Volume 11, issue 2 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Quasi-isometric rigidity of higher rank $S$–arithmetic lattices

Kevin Wortman

Geometry & Topology 11 (2007) 995–1048
Bibliography
1 H Abels, Finiteness properties of certain arithmetic groups in the function field case, Israel J. Math. 76 (1991) 113 MR1177335
2 P Abramenko, Finiteness properties of Chevalley groups over $\mathbb{F}_q[t]$, Israel J. Math. 87 (1994) 203 MR1286827
3 H Behr, $\mathrm{SL}_3(\mathbb{F}_q[t])$ is not finitely presentable, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 213 MR564424
4 F Blume, Ergodic theory, from: "Handbook of measure theory, Vol. II", North–Holland (2002) 1185 MR1954639
5 A Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966) 78 MR0205999
6 A Borel, Linear algebraic groups, Graduate Texts in Mathematics 126, Springer (1991) MR1102012
7 A Borel, T A Springer, Rationality properties of linear algebraic groups. II, Tôhoku Math. J. $(2)$ 20 (1968) 443 MR0244259
8 A Borel, J Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. $(2)$ 97 (1973) 499 MR0316587
9 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999) MR1744486
10 K S Brown, Buildings, Springer (1989) MR969123
11 C Druţu, Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000) 327 MR1771426
12 A Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321 MR1475886
13 A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 MR1434399
14 B Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997) 705 MR1484701
15 B Farb, R Schwartz, The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996) 435 MR1431001
16 G Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen III, J. Reine Angew. Math. 274/275 (1975) 125 MR0382469
17 B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 MR1608566
18 A Lubotzky, S Mozes, M S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000) 5 MR1828742
19 G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991) MR1090825
20 G D Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973) MR0385004
21 V Platonov, A Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics 139, Academic Press (1994) MR1278263
22 G Prasad, Strong rigidity of $\mathbb{Q}$–rank $1$ lattices, Invent. Math. 21 (1973) 255 MR0385005
23 G Prasad, Strong approximation for semi-simple groups over function fields, Ann. of Math. $(2)$ 105 (1977) 553 MR0444571
24 G Prasad, Lattices in semisimple groups over local fields, from: "Studies in algebra and number theory", Adv. in Math. Suppl. Stud. 6, Academic Press (1979) 285 MR535769
25 M Ratner, On the $p$–adic and $S$–arithmetic generalizations of Raghunathan's conjectures, from: "Lie groups and ergodic theory (Mumbai, 1996)", Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res. (1998) 167 MR1699365
26 R E Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995) MR1383215
27 R E Schwartz, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996) 75 MR1417087
28 J Taback, Quasi-isometric rigidity for $\mathrm{PSL}_2(\mathbb{Z}[1/p])$, Duke Math. J. 101 (2000) 335 MR1738174
29 J Tits, Algebraic and abstract simple groups, Ann. of Math. $(2)$ 80 (1964) 313 MR0164968
30 J Tits, Buildings of spherical type and finite BN–pairs, Lecture Notes in Mathematics 386, Springer (1974) MR0470099
31 T N Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math. 92 (1988) 255 MR936083
32 K Wortman, Quasiflats with holes in reductive groups, Algebr. Geom. Topol. 6 (2006) 91 MR2199455
33 K Wortman, Quasi-isometries of $\mathbf{SL}_n(\mathbb{F}_q[t])$, (in preparation)