP\N .

Let G be any group which has Sylow p–subgroups. For any S 2 Sylp.G/, we let
FS .G/ be the fusion system over S with objects the subgroups of S and morphisms

HomFS .G/.P;Q/D HomG.P;Q/ :

Proposition 8.3 Let G be a group for which the following conditions hold:
(a) For each discrete p–toral subgroup P �G , each element of AutG.P / is conju-

gation by some x 2NG.P / of finite order.
(b) For each discrete p–toral subgroup P �G , and each finite subgroup H=CG.P /

in NG.P /=CG.P /, H has Sylow p–subgroups.
(c) For each increasing sequence P1�P2�P3� � � � of discrete p–toral subgroups

of G , there is some k such that CG.Pn/D CG.Pk/ for all n� k .

Then for each S 2 Sylp.G/, FS .G/ is a saturated fusion system. Furthermore, the
following hold for each subgroup P � S .

CG.P / has Sylow p–subgroups, and P is fully centralized in FS .G/

if and only if CS .P / 2 Sylp.CG.P //:
(21)

NG.P / has Sylow p–subgroups, and P is fully normalized in FS .G/

if and only if NS .P / 2 Sylp.NG.P //:
(22)
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Proof Note first that G has Sylow p–subgroups by (b), applied with P D 1.

Fix S 2 Sylp.G/, and let P �S be any subgroup. By (a), AutG.P / is a torsion group,
so OutG.P / is a torsion group, and hence is finite by Proposition 1.5(b). We first claim
that

(23) P �CG.P /� � �NG.P / H) � has Sylow p–subgroups,

and that if we set S0 D S \� , then

(24) S0 2 Sylp.�/ ” CS .P / 2 Sylp.CG.P // and

S0 �CG.P /

P �CG.P /
2 Sylp.�=P �CG.P //:

Points (23) and (24) follow from Lemma 8.2, applied with N D CG.P / and QD P .
Conditions (c) and (d) of Lemma 8.2 follow from conditions (b) and (a) above. Note
that �=QN is finite since OutG.P /ŠNG.P /=QN is finite.

We next prove (21) and (22). For all P � S , (23) (applied with � DNG.P /) implies
that there is Q 2 Sylp.NG.P // such that NS .P / � Q � NG.P /. Choose g 2 G

such that gQg�1 � S ; then gQg�1 is a Sylow p–subgroup of gNG.P /g
�1 D

NG.gPg�1/. Since gQg�1�S , gQg�1DS\NG.gPg�1/DNS .gPg�1/. Hence
NS .gPg�1/ is a Sylow p–subgroup of NG.gPg�1/. If P is fully normalized, then
jNS .P /j � jNS .gPg�1/j D jQj. Since NS .P / �Q, this implies that NS .P /DQ

is in Sylp.NG.P //.

Conversely, suppose that NS .P /2Sylp.NG.P //. Choose g2G such that gPg�1�S ,
and gPg�1 is fully normalized in FS .G/. Then NS .gPg�1/ 2 Sylp.NG.gPg�1//,
so NS .P /ŠNS .gPg�1/ since NG.P /ŠNG.gPg�1/, and P is also fully normal-
ized.

This proves (22). The proof of (21) (the condition for P to be fully centralized) is
similar, except that CG.P / has Sylow p–subgroups by (b).

We now prove that FS .G/ is saturated.

(I) Assume that P � S is fully normalized in FS .G/. We have already seen that
OutG.P / is finite (since it is a torsion group by (a)). Also, NS .P / 2 Sylp.NG.P //

by (22). So by (24), applied with � DNG.P /, CS .P / 2 Sylp.CG.P // (hence P is
fully centralized by (21)), and OutS .P / 2 Sylp.OutG.P //.

(II) Let P �S be an arbitrary subgroup, and let g 2G be such that P 0
def
DgPg�1�S

is fully centralized. Set � DNS .P
0/ �CG.P

0/, and define

N D
˚
x 2NS .P /

ˇ̌
cg ı cx ı c�1

g 2 AutS .P 0/
	
D
˚
x 2NS .P /

ˇ̌
gxg�1

2 �
	
:
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Then CS .P
0/2Sylp.CG.P

0// by (21), and so by (24), NS .P
0/ is a Sylow p–subgroup

of � DNS .P
0/ �CG.P

0/ (S0 �CG.P /D � in the notation of (24)). Since gNg�1 is
a discrete p–toral subgroup of � , it is � –conjugate to a subgroup of NS .P

0/. Thus
there are elements x 2NS .P

0/ and y 2CG.P
0/ such that .xyg/N.xyg/�1�NS .P

0/.
Therefore .yg/N.yg/�1 �NS .P

0/� S , and cyg 2 HomG.N;S/ is an extension of
cg 2 HomG.P;S/.

(III) Let P1 � P2 � P3 � � � � be a sequence of subgroups of S , and let P1
denote

S1
nD1 Pn . Assume ' 2 Hom.P1;S/ is a monomorphism such that for each

n 'jPn
2HomG.Pn;S/. Fix elements gn 2G for each n, such that '.x/D gnxg�1

n ,
for x 2 Pn . Then for all 1� k < n, g�1

n gk 2 CG.Pk/.

By (c), there is a k such that CG.Pk/D CG.Pn/D CG.P1/ for all n� k . Hence for
all n� k and all x 2Pn , '.x/Dgnxg�1

n Dgkxg�1
k

. Thus 'Dcgk
2HomG.P1;S/.

In general, for any group G , we define a p–centric subgroup of G to be a discrete
p–toral subgroup P �G such that Z.P / is the unique Sylow p–subgroup of CG.P /

(ie every discrete p–toral subgroup of CG.P / is contained in Z.P /). Equivalently,
P is p–centric if and only if CG.P /=Z.P / has no elements of order p .

Proposition 8.4 Let G be any group which has Sylow p–subgroups, and fix a group
S 2 Sylp.G/. Then a subgroup P �S is FS .G/–centric if and only if P is p–centric
in G .

Proof Assume P is p–centric in G ; ie that Z.P / 2 Sylp.CG.P //. For every g 2G

such that gPg�1 � S , CS .gPg�1/ is a discrete p–toral subgroup of CG.gPg�1/D

gCG.P /g
�1 , and Z.gPg�1/DgZ.P /g�1 is a Sylow p–subgroup (hence the unique

one) of gCG.P /g
�1 . It follows that Z.gPg�1/D CS .gPg�1/ for all such g , and

so P is FS .G/–centric.

Conversely, suppose that P � S is FS .G/–centric. Let Q be any discrete p–toral
subgroup of CG.P /. Then QP is a discrete p–toral subgroup, and hence there
exists an element g 2 G such that g.QP /g�1 � S . Therefore gPg�1 � S , and
gQg�1 � S \CG.gPg�1/D CS .gPg�1/. Since P is FS .G/–centric, this shows
that gQg�1 �Z.gPg�1/, and thus that Q �Z.P /. In other words, every discrete
p–toral subgroup of CG.P / is contained in Z.P /, and so P is p–centric in G .

We now restrict attention to locally finite groups. For any such group G , for the
purposes of this section, we define Op.G/ C G be the subgroup generated by all
elements of order prime to p . This clearly generalizes the usual definition of Op.G/

for finite G (although it is not the only generalization).
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Proposition 8.5 If G is locally finite, then a discrete p–toral subgroup P � G is p–
centric if and only if CG.P /DZ.P /�Op.CG.P // and all elements of Op.CG.P //

have order prime to p .

Proof By the above definition, a discrete p–toral subgroup P �G is p–centric if and
only if CG.P /=Z.P / has no elements of order p . So if P is not p–centric, then either
Op.CG.P // has p–torsion, or CG.P / is not generated by Z.P / and Op.CG.P //.

Conversely, assume that P is p–centric, and thus that CG.P /=Z.P / has no p–torsion.
Consider the universal coefficient exact sequence:

0 ���! Ext
�
H1.CG.P /=Z.P //;Z.P /

�
����!H 2.CG.P /=Z.P /IZ.P //

����! Hom
�
H2.CG.P /=Z.P //;Z.P /

�
���! 0

By assumption, all elements of CG.P /=Z.P / have order prime to p , all elements of
Z.P / have p–power order, and both groups are locally finite. Hence for i D 1; 2,
Hi.CG.P /=Z.P // is a direct limit of finite abelian groups of order prime to p , and
thus a torsion group all of whose elements have order prime to p . This shows that all
terms in the above sequence vanish. Hence the following central extension splits:

1 ��!Z.P / ����! CG.P / ����! CG.P /=Z.P / ��! 1:

So CG.P /ŠZ.P /� .CG.P /=Z.P //, and all elements of the group Op.CG.P //Š

CG.P /=Z.P / have order prime to p .

When working with fusion systems over discrete p–toral groups and their orbit cate-
gories, we are able to reduce certain problems to ones involving finite categories using
the functor .�/� constructed in Section 3. This is not a functor on the orbit category
of a group, and so we need a different way to make such reductions. For any group
G with Sylow p–subgroups, we let XD X.G/ denote the set of all subgroups of G

which are intersections of (nonempty) subsets of Sylp.G/. Since discrete p–toral
groups are artinian, it makes no difference whether we require finite intersections or
allow infinite intersections.

Lemma 8.6 Let G be a group such that for each discrete p–toral subgroup P �G ,
NG.P / has Sylow p–subgroups. Assume that for every increasing sequence

P.1/ � P.2/ � P.3/ � � � �

of discrete p–toral subgroups of G the union of the P.i/ is again a discrete p–toral
group, and that there is some k such that CG.P.n//D CG.P.k// for all n� k . Then
the set X.G/ contains finitely many G –conjugacy classes.
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Proof For each discrete p–toral subgroup P � G , we let Pı � P denote the
intersection of all Sylow p–subgroups of G which contain P . We first prove

(25)
For each discrete p–toral subgroup P �G, there is a finite subgroup
P 0 � P such that P 0ı D Pı:

To see this, set pn D exp.�0.S// for S 2 Sylp.G/. The discrete p–torus S0 is the
union of an increasing sequence of finite p–subgroups, and since centralizers stabilize
by assumption, there is a finite subgroup Q � P0 such that CG.Q/D CG.P0/. Set
Q0 D fx 2 P0 jx

pn

2Qg: also a finite p–subgroup. By Lemma 1.9, there is a finite
subgroup P 0 � P such that P 0 �Q0 and P 0P0 D P .

Fix S 2 Sylp.G/ which contains P 0 . Then S0 � Q (since S � Q0 ), and hence
S0 � CG.Q/D CG.P0/. Since S0 is a maximal discrete p–torus in G and S0 �P0 is
also a discrete p–torus, this implies that S0 � P0 . Hence S � P 0P0 D P . Since this
holds for all S 2 Sylp.G/ which contains P 0 , we have shown that P 0ıDPı ; and this
finishes the proof of (25).

Let xX.G/ be the set of G–conjugacy classes of subgroups in X.G/. We let .P /
denote the conjugacy class of the subgroup P , and make xX.G/ into a poset by setting
.P / � .Q/ if P � xQx�1 for some x 2 G . Let P � xX.G/ be the set of all classes
.P / which are contained in infinitely many other classes. We claim that P D∅. Since
xX.G/ contains a smallest element which is contained in all the others (the class of
the intersection of all Sylow p–subgroups of G ), P D∅ implies that xX.G/ is finite,
which is what we want to prove.

Assume otherwise: assume P ¤∅. We claim that P has a maximal element. For any
totally ordered subset P0 of P , upon restricting to those subgroups of maximal rank,
we obtain a sequence of subgroups P.1/ � P.2/ � P.3/ � � � � whose conjugacy classes
are cofinal in P0 . If this sequence is finite, then P0 clearly has a maximal element.
Otherwise, set P.1/ D

S1
iD1 P.i/ , and let P 0 � P.1/ be a finite subgroup such that

P 0ı D P.1/ (apply (1)). Then P 0 � P.k/ for some k , and so .P.k//D .P.1// is a
maximal element in P0 .

Thus by Zorn’s lemma, P contains a maximal element .Q/, and clearly Q … Sylp.G/.
Since NG.Q/ has Sylow p–subgroups, there is some S 2 Sylp.G/ such that every
p–toral subgroup of G containing Q with index p is G –conjugate to a subgroup of
NS .Q/; and hence by Lemma 1.4, there are finitely many G–conjugacy classes of
such subgroups. Hence since .Q/ is contained in infinitely many classes in xX.G/,
the same holds for .Q0/ for some Q0 � G such that Q C Q0 with index p . Then
.Q0ı/ 2 P , which contradicts the maximality assumption about Q. So P contains no
maximal element, hence must be empty, and so X.G/ has finitely many G –conjugacy
classes.
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Now, for any discrete group G which has Sylow p–subgroups, let Lc
p.G/ be the

category whose objects are the p–centric subgroups of G , and where

MorLc
p.G/.P;Q/DNG.P;Q/=O

p.CG.P //:

For any S 2 Sylp.G/, let Lc
S
.G/� Lc

p.G/ be the equivalent full subcategory whose
objects are the subgroups of S which are p–centric in G .

It will be convenient, throughout the rest of this section, to use the term “p–group” to
mean any group each of whose elements has p–power order. It is not hard to show
that if G is locally finite, and has Sylow p–subgroups in the sense described above,
then every p–subgroup of G is a discrete p–toral subgroup. Hence there is no loss of
generality to assume this in the following theorem.

Theorem 8.7 Let G be any group which satisfies the following conditions:

(a) G is locally finite.

(b) Each p–subgroup of G is a discrete p–toral group.

(c) For any increasing sequence A.1/ � A.2/ � A.3/ � � � � of finite abelian p–
subgroups of G , there is some k such that CG.A.n//D CG.A.k// for all n� k .

Then G has a unique conjugacy class Sylp.G/ of maximal discrete p–toral subgroups.
For any S 2 Sylp.G/, .S;FS .G/;Lc

S
.G// is a p–local compact group, with classify-

ing space jLc
S
.G/j^p ' BG^p .

Proof We first apply Proposition 8.3 to show that FS .G/ is a saturated fusion sys-
tem over S . Once this has been checked, then it easily follows that Lc

S
.G/ is a

centric linking system associated to FS .G/: condition (A) in Definition 4.1 holds by
Proposition 8.5 and Proposition 8.4, and conditions (B) and (C) are immediate. It then
will remain only to show that jLc

S
.G/j^p ' BG^p .

By [23, Theorem 3.4], conditions (a) and (c) above imply that all maximal p–subgroups
of G are conjugate, and hence (by (b)) that G has Sylow p–subgroups. Since these
three conditions are carried over to subgroups of G , this also shows that each subgroup
of G has Sylow p–subgroups. This proves condition (b) in Proposition 8.3, and
condition (a) holds since G is locally finite.

It remains to prove condition (c) in Proposition 8.3, which we state here as:

(d) For any increasing sequence P.1/ � P.2/ � P.3/ � � � � of discrete p–toral
subgroups of G , there is some k such that CG.P.n//D CG.P.k// for all n� k .
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To see this, fix any such sequence, and let P.1/ be its union. Let AD .P.1//0 be the
identity component, and set A.i/ DA\P.i/ for all i . Let r be such that P.i/ surjects
onto �0.P.1// for all i � r ; equivalently, P.i/ �ADP.1/ for all i � r . For each i , let
A0i �A.i/ be the finite subgroup of elements of order at most pi . Then AD

S1
iD1 A0i ;

and so by (c) there is r such that CG.A/D CG.A
0
r /. Hence CG.A.i//D CG.A.r//

for all i � r (since A0r � A.r/ � A.i/ � A). We can assume that r is chosen large
enough so that P.r/ surjects onto P.1/=A; ie such that P.r/ �AD P.1/ . Then for all
i � r , P.i/ DA.i/ �P.r/ ,

CG.P.i//D CG.A.i//\CG.P.r//D CG.A.r//\CG.P.r//D CG.P.r//;

and this finishes the proof of (d).

We have now shown that the hypotheses of Proposition 8.3 hold, and thus that FS .G/

is a saturated fusion system over S . We have already seen that Lc
S
.G/ is a linking

system associated to FS .G/, and it remains only to show that jLc
S
.G/j^p ' BG^p .

As in Section 5, for any discrete group G , we let Op.G/ be the category whose objects
are the discrete p–toral subgroups P �G and where

MorOp.G/.P;Q/DQnNG.P;Q/ŠMapG.G=P;G=Q/:

Let OX.G/�Op.G/ be the full subcategory with object set XD X.G/: the set of all
intersections of subgroups in Sylp.G/. For each discrete p–toral subgroup P � G ,
we let Pı 2 X denote the intersection of all subgroups in Sylp.G/ which contain P .
Clearly, for any P and Q, NG.P;Q/ � NG.P

ı;Qı/, and so this defines a functor
.�/ı from Op.G/ to OX.G/. Since NG.P

ı;Q/DNG.P;Q/ when Q 2 X.G/, the
two functors

(26) OX.G/
incl

�������!
 �������
.�/ı

Op.G/

are adjoint.

Step 1 Let I and ˆ be the following functors from Op.G/ to (G -)spaces:

I.P /DG=P and ˆ.P /DEG �G I.P /ŠEG=P:

Then for any full subcategory C �Op.G/,

hocolim
�����!

C
.I/D

� 1a
nD0

a
G=P0!���!G=Pn

G=P0 ��
n
�.
�

is the nerve of the category whose objects are the cosets gP for all P 2Ob.C/, and with
a unique morphism gP ! hQ exactly when gPg�1 � hQh�1 . When C DOX.G/,
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this category has as initial object the intersection of all Sylow p–subgroups of G , and
hence hocolim

�����!OX.G/
.I/ is contractible. Since the Borel construction commutes with

homotopy colimits in this situation (being itself a special case of a homotopy colimit),

(27) hocolim
�����!
OX.G/

.ˆ/ŠEG �G

�
hocolim
�����!
OX.G/

.I/
�
' BG:

Step 2 Fix some Q 2X which is not p–centric. For each i � 0, consider the functor
F ŒQ�i W Op.G/

op ! Ab, defined by setting

F ŒQ�i .P /D

(
H i.BP I Fp/ if P is G–conjugate to Q

0 otherwise.

The subgroup CG.Q/ �Q=Q Š CG.Q/=Z.Q/ of AutOp.G/.Q/ D N.Q/=Q acts
trivially on F ŒQ�i .Q/, and contains an element of order p since Q is not p–centric.
Hence by Lemma 5.10 and Lemma 5.12,

lim
 �
�

OX.G/

.F ŒQ�i /Š lim
 �
�

Op.G/

.F ŒQ�i /Šƒ�
�
NG.Q/=QIF

ŒQ�
i .P /

�
D 0 for all i ;

where the first isomorphism follows from the adjoint functors (26).

Step 3 Now let Oc
X.G/�OX.G/ be the full subcategory with objects the p–centric

subgroups which lie in X. Let P1;P2; : : : ;Pm � S be representatives for those G–
conjugacy classes in X.G/ which are not p–centric (a finite set by Lemma 8.6). We
assume these are ordered such that jPi j � jPiC1j for each i .

For each i � 0, consider the functor Fi W Op.G/
op ! Ab, defined by setting

Fi.P /DH i.BP I Fp/ for all P . For all k D 0; : : : ;m, define functors

Fi;k W OX.G/
op

! Ab where Fi;k.P /D

(
0 if P�GPj , some j � k

Fi.P / otherwise.

Here, “�G ” means “G –conjugate”, and these are all defined to be quotient functors of
Fi jOX.G/ . In particular, Fi;0 D Fi jOX.G/ and Fi;m D Fi jOc

X.G/
. Also, for all k ,

Ker
�
Fi;k ���� Fi;kC1

�
Š F

ŒPk �
i jOX.G/;

and the higher limits of this last functor vanish by Step 2. So there are isomorphisms

lim
 �
�

OX.G/

.Fi/D lim
 �
�

OX.G/

.Fi;0/Š lim
 �
�

OX.G/

.Fi;1/Š � � � Š lim
 �
�

OX.G/

.Fi;m/Š lim
 �
�

Oc
X.G/

.Fi/

whose composite is induced by restriction from OX.G/ to Oc
X.G/.
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The spectral sequence for the cohomology of a homotopy colimit now implies that
the inclusion of Oc

X.G/ into OX.G/ induces a mod p homology isomorphism of
homotopy colimits of ˆ, and hence a homotopy equivalence

(28)
�
hocolim
�����!
Oc

X.G/

.ˆ/
�
^
p

'
������!

�
hocolim
�����!
OX.G/

.ˆ/
�
^
p :

Also, the adjoint functors in (26) restrict to adjoint functors between Oc
X.G/ and

Oc
p.G/, and hence induce a homotopy equivalence

(29)
�
hocolim
�����!
Oc

X.G/

.ˆ/
�
^
p '

�
hocolim
�����!
Oc

p.G/

.ˆ/
�
^
p :

Step 4 Let T c
p .G/ be the centric transporter category for G : the category whose

objects are the p–centric subgroups of G , and where the set of morphisms from P to
Q is the transporter NG.P;Q/. By exactly the same argument as in [6, Lemma 1.2],

(30) hocolim
�����!
Oc

p.G/

.ˆ/' jT c
p .G/j:

The canonical projection functor T c
p .G/ ! Lc

p.G/ satisfies all of the hypotheses of
the functor in [6, Lemma 1.3], except that we only know that

K.P /
def
D Ker

�
AutT c

p .G/.P / ��� AutLc
p.G/.P /

�
DOp.CG.P //

is a locally finite group all of whose elements have order prime to p (not necessarily a
finite group). But this suffices to ensure that coinvariants preserve exact sequences of
Z.p/ŒKP �–modules, which is the only way this property of KP is used in the proof of
[6, Lemma 1.3]. Hence the induced map

jT c
p .G/j ������! jLc

p.G/j:

is a mod p homology equivalence. Together with (27), (28), (29), and (30), this shows
that

jLc
S .G/j

^
p ' jLc

p.G/j
^
p ' jT c

p .G/j
^
p ' BG^p :

We now finish the section by exhibiting a more concrete class of groups which satisfy the
hypotheses of Theorem 8.7. A linear torsion group is a torsion subgroup of GLn.k/,
for any positive integer n and any (commutative) field k . These are also referred
to as “periodic linear groups”, since their elements are all periodic transformations
(automorphisms of finite order) of a finite dimensional vector space.

The following facts about linear torsion groups are the starting point of our work here.
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Proposition 8.8 The following hold for every field k , and every linear torsion group
G �GLn.k/.

(a) G is locally finite.

(b) For p ¤ char.k/, every p–subgroup of G is a discrete p–toral group.

Proof Point (a) is a theorem of Schur, and is shown in Wehrfritz [29, Corollary 4.9]. By
[29, 2.6], every locally finite p–subgroup of GLn.k/ is artinian (when p ¤ char.k/),
and hence is discrete p–toral by Proposition 1.2.

In order to apply Theorem 8.7, it remains only to check that centralizers of discrete
p–toral subgroups of linear torsion groups stabilize in the sense of Theorem 8.7.

Proposition 8.9 Let A1 �A2 �A3 � : : : be an increasing sequence of finite abelian
p–subgroups of a linear torsion group G �GLn.k/, where char.k/¤ p . Then there
is r such that CG.Ai/D CG.Ar / for all i � r .

Proof Upon replacing k by its algebraic closure if necessary, we can assume that k

is algebraically closed. Hence any representation over k of a finite abelian p–group A

splits as a sum of 1–dimensional irreducible representations. Moreover, if A�GLn.k/,
and kn D U1˚ � � �˚Um is the unique decomposition with the property that each Ui

is a sum of irreducible modules with the same character and different Ui correspond
to different characters of A, then

(di D dim.Ui/) CGLn.k/.A/Š

mY
iD1

Autk.Ui/Š

mY
iD1

GLdi
.k/:

From this observation, it is clear that for any increasing sequence of such subgroups Ai ,
the centralizers CGLn.k/.Ai/ stabilize for i sufficiently large, and hence the stabilizers
CG.Ai/ also stabilize.

Proposition 8.8 and Proposition 8.9 show that linear torsion groups satisfy all of the
hypotheses of Theorem 8.7. So as an immediate consequence, we get:

Theorem 8.10 Fix a linear torsion group G , a prime p not equal to the defining charac-
teristic of G , and a Sylow subgroup S 2 Sylp.G/. Then the triple .S;FS .G/;Lc

S
.G//

is a p–local compact group, with classifying space jLc
S
.G/j^p ' BG^p .
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9 Compact Lie groups

Throughout this section, we fix a compact Lie group G and a prime p . Our main result
is to show that G defines a p–local compact group whose classifying space has the
homotopy type of BG^p .

A compact Lie group P is called p–toral if its identity component is a torus and if
its group of components is a p–group. The closure xP of a discrete p–toral subgroup
P �G is a p–toral group, since SP0 is abelian and connected, hence a torus, and has
p–power index in xP . We will generally denote p–toral groups (including tori) by P ,
Q, T , etc., to distinguish them from discrete p–toral groups P , Q, T , etc. Our first
task is to identify the maximal (discrete) p–toral subgroups of G .

Definition 9.1 (a) For any p–toral group P, Sylp.P/ denotes the set of discrete
p–toral subgroups P � P such that P �P0 D P and P contains all p–power
torsion in P0 .

(b) A discrete p–toral subgroup P �G is snugly embedded if P 2 Sylp. xP /.

(c) Sylp.G/ denotes the set of all p–toral subgroups S�G such that the identity
component S0 is a maximal torus of G and S=S0 2 Sylp.N.S0/=S0/.

(d) Sylp.G/ denotes the set of all discrete p–toral subgroups P � G such that
xP 2 Sylp.G/ and P 2 Sylp. xP /.

For any discrete p–toral subgroup P �G , SP0 is a torus, as noted above, and has finite
index in xP . Hence SP0 D . xP /0 , and �0. xP /Š P=P0 . So P is snugly embedded in G

if and only if P0 is snugly embedded, and this holds exactly when rk.P /D rk. xP /. As
an example of a subgroup which is not snugly embedded, one can construct a rank one
subgroup P Š Z=p1 which is densely embedded in a torus .S1/r for r > 1.

Clearly, when rk.P / < rk. xP /, we cannot expect BP^p and B xP^p to have the same
homotopy type. But we do get a homotopy equivalence when P is snugly embedded.

Proposition 9.2 If P �G is snugly embedded, then the inclusion of P in xP induces
a homotopy equivalence BP^p ' B xP^p .

Proof This means showing that the inclusion of BP into B xP induces an isomorphism
on mod p cohomology. See, for example, Feshbach [13, Proposition 2.3].

The following proposition is well known. It says that Sylp.G/ is the set of maximal
p–toral subgroups of G , that Sylp.G/ is the set of maximal discrete p–toral subgroups
of G , and that each of these sets contains exactly one G–conjugacy class. Note in
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particular the case where GDP is p–toral: there is a unique conjugacy class of discrete
p–toral subgroups snugly embedded in P, and every discrete p–toral subgroup of P
is contained in a snugly embedded subgroup.

Proposition 9.3 The following hold for any compact Lie group G and any p–toral
group P.

(a) Any two subgroups in Sylp.G/ are G–conjugate, and each p–toral subgroup
P�G is contained in some subgroup S 2 Sylp.G/.

(b) Any two subgroups in Sylp.G/ are G–conjugate, and each discrete p–toral
subgroup P �G is contained in some subgroup S 2 Sylp.G/.

Proof (a) The subgroups in Sylp.G/ are clearly all conjugate to each other, since
all maximal tori in G are conjugate. For any S 2 Sylp.G/ with identity component the
maximal torus TD S0 , �.G=N.T//D 1 (see Bredon [4, Proposition 0.6.3]), and hence
�.G=S/ is prime to p . If Q is an arbitrary p–toral subgroup of G , then �..G=S/Q/
is congruent mod p to �.G=S/, so .G=S/Q ¤∅, and hence Q � gSg�1 2 Sylp.G/
for some g 2G .

(b) Assume first that G D P is p–toral. Set T D P0 , and let T � T be the subgroup
of elements of p–power torsion. By definition, Sylp.P/ is the set of all subgroups
P � T such that P=T is the image of a splitting of the extension

(31) 1 ��! T=T ���! P=T ���! P=T ��! 1:

The cohomology groups H i.P=TIT=T / vanish for all i > 0, since P=T is a p–group
and T=T is uniquely p–divisible. Hence the extension (31) is split, and any two
splittings are conjugate by an element of T=T . Thus Sylp.P/¤∅, and its elements
are conjugate to each other by elements of T .

Now let Q� P be an arbitrary discrete p–toral subgroup. Then QT is also a discrete
p–toral subgroup (since T CP), and QT=T is the image of a splitting of the extension
of T=T by QT=T . We have seen that any two such splittings are conjugate by elements
of T=T , and hence they all extend to splittings of the extension by P=T . In other
words, there is a subgroup P 2 Sylp.P/ which contains QT , and hence contains Q.

Now let G be an arbitrary compact Lie group. For any S;S 0 2 Sylp.G/, xS is G–
conjugate to SS 0 by (a), so xS D gS 0g�1 for some g 2G , and S;gS 0g�1 2 Sylp. xS/.
We have just shown that all subgroups in Sylp. xS/ are conjugate, and hence S and S 0

are conjugate. If P �G is an arbitrary discrete p–toral subgroup, then its closure xP
is a p–toral subgroup, and hence contained in some maximal subgroup S 2 Sylp.G/
by (a) again. So there is some S 2 Sylp.S/� Sylp.G/ which contains P .
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We next need some information about the outer automorphisms of (discrete) p–toral
subgroups of G .

Lemma 9.4 The following hold for all discrete p–toral subgroups P;Q�G .

(a) If P �Q, then Out xQ.P / is a finite p–group, and Out xQ.P /D OutQ.P / if Q

is snugly embedded in G . In particular, Out xQ.Q/D 1 if Q is snugly embedded
in G .

(b) OutG.P / and OutG. xP / are both finite.

(c) If Q is snugly embedded, then the natural map

RepG.P;Q/
Š

������! RepG.
xP ; xQ/

is a bijection.

Proof (a) Choose Q0 � xQ such that SQ0 D xQ and Q0 is snugly embedded. Then
OutQ0.P / is a finite p–group by Proposition 1.5(c). The first statement thus follows
from the second.

Now assume Q is snugly embedded. We must show that Out xQ.P /D OutQ.P /; or
equivalently that Aut xQ.P /D AutQ.P /. Fix x 2N xQ.P /, and set jP j D pk .

Let xQ=Q be the set of left cosets gQ for g 2 xQ, and let . xQ=Q/P be the fixed point set
of the left P –action. Then for g 2 xQ, gQ 2 . xQ=Q/P if and only if g�1Pg �Q. In
particular, xQ 2 . xQ=Q/P since x normalizes P and P �Q. Since xQ=QD xQ0=Q0

and the latter group is uniquely p–divisible (since Q is snugly embedded), there is
y 2 xQ0 such that ypk

2 xQ and yQ 2 . xQ=Q/P .

Set by D Y
a2P

.aya�1/D ypk

�

Y
a2P

..y�1ay/ �a�1/ 2 ypk

QD xQ;

where the inclusion holds since P �Q and y�1Py �Q. Then by 2 C xQ.P /. Since x

was arbitrary, this proves that N xQ.P /D C xQ.P / �NQ.P /, and finishes the proof that
Aut xQ.P /DAutQ.P /. In the case P DQ, this shows that Out xQ.Q/DOutQ.Q/D 1.

(b) The kernel of the homomorphism

(32) OutG.P / ������! OutG. xP /

is Out xP .P /. By (a), this is always finite, and is trivial if P is snugly embedded. If P

is snugly embedded, ie if P 2 Sylp. xP /, then NG. xP /D xP �NG.P / (any subgroup of
xP which is G –conjugate to P is also xP –conjugate to P ), and hence the map in (32)
is also surjective. Thus in this case, OutG.P /Š OutG. xP /ŠNG. xP /= xP �CG. xP / is a
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compact Lie group, all torsion subgroups of which are finite by Proposition 1.5. Thus
OutG. xP / is finite (since otherwise it would contain S1 ). If P is an arbitrary discrete
p–toral subgroup of G , then the kernel and the image of the map in (32) are finite, and
hence OutG.P / is also finite in this case.

(c) Assume P;Q�S , where Q is snugly embedded. We must show that the map from
RepG.P;Q/ to RepG.

xP ; xQ/ which sends a homomorphism to its unique continuous
extension is a bijection. For any ' 2HomG. xP ; xQ/, '.P / is xQ–conjugate to a subgroup
of Q 2 Sylp. xQ/, and hence ' is xQ–conjugate to a homomorphism which sends P

into Q. This proves surjectivity. To prove injectivity, fix '1; '2 2HomG.P;Q/ which
induce the same class in RepG.

xP ; xQ/, and set PiD Im.'i/. Then '2D�ı'1 for some
�2 Iso xQ.P1;P2/. We must show that �2 IsoQ.P1;P2/, and it suffices to do this when
� 2 Iso xQ0

.P1;P2/. In this case, P1Q0 D P2Q0 , so � extends to x� 2Aut xQ0
.P1Q0/.

Also, P1Q0 is snugly embedded since Q is, so Out xQ0
.P1Q0/D 1 by (b), and hence

� is conjugation by an element of xQ0\P1Q0 DQ0 .

The fusion system of a compact Lie group is defined exactly as in Section 8. For any
S 2 Sylp.G/, FS .G/ is the fusion system over S where for P;Q� S ,

MorFS .G/.P;Q/D HomG.P;Q/ŠNG.P;Q/=CG.P /

is the set of homomorphisms from P to Q induced by conjugation by elements of G .
Here, as usual,

NG.P;Q/D fx 2G jxPx�1
�Qg

denotes the transporter set.

Lemma 9.5 For each maximal discrete p–toral subgroup S 2 Sylp.G/, FS .G/ is a
saturated fusion system over S . Also, a subgroup P � S is fully centralized in FS .G/

if and only if CS .P / 2 Sylp.CG.P //.

Proof We must show that conditions (a), (b), and (c) of Proposition 8.3 all hold.
For each discrete p–toral subgroup P � G , OutG.P / is finite by Lemma 9.4(b),
so AutG.P / Š NG.P /=CG.P / is a torsion group. Hence for each g 2 NG.P /,
hgi �CG.P / is a finite extension of CG.P /, thus a closed subgroup, and so the coset
gCG.P / contains elements of finite order. Also, for each finite subgroup H=CG.P /

in NG.P /=CG.P /, H is a closed subgroup of G , and hence has Sylow p–subgroups
in the sense of Section 8. If P1 � P2 � P3 � � � � is an increasing sequence of discrete
p–toral subgroups of G , then the centralizers CG.Pi/ form a decreasing sequence of
closed subgroups of G , and hence is constant for i sufficiently large.
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Thus Proposition 8.3 applies: for any S 2 Sylp.G/, FS .G/ is a saturated fusion
system over S , and a subgroup P � S is fully centralized in FS .G/ if and only if
CS .P / 2 Sylp.CG.P //.

Recall from Section 8 that a discrete p–toral subgroup P � G is called p–centric
in G if Z.P / 2 Sylp.CG.P //. By analogy with this definition, a p–toral subgroup
P � G is called p–centric if Z.P/ 2 Sylp.CG.P//. We next note some conditions
which characterize p–toral and discrete p–toral subgroups of G which are p–centric.

Lemma 9.6 The following hold for any discrete p–toral subgroup P �G .

(a) If xP is p–centric in G , then NG. xP /= xP is finite, and CG. xP /=Z. xP / is finite of
order prime to p .

(b) If P is p–centric in G , then xP is p–centric in G .

(c) If xP is p–centric in G and P is snugly embedded, then P is p–centric in G .

Proof (a) Assume P is p–centric in G , and consider the groups

CG.P/=Z.P/Š P �CG.P/=P and OutG.P/ŠNG.P/=.P �CG.P//:

The first group is finite of order prime to p since Z.P/ is a maximal p–toral subgroup
of CG.P/ which is also central. The second group is finite by Lemma 9.4(b). Hence
NG.P/=P is also finite.

(b) If P is p–centric in G , then Z.P / �Z. xP / is a maximal p–toral subgroup in
CG.P /D CG. xP /, and hence xP is also p–centric in G .

(c) Assume P 2 Sylp.P/. If x 2Z.P/ has p–power order, then since Œx;P0�D 1,
the only elements of p–power order in xP0 are those in xP0 . Since some element
of xP0 lies in P and has p–power order, this shows that x 2 P , and hence that
x 2 Z.P /. In other words, Z.P / 2 Sylp.Z.P//. So if P is p–centric in G , then
Z.P / is a maximal discrete p–toral subgroup of CG.P /D CG.P/, and hence P is
also p–centric in G .

We want to apply Proposition 4.6, to construct a centric linking system Lc
S
.G/ as-

sociated to FS .G/, and to show that jLc
S
.G/j^p ' BG^p . This means constructing

a rigidification of the homotopy functor BW P 7! BP , which by Proposition 5.9 is
equivalent to constructing a rigidification of the homotopy functor B^p W P 7!BP^p . This
last is closely related to the homotopy decomposition of BG constructed in [19; 20].

For any S2 Sylp.G/, we let OS.G/ denote the category whose objects are the p–toral
subgroups of S, and where

MorOS.G/.P;Q/D QnNG.P;Q/:
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Define BW OS.G/ ���! Top by setting

B.P/DEG=P and B.P
Qx
���! Q/D .EG=P

�x�1

���!EG=Q/:

Let ˆ W hocolim
�����!
OS.G/

.B/ ������!EG=G D BG

be the map induced by the obvious surjections from B.P/DEG=P onto BGDEG=G .

Lemma 9.7 Fix a maximal p–toral subgroup S 2 Sylp.G/. Let Oc
S.G/ � OS.G/

be the full subcategory whose objects are those p–toral subgroups of S which are
p–centric in G , and let

Bc W Oc
S.G/ �����! Top and ˆc W hocolim

�����!
Oc

S .G/

.Bc/ �����! BG

be the restrictions of B and ˆ , respectively. Then ˆc is a mod p homology equiva-
lence.

Proof Define

X D
˚
P� S p–toral

ˇ̌
jNG.P/=Pj<1; Op.NG.P/=P/D 1 or P is p–centric

	
:

Let OX
S .G/�OS.G/ be the full subcategory with object set X , and let

BX W OX
S .G/ �����! Top and ˆX W hocolim

�����!
OX

S .G/

.BX / �����! BG

be the restrictions of B and ˆ .

By [19, Theorem 1.4], ˆX is a mod p homology equivalence. So to prove the
proposition, we must show that the inclusion of hocolim

�����!
.Bc/ in hocolim

�����!
.BX / is a

mod p homology equivalence. Set F D H�.BX .�/I Fp/, regarded as a functor on
OX

S .G/
op . Let F0 � F be the subfunctor defined by setting F0.P/ D 0 if P is p–

centric in G and F0.P/D F.P/ otherwise. We claim that lim
 �
�.F0/D 0. Assuming

this, we see that

lim
 �
�

OX
S .G/

.H�.BX .�/I Fp//Š lim
 �
�

OX
S .G/

.F=F0/Š lim
 �
�

Oc
S .G/

.H�.Bc.�/I Fp//;

where the last step follows since there are no morphisms from any object of the
subcategory to any object not in the subcategory. This shows that the spectral sequences
for the cohomology of hocolim

�����!
.BX / and hocolim

�����!
.Bc/ have isomorphic E2 –terms,

and hence that the inclusion is a mod p homology equivalence.
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It remains to prove that lim
 �
�.F0/D 0. By [19, Proposition 1.6], X0 contains finitely

many G –conjugacy classes. Hence by [20, Proposition 5.4] and an appropriate finite
filtration of F0 , it suffices to show that ƒ�.NG.P/=PIH�.BPI Fp// vanishes for each
p–toral subgroup P in OX

S .G/ which is not p–centric. For each such P, CG.P/ �
P=P Š CG.P/=Z.P/ is a finite group of order a multiple of p which acts trivially
on H�.EG=PI Fp/ Š H�.BPI Fp/, and hence ƒ�.NG.P/=PIH�.BPI Fp// D 0 by
[20, Proposition 5.5].

We are now ready to construct a rigidification of the homotopy functor B^p .

Proposition 9.8 Fix a maximal discrete p–toral subgroup S 2 Sylp.G/, and set
F D FS .G/ for short. Let Fcs � Fc be the full subcategory of subgroups P � S

which are p–centric in G and snugly embedded, and let Ocs.F/�Oc.F/ be its orbit
category. Then there is a functor

yBW Ocs.F/ �����! Top

which is a rigidification of the homotopy functor B^p , and a homotopy equivalence

b̂W �hocolim
�����!
Ocs.F/

. yB/
�
^
p ������! BG^p :

Proof Set S D xS 2 Sylp.G/. We will construct orbit categories and functors as
indicated in the diagram

Ocs.F/
cl //

Bcs

##GGGGGGGGGGGGGG
xOc

S.G/

xBc

��

Oc
S.G/

proooo

Bc

{{wwwwwwwwwwwwww

Top

together with mod p homology equivalences:

hocolim
�����!

.Bcs/
cl� //

ˆcs

&&MMMMMMMMMMMMMMMMM
hocolim
�����!

.xBc/
�

'
//

xˆc

��

hocolim
�����!

.Bc/

ĉ

xxqqqqqqqqqqqqqqqq

BG

We then set yB D .Bcs/
^
p .
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The category Oc
S.G/, together with Bc and ˆc , were already constructed in Lemma 9.7.

We construct Oc
S.G/, Bc , and Ŝc in Step 1 (and prove the properties we need); and

then do the same for Ocs.F/, Bcs , and ˆcs in Step 2.

Step 1 Define xOc
S.G/ by setting

Ob. xOc
S.G//D Ob.Oc

S.G//D
˚
P� S

ˇ̌
P p–toral and p–centric in G

	
and Mor xOc

S .G/
.P;Q/D QnNG.P;Q/=CG.P/Š RepG.P;Q/:

Let xBc be the left homotopy Kan extension of Bc along the projection functor. Let
Ŝ

c be the composite of ˆc with the standard homotopy equivalence

�W hocolim
�����!
xOc

S .G/

.xBc/
'

�����! hocolim
�����!
Oc

S .G/

.Bc/

of [17, Proposition 5.5]. Thus Ŝc is a mod p homology equivalence by Lemma 9.7,
and it remains only to show that xBc is a rigidification of B^p (after p–completion).

This means showing that the natural morphism of functors

Bc �����! xBc ı pr

(natural up to homotopy) is a mod p homology equivalence on all objects. By definition,
for each P ,

xBc.P/D hocolim
�����!

pr#P
.Bc ı �/:

Here, pr#P is the overcategory whose objects are the morphisms Q ˛
! P in xOc

S.G/,
and where a morphism from .Q; ˛/ to .R; ˇ/ is a morphism ' 2MorOc

S .G/
.Q;R/ such

that ˛ D ˇ ı pr.'/. Also, � is the forgetful functor from pr#P to Oc
S.G/.

Consider the spectral sequence

(33) E
i;j
2
Š lim
 �

i

pr#P

�
H j .Bc ı �.�/I Fp/

�
H) H iCj .xBc.P/I Fp/ :

For each Q in Oc
S.G/, set

K.Q/D Ker
�
AutOc

S .G/
.Q/

prP
���! Aut xOc

S .G/
.Q/

�
Š CG.Q/=Z.Q/:

This is a finite group of order prime to p , and it acts trivially on H�.EG=Q/. Since
K.Q/ acts trivially on the homology

H�.Bc ı �.Q; ˛/I Fp/DH�.EG=QI Fp/
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for each object .Q; ˛/, this functor factors through the overcategory Id#P. The
projection of pr#P onto Id#P satisfies the hypotheses of [6, Lemma 1.3] (in particular,
the target category is obtained from the source by dividing out by these automorphism
groups K.Q/ of order prime to p ), and hence

lim
 �

i

pr#P

�
H�.Bc ı �.�/I Fp/

�
Š lim
 �

i

Id#P

�
H�.Bc ı �.�/I Fp/

�
Š

(
H�.Bc.P/I Fp/ if i D 0

0 if i > 0.

Here, the last isomorphism holds since Id#P has final object .P; Id/. The spec-
tral sequence (33) thus collapses, and so H�.xBc.P/I Fp/ŠH�.Bc.P/I Fp/ (and the
isomorphism is induced by the natural inclusion of Bc.P/ into xBc.P/).

Step 2 The “closure functor”

Ocs.F/ cl
������! xOc

S.G/

is defined to send P to xP . It induces a bijection between isomorphism classes of
objects by definition of Fcs and Lemma 9.6(b,c), and induces bijections on morphism
sets by Lemma 9.4(c). So this is an equivalence of categories.

Set Bcs D xBc ı cl. Since xBc is (after p–completion) a rigidification of the homotopy
functor P 7! BP^p by Step 1, and since BP^p ' B xP^p when P is snugly embedded
(Proposition 9.2), Bcs is a rigidification of the homotopy functor B^p W P 7!BP^p (again,
up to p–completion).

Now let ˆcs be the composite of Ŝc with the map

hocolim
�����!
Ocs.F/

.Bcs/
cl�
�����! hocolim

�����!
xOc

S .G/

.xBc/

induced by cl. Then hocolim
�����!

.xBc/ ' hocolim
�����!

.Bcs/ since cl is an equivalence of
categories, and thus ˆcs is a mod p homology equivalence since Ŝc is by Step 1.

Now set yB D .Bcs/
^
p and let

b̂W �hocolim
�����!
Ocs.F/

. yB/
�
^
p '

�
hocolim
�����!
Ocs.F/

.Bcs/
�
^
p

.ˆcs/
^
p

��������! BG^p

be the completion of ˆcs . Then yB is a rigidification of the homotopy functor B^p (see
Proposition 9.2), and b̂ is a homotopy equivalence.

We also need the following result about snugly embedded subgroups:

Lemma 9.9 For each discrete p–toral subgroup P �G , P� is snugly embedded.
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Proof Fix S 2 Sylp.G/, and set T D S0 and pm D exp.S=T /. By Definition 3.1,
P�DP �I.Q/, where QDP Œm�D hgpm

jg 2P i �P0 , and I.Q/D T CW .Q/ . Then
I.Q/ contains all elements of p–power order in I.Q/D ST CW .Q/ , and hence is snugly
embedded. Since ŒP� W I.Q/� is finite, P� is also snugly embedded.

We are now ready to prove the main result.

Theorem 9.10 Fix a compact Lie group G and a maximal discrete p–toral subgroup
S 2 Sylp.G/. Then there exists a centric linking system Lc

S
.G/ associated to FS .G/

such that .S;FS .G/;LS .G// is a p–local compact group with classifying space
jLS .G/j

^
p ' BG^p .

Proof Set F D FS .G/ for short; a saturated fusion system by Lemma 9.5. Let
Fcs � Fc be the full subcategory with objects the set of all P � S which are p–
centric and snugly embedded in G , and let Ocs.F/ be its orbit category. By Lemma 9.9,
Fcs � Fc� .

By Proposition 9.8, there is a functor

yBW Ocs.F/ �����! Top

which is a rigidification of the homotopy functor B^p and a homotopy equivalence

b̂W �hocolim
�����!
Ocs.F/

. yB/
�
^
p ������! BG^p :

By Proposition 5.9, there is a functor zBW Ocs.F/ ���! Top which is a rigidification of
the homotopy functor B, and a natural transformation of functors �W zB ���! yB such
that �.P / is homotopic to the completion map for each P . By Proposition 4.6, there
is a centric linking system Lcs

S
.G/ associated to Fcs whose nerve has the homotopy

type of hocolim
�����!

. zB/, and thus

jLcs
S .G/j

^
p '

�
hocolim
�����!
Ocs.F/

. zB/
�
^
p '

�
hocolim
�����!
Ocs.F/

. yB/
�
^
p ' BG^p :

Define Fc ‰
���! Fcs by setting ‰.P / D P � . xP0/.p/ , where . xP0/.p/ denotes the

subgroup of elements of p–power order in the torus xP0 . By Lemma 9.4(c), for each
P 2 Ob.Fc/ and Q 2 Ob.Fcs/,

RepG.P;Q/Š RepG.
xP ; xQ/Š RepG.‰.P /;Q/;

and thus ‰ is left adjoint to the inclusion. Also, for each P , CG.‰.P //D CG. xP /D

CG.P /, and hence Z.‰.P //DZ.P /. So if we define Lc
S
.G/ to be the pullback of
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Lcs
S
.G/ and Fc over Fcs , then it is a centric linking system, and jLc

S
.G/j ' jLcs

S
.G/j.

(Compare this argument with the proof of Proposition 4.5(b).)

The above construction of the linking system of G has the disadvantage that it seems
rather arbitrary. We know, by Theorem 7.4, that there is (up to isomorphism) at most
one linking system Lc

S
.G/ such that jLc

S
.G/j^p ' BG^p , but we would really like to

have a more obvious algebraic connection between Lc
S
.G/ and the group G itself. We

end this section by showing that Lc
S
.G/ can, in fact, be obtained as a subquotient of

the transporter category of G —although not in a completely canonical way.

Fix a compact Lie group G , and choose S 2 Sylp.G/. The transporter category T c
S
.G/

of G over S is the category whose objects are the subgroups of S that are p–centric
in G , and where MorT c

S
.G/.P;Q/DNG.P;Q/, for each pair of objects P and Q of

T c
S
.G/. Let CG W Oc.F/op ���!Ab be the functor which sends P to its centralizer.

For any subfunctor ˆ� CG , T c
S
.G/=ˆ denotes the quotient category with the same

objects as T c
S
.G/, and where

MorT c
S
.G/=ˆ.P;Q/DMorT c

S
.G/.P;Q/=ˆ.P /DNG.P;Q/=ˆ.P /:

For example, in this notation, Fc
S
.G/D T c

S
.G/=CG .

For each P 2 Ob.Fc/, there is a central extension

1 ���!Z.P / �����! CG.P / �����! CG.P /=Z.P / ���! 1;

where Z.P / is abelian and p–toral and CG.P /=Z.P / is finite of order prime to p

(by definition of p–centric). Hence the set of elements of CG.P / of finite order prime
to p forms a subgroup, which we denote here �p0.P /. Also, Z.P / and �p0.P / are
both normal subgroups of CG.P /, and the quotient group CG.P /=.Z.P /� �p0.P //

is a Q–vector space. As earlier, we write Z.P / D Z.P /, and regard Z , �p0 , and
Z � �p0 as subfunctors of CG .

Lemma 9.11 The extension

T c
S .G/=.Z � �p0/

pr
������! Fc

is split, by a splitting which sends OutP .P / to P=Z.P / for each object P ; and such a
splitting is unique up to natural isomorphism of functors.

Proof For all P;Q 2 Ob.Fc/, choose maps

�P;QW HomF .P;Q/ ���!NG.P;Q/
ı�

Z.P /� �p0.P /
�
DMorT c

S
.G/=.Z��p0 /.P;Q/

which split the natural projection. This can be done in such a way that for each
' 2 HomF .P;Q/ and each g 2 Q, �P;Q.cg ı '/ D Œg� ı �P;Q.'/ (define it first on
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orbit representatives for the action of Inn.Q/ and then extend it appropriately). Also,
when QD P , we let �P;P .IdP / be the class of 1 2NG.P /.

The “deviation” of f�P;Qg from being a functor is a 2–cocycle with values in the
functor CG=.Z��p0/, and the assumption that they commute with the Inn.Q/–actions
implies that we get a cocycle over the orbit category Oc.F/. If, furthermore, this
cocycle is a coboundary, then the �P;Q can be replaced by maps � 0

P;Q
which define a

splitting functor. The obstruction to the existence of such a splitting thus lies in

lim
 �

2

Oc.F/
.CG=.Z � �p0//:

In a similar (but simpler) way, the obstruction to uniqueness is seen to lie in

lim
 �

1

Oc.F/
.CG=.Z � �p0//:

We will show that both of these groups vanish, using Lemma 5.7 (and an argument
similar to that used to prove Proposition 5.8). Let F be the functor CG=.Z � �p0/. As
in the proof of Proposition 5.8, set T D S0 , Q D CS .T /, and � D OutF .Q/. Set
M D ST =.torsion/, regarded as a QŒ��–module. Let

ˆW Op.�/
op
�����! Z.p/–mod

be the functor ˆ.…/DM… for all p–subgroups …�� . Then F.P /Šˆ.OutP .Q//
(functorially) for all P � S containing Q, and OutQ.P / acts trivially on F.P / Š

Z.P /=.torsion/ for each P . The hypotheses of Lemma 5.7 thus hold, and so

lim
 �

i

Oc.F/
.F /Š lim

 �
i

Op.�/

.ˆ/

for all i . Since ˆ is a Mackey functor, by [18, Proposition 5.14] these groups vanish
for all i � 1.

We are now ready to construct a more explicit linking system Lc
S
.G/, and prove it is

isomorphic to the one already constructed in Theorem 9.10.

Proposition 9.12 Let G be a compact Lie group, and choose S 2 Sylp.G/. Fix
a splitting s of T c

S
.G/=.Z � �p0/

pr
���! Fc , and define Lc

S
.G/ to be the pullback

category in the following pullback diagram:

Lc
S .G/

xs
! T c

S .G/=�p0

Fc
S .G/

�
#

s
! T c

S .G/=.Z � �p0/

pr
#
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Then Lc
S
.G/ is a centric linking system associated to Fc

S
.G/, and is isomorphic to the

centric linking system of Theorem 9.10. In particular, the map Lc
S
.G/

xs
���! T c

S
.G/=�p0

describes the linking system Lc
S
.G/ as a subquotient of the transporter category.

Proof We will first show that the pullback category Lc
S
.G/ is a centric linking system

associated to FS .G/. Since s and pr are the identity on objects, we can as well assume
that the pullback category Lc

S
.G/ has the same objects, and that xs and � are the

identity on objects. Then for any pair of objects P;Q� S p–centric in G , we have

MorLc
S
.G/.P;Q/D˚
.';  /

ˇ̌
' 2MorFc

S
.G/.P;Q/,  2MorT c

S
.G/=�p0

.P;Q/, and �.'/D pr. /
	

Now, for each P � S which is p–centric in G , we have P � NG.P /=�p0.P / and
then we can define distinguished homomorphisms

ıP W P �����! AutLc
S
.G/.P /

by setting ıP .g/D .cg;g/. Conditions (A), (B), and (C) in the definition of a centric
linking system are easily checked.

Next we will find a map jLc
S
.G/j ��! BG^p that commutes with the respective natural

maps from BS . To do this, we first lift Lc
S
.G/ to a subcategory zLc

S
.G/ of the

transporter category T c
S
.G/, defined via the pullback square:

zLc
S .G/

incl
! T c

S .G/

Lc
S .G/

#
xs
! T c

S .G/=�p0

#

We will then construct the maps in the following commutative diagram:

BS

wwoooooooooooo

�� &&MMMMMMMMMMM

jLc
S .G/j

^
p j zLc

S .G/j
^
p'

oo // BG^p

We proceed in two steps.

(a) A map j zLc
S
.G/j ��! jLc

S
.G/j commuting with the respective natural maps from

BS is induced by the functor zLc
S
.G/ ��! Lc

S
.G/. We will show that it is a mod p

homology equivalence.
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By definition of zLc
S
.G/, for all P;Q� S centric, we have that �0p.P / acts freely on

Mor zLc
S
.G/.P;Q/ and the orbit set if MorLc

S
.G/.P;Q/. In particular,

�0p.P /D Ker
h

Aut zLc
S
.G/.P / ����! AutLc

S
.G/.P /

i
:

Recall that �p0.P / is the subgroup of elements of CG.P / of finite order prime to p .
It sits in an extension �p0.P /0 �! �p0.P / �! C 0

G
.P /, where �p0.P /0 is the set of

elements of the maximal torus of Z.P / of finite order prime to p and C 0
G
.P / D

CG.P /=Z.P /. Therefore �p0.P / is locally finite and can be written as a unionS
m�0 �p0.P /

m of finite groups of order prime to p . A generalized version of
[6, Lemma 1.3] now applies to the constant functor defined on Lc

S
.G/ and the result

follows.

In fact, [6, Lemma 1.3] generalizes to allow that the kernels K.�/ be countable
increasing unions of finite groups of order prime to p . Proving this requires showing,
for any such K , that H0.KI �/ is an exact functor on the category of Z.p/ŒK�–modules.
But if K is the union of a sequence of subgroups K1 � K2 � � � � each of which is
finite, then H0.Ki I �/ is exact for each i , H0.KIM /Š colim

���!i
H0.Ki IM / for each

M , and hence H0.KI �/ is exact since direct limits of this type are exact.

(b) A map jLc
S
.G/j ��! BG that commutes up to homotopy with the respective

maps from BS is defined by composing the inclusion zLc
S
.G/

incl
���! T c

S
.G/ with the

functor T c
S
.G/ ��! B.G/. Here, B.G/ is the topological category with one object

and the Lie group G as morphisms (and all other categories are discrete), and the
functor sends the morphism g 2NG.P;Q/ to g 2G for all objects P;Q of T c

S
.G/.

The nerve of B.G/ is the topological bar construction BG ' BG , and the composite
functor induces a map j zLc

S
.G/j ���! jB.G/j ' BG .

Finally, Theorem 9.10 defines the centric linking system of G over S and shows that
the p–completed nerve is homotopy equivalent to BG^p . This combines with the map
constructed above, so that Lemma 7.3 implies that the pullback category Lc

S
.G/ is

isomorphic to the centric linking system of Theorem 9.10, and then, also, that the map
j zLc

S
.G/j ���! BG constructed in step (b) is actually a homotopy equivalence after

p–completion.

10 p–compact groups

A p–compact group is a p–complete version of a finite loop space. As defined by
Dwyer and Wilkerson in [11], a p–compact group is a triple .X;BX; e/, where X

is a space such that H�.X I Fp/ is finite, BX is a pointed p–complete space, and
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eW X ��!�.BX / is a homotopy equivalence. If G is a compact Lie group such that
the group of components �0.G/ is a finite p–group, then upon setting BbG DBG^p
and bG D�.BbG/, the triple .bG;BbG; Id/ is a p–compact group. For general references
on p–compact groups, we refer to the original papers by Dwyer and Wilkerson [11]
and [12], and also to the survey article by Jesper Møller [25].

When T Š .S1/r is a torus of rank r , then the p–completion bT D�.BT^p / of T is
called a p–compact torus of rank r . Both BbT 'K..bZp/

r ; 2/ and bT 'K..bZp/
r ; 1/

are Eilenberg–Mac Lane spaces. A p–compact toral group is a p–compact group
. yP ;B yP ; e/ such that �1.B yP / is a p–group, and the identity component of yP is a
p–compact torus with classifying space the universal cover of B yP .

If X is either a discrete p–toral group or a p–compact group, and Y is a p–compact
group, a homomorphism f W X ! Y is by definition a pointed map Bf W BX ! BY .
Two homomorphisms f; f 0W X!Y are conjugate if Bf and Bf 0 are freely homotopic,
ie via a homotopy which need not preserve basepoints. If f W X ! Y is a homomor-
phism, the homotopy fibre of Bf is denoted Y=f .X /, or just Y=X if f is understood
from the context. With this notation, f is called a monomorphism if H�.Y=f .X /I Fp/

is finite. By [11, Proposition 9.11], a homomorphism f is a monomorphism if and
only if H�.BX I Fp/ is a finitely generated H�.BY I Fp/–module via H�.f I Fp/.

If yP is an arbitrary p–compact toral group, a discrete approximation to yP is a
pair .P; f /, where P is a discrete p–toral group and Bf W BP ! B yP induces an
isomorphism in mod p cohomology. By [11, Proposition 6.9], every compact p–toral
group has a discrete approximation. Each discrete p–toral group P is a discrete
approximation of . yP ;B yP ; Id/, where B yP D BP^p and yP D �.B yP /. Hence every
monomorphism f W P ! X from a discrete p–toral group to a p–compact group
factors as P �! yP

yf
��!X : a discrete approximation followed by a monomorphism

of p–compact groups. Lemma 1.10 says, among other things, that any two discrete
approximations of a p–compact toral group are isomorphic.

If f W X ! Y is a homomorphism of p–compact groups, the centralizer of f in Y is
defined to be the triple .CY .X; f /;BCY .X; f /; Id/, where

BCY .X; f /DMap.BX;BY /Bf and CY .X; f /D�.BCY .X; f //:

Whenever f is understood, we simply write CY .X / for CY .X; f /.

A discrete p–toral subgroup of a p–compact group X is a pair .P; f /, where P is a
discrete p–toral group and yP f

��!X is a monomorphism. We write BCX .P; f /D

BCX . yP ; f / D Map.BP;BX /Bf and CX .P; f / D CX . yP ; f / for short. The group
CX .P / is p–compact by [11, Section 5–6], and the homomorphism CX .P / ��!X
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(induced by evaluation at the basepoint of BP ) is a monomorphism. The subgroup
.P; f / is called central if this monomorphism CX .P / ! X is an equivalence.

Proposition 10.1 Let X be any p–compact group.

(a) X has a maximal discrete p–toral subgroup S
f
��!X . If P

u
��!X is any other

discrete p–toral subgroup of X , then Bu'Bf ıB for some  2Hom.P;S/;
and .P;u/ is maximal if and only if p −�.X=u. yP //. Here, Euler characteristics
are taken with respect to homology with coefficients in Fp .

(b) The centralizer CX .P; f / of any discrete p–toral subgroup P
f
��!X is again

a p–compact group, and a subgroup of X . Also, if P D
S1

nD1Pn , then
BCX .P /' BCX .Pn/ for n large enough.

(c) A discrete p–toral subgroup P
f
��!X is central if and only if there is a map

BP �BX ��! BX whose restriction to BP �� is Bf and whose restriction to
� � BX is the identity. When this is the case, then P is abelian, and there
is a fibration sequence BP^p

f
��! BX ��! B.X=P / where B.X=P / is the

classifying space of a p–compact group X=P .

Proof Point (a) follows mostly from [12, Propositions 2.10 & 2.14] together with
Lemma 1.10. If .P;u/ is not maximal, then since u factors through S , �.X=u. yP //D
�.X=f .bS // ��.bS = yP /, and the last factor is a multiple of p .

Point (b) is shown in [11, Proposition 5.1 & Theorem 6.1]. In point (c), a central
subgroup is abelian by [12, Theorem 1.2], while the other two claims are shown in
[11, Lemma 8.6 & Proposition 8.3].

As in other contexts, the maximal discrete p–toral subgroups of a p–compact group
X will be referred to as Sylow p–subgroups of X .

The fusion system of a p–compact group is easily defined: it is just the fusion system
of the space BX , as defined in [7, Definition 7.1].

Definition 10.2 For any p–compact group X with Sylow p–subgroup S
f
�! X ,

let FS;f .X / be the category whose objects are the subgroups of S , and where for
P;Q� S ,

MorFS;f .X /.P;Q/D HomX .P;Q/
def
D
˚
' 2 Hom.P;Q/

ˇ̌
Bf jBQ ıB' ' Bf jBP

	
:
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We next want to show that FS;f .X / is saturated. Before doing this, we need to define
and study normalizers of discrete p–toral subgroups of p–compact groups. We also
need to establish an “adjointness” relation which corresponds to the equivalence (for
groups) between homomorphisms Q �!NG.P / and homomorphisms P ÌQ �!G .

Fix a p–compact group X and a Sylow p–subgroup f W S ���!X . For any subgroup
P � S and any discrete p–toral subgroup K � AutX .P /, set

BN K
X .P /D

�
EK �K BCX .P /

�
^
p ;

where K acts on BCX .P /DMap.BP;BX /B˛ via the action on P . Set N K
X
.P /D

�.BN K
X
.P //. Since the action of K on BP fixes the basepoint, evaluation at the

basepoint of BP defines a map

evW BN K
X .P /D

�
EK �K Map.BP;BX /Bf

�
^
p ������! BX:

If Q is any discrete p–toral group, and x� 2 Hom.Q;K/, then any homomorphism

EQ�Q BP Š B.P Ìx� Q/ ������! BX

is adjoint to a Q–equivariant map

EQ ������! Map.BP;BX /f jBP D BCX .P / ;

where Q acts on BCX .P / via the action on P defined by x� (and via the trivial action
on BX ). After taking the Borel construction, this defines a map

BQ ������! BN K
X .P /D

�
EK �K BCX .P /

�
^
p :

In particular, when Q is the group

N K
S .P /D fg 2NS .P / j cg 2Kg

and B.P ÌN K
S .P // ������! BS

f
������! BX

is induced by the inclusions and f , then this construction is denoted

B
K
P W BN K

S .P / ������! BN K
X .P / :

Lemma 10.3 Fix a p–compact group X , a Sylow p–subgroup S
f
�! X , and sub-

groups P � S and K � AutX .P / where K is discrete p–toral. Then the induced
sequence

(34) BCX .P / �����! BN K
X .P /

�
�����! BK^p

Geometry & Topology, Volume 11 (2007)



p–local homotopy theory of compact Lie groups and p–compact groups 405

is a fibration sequence. If Q is another discrete p–toral group, then for any homomor-
phism �W Q ! N K

X
.P /, there is a fibration sequence

Map.B.P Ìx� Q/;BX /f;� ��! Map.BQ;BN K
X .P //B� ��! Map.BQ;BK^p /Bx� ;

where x� 2Hom.Q;K/ is any homomorphism such that Bx�^p ' � ıB� , P Ìx�Q is the
semidirect product for the action Q

x�
��!K � Aut.P /, and the fiber is the space of all

maps B.P Ìx�Q/ ��! BX which restrict (up to homotopy) to BP
Bf jP
����! BX and are

adjoint to B� in the sense described above.

Proof The action of K on each cohomology group H i.BCX .P /I Fp/ factors through
a finite quotient group of K , thus through the p–group �0.K/, and hence is nilpotent.
So by Bousfield and Kan [3, II.5.1], the usual fibration sequence

BCX .P / �����!EK �K BCX .P / �����! BK

for the Borel construction over BK is still a fibration sequence after p–completion.
Thus (34) is a fibration sequence.

Since ŒBQ;BK^p � Š ŒBQ;BK� Š Rep.Q;K/ (Lemma 1.10), x� 2 Hom.Q;K/ is
uniquely determined up to conjugacy by � .

For any fixed homomorphism x�W Q ! K , (34) induces a fibration sequence

BCX .P /
hQ
�!Map.BQ;BN K

X .P //z� �!Map.BQ;BK^p /Bx�^p ;

where z� denotes the set of connected components of Map.BQ;BN K
X
.P // that map

into Map.BQ;BK^p /Bx�^p ; and (if z�¤∅) BCX .P /
hQ is the homotopy fixed point set

of the action of Q induced by the pullback of (34) over

BQ
Bx�^p'�ıB�
��������! BK^p :

We need to identify this action of Q on BCX .P / with that induced by the action of
Q on P via x� . This follows by comparing the fibrations

BCX .P / ! EK �K BCX .P / ! BK

BCX .P /

wwwww
! BN K

X .P /

#

! BK^p

#

since the action of Q on BCX .P / induced by BQ
Bx�^p
�����! BK^p in the bottom fibra-

tion coincides with that induced by x� in the fibration sequence of the top row. By
construction, the action of K on BCX .P / induced by the top row is just the action of
K on BCX .P /DMap.BP;BX /Bf jP induced by the original action of K on P .
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Now set fP D f jP W P ���!X for short. We can identify

BCX .P /
hQ
D
�
Map.BP;BX /BfP

�hQ
DMapQ.EQ;Map.BP;BX /BfP

/

'MapQ.BP �EQ;BX / zf 'Map.BP �Q EQ;BX / zf

'Map.B.P Ìx� Q/;BX / zf ;

where zf is the set of connected components of maps whose restriction to BP is
homotopic to BfP . Here, BP �Q EQ' B.P Ìx� Q/ because the action of Q in BP

is induced from the action described above of Aut.P / on BP , and this has a fixed
point, providing a section of the fibration

BP �! BP �Aut.P/E Aut.P / �! B Aut.P / :

Finally, upon restricting to one component of Map.BQ;BN K
X
.P //z� , we obtain the

fibration in the statement of the proposition.

Notice that in the particular case where K D 1, Map.BQ;BK/ is contractible, and
the fibration of Lemma 10.3 reduces to the equivalence

Map.BP �BQ;BX /'Map.BQ;Map.BP;BX //:

Proposition 10.4 Let X be a p–compact group, let S
f
��!X be a Sylow p–sub-

group, and set F D FS;f .X / for short. Fix a subgroup P � S , and a discrete p–toral
group of automorphisms K � AutF .P /. Then the following hold.

(a) BN K
X
.P / is the classifying space of a p–compact group which we denote

N K
X
.P /, and

N K
S .P /


K
P
���!N K

X .P /

is a discrete p–toral subgroup. Furthermore, the square

(35)

BN K
S .P /

B
K
P
! BN K

X .P /

BS

B incl
#

f
! BX

ev
#

commutes up to pointed homotopy.

(b) There is ' 2 HomF .P;S/ such that '.P / is fully 'K'�1 –normalized in F .

(c) P is fully K–normalized in F if and only if N K
S
.P / is a Sylow p–subgroup

of N K
X
.P /.

Geometry & Topology, Volume 11 (2007)



p–local homotopy theory of compact Lie groups and p–compact groups 407

Proof (a) By Lemma 10.3, BCX .P / ��! BN K
X
.P / ��! BK^p is a fibration se-

quence. The loop spaces of the fiber and base of this sequence have finite mod p

cohomology, so the same is true of N K
X
.P /

def
D�.BN K

X
.P //. Thus N K

X
.P / is a

p–compact group.

The map BN K
S .P /

B
K
P

����! BN K
X .P /D

�
EK �K Map.BP;BX /Bf jP

�
^
p

is defined to be adjoint to the composite

(36) B
�
P ÌN K

S .P /
� B.incl Ì incl/
���������! BS

f
����! BX:

Hence the composite of B
K
P

with the evaluation map from Map.BP;BX /BfP
to BX

(evaluation at the basepoint of BP) equals the restriction of (36) to BN K
S
.P /. This

proves that (35) is commutative.

If 
K
P

factored through a quotient group N K
S
.P /=R for some R ¤ 1, then the re-

striction of Bf W BS ���! BX to BR would be homotopically trivial, but this cannot
happen. So if S0

f0
���!N K

S
.P / is a maximal discrete p–toral subgroup, then 
K

P

factors through a monomorphism from N K
S
.P / to S0 (Proposition 10.1(a)), and thus


K
P

is itself a monomorphism.

(b,c) By Lemma 10.3, any discrete p–toral subgroup BQ ���! BN K
X
.P / lifts to

a map B.P ÌQ/ ��! BX which factors through a homomorphism P ÌQ
ˇ
��! S .

Set P 0 D ˇ.P Ì 1/� S , ' D ˇjPÌ1 2 IsoF .P;P 0/, and K0 D 'K'�1 � AutX .P 0/.
Then ˇ.Q/�N K 0

S
.P 0/, and ˇj1ÌQ is injective since otherwise BQ ��! BN K

X
.P /

would factor through a quotient group of Q and hence wouldn’t be a subgroup. Thus,
the largest possible K–normalizer N K 0

S
.P 0/ occurs when it is a Sylow p–subgroup

of N K
X
.P /, so P 0 is fully K0–normalized in F , and P is fully K–normalized if and

only if N K
S
.P / is a Sylow p–subgroup of N K

X
.P /.

We are now ready to show that FS;f .X / is saturated.

Proposition 10.5 Let X be a p–compact group, and let S
f
��!X be a Sylow p–

subgroup. Then FS;f .X / is a saturated fusion system over S .

Proof Write F D FS;f .X / for short.

Proof of (I) Fix a subgroup P �S which is fully normalized in F . Let K�AutF .P /
be such that K � AutS .P / and K= Inn.P / 2 Sylp.OutF .P //. Then P is fully K–
normalized, as it is fully normalized and N K

S
.P /DNS .P /. So by Proposition 10.4(c),

N K
S
.P / is a Sylow p–subgroup of N K

X
.P /.
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Set K0 D AutS .P / for short, and consider the following commutative diagram of
connected spaces:

BCS .P /
^
p ! BN K

S .P /^p ! BK0^p

BCX .P /

f1
#

! BN K
X .P /^p

f2#

! BK^p

f3
#

Let Fi be the homotopy fiber of fi (for i D 1; 2; 3). Each row is a fibration sequence
before p–completion; and the actions of K0 on H�.BCS .P /I Fp/ and of K on
H�.BCX .P /I Fp/ factor through finite p–group quotients and hence are nilpotent. So
the rows are still fibration sequences after p–completion by [3, II.5.1].

Each of the maps fi is a monomorphism of p–compact groups, and hence H�.Fi I Fp/

is finite for each i . Since BCX .P / is connected, �1.BN K
X
.P /^p / surjects onto

�1.BK^p /Š�0.K/, and hence �0.F2/ surjects onto �0.F3/. Thus F1 is the homotopy
fiber of the map F2 ���! F3 , and so �.F2/D �.F1/ ��.F3/.

Since N K
S
.P / 2 Sylp.N

K
X
.P //, �.F2/ is prime to p by Proposition 10.1(a). Thus

�.F1/ and �.F3/ are both prime to p , and hence CS .P / 2 Sylp.CX .P // and (since
K is discrete p–toral) K0 D K . Hence OutS .P / D K= Inn.P / 2 Sylp.OutF .P //.
Also, since CS .P / 2 Sylp.CX .P //, we can again apply Proposition 10.4(c) (this time
with K D 1), to show that P is fully centralized in F . This finishes the proof of (I).

Proof of (II) Fix P � S and ' 2HomF .P;S/, and set P 0D '.P /. Assume that P 0

is fully centralized in F . Set

N' D fg 2NS .P / j'cg'
�1
2 AutS .P 0/g;

and set KDAutN' .P /, K0D 'K'�1 �AutS .P 0/, and N 0' DN K 0

S
.P 0/. Then P 0 is

fully K0–normalized in F , since it is fully centralized and K0 � AutS .P 0/. Consider
the following diagram:

(37)

BN'
B
K

P
! BN K

X .P /
proj

! BK^p

BN 0'

Bx'
?

........
B
K 0

P 0
! BN K 0

X .P 0/

' Ec'�.'
�/�1

#
proj

! BK0^p

Š Bc'
#

The composites in the two rows are induced by the epimorphisms N'
!�K and

N 0'
!0�K0 (exactly, not just up to homotopy). By Proposition 10.4(c), N 0' is a Sy-

low p–subgroup of N K 0

X
.P 0/'N K

X
.P /, and hence there exists a homomorphism

x' 2 Hom.N' ;N 0'/ which makes the left hand square commute up to homotopy.
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Since ŒBN' ;BK0^p �Š Rep.N' ;K0/ (Lemma 1.10), the homotopy commutativity of
(37) implies that there is xg 2K0 such that c' ı! D cxg ı!

0
ı x' . Since !0 is onto, there

is g 2N 0' such that !0.g/D xg ; and upon replacing x' by cg ı x' we can assume that
c' ı! D !

0
ı x' .

Fix a homotopy H which makes the left hand square in (37) commute. Then the
composite proj ıH is a loop in Map.BN' ;BK0^p / based at B.!0 ı x'/, and this com-
ponent has the homotopy type of BCK 0.!

0
ı x'.N'//

^
p by Lemma 1.10 again. So after

replacing x' by cg0 ı x' for some appropriate g0 2 N 0' , and after modifying H using
the homotopy from B x' to B.cg0 ı x'/ determined by g0 , we can arrange that proj ıH
is nullhomotopic in Map.BN' ;BK0^p /. We can now apply Lemma 10.3, to show that
the following diagram commutes up to homotopy:

B.P ÌN'/
incl Ì incl

! BS
Bf

! BX

B.P 0 ÌN 0'/

B.'Ìx'/
#

incl Ì incl
! BS

Bf
! BX

wwwwww
In particular, x' 2 HomF .N' ;N

0
'/. Also, the two homomorphisms from P ÌN' to S

induced by inclusions and by ' Ì x' have the same kernel f.g;g�1/ jg 2 Pg, and this
implies that ' D x'jP .

Proof of (III) Fix P D
S1

nD1 Pn , where P1 �P2 � � � � is an increasing sequence of
subgroups. Let '2 Inj.P;S/ be such that 'jPn

2HomF .Pn;S/ for all n. Thus for each
n, .Bf ıB'/jBPn

' Bf jBPn
. Also, Map.BPn;BX /Bf jBPn

'Map.BP;BX /Bf jBP

for n sufficiently large, by Proposition 10.1(b). We can thus choose homotopies Hn

from .Bf ıB'/jBPn
to Bf jBPn

such that Hn DHnC1jBPn�I , and set H D
S

Hn .
This shows that Bf ıB' ' Bf jBP , and hence that ' 2 HomF .P;S/.

In Castellana, Levi and Notbohm [9], a p–compact toral subgroup P of a p–compact
group X is called centric if the inclusion map BP

Bf
��! BX is a centric map; ie if

Map.BP;BP /Id
Bf ı�
�����! Map.BP;BX /Bf is an equivalence. We must check that this

is equivalent to the concept of F –centricity (applied to discrete p–toral subgroups)
used here.

Lemma 10.6 Let X be a p–compact group, and let S
f
���!X be a Sylow p–

subgroup. Set F D FS;f .X /. Then for any subgroup P � S ,

BP^p
Bf jBP
����! BX

is a centric map if and only if P is F –centric.
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Proof Assume P is F –centric. In particular, P is fully centralized in F . By
Proposition 10.4(a,c) (applied with KD 1), CX .P / is a p–compact group with Sylow
p–subgroup CS .P /DZ.P /. Also, composition defines a map

Map.BP;BP /Id
'BZ.P/

�Map.BP;BX /Bf jBP ������! Map.BP;BX /Bf jBP :

So by Proposition 10.1(c), Z.P / is central in CX .P /, and there is a p–compact group
CX .P /=Z.P / whose Euler characteristic is prime to p and a fibration sequence

BZ.P /^p �����! BCX .P / �����! B.CX .P /=Z.P // :

Then CX .P /=Z.P / must be trivial, so B.CX .P /=Z.P //' �,

BZ.P /^p 'Map.BP;BX /Bf jBP ;

and hence Bf jBP is a centric map.

Conversely, if Bf jBP is a centric map, then BCX .P /' BZ.P / by Lemma 1.10, so
CS .P

0/DZ.P 0/ for all P 0 � S which is F –conjugate to P , and P is F –centric.

It remains to construct a linking system associated to FS;f .X / whose p–completed
nerve has the homotopy type of BX . This will be done using Proposition 4.6, together
with a construction by Castellana, Levi and Notbohm [9].

Theorem 10.7 Let X be a p–compact group, and let S
f
��!X be a Sylow p–

subgroup. Set F D FS;f .X /
def
DFS;Bf .BX / for short. Then there is a centric linking

system LD Lc
S;f

.X / associated to F such that

jLc
S;f .X /j

^
p ' BX :

In other words, .S;F ;L/ is a p–local compact group whose classifying space is
homotopy equivalent to BX .

Proof By Proposition 10.5, the fusion system F is saturated.

In [9], the authors define a category Oc.F/C by adding a final object to Oc.F/; ie
the category Oc.F/C consists of Oc.F/ together with an additional object �, and a
unique morphism from each object in Oc.F/ to �. (The actual category they work with
contains the same objects as Oc.F/ by Lemma 10.6.) They then define a homotopy
functor

BCW Oc.F/C ������! hoTop

by setting BC.P /DBP^p for all F –centric P �S , and BC.�/DBX (with the obvious
maps between them). By Lemma 1.10 and Lemma 10.6, this is a centric diagram in
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the sense of [10]. Since Oc.F/ has a final object, the Dwyer–Kan obstructions to
rigidifying BC to a functor to Top all vanish [10] (see also Corollary A.4), and so this
functor can be lifted. In particular, this restricts to a functor yB from Oc.F/ to Top,
together with a map from hocolim

�����!
. yB/ to BX . (See also Corollary A.5.)

By [9, Theorem A], this map from hocolim
�����!

. yB/ to BX induces a homotopy equivalence�
hocolim
�����!

. yB/
�
^
p ' BX

(the collection of F –centric subgroups of X is “subgroup ample”). By Proposition 5.9,
there is then a functor zBW Oc.F/ ���! Top which is a rigidification of the homotopy
functor B, and a natural transformation of functors �W zB ���! yB which is the comple-
tion map on each object. Proposition 4.6 now applies to show that there is a centric
linking system LD Lc

S;f
.X / associated to F such that

jLj^p '
�
hocolim
�����!
Oc.F/

. zB/
�
^
p '

�
hocolim
�����!
Oc.F/

. yB/
�
^
p ' BX^p :

In fact, by Theorem 7.4, there is at most one centric linking system L associated to
FS;f .X / with the property that jLj^p ' BX^p . Thus the system constructed above is
unique.

Appendix A Lifting diagrams in the homotopy category

As elsewhere in the paper, we let Top denote the category of spaces, and hoTop the
homotopy category. Let hoW Top ���! hoTop be the forgetful functor. When C is
a small category, a functor F from C to Top or hoTop is called centric if for each
morphism ' 2MorC.c; d/, the natural map

Map.F.c/;F.c//Id
F.'/ı�
������!
'

Map.F.c/;F.d//F.'/

is a homotopy equivalence. In [10], Dwyer and Kan identify the obstructions to
rigidifying a centric functor F W C ��! hoTop to a functor zF W C ��! Top; and also
describe the space of such rigidifications. We prove here a relative version of their
result which is needed in Section 5. This result can, in fact, be derived from the main
theorem in [10], but that argument is so indirect that we find it helpful to give a more
direct, and also more elementary, proof.

More precisely, a rigidification of F is a functor zF W C ���! Top, together with a
natural transformation of functors F ���! ho ı zF which is a homotopy equivalence on
each object. Two rigidifications zF and zF 0 are equivalent if there is a third rigidification
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zF 00 , together with natural transformations of functors zF ���! zF 00 ��� zF 0 which
commute with the natural transformations from F , and hence which define homotopy
equivalences zF .c/' zF 00.c/' zF 0.c/ for each c 2 Ob.C/. This is easily seen to be an
equivalence relation by taking pushouts.

The main idea here is to construct a rigidification of F W C ���! hoTop by first con-
structing a space which looks like a “homotopy colimit” of F , and then show that this
homotopy colimit automatically induces a rigidification zF . Recall that the nerve of a
small category C is defined by setting

BC D
�a

n�0

a
x0!���!xn

�n
�.
�

and that the homotopy colimit of any functor F W C ��! Top is the space:

hocolim
�����!

C
.F /D

�a
n�0

a
x0!���!xn

F.x0/��
n
�.
�

Here, in both cases, we divide out by the usual face and degeneracy identifications.
Let pF W hocolim

�����!
.F / ��! BC be the projection. It will be convenient to refer to the

“skeleta” of the homotopy colimit: let hocolim
�����!

.n/.F / denote the union of the F.x0/��
i

for all i � n (and all x0! � � � ! xi in C ).

Now assume that F W C ��! hoTop is a functor to the homotopy category instead. We
assume that for each f W x ��! y in C , a concrete map F.f /W F.x/ ��! F.y/ has
been chosen. The 1–skeleton hocolim

�����!
.1/.F / is defined in the same way as before: it is

the union of the mapping cylinders of the F.f / taken over all f 2Mor.C/. It is also
straightforward to define the 2–skeleton; but it is convenient at this stage to replace
�2 by a truncated triangle �2

t . More precisely, for each sequence x0
f
��! x1

g
��! x2 ,

F.x0/��
2
t is attached to hocolim

�����!
.1/.F / via the following picture:




















J
J
J
J
J
J
J
J
J

s s

s sF.g/ ıF.f /F.g ıf /

Id F.f /Id

Id F.f /

where the small segment at the top is mapped using a homotopy between F.g ıf / and
F.g/ ıF.f /.
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The first obstructions arise when constructing the 3–skeleton. For each x0! � � �! x3 ,
we want to attach F.x0/��

3
t to hocolim
�����!

.2/.F /, where �3
t (the “truncated 3–simplex”)

is the cone over �2
t with its vertex cut off. The attachment map is easily defined, except

on the “top” surface resulting from truncating the cone vertex. Hence, the obstruction
to defining the attachment map lies in the group

�1

�
Map.F.x0/;F.x3// ; F.x0! x3/

�
:

At this point, it becomes necessary to switch from the intuitive picture to formal
definitions, by replacing the truncated simplices �n

t by cubes In , and regarding
simplices as cubes modulo certain identifications. This correspondence will be made
explicit later.

Let � be the simplicial category, with objects the sets Œn�D f0; : : : ; ng for n� 0, and
morphisms the order preserving maps between sets. We let @i 2 Mor�.Œn� 1�; Œn�/

denote the i –th face map (with image Œn�Xfig). Define a functor

I�W �������! Top

by setting I�.Œn�/D InC1 (where I is the closed interval I D Œ0; 1�), and

I�.�/.t0; : : : ; tn/D
� Y

i2��1.0/

ti ;
Y

i2��1.1/

ti ; : : : ;
Y

i2��1.m/

ti

�
for � 2Mor�j .Œn�; Œm�/. Here, the product over the empty set is always 1.

Let �1 � �0 � � be the subcategories with the same objects, where

Mor�0
.Œm�; Œn�/D f� 2Mor�.Œm�; Œn�/ j �.0/D 0g

Mor�1
.Œm�; Œn�/D f� 2Mor�.Œm�; Œn�/ j �.0/D 0; �.m/D ng:

For each n� 0, let I�
1
.Œn�/� I�

0
.Œn�/� I�.Œn�/ be the subspaces

I�0 .Œn�/D f.0;x1; : : : ;xn/ 2 I�.Œn�/g Š In

I�1 .Œn�/D f.0;x1; : : : ;xn�1; 0/ 2 I�.Œn�/g Š In�1 :

Then for each j D 0; 1, I�j�j restricts to a subfunctor I�j W �j ���! Top.

Throughout the rest of this section, C denotes a fixed small category. For each n� 0,
define Morn

D Morn.C/ to be the set of all sequences c0 ! c1 ! � � � ! cn of
composable morphisms in C . In particular, Mor0.C/DOb.C/ and Mor1.C/DMor.C/.
For � 2Mor�.Œn�; Œm�/, ��W Morm.C/ ���! Morn.C/ is defined as usual by taking
compositions, inserting identity morphisms, and (if � …Mor.�1/) dropping morphisms
at one or both ends of the chain. For example, @�i (from Morn.C/ to Morn�1.C/) is
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defined by composing two morphisms in the sequence, or by dropping one of them if
i D 0 or n. Also, for each � D .c0! � � � ! cn/ in Morn.C/ and each 0� i � j � n,
we write

�ij D .ci! � � � ! cj / 2Morj�i.C/;

let
ı

�ij 2MorC.ci ; cj / denote the composite of this sequence of maps, and set
ı

� D
ı

�0n .

In order to simplify the notation in what follows, whenever F W C ���! hoTop is
a functor and ' 2 Mor.C/, we let F.'/ denote some chosen representative of the
homotopy class of maps defined by F , not the homotopy class itself.

Definition A.1 Fix a functor F W C ��! hoTop. An Rg1–structure xF on F is a
space xF .c/ and a homotopy equivalence F.c/

�.c/
���! xF .c/, defined for each c 2Ob.C/;

together with maps

xF .�/W In�1
D I�1 .Œn�/ �����! Map

�
xF .c0/; xF .cn/

�
;

defined for each n� 1 and each � D .c0! c1! � � � ! cn/ 2Morn.C/, which satisfy
the following relations.

(a) For all ' 2MorC.c0; c1/, xF .c0

'
��! c1/ ı �.c0/' �.c1/ ıF.'/.

(b) For all m; n� 1, � 2Mor�1
.Œm�; Œn�/, � 2Morn.C/, and t 2 Im�1 ,

xF .���/.t/D xF .�/.I�1 .�/.t//:

(c) For all n� 2, � 2Morn.C/, 1� i � n� 1, t1 2 I i�1 , and t2 2 In�i�1 ,

xF .�/.t1; 0; t2/D xF .�in/.t2/ ı xF .�0i/.t1/:

Schematically, relation (b) can be described via the commutative diagram

Im�1
I�

1
.�/

//

xF .��.�//

&&NNNNNNNNNNNNN In�1

xF .�/

xxqqqqqqqqqqqqq

Map. xF .c0/; xF .cn//

while relation (c) can be described via the following diagram:

I i�1
� In�i�1 t1;t2 7! .t1;0;t2/

! In�1

Map. xF .c0/; xF .ci//�Map. xF .ci/; xF .cn//

xF .�0i /� xF .�in/
#

composition
! Map. xF .c0/; xF .cn//

xF .�/
#
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These relations are more easily understood when one thinks of I�
1
.Œn�/Š In�1 as the

space of all .t0; : : : ; tn/ 2 I�.Œn�/Š InC1 such that t0 D 0D tn . Each coordinate in
I�.Œn�/ corresponds to one of the objects in the chain � D .c0 ! � � � ! cn/. When
ti D 1 for some 0< i < n, ti and ci can be removed, giving the face relation

xF .�/.t1; : : : ; ti�1; 1; tiC1; : : : ; tn�1/D xF .@i�/.t1; : : : ; ti�1; tiC1; : : : ; tn�1/:

When ti D 0 for 0< i < n, then xF .�/.t/ can be split as a composite at the object ci

(relation (c)). If one of the morphisms in � is an identity, then one can remove it and
multiply the coordinates corresponding to its two objects.

For instance, when mD 2 and nD 1 (and � is one of the surjections), condition (b)
says that the following maps are both the constant maps to xF .'/:

xF .c0
Id
��! c0

'
��! c1/ and xF .c0

'
��! c1

Id
��! c1/

In particular, xF .'/ ı xF .Idc0
/D xF .'/D xF .Idc1

/ ı xF .'/.

When nD2, condition (c) says that xF
�
c0

'
�! c1

 
�! c2

�
is a homotopy from xF . /ı xF .'/

to xF . ı'/. More generally, when � 2Morn.C/ for n� 2,

xF .�/.0; : : : ; 0/D xF .�n�1;n/ ı � � � ı xF .�12/ ı xF .�01/ and xF .�/.1; : : : ; 1/D xF .
ı

�/:

At the other vertices of In�1 , we get all of the other possible composites of the xF .
ı

�ij /.
An Rg1–structure on F is thus a collection of higher homotopies connecting given
homotopies F. / ıF.'/' F. ı'/.

From this point of view, one sees that when defining an Rg1–structure on F , it suffices
to define it on all nondegenerate sequences � 2Morn.C/ (ie those containing no identity
morphisms), inductively for increasing n, where at each step xF .�/ has already been
defined on @In�1 and must be extended in some way to In�1 . The starting point
can be any choice of maps xF .'/, for all ' 2 Mor.C/, in the given homotopy class
determined by F.'/, such that

xF .'/ ı xF .Idc/D xF .'/D xF .Idd / ı xF .'/

for each morphism ' 2MorC.c; d/ in C .

If xF and xF 0 are both Rg1–structures on F , then a morphism ‚W xF ���! xF 0 consists
of homotopy equivalences �.c/W xF .c/ '

���! xF 0.c/ (for each c 2 Ob.C/) such that
�.c/ ı �.c/' �0.c/, and such that for each � D .c0! � � � ! cn/ and each t 2 In�1 ,

�.cn/ ı xF .�/.t/D xF 0.�/.t/ ı �.c0/ 2Map. xF .c0; xF
0.cn//:
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Two Rg1–structures on F are equivalent if there is a third to which they both have
morphisms. One easily sees that (homotopy) pushouts exist for morphisms of Rg1–
structures on F , and hence that this defines an equivalence relation among Rg1–
structures.

For any given Rg1–structure xF on F W C ��! hoTop, we define its “homotopy colimit”
Sp. xF / to be the space

(In D I�
0
.Œn�/) Sp. xF /D

�a
n�0

a
c0!���!cn

xF .c0/� In
�.
�

where the identifications below are made for each n� 1, each � D .c0! � � � ! cn/ in
Morn.C/, and each x 2 xF .c0/: �

xI I�0 .�/.t/
�
Œ��
�
�
xI t
�
Œ����

(� 2Mor�0
.Œm�; Œn�/, t 2 Im) �

xI .t1; 0; t2/
�
Œ��
�
�
xF .�0i/.t1/.x/I t2

�
Œ�in�

(1� i � n, t1 2 I i�1, t2 2 In�i)

For example, in the case of a sequence � D .c0

f
�! c1

g
�! c2/ in Mor2.C/, the corre-

sponding square I�
0
.Œ2�/ is attached to the 1–skeleton in the following way:

s s

s sxF .g/ ı xF .f /xF .g ıf /

Id xF .f /Id

Id xF .f /

(1,1) (0,1)

(1,0) (0,0)

xF .�/

xF .c0/�I2
�����!




















J
J
J
J
J
J
J
J
J

s s

s

xF .c0/ xF .c0/�I

xF .c0/�I

xF .c1/

xF .c1/�I

xF .c2/

The labels in the first picture describe the maps by which a vertex xF .c0/ or an edge
xF .c0/�I is attached to the space represented by the second picture. Thus the trapezoid

in the earlier picture has now been replaced by a square.

One way to understand these relations and their connection with those in Definition A.1
is to think of I�

0
.Œn�/ Š In as the subspace of all .nC 1/–tuples .0; t1; : : : ; tn/ in

I�.Œn�/Š InC1 . For � 2Morn.C/, each coordinate in I�.Œn�/ corresponds to one of
the objects in the chain � D .c0! � � � ! cn/. When ti D 1 for 0 < i � n, ti and ci

can be removed, giving the face relation�
xI .t1; : : : ; ti�1; 1; tiC1; : : : ; tn/

�
Œ��
�
�
xI .t1; : : : ; ti�1; tiC1; : : : ; tn/

�
Œ@i��

:

When ti D 0 for 0 < i � n, then � splits as a composite at the object ci , we apply
xF .�0i/.t1; : : : ; ti�1/ to x , and get the second of the above relations. If one of the
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morphisms in � is an identity, then we get a degeneracy relation by removing it and
multiplying the two corresponding coordinates.

Consider the maps �nW I
n ��!�n defined by

�n.t1; : : : ; tn/D
�
t1t2 � � � tn; .1� t1/t2 � � � tn; .1� t2/t3 � � � tn; : : : ; .1� tn�1/tn; 1� tn

�
:

When F is a functor to Top and xF is the corresponding locally constant Rg1–
structure (ie for each � , xF .�/ is the constant map with value F.

ı

�/), then the �n define
a homeomorphism from Sp. xF / to the usual homotopy colimit hocolim

�����!
.F /. More

generally, when xF is an arbitrary Rg1–structure, then there is a map

pr xF W Sp. xF / ������! jCj

defined on each subspace xF .c0/� In by first projecting to the In and then to �n via
�n .

We now define a functor Rg. xF /W C ��! Top by letting Rg. xF /.c/ be the pullback
space

Rg. xF /.c/ ! Sp. xF /

jC#cj

#

! jCj

pr xF
#

(the setwise pullback, not the homotopy pullback). A morphism ' 2 MorC.c; d/
induces a map from jC#cj to jC#d j via composition with ' in the usual way, and
hence induces a map from Rg. xF /.c/ to Rg. xF /.d/. Equivalently,

(In D I�
0
.Œn�/) Rg. xF /.c/D

�a
n�0

a
c0!���!cn!c

xF .c0/� In
�.
�

where the identifications are analogous to those used to define Sp. xF /. This clearly
makes Rg. xF / into a functor from C to Top.

For each c , xF .c/ can be identified as a subspace of Rg. xF /.c/: the inverse image
under the projection to jC#cj of the vertex .c Id

��! c/. The composite

F.c/
�.c/
���!
'

xF .c/�Rg. xF /.c/

defines a natural transformation F ��! ho ıRg. xF / of functors C ��! hoTop. The
following proposition now shows that this is a natural equivalence, and hence that
Rg. xF / is a rigidification of F .

Geometry & Topology, Volume 11 (2007)



418 Carles Broto, Ran Levi and Bob Oliver

Proposition A.2 For any Rg1–structure xF on F W C ��! hoTop, for each c 2Ob.C/,
xF .c/ is a deformation retract of Rg. xF /.c/. Thus Rg. xF / is a rigidification of F .

Proof Define ˆW Rg. xF /.c/� I ���!Rg. xF /.c/ by setting

ˆ
�
.xI t/Œ�!c�; s

�
D .xI .t; s//Œ�!c

Id
��! c�

for all � 2Morn.C/, t 2 In , and s 2 I . Then ˆ.u; 1/D u and ˆ.u; 0/ 2 xF .c/ for all
u 2Rg. xF /.c/ by definition of Rg. xF /.c/. Furthermore, the homotopy is the identity
on xF .c/, and thus xF .c/ is a deformation retract.

For any given F W C ���! hoTop, let Rigid.F / be the set of equivalence classes of
rigidifications of F , and let Rg1.F / be the set of equivalence classes of Rg1–
structures on F . A rigidification of F can be regarded as a “locally constant” Rg1–
structure on F ; ie an Rg1–structure xF where each of the maps xF .�/ (for � 2Morn.C/)
is constant on In�1 . We thus have maps

Rigid.F /
const

�������!
 �������

Rg

Rg1.F /:

One easily checks that for any rigidification zF , there is a natural transformation of
functors from Rg.const. zF // to zF , and hence these are equal in Rigid.F /. We do not
know whether the other composite is the identity on Rg1.F /, but that will not be
needed here.

A natural transformation �W F ���! F 0 of functors F;F 0W C ���! hoTop will be
called relatively centric if for each morphism ' 2 MorC.c; d/ in C , the homotopy
commutative square

Map.F.c/;F.c//Id
F.'/ı�

! Map.F.c/;F.d//F.'/

Map.F.c/;F 0.c//�.c/

�.c/ı�
#

F 0.'/ı�
! Map.F.c/;F 0.d//F 0.'/ı�.c/

�.d/ı�
#

is a homotopy pullback. For example, when F 0 is the functor which sends every object
to a point, then � is relatively centric if and only if the functor F defines a centric
diagram. Assume we are given a relatively centric natural transformation �W F ���! F 0

where F 0 is a functor to Top, and assume furthermore that for each c 2 Ob.C/, the
homotopy fiber

�.c/
def
Dhofiber

�
Map.F.c/;F.c//Id

�.c/ı�
����! Map.F.c/;F 0.c//�.c/

�
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is connected. We claim that this determines functors

(all i � 1) ˇi W Cop
������!Ab

such that ˇi.c/ Š �i.�.c// for all c . To show this, we can assume without loss of
generality that �.c/ is a fibration for all c , and let �.c/ be the space of all maps
f 2 Map.F.c/;F.c// such that �.c/ ı f D �.c/. Then �.c/ is a monoid under
composition, and in particular, �1.�.c// is abelian. For each morphism ' 2MorC.c; d/
in C , we can choose a representative F.'/ such that the following square commutes:

F.c/
F.'/
! F.d/

F 0.c/

�.c/
#

F 0.'/
! F 0.d/

�.d/
#

Since � is relatively centric, the fibers of the map

.�.d/ ı�/W Map.F.c/;F.d//F.'/ ������! Map.F.c/;F 0.d//F 0.'/ı�.c/

have the homotopy type of �.c/ and hence are connected. Hence any two choices
for F.'/ differ by a path in the fiber over the point F 0.'/ ı�.c/; ie by a homotopy
fFt .'/gt2I such that �.d/ ıFt .'/D F 0.'/ ı�.c/ for each t .

For each ' 2MorC.c; d/, consider the following diagram:

Map.F.d/;F.d//Id
�ıF.'/

Dw1

! Map.F.c/;F.d//F.'/  
F.'/ı�

Dw2

Map.F.c/;F.c//Id

Map.F.d/;F 0.d//�.d/

�.d/ı� Du1
#

�ıF.'/
! Map.F.c/;F 0.d//�.d/F.'/

�.d/ı� Du2
#

 
F 0.'/ı�Map.F.c/;F 0.c//�.c/

�.c/ı� Du3
#

where the right hand square commutes by the assumption on F.'/ (and the other since
composition is associative). Set �.c/D u�1

3
.�.c// and ˇi.c/D �i.�.c/; IdF.c// (and

similarly for d ). By assumption, w2 sends �.c/ to u�1
2
.F 0.'/ ı�.c// by a homotopy

equivalence, and we let ˇi.'/ be the composite

�i.�.d/; IdF.d//
Dˇi .d/

w1ı�
�����! �i.u

�1
2 .F 0.'/ ı�.c//;F.'//

.w2ı�/
�1

�������!
Š

�i.�.c/; IdF.c//
Dˇi .c/

:

By the above remarks, this is independent of the choice of map F.'/. Hence this
defines a functor on Cop : the relations ˇi. ı '/ D ˇi. / ı ˇi.'/ follow using any
choice of homotopy from F. ı'/ to F. / ıF.'/ which covers F 0. ı'/. (Recall
that we are assuming F 0 is a functor to Top, so F 0. ı'/D F 0. / ıF 0.'/.)
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The following theorem is our main result giving a relative version of the Dwyer–Kan
obstruction theory. The special case where F 0.c/ is a point for all c 2 Ob.C/ is the
case shown by Dwyer and Kan in [10].

Theorem A.3 Fix functors F W C ���! hoTop and F 0W C ���! Top, and let

�W F ���! ho ıF 0

be a relatively centric natural transformation of functors. For each c 2 Ob.C/, assume
that the homotopy fiber

�.c/D hofiber
�
Map.F.c/;F.c//Id

�.c/ı�
����! Map.F.c/;F 0.c//�.c/

�
is connected. Let ˇi W Cop ���!Ab (all i � 1) be the functors defined above. Then
the obstructions to the existence of a rigidification zF z�

��! F 0 of F
�
��! F 0 lie in the

groups lim
 �

nC2
C .ˇn/ for n� 1; while the obstructions to the uniqueness of . zF ; z�/ up to

equivalence of rigidifications lie in lim
 �

nC1
C .ˇn/ for n� 1.

Proof We use here the general description of the higher limits of a functor ˛W Cop!Ab

as the homology groups of the normalized cochain complex

xC n.CI˛/D
Y

c0!� � �!cn

˛.c0/;

where the product is taken over all composable sequences of nonidentity morphisms.
For � 2 xC n.CI˛/, define

d.�/.c0

'
�! c1! � � � ! cnC1/D F.'/.�.c1! � � � ! cnC1//C

nC1X
iD1

.�1/i�.c0! � � �bci � � � ! cnC1/ :

Then we have lim
 �
�

C.˛/ŠH�. xC �.CI˛/; d/ (cf [15, Appendix II, Proposition 3.3] or
[26, Lemma 2].)

Proof of existence As above, we replace each �.c/ by a fibration, and replace each
F.'/ (for ' 2MorC.c; d/ by a map such that �.d/ ıF.'/D F 0.'/ ı�.c/. We also
assume that xF .Idc/D Id xF .c/ for each c . Then

�.c/
def
D
˚
f 2Map.F.c/;F.c// j�.c/ ıf D �.c/

	
is a topological monoid under composition, and is connected by assumption. So we
can ignore basepoints when working in the homotopy groups ˇi.c/D �i.�.c//.
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We want to construct an Rg1–structure xF such that xF .c/D F.c/ for all c 2 Ob.C/,
xF .'/ D F.'/ for all ' 2 Mor.C/, and such that for each n � 2 and each chain
� D .c0! � � � ! cn/ 2Morn.C/, the following square commutes (exactly) for each
t 2 In�1 :

(38)

F.c0/
xF .�/.t/
! F.cn/

F 0.c0/

�.c0/
#

F 0.
ı

�/
! F 0.cn/

�.cn/
#

By Proposition A.2, any such structure induces a rigidification zF of F , together with
a natural transformation of functors z� from zF to F 0 .

Assume, for some n � 2, that xF has been defined on Mori.C/ for all i < n. Fix
� 2Morn.C/, a composite of (nonidentity) maps from c0 to cn . Consider the following
commutative square, which is a homotopy pullback by assumption:

(39)

Map.F.c0/;F.cn//F.
ı

�/  
F.
ı

�/ı�

Dw
Map.F.c0/;F.c0//Id

Map.F.c0/;F
0.cn//F 0.

ı

�/ı�.c0/

�.cn/ı� Du
#

 
F 0.
ı

�/ı� Map.F.c0/;F
0.c0//�.c0/

�.c0/ı�
#

Conditions (b) and (c) in Definition A.1 determine a map xF .�/0 from @In�1 to
Map.F.c0/;F.cn//F.

ı

�/ whose image lies in u�1.F 0.
ı

�/ı�.c0//. Hence the obstruction
to defining xF .�/ on In�1 is an element

�.�/ 2 �n�2

�
u�1.F 0.

ı

�/ ı�.c0//;
� wı�
 ����
Š

�n�2.�.c0//D ˇn�2.c0/:

If one of the morphisms in the sequence � is an identity morphism, then we define
xF .�/ using the appropriate formula in Definition A.1(b), and �.�/D 0. Thus � is in
xC n.CIˇn�2/.

We claim that d�D 0. Fix ! D .c0! � � � ! cnC1/ 2MornC1.C/. Consider the face
maps on the n–cube

ıt
i W I

n�1
�����! In where ıt

i .t1; : : : ; tn�1/D .t1; : : : ; ti�1; t; ti ; : : : ; tn�1/

(for all i D 1; : : : ; n and t D 0; 1). The conditions in Definition A.1(b,c) define a map

xF�.!/W .I
n/.n�2/

�����! Map.F.c0/;F.cnC1//
F.
ı
!/
' Aut.F.c0//1

DMap.F.c0/;F.c0//Id;
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and hence

(40)
nX

iD1

.�1/i
�
Œ xF�.!/ ı ı

1
i j@I n�1 �� Œ xF�.!/ ı ı

0
i j@I n�1 �

�
D 0 2 �1.Aut.F.c0//1/:

Furthermore, xF�.!/ extends to the faces ı0
i .I

n�1/ for 2 � i � n� 1 (again, by the
conditions in Definition A.1(c)), and so those terms vanish in (40). So we are left with
the equality

0D Œ xF�.!/ ı ı
0
1j@I n�1 �C

nX
iD1

.�1/i Œ xF�.!/ ı ı
1
i j@I n�1 �C .�1/nC1Œ xF�.!/ ı ı

0
nj@I n�1 �

D F.!01/
�.�.@0!//C

nC1X
iD1

.�1/i�.@i!/D d�.!/:

Thus d�D 0, and so Œ�� 2 lim
 �
C

n.ˇn�2/.

If Œ��D 0, then there is � 2 xC n�1.CIˇn�2/ such that �D d� . Similar (but simpler)
arguments to those used above now show that xF can be “changed by �” on elements
of Morn�1.C/, in a way so that the obstruction � vanishes. We can thus arrange
that xF can be extended to Morn.C/. Upon continuing this procedure, we obtain the
Rg1–structure xF .

Proof of uniqueness Now assume that

zF1

z�1
�����! F 0

z�2
 ����� zF2

are two rigidifications of �W F ���! F 0 . In other words, we have a homotopy commu-
tative diagram

(41)

F
�1
! ho ı zF1

ho ı zF2

�2#
ho.z�2/
! ho ıF 0

ho.z�1/
#

�

!

of functors C! hoTop and natural transformations between them. We can assume
that the maps z�.c/ and z�0.c/ are fibrations for each c 2 Ob.C/; otherwise we replace
them by fibrations using one of the canonical constructions.

For each c 2Ob.C/, let �.c/W zF1.c/! zF2.c/ be any map such that �.c/ı�1.c/'�2.c/

as maps from zF1.c/ to zF2.c/. Using the homotopy commutativity of (41), and
the homotopy lifting property for z�2.c/, we can assume that z�2.c/ ı �.c/ D z�1.c/
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(exactly, not just up to homotopy). Let yF .c/ be the mapping cylinder of �.c/, and let
y�.c/W yF .c/ ���! F 0.c/ be the projection induced by z�1.c/ and z�2.c/.

Regard zF1.c/ and zF2.c/ as subspaces of yF .c/. We want to extend the locally finite
Rg1–structures zF and zF 0 to an Rg1–structure yF covering F 0 . For each morphism
' 2MorC.c; d/ in C , �.d/ ı zF1.'/' zF2.'/ ı �.c/, and hence zF1.'/ and zF2.'/ can
be extended to a map yF .'/ from yF .c/ to yF .d/. Using the homotopy lifting property
again, this can be chosen such that y�.d/ ı yF .'/D F 0.'/ ı y�.c/.

Assume, for some n � 2, that yF has been defined on Mori.C/ for i < n in a way
so that (38) commutes (with F and xF replaced by yF ) for each � . Then for each
� D .c0! � � � ! cn/ in Morn.C/, yF .�/ has been defined on�

. zF1.c0/[ zF2.c0//� In�1
�
[

�
yF .c0/� @I

n�1
�
;

and must be extended to yF .c0/� In�1 while covering

y�.cn/ ı yF .
ı

�/ 2Map. yF .c0/;F
0.cn//:

So with the help of diagram (39) again, the obstruction to defining yF .�/ is seen to
be an element �.�/ 2 �n�1.�.c0// D ˇn�1.c0/. Together, these define a cochain
� 2 xC n.CIˇn�1/. Just as in the proof of existence, one then shows that d� D 0, and
hence that � represents a class Œ� � 2 lim

 �
n.ˇn�1/. If Œ� � D 0, then � D d� for some

� 2 xC n�1.CIˇn�1/, and yF can be modified on Morn�1.C/ using � in such a way that
it can then be extended to Morn.C/. Upon continuing this procedure, we construct an
Rg1–structure yF on F , together with a natural transformation to F 0 and morphisms
of Rg1–structures

zF1 �����!
yF  ����� zF2:

So by Proposition A.2,

zF1 'Rg. zF1/'Rg. yF /'Rg. zF2/' zF2:

We finish the section with two corollaries to Theorem A.3. The first is the main theorem
of Dwyer and Kan in [10]. It is the “absolute case” of Theorem A.3: the case where
F 0 is the constant functor which sends each object to a point.

A functor F from C to Top or hoTop will be called centric if for each morphism
' 2MorC.c; d/ in C , the induced map

Map.F.c/;F.c/Id
'ı�
������! Map.F.c/;F.d//'

is a homotopy equivalence. This is what Dwyer and Kan call a centric diagram.
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Corollary A.4 Fix a centric functor F W C �! hoTop. Define ˛i W Cop �! Ab (all
i � 1) by setting ˛i.c/D �i

�
Map.F.c/;F.c//Id

�
and by letting ˛i

�
c

'
��! d

�
be the

composite

�i

�
Map.F.d/;F.d//Id

� .�ıF.'//�
�������! �i

�
Map.F.c/;F.d//F.'/

�
.F.'/ı�/�
 �������

Š
�i

�
Map.F.c/;F.c//Id

�
:

Then the obstructions to the existence of a rigidification zF of F lie in the groups
lim
 �

nC2
C .˛n/ for n� 1; while the obstructions to the uniqueness of zF up to equivalence

of rigidifications lie in lim
 �

nC1
C .˛n/ for n� 1.

The second corollary is a generalization of [9, Proposition B], and follows upon
combining Corollary A.4 with an idea taken from the proof of that proposition.

Corollary A.5 Fix a space X , and a centric functor F W C ���! hoTop. We also let
X denote the constant functor X W C ���! Top which sends each object to X and each
morphism to IdX .

(a) Assume there is a natural transformation of functors �W F ���! ho ıX such
that the map �.c/W F.c/ ���!X is centric for each c 2 Ob.C/. Then there is a
rigidification zF of F , together with a rigidification z�W zF ���!X of �.

(b) Assume zF1 and zF2 are two rigidifications of F . Let  i W F ���! ho ı zFi

be natural equivalences, and let z�i W
zFi ���!X be natural transformations of

functors such that for all c 2 Ob.C/, z�i.c/ 2Map. zFi.c/;X / is centric, and the
square

(42)

F.c/
 1.c/

! zF1.c/

zF2.c/

 2.c/#
z�2.c/

! X

z�1.c/
#

commutes up to homotopy. Then zF1 and zF2 are equivalent rigidifications. More
precisely, there is a third rigidification zF0 of F , natural transformations of
functors

zF1

z 1
�����! zF0

z 2
 ����� zF2

such that z i.c/ is a homotopy equivalence for each c 2 Ob.C/, a space X0

together with a natural transformation z�0W
zF0 ���!X0 to the constant functor,
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and homotopic homotopy equivalences f1 ' f2W X ���!X0 , such that the
following diagram commutes for each c 2 Ob.C/:

(43)

zF1.c/
z 1.c/

'
! zF0.c/ 

z 2.c/

'

zF2.c/

X

z�1.c/
#

f1
! X0

z�0.c/
#

 
f2

X

z�2.c/
#

Proof Let CC be the category C with an additional final object � added. For any
functor ˛W CCop ���!Ab, lim

 �
i.˛/D 0 for all i � 1 since CCop has an initial object.

A functor FCW CC ���! hoTop can be thought of as a triple FC D .F;X; �/, where
F D FCjC is a functor from C to hoTop, X D FC.�/ is a space, and � is a natural
transformation of functors from F to the constant functor X . Functors from CC to
Top are described in an analogous way.

In the situation of (a), .F;X; �/ is a functor from CC to hoTop. The obstruction
groups of Corollary A.4 vanish, and hence it has a rigidification . zF ; eX ; z�/. Upon
composing with an appropriate homotopy equivalence eX '

���!X , we can arrange
that eX DX .

In the situation of (b), . zF1;X; z�1/ and . zF2;X; z�2/ are two functors from CC to
Top which are rigidifications of the same functor .F;X; z�1 ı 1/ by the homotopy
commutativity of (42). Since the uniqueness obstructions of Corollary A.4 all vanish,
there is a third homotopy lifting . zF0;X0; z�0/, together with natural transformations of
functors

. zF1;X; z�1/
z 1

 ����� . zF0;X0; z�0/
z 2

�����! . zF2;X; z�2/

which induce homotopy equivalences on all objects. Thus upon setting fi D
z i.�/,

we obtain the commutative diagram (43), where all horizontal maps are homotopy
equivalences. Finally, z 1.�/' z 2.�/, since they come from equivalences between
liftings of the same homotopy functor, and this finishes the proof of (b).
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