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Group invariant Peano curves

JAMES W CANNON

WILLIAM P THURSTON

Our main theorem is that, if M is a closed hyperbolic 3–manifold which fibres over
the circle with hyperbolic fibre S and pseudo-Anosov monodromy, then the lift of
the inclusion of S in M to universal covers extends to a continuous map of B2 to
B3 , where Bn D Hn [ Sn�1

1 . The restriction to S1
1 maps onto S2

1 and gives an
example of an equivariant S2 –filling Peano curve. After proving the main theorem,
we discuss the case of the figure-eight knot complement, which provides evidence
for the conjecture that the theorem extends to the case when S is a once-punctured
hyperbolic surface.

20F65; 57M50, 57M60, 57N05, 57N60

1 Introduction

We will describe doubly degenerate Kleinian groups whose limit sets are beautiful
equivariant continuous images of simple closed curves. The possible existence of such
curves is suggested by the following considerations:

Thurston has shown that acylindrical Haken 3–manifolds admit a complete hyperbolic
structure of finite volume. If S is a hyperbolic 2–manifold and � is a pseudo-Anosov
diffeomorphism of S , then the mapping torus M DM.�/D .S � Œ0; 1�/=f.x; 0/D

.�.x/; 1/ jx 2 Sg is such a 3–manifold. (See Thurston [7] or Sullivan [6].) We
may identify the universal cover M 0 of M with hyperbolic 3–space H3 and the
universal cover S 0 of S with hyperbolic 2–space H2 so that S 0 is a hyperbolic plane
embedded in the hyperbolic 3–space M 0 D H3 . Thus we expect to find the circle
S1 D @.S 0/ D @.H2/ at infinity appearing in 2–sphere S2 D @.M 0/ D @.H3/. See
Figure 1.

But the fundamental group of S is a nontrivial normal subgroup of the nonelementary
fundamental group of M , and a classical theorem implies that �1.S/ and �1.M /

must have the same limit set in H3 [ S2
1 . That is, the circle boundary of S 0 must

equal the 2–sphere boundary of M 0 , a paradox.
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It follows immediately that S 0 is not embedded in M 0 as a hyperbolic plane but rather
is severely folded in M 0 so that S 0 comes arbitrarily close to every point of S2D @H3 .
This fact suggests that the embedding of S 0 in M 0 may extend to take the circle at
infinity @.S 0/ continuously onto the 2–sphere boundary of M 0 as a �1.S/–invariant
2–sphere-filling Peano curve. Our main theorem states that this is so, at least when S

is a closed hyperbolic surface.

To describe these examples, whose limit sets are the entire Riemann sphere we need
only the following ingredients:

(i) Closed hyperbolic 3–manifolds fibering over the circle (Thurston [7])

(ii) Analysis of the monodromies of the associated fibrations (Thurston [7] and
Section 13, Pseudo-Anosov diffeomorphisms)

(iii) Elementary hyperbolic geometry

There are analogous examples, of interest in the study of Kleinian groups, whose limit
sets are nonseparating proper subsets of the Riemann sphere (the totally one-sided
degenerate case). To describe these examples, we need, in addition to (i), (ii) and (iii),

(iv) Thurston’s deformation theory for quasi-Fuchsian groups (Thurston [7] and
Section 7, Approximate metric structure, one-sided degenerate case)

The existence of the latter class of examples contradicts the main result of Abikoff [1],
but it has been known for some time that a key argument in [1] is incorrect.

The doubly degenerate case is dealt with in Sections 2–5, with technical background in
Sections 8–13. The modifications required for the singly degenerate case are outlined
in Sections 6–7.

We analyze the precise topological structure of the 2–sphere-filling Peano curves given
by the doubly degenerate case in Sections 14–15. The analysis depends on R L Moore’s
theorem on cellular upper-semicontinuous decompositions of the 2–sphere [5]: If G is
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an upper semicontinuous decomposition of S2 such that each element of G is a proper
subcontinuum of S2 that does not separate S2 , then the decomposition space S2=G is
homeomorphic with S2 .

Our examples are all based on hyperbolic 3–manifolds that fiber over a circle, with
compact, orientable, hyperbolic surface as fiber and with pseudo-Anosov monodromy.
The main result is surely true as well when the fiber is a hyperbolic surface-with-
punctures, but our proof is inadequate to deal with the punctured case. The metric and
geodesic analysis becomes considerably more difficult in the presence of punctures.
We leave the complete analysis of this more complicated setting for others. We
simply present the evidence obtained by computer experimentation that approximates
the resulting Peano curves when S is a punctured torus. These examples appear in
Sections 16 and 17.

We denote hyperbolic n–space by Hn , the .n� 1/–sphere at infinity by Sn�1
1 , the n–

ball that is Hn[Sn�1
1 by Bn , the hyperbolic metric by dH and the group of isometries

of Hn by Isom.Hn/.

A hyperbolic manifold M of dimension n is a complete Riemannian n–manifold that
is locally isometric with Hn . Since the time of H Poincaré it has been known that each
closed, orientable surface of genus g� 2 admits a hyperbolic Riemannian metric. Once
and for all, we fix such a 2–manifold S with universal covering projection p W H2! S ,
p a local isometry. The standard identification of �1.S/ with the group of covering
translations of the universal cover of S gives a discrete faithful representation

�W �1.S/! Isom .H2/� Isom .H3/

A subgroup G of Isom.Hn/ is discrete if, for each compact subset K of Hn , the
number of elements g of G for which K \ gK ¤ 0 is finite. The limit set ƒ.G/ of
a discrete group G is the cluster set in Bn of any orbit Gx , x 2 Hn . Discreteness
implies that ƒ.G/� Sn�1

1 .

A discrete faithful representation �W �1.S/! Isom .H3/ is called Fuchsian if the
limit set ƒ.�.�1.S/// is a geometric (round) circle, quasi-Fuchsian if ƒ.�.�1.S///

is a topological circle, and degenerate otherwise. A degenerate group is called doubly
degenerate if ƒ.�.�1.S/// is equal to S2

1 and is called totally one-sided degenerate
if S2�ƒ is connected and not empty.

At the forefront in our description of totally degenerate groups is the fundamental group
of the fiber for any closed hyperbolic 3–manifold that fibers over the circle with fiber
homeomorphic with S . (See the next section.)
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2 Hyperbolic 3–manifolds fibering over a circle

Our principal object of study is a closed 3–manifold M that fibers over a circle with
fiber the closed orientable hyperbolic 2–manifold S of Section 1. Work of W P Thurston
(see [7] or [6]) shows that such a manifold M admits a hyperbolic metric if and only
if M arises from the following construction: let � W S ! S denote a pseudo-Anosov
diffeomorphism (see Section 13, Pseudo-Anosov diffeomorphisms, or [4]), and let

M D .S � I/=f.s; 0/D .�.s/; 1/g

be the closed manifold formed from the cylinder S � I over S when the ends S �f0g

and S � f1g are identified by the homeomorphism � . The diffeomorphism � is called
the monodromy of the fibration. An example of such a manifold is constructed in [6].

Once and for all, we fix a pseudo-Anosov diffeomorphism � W S ! S (see Section
13), the associated 3–manifold M DM.�/ and covering projection q W H3!M , q a
local isometry. With the pseudo-Anosov diffeomorphism � are associated geodesic
laminations �1 and �2 of S (Section 11), transverse measures dx and dy that assign
a positive value to curves transverse to �1 and �2 , respectively, and a multiplier k > 1

satisfying the defining conditions for pseudo-Anosov diffeomorphisms (Section 13):

(1) �1 and �2 bind S (Section 10).

(2) �.j�1j/D j�1j, �.j�2j/D j�2j,

(3)
R
�./ dx D .1=k/

R
 dx and

R
�./ dy D k

R
 dy .

The lifts of �1 and �2 to H2 are denoted by �0
1

and �0
2

.

3 Doubly degenerate groups

Let p W H2 ! S and q W H3 ! M be as in Section 1 (Introduction) and Section 2
(Hyperbolic 3–manifolds fibering over a circle) respectively. Let G.S/ and G.M /

denote the groups of covering translations of p and q , respectively. Let hW S !

S � f0g ! M denote the natural inclusion map. The inclusion h lifts to a map
i W H2!H3 of universal covers.

H2
i //

p

��

H3

q

��
S

h // M
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Since h induces an embedding h� W �1.S/! �1.M /'G.M /, h induces a discrete
faithful representation.

�W G.S/! �1.S/! �1.M /!G.M /:

We claim that � is totally degenerate with limit set S2
1 ; this claim is true even if S is

not compact provided that M has finite volume. In fact, it is well-known and easy to
check that a discrete hyperbolic group and any of its nontrivial normal subgroups have
the same limit set except in trivial cases. Hence, ƒ.�.�1.S///Dƒ.G.M //D S2

1 .

4 Statement of the Main Theorem on Peano curves

The objects of interest are the covering projections p W H2 ! S; q W H3 !M , the
compactifications B2 D H2 [ S1

1 of H2 and B3 D H3 [ S2
1 of H3 , the inclusion

mapping hW S!S�f0g!M , a lift i W H2!H3 of h to universal covers, the groups
of covering transformations G.S/ over p and G.M / over q , the induced mapping
h� W �1.S/!�1.M / induced by h and the totally degenerate group given as the image
of the injection

�W G.S/
p� ' +3 �1.S/

h� 1�1+3 �1.M /
q�1
� '

+3 G.M /:

Main Theorem (Peano curves) There is a continuous function j W B2 ! B3 that
renders the following diagram commutative:

B2
j // B3

H2
?�

OO

p

��

i // H3

q

��

?�

OO

S
h // M

Remark The restriction of j to S1
1 takes S1

1 onto S2
1 and is a �.G.S//–invariant

2–sphere-filling Peano curve. A more precise description of the topology of j will
appear in Section 15. At this point we simply highlight the structures that we will use
to prove the existence of the extension j .

In H2 the important structures will be the leaves of the two foliations �0
1

and �0
2

formed in H2 by lifting the pseudo-Anosov foliations �1 and �2 on S to the universal
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cover. The critical property of �0
1

and �0
2

is summarized in the following theorem
which is a consequence of Theorem 10.2.

Theorem 4.1 (Neighborhoods at infinity in the ball) Each point x 2 S1
1 has arbitrar-

ily small neighborhoods in B2 DH2[ S1
1 bounded by the closure in B2 of a single

leaf of �0
1
[�0

2
.

In H3 there are two important structures. They arise from viewing H3 as a topological
product: H3DH2�.�1;1/. The first of the two structures is geometric and consists
of those subproducts of H2 � .�1;1/ having the form L� .�1;1/ where L is
a leaf of either �0

1
or �0

2
. The second of our two structures is metric and consists of

a Riemannian pseudo-metric-with-singularities ds on H3 defined in Section 5. The
metric ds is obtained as the equivariant lift of a pseudo-metric from M . Hence, in
particular it is G.M / invariant. It is carefully chosen to have two properties.

(1) The metric ds is near enough to the standard hyperbolic metric that it induces
the same topological structure at infinity.

(2) The metric ds respects the product structure and foliations enough so that the
sets L� .�1;1/ are metrically nice.

Property (1) is explained in Theorem 5.1. Property (2) is explained in Theorem 5.2.
Properties (1) and (2) are exploited together in Theorem 5.3. And finally all of these
properties combine to give the proof of the Main Theorem at the end of Section 5.

5 The approximate metric structure of M

The universal cover H3 of the fibered manifold M is topologically the product H2�R
of the universal cover H2 of the fiber S and the universal cover R of the base S1 of
the fibration. The monodromy map � W S ! S and its associated laminations .�1; dx/

and .�2; dy/ and multiplier k > 1 supply a natural pseudometric ds2
0
D dx2C dy2

for H2 � f0g (see Section 12, Measured laminations binding a surface). In order to
extend this pseudometric in a natural way to all of H2�R so as to be G.M / invariant,
we note that invariance requiresZ

�ftg

k dx D

Z
z��1. /�ftg

dx D

Z
�ftC1g

dx; and

Z
�ftg

dy D

Z
z��1. /�ftg

k dy D

Z
�ftC1g

k dy:
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where z� W H2!H2 covers � W S ! S . That is, the measure must stretch by a factor
of k in the dx direction and by 1=k in the dy direction when t 2 R increases by 1.
This suggests the G.M / invariant, infinitesimal pseudometric ds on H3 � H2 �R
given by the formula

ds2
D k2t dx2

C k�2t dy2
C�2 dt2;

where � is a positive constant that may be chosen arbitrarily. We choose �D log k

because the metrics ds2 D k2t C .log k/2 dt2 and ds2 D k�2t C .log k/2 dt2 on the
plane R�R are isometric with the upper half-plane model of hyperbolic geometry H2

under the maps .x; t/ 7! .x; k�t / and .y; t/ 7! .y; kt /, respectively. We denote the
associated G.M /–invariant global pseudometric by .s D

R
 ds/W H3 �H3! Œ0;1/.

(See Sections 11-14 for properties of
R

ds .)

Theorem 5.1 (Quasicomparability of metrics) The hyperbolic metric dH and the
G.M /–invariant global pseudometric s D

R
 ds are quasicomparable.

Proof The quasicomparability of dH and s requires the existence of positive numbers
K > 1 and K0 > 1 such that

max.s; dH / >K0 )

�
1

K

�
dH � s �KdH :

The facts we need to know about s are the following:

(1) s is G.M / invariant.

(2) s is obtained by integrating a continuous infinitesimal pseudometric ds along
paths of H3 . (The continuity of s is convenient but not esssential; a weak kind
of continuity like that of Section 11, Measured laminations, would suffice.)

(3) Each compact subset of H3 has finite s–diameter.

(4) Each pseudometric s–neighborhood

N.x; �I s/D fy 2H3
js.x;y/ < �;x 2H3; � 2 .0;1/g;

has compact closure in H3 .

Condition (1) is easily checked. The continuity of ds follows from Section 13 (Pseudo-
Anosov diffeomorphisms). Conditions (3) and (4) follow easily from the fact proved
in Section 12 (Measured laminations binding a surface) that the metrics dH and
�D

R
.dx2C dy2/1=2 on H2 are quasicomparable.
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Realizing as we do that dH on H3 also satisfies (1), (2), (3) and (4), we need not
distinguish between s1D s and s2D dH provided we only use properties (1–4). Hence
it suffices to prove the single implication: there exist K;K0 > 1 such that

s2.x;y/ >K0 ) s2.x;y/�Ks1.x;y/:

Pick ˛ > 1 so large that, if z 2H3 , then the G.M /–translates of

N.z; ˛I s1/D fx 2H3
js1.z;x/ < ˛g

cover H3 (Property (3)). Pick ˇ > 1 so large that, if z 2 H3 , then N.z; ˛I s1/ �

N.z; ˇI s2/ (Property (4)).

Take K and K0 > 4ˇ and suppose that x;y 2H3 are points satisfying s2.x;y/ >K0 .
Let  denote a path from x to y satisfying

s1.x;y/�

Z


ds1 < s1.x;y/C 1:

Let B1;B2; : : :Bn denote a minimal covering of  by neighborhoods of the form
N.z; ˇI s2/. It is then clearly true that

s2.x;y/� 2ˇ � n:

But, subdividing  into segments 0; 1; : : : ; k , satisfying

0�

Z
0

ds1 < 1;

Z
i

ds1 D 1 .i D 1 : : : ; k/;

it becomes obvious from the choice of ˛ and ˇ and the minimality of the covering
B1 , : : :, Bn that n� k . Hence

s2.x;y/� 2ˇ � n� 2ˇ

Z


ds1 < 2ˇ.s1.x;y/C 1/; or

s2.x;y/� 2ˇ < 2ˇ � s1.x;y/:

But s2.x;y/ >K0 > 4ˇ implies that s2.x;y/=2< s2.x;y/� 2ˇ , so that

s2.x;y/ < 4ˇ � s1.x;y/ <K � s1.x;y/;

as desired.

Theorem 5.2 (Sets of the form L� .�1;1/) If L is a leaf of �0
1

or �0
2

, then with
respect to the metric s on H3 DH2 � .�1;1/ the product L� .�1;1/ is totally
geodesic.

Geometry & Topology, Volume 11 (2007)



Group invariant Peano curves 1323

Proof We must prove that if x;y 2L� .�1;1/ and � is any path from x to y in
H3 , then L� .�1;1/ contains a path ı from x to y such thatZ

ı

ds �

Z
�

ds:

The standard method for proving the existence of such a ı is to construct a ds–reducing
retraction �W H3!L� .�1;1/; then ı may be taken to be � ı � . We shall define
� as a product map � D �0 � id W H2 � .�1;1/! L� .�1;1/. The retraction
�0 W H2!L is defined as follows.

We may choose the notation so that L is a leaf of �0
1

. We first let C denote the closed
subset of H2 that is the union of those leaves of �0

2
that intersect L. We define �0jC

to be the map that sends each leaf L0 of �0
2

in C to the point L0\L. We let U denote
a component of H2 n C . The boundary of U in H2 is the union of two geodesics
L1.U / and L2.U /, each intersecting L in a single point. The intersection of U with
L is an open arc A.U / joining L1.U /\L and L2.U /\L. The arc A.U / misses
�0

2
entirely. One defines �0jU so that �0.U /DA.U / and so that .�0jU /[ .�0j@U /

is continuous. Since the components U form a null sequence, it is easy to check that
�0 and also therefore � are continuous.

The retraction � kills the term in ds2 involving dx2 , leaves the term involving dt2

invariant, and, at worst, leaves the term involving dy2 no larger. Hence the proof of
the theorem is complete.

Theorem 5.3 (The diameter of L� .�1;1/) Fix z 2H2 . For each � > 0, there is
a positive number N such that if L is a leaf of �0

1
[�0

2
in H2 and dH .z;L/ >N , then

the Euclidean diameter of L� .�1;1/ in H3 D H2 � .�1;1/� B3 D H3 [ S2
1

is less than � .

Proof From the quasicomparability of
R
.dx2 C dy2/1=2 and dH on H2 and the

quasicomparability of s D
R

ds and dH on H3 , it follows that dH .z;L/!1 (as
L approaches infinity in H2 ). From the quasicomparability of ds and dH on H3 it
follows (see [3]) that, since L� .�1;1/ is quasi-totally geodesic in H3 with respect
to ds , it is also quasi-totally geodesic in H3 with respect to the hyperbolic metric dH

in the following sense.

.�/ There is a W > 0 such that if L is any leaf of �0
1
[�0

2
, if x and y are any two

points of L� .�1;1/ and g is the hyperbolic geodesic from x to y , then
there is a path  from x to y in L� .�1;1/ within W of the geodesic g .
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But since hyperbolic geodesics g that miss large compact subsets of H3 must have
uniformly small Euclidean diameter in the Poincaré disk model H3 � B3 DH3[S2

1 ,
it follows that corresponding s–geodesics  must have uniformly small Euclidean
diameter. Thus if L � .�1;1/ misses a large compact subset of H3 , then L �

.�1;1/ has small Euclidean diameter in B3 .

Proof of Main Theorem There exists a natural continuous, possibly multivalued
extension j W B2! B3 of i W H2!H3 defined as follows for x 2 S1 D @H2 .

Let C1;C2; : : : denote a sequence of compact neighborhoods of x in B2 whose
intersection is fxg. Let U1 D C1\H2; U2 D C2\H2 , etc. Let

j .x/D\1nD1iUn � B3:

To prove the theorem it suffices to show that j is single valued. We can do this simply
by showing that

lim
n!1

diam .iUn/D 0:

Theorem 4.1 (Neighborhoods at infinity in the ball) implies that we lose no generality
in assuming that Cn is bounded in B2 by the closure of a single leaf Ln of �0

1
[�0

2
.

By Theorem 5.3,
lim

n!1
diam i.Ln � .1;1//D 0:

But i.Ln � .�1;1// separates iUn from a large compact subset of H3 . It follows
that

lim
n!1

diam .iUn/D 0;

hence that j is a continuous function as desired.

6 Fully one-sided degenerate groups

A typical discrete faithful action of a surface group in Isom.H3/ is a quasi-Fuchsian
group, where there are exactly two components of the domain of discontinuity separated
by a Jordan curve.

The surface groups coming from fibers of fibrations are completely opposite to these
typical actions: in the case of fibers, both components of the complement of the curve
have shrunk to nothing. As we have seen, the Jordan curve becomes a Peano curve in
these cases, filling the sphere.

There is also an intermediate case, surface groups for which one of the expected
components of the domain of discontinuity is completely absent but the other component
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is healthy. Such a group is called a fully one-sided degenerate group. We will show
that at least for certain of these groups, the Jordan curve becomes a continuous map of
the circle that traces out a fuzzy tree embedded on S2 .

The existence of fully one-sided degenerate surface groups was established by Bers,
who analyzed what happens if a quasi-Fuchsian group is varied so that the conformal
structure on the quotient surface S1 of one of the domains of discontinuity is held
constant. Here in outline is the proof that they exist.

According to the deformation theory of quasi-Fuchsian groups, the conformal structure
on the quotient S2 of the other domain can be varied arbitrarily over Teichmüller space.
If a normalization of the groups is chosen in some appropriate way, this gives rise to a
family of conformal embeddings of the universal cover of S1 into the sphere S2

1 . It is
easy to see that the closure of this family of embeddings is compact in the topology of
pointwise convergence, by the theory of normal families.

All the limit embeddings give rise to discrete faithful group actions. Those actions for
which there is more than one component of the domain of discontinuity are contained
in a countable union of complex subvarieties of the deformation space that have less
than full dimension. Therefore, most of the limit groups have to be fully one-sided
degenerate.

Unfortunately, this construction does not give much of a cluse as to the nature of the
fully one-sided degenerate groups. In [8] and [7], a good deal of theory for these groups
is developed, expressed in terms of geodesic laminations. To each one-sided degenerate
group �.�1.S// is associated a certain geodesic lamination on S , called the ending
lamination �.�/ for the group. The ending lamination can be defined in terms of the
rough location of geodesics in the hyperbolic three-manifold M�DH3=�.�1.S//. For
any compact set K�M� , let SCK denote the set of simple closed curves on S whose
geodesics in M� do not intersect K . Thurston showed that for a limit of quasi-Fuchsian
groups that is a one-sided degenerate group, this set is nonempty no matter how large
the compact set K . As K increases toward all of M , SCK decreases. The limit set
for SCK in the space of measured laminations on S consists of all measures supported
on a certain geodesic lamination �.M�/.

If a limit of quasi-Fuchsian groups degenerates at both ends, then there are two ending
laminations, one for each end of the limit manifold. For more details, see Thurston,
[8] and [7]. More recently, Francis Bonahon [2] has proven that the theory of ending
laminations extends to the case when a surface group is not known to be the limit of
quasi-Fuchsian groups.

Our main theorem in the case of fully one-sided degenerate groups is the following:

Geometry & Topology, Volume 11 (2007)



1326 James W Cannon and William P Thurston

Theorem 6.1 (Ending stable gives fuzzy tree) If � is any pseudo-Anosov homeo-
morphism of S , then there is a fully one-sided degenerate group �.�1S/ whose ending
lamination is the stable lamination for � such that any �1 –equivariant map from
H2 D zS onto H3 extends to a continuous map of B2 DH2[S1

1 to B3 DH3[S2
1 .

It would be nice to be able to say what happens for other ending laminations. The
problem in general is equivalent to knowing whether or not the limit set for the group
is locally connected. No examples are known where the limit set for a surface group
is not locally connected. Our method depends on knowing the approximate metric
structure of the associated 3–manifold. We do not have a good analysis of this metric
structure in the general case, although our method would probably extend before
encountering insurmountable obstacles to the case of ending laminations belonging to
an uncountable but rare set of laminations having the regularity properties enjoyed by
the stable and unstable laminations for pseudo-Anosov homeomorphisms. The success
of Bonahon’s proof that a general surface group is geometrically tame gives more hope
for understanding the topology of the general limit set.

The analysis in this case is inevitably less elementary and less self-contained than in
the case of limit sets for surface groups that are fibers of fibrations, since the hypothesis
already involves the idea of the ending lamination of an end. Basic references are
Thurston, [8] and [7].

7 Approximate metric structure, one-sided degenerate case

The three-manifold M� associated with a fully one-sided degenerate surface group
�W �1.S/ ! Isom.H3/ has two ends, one of which flares out exponentially and
develops out toward the domain of discontinuity, the other of which has bounded
diameter and somehow controls the topological and geometrical structure of the limit
set. In order to analyze the topology of the limit set as we did in the case of a surface
group coming from a fiber, we have to analyze the approximate metric structure of this
latter end.

The idea is that when the ending lamination is the stable or unstable manifold of a
pseudo-Anosov homeomorphism � of S , we should expect the end to look metrically
similar to one of the two ends for the doubly degenerate group that is the fiber of the
mapping torus M� . We will prove this by a trick of passing to a limit of a sequence of
representations of the surface group differing from the original by an automorphism of
the surface group.

There is a compactification xT of the Teichmüller space T that was discovered by
Thurston in conjunction with the theory of pseudo-Anosov homeomorphisms, in which
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a sphere of projective classes of measured laminations on S is adjoined to the open
ball of hyperbolic structures on S to form a closed ball.

Any homeomorphism of S acts as a homeomorphism of this ball. If � is a pseudo-
Anosov homeomorphism, then � fixes exactly two points in the ball, both of which are
on the boundary. These two points are the stable lamination �1 and unstable lamination
�2 of � . On S , the transverse measure of �1 is increased by � while the transverse
measure of �2 is decreased by � . Simple closed curves on S tend to look closer to �1

after applications of � . On xT , the stable lamination �1 is an attracting fixed point for
the action of � , while the unstable lamination is a repelling fixed point. In fact, under
iteration of � , the entire ball except for �2 converges toward �1 .

The ending lamination is unfortunately not defined as a boundary point of xT —it is only
a topological lamination that admits a transverse measure, not a measured lamination.
If a lamination is uniquely ergodic, it defines a unique point on @ xT . The stable and
unstable laminations of � are uniquely ergodic.

Let R be the set of conjugacy classes of representations of �1.S/ up to conjugacy that
are quasi-Fuchsian, with conformal structures on the two domains of discontinuity of
the form .��n.g0/; �

m.g0//, where g0 is a fixed conformal structure and n;m� 0.
The double limit theorem of Thurston [8] implies that the closure of R is compact.
The added elements of the closure consist of:

(1) if m!1 but n stays bounded, fully one-sided degenerate representations such
that one ending lamination is �1 , while the remaining component of the domain
of discontinuity has conformal structure ��n.g0/;

(2) if n!1 but m stays bounded, fully one-sided degenerate representations such
that one ending lamination is �2 , while the remaining component of the domain
of discontinuity has conformal structure �m.g0/;

(3=1+2) if n!1 and m!1, doubly degenerate representations with ending
laminations �1 and �2 .

A hyperbolic structure for the mapping torus of � was constructed from limits of
type (3) by adjoining an additional transformation T� that induces the automorphism
� of �1.S/. Since T� acts as a quasiconformal automorphism of each group in R,
with uniformly bounded quasiconformal constant, it acts also as a quasiconformal
automorphism of any of the limiting groups. But in case 3, there are no quasiconformal
automorphisms except isometries, by a theorem of Sullivan or a theorem of Thurston.
Thus, any limit of type (3) gives rise to a hyperbolic 3–manifold for M0 . Mostow’s
rigidity theorem asserts that such a hyperbolic structure is unique, so there is a unique
limit of type (3).
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We can also obtain the limit of type (3) by first forming the limits of type (1), then letting
n go to infinity. The map T �1

�
acts on the set of limits of type (1) by incrementing n.

This means that we can choose a fixed representation �0 of type (1), and then the limit
of

�0 ıT �k
�

must exist and equal the unique limit of type (3). (Every subsequence must have a
convergent subsequence, but there is only one possible limit for these subsequences, so
the entire sequence must converge.)

There is also a geometric form of the statement about algebraic convergence. The
quotient manifold M0 DH3=�0.�1.S// has one geometrically infinite tame end. If
we take a sequence of points tending toward this end, this defines a sequence of based
hyperbolic manifolds. There is necessarily a convergent subsequence, and the limit of
the sequence is isometric to the quotient manifold by the limit of type (3), with some
choice of base point.

This fact can be proven from the existence of the algebraic limit above, by first
considering the sequence of base points fpkg where pk comes from the point in
H3 that minimizes the total translation length of a fixed set of generators for �1.S/

under the representation �0 ıT �k
�

. The normalization forces the actual sequence of
representations to have a convergent subsequence, not just a subsequence convergent
up to conjugacy. The geometric limit of the manifolds based at pk is covered by the
quotient of the group coming from the algebraic limit representation. But this manifold
is only a covering space in very special ways: anything it covers is either compact, or is
covered with finite degree. These kinds of covering spaces cannot arise in a geometric
limit, so the geometric limit is simply the quotient of the representation of type (3).

A knowledge of all possible geometric limits as the base point moves toward the end
gives a description of the approximate geometry of the geometrically infinite tame
end: it is exactly the same approximate geometry as the previous case, the infinite
cyclic covering of the mapping torus of � . In the geometrically finite direction, the
approximate geometry is easy to understand: it is just an exponentially flaring collar.

We can write down an expression for the approximate pseudometric: if dx and dy are
the transverse measures for �1 and �2 , then on zS�R, the metric ds2D exp.2jt j/dx2C

exp.2t/dy2Cdt2 is quasicomparable to the hyperbolic metric, where t is a parameter
for R.

In the ds pseudometric for zS �R, any leaf of the lamination �1 sweeps out a surface
that is locally isometric to a hyperbolic plane. The retraction of zS�R to this hyperbolic
plane decreases distances, as before. Therefore, each of these hyperbolic planes is
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isometrically embedded in the pseudometric, hence quasi-isometrically embedded in
H3 . Its boundary forms a circle in S2

1 , with the leaves of �1 at the geometrically
infinite end being collapsed to points on the limit set for the group.

8 Hyperbolic surfaces and limit geodesics

A hyperbolic surface is a 2–manifold S with a complete Riemannian metric ds of
constant negative curvature �1. The universal cover of S is hyperbolic 2–space H2 .
The group G.S/ of covering transformations is a group of hyperbolic isometries of
H2 . The covering map p W H2! S is a local isometry.

We consider only the case where S is orientable and closed of genus g� 2. The metric
ds then defines an area element dA on S with respect to which the area

R
S dA of S

is finite and equal to 2�g .

Theorem 8.1 (Limit geodesics) Every geodesic ray r W Œ0;1/! S has a (possibly
nonunique) limit geodesic r 0 W .�1;1/! S having the following property.

Given � > 0 and any geodesic path R0 in r 0 , there are infinitely many geodesic
paths R in r pointwise within � of R0 .

Proof By the compactness of S , some sequence of segments r j Œn1; n1 C 1�,
r j Œn2; n2 C 1�, : : : .n1 < n2 : : : / converges to a geodesic segment r 0 W Œ0; 1�! S .
The segment r 0 extends to a geodesic r 0 W .�1;1/! S . Let � > 0 and any geodesic
path R0 in r 0 be given. We may assume R0 has the form R0 D r 0 j Œ�n; n� for some n.
Then for r j Œni ; ni C 1� close enough to r 0 j Œ0; 1�, a requirement that can be realized
simply by choosing ni > n very large, r j Œni � n; ni C n� will be pointwise close to
R0 D r 0 j Œ�n; n�, as desired.

9 Geodesic laminations

A geodesic lamination � on S is a collection of disjoint, simple (that is, nonsingular)
geodesics on S called leaves whose union j�j is closed in S .

Theorem 9.1 (Lamination complement) The complement S � j�j of a lamination is
nonempty (since no closed surface of genus > 1 admits a foliation without singularities).

Each component C of S � j�j is (clearly) a convex hyperbolic polyhedron (that is, C

has convex universal cover) that has only ideal vertices and is bounded by leaves of �.
The set S � j�j has only finitely many sides.
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Proof Augment � by adding to � disjoint, simple closed geodesics J1;J2; : : : in
S�j�j until it is impossible to add more. The process stops after finitely many additions
since (i) no closed geodesic is homotopically trivial. (ii) no compact surface contains
infinitely many disjoint, nontrivial, non-freely-homotopic simple closed curves, and
(iii) freely homotopic closed geodesics coincide.

We recall that the area of a hyperbolic triangle with angles ˛; ˇ; and  is ��˛�ˇ� .
Area calculations will allow us to prove that, with � so augmented, the only forms
assumed by components C of S n j�j are the following:

(1) C is simply connected and has area 0< Area.C /D .n� 2/� � 2�g , where n

is the number of sides of C . (The polygon C has its n vertices at 1, hence
can be divided into n� 2 ideal triangles, each of area � .)

(2) C is an open annulus, one boundary component is a simple closed geodesic J ,
the other boundary has n� 1 sides formed from non-closed geodesics, and the
area of C is 0< Area.C /D n� � 2�g . (The polygon C cut along a geodesic
joining J to some other boundary component can be divided into nC2 triangles
of angle sum 2� .)

(3) C is a pair of pants (an open disk with two holes) and each of the three boundary
components consists of a single simple closed geodesic. The area of C is
0 < Area.C / D 2� � 2�g . (The polygon C can be divided into two right-
angled hexagons. Each hexagon can be divided into 4 triangles with angle sum
6 ��=2D 3� .)

Indeed, any component C of X �j�j not having form (1), (2), or (3) contains a simple
closed curve J 0 not freely homotopic into the boundary of C . Since C is convex,
the geodesic J freely homotopic to J 0 must lie in C [ @C , hence in C . But then J 0

could be used to further augment �, a contradiction.

From the area calculations of (1), (2) and (3) it follows immediately, as asserted, that
S � j�j has only finitely many components, each having only finitely many sides.

Theorem 9.2 (Lamination area) Area .j�j/D 0.

Proof Adding leaves in S � j�j, one can complete � to a foliation-with-singularities
completely filling S . The index theorem allows one to calculate the Euler characteristic
in terms of these singularities. The estimate thus obtained on the singularities alllows
one to calculate via (1), (2) and (3) the total area of S �j�j. It equals Area .S/. Hence
Area .j�j/D 0.
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10 Laminations binding a surface

A pair of geodesic laminations �1 and �2 is said to bind S if they satisfy the four
conditions of the following theorem.

Theorem 10.1 (Laminations binding a surface) For geodesic laminations �1 and �2

on S the first three of the following conditions are equivalent and imply the fourth.

(1) Each simple geodesic on S crosses a leaf of �1[�2 .

(2) Each simple geodesic ray on S crosses a leaf of �1[�2 .

(3) Each geodesic ray on S crosses a leaf of �1[�2 .

(4) Let �0 denote the lift of � to the universal cover H2 of S . Then each component
of H2� .j�0

1
j [ j�0

2
j/ is the interior of a compact, convex hyperbolic polyhedron

in H2 .

Proof That (3) ) (2) and (2) ) (1) is clear.

(1) ) (2): Let r denote a simple geodesic ray on S and r 0 a limit geodesic of
r (Section 8, Hyperbolic surfaces and limit geodesics). By (1), r 0 crosses a leaf of
�1[�2 . Hence, by Section 8, r crosses the same leaf of �1[�2 .

(2) ) (4): Each component C of S � .j�1j [ j�2j/ clearly has convex lifts in H2 .
We claim that C is simply connected. For otherwise C [ @C would contain a simple
closed geodesic J ; by (2) J would cross a leaf of �1 [ �2 and J would not lie in
C [@C , a contradiction. If a lift C 0 of C did not have compact closure in H2 , then C 0

would contain a geodesic ray r 0 . Since C is simply connected, the projection C 0! C

is a homeomorphism. Hence the image r of r 0 would be a simple geodesic ray in
S not crossing any leaf of �1 [ �2 . Hence C 0 has compact closure in H2 , and (4)
follows.

(2) ) (3): Let r denote a geodesic ray on S . Since (2) ) (4), any lift r 0 of r to
H2 intersects a leaf of �0

1
[ �0

2
. Hence r intersects a leaf of �1 [ �2 . If r does not

cross that leaf, then r coincides with that leaf, hence is simple, hence crosses some
leaf by (2).

Remark Easy examples, where �0
1

and �0
2

share a leaf that does not appear in the
boundary of any component of H2 n .j�0

1
j [ j�0

2
j/, show that (4) does not imply (1).

Theorem 10.2 (Neighborhoods at infinity) Suppose laminations �1 and �2 bind S .
Then each point x 2 S1

1 at infinity in B2 DH2[S1
1 has arbitrarily small Euclidean

neighborhoods in B2 bounded by the closure in B2 of a single leaf of �0
1
[�0

2
.
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Proof Since �1 and �2 bind S , �1 and �2 have no leaf in common. Hence no
leaf L1 of �0

1
and leaf L2 of �0

2
have a common endpoint at infinity; for otherwise

geodesic rays r1 and r2 in the projections of L1 and L2 to S would have a common
limit geodesic L (Section 8, Hyperbolic surfaces and limit geodesics) and L would be
a leaf common to �1 and �2 .

Let r denote a geodesic ray in H2 with infinite endpoint x . If possible, take r to
lie in j�0

1
j or j�0

2
j. Since �1 and �2 bind S , there exist leaves L1;L2;L3; : : : in

�0
1
[�0

2
such that Li crosses r in the Euclidean .1= i/–neighborhood of x . We claim

that Li ! x as i !1. Suppose not. Then some subsequence converges to a leaf
L of �0

1
[�0

2
with infinite endpoint x , say L in j�0

1
j. By the choice of r it follows

that r is contained either in j�0
1
j or in j�0

2
j. By the previous paragraph, since L is

contained in j�0
1
j, it is impossible that r be contained in j�0

2
j. Hence r is contained

in j�0
1
j. But then each Li is a leaf of �0

2
, hence L is contained in j�0

2
j. But this

contradicts the previous paragraph. Hence Li ! x as asserted, and the Li cut off
small neighborhoods of x in B2 as desired.

11 Measured laminations

A transverse measure on a geodesic lamination � is a positive measure dm defined on
local transversals to the leaves of �, invariant under local projection along the leaves of
� and positive and finite on nontrivial compact transversals to the leaves of �. Such a
measure lifts to a G.S/–invariant transverse measure on the inverse �0 of � in H2 , the
lifted measure also denoted by dm. A geodesic lamination with a transverse measure
is called a measured lamination.

If dm is a transverse measure on a lamination � and  W Œa; b�!H2 is any path, one may
define the integral

R
 dm W if X is a closed subset of H2 , define m.X / to be the measure

of the projection of X\j�0j into the leaf space of �0 ; let P DaDa0<a1< � � �<anDb

denote a partition of Œa; b�; define m.;P /D
Pn

iD1 m. Œai�1; ai �/�
Pn�1

iD1 m. .ai//;
take

R
 dm as the supremum of m.;P / over all partitions P of Œa; b�. The negative

term in m.P / avoids doubling the contribution to
R
 dm of a point lying on a leaf that

supports an atom of dm.

Given two points x and y of H2 , if  is the geodesic segment joining x and y , and
ı is any path joining x and y , then

R
 dm�

R
ı dm.

We present four theorems. The first two describe limitations on the leaves of a measured
lamination. The second two describe weak continuity properties of

R
 dm.
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Theorem 11.1 (Atoms and closed curves) If .; dm/ is a measured lamination on
S and L is a leaf of � carrying an atom of dm, then L is a simple closed curve.

Proof Otherwise, let R denote a limit geodesic of L in the sense of Section 8
(Hyperbolic surfaces and limit geodesics) and let X denote a compact transversal to
R. Then X intersects L infinitely often and

R
X dmD1 a contradiction.

Theorem 11.2 (Zero-angle) Suppose that .�; dm/ is a measured lamination on S ,
and suppose that r1 and r2 are distinct geodesic rays in H2 each compatible with �0 in
the sense that either ri \ j�

0j D ri or ri \ j�
0j D∅. Then if r1 and r2 have the same

endpoint x at infinity, and there is a neighborhood N of x in B2DH2[S1
1 such that

either

(1) no point of N \ j�0j lies in the open angle of zero measure between r1 and r2 ;
or

(2) exactly one leaf L of �0 intersects the closed angle of zero measure bounded by
r1 and r2 in N ; L has infinite endpoint x ; L is isolated and carries an atom of
dm: and the projection of L in S is a simple closed curve.

Proof Since r1 and r2 are compatible with �0 , N may be chosen so small that if L

is any leaf of �0 that intersects the closed angle between r1 and r2 in N , then L has
x as an infinite endpoint. If no leaf L of �0 intersects the open angle between r1 and
r2 in N , (1) is satisfied and we are done. Hence we suppose the existence of a leaf L

with infinite endpoint x containing an infinite ray r that lies strictly between r1 and
r2 in N .

The image p.r/ in S has a limit geodesic r 0 in the sense of Section 8 (Hyperbolic
surfaces and limit geodesics). Let X denote a short compact geodesic arc transverse to
some short geodesic subarc Y of r 0 in S . We may assume X \Y is a single point.
Arbitrarily short subsegments of X near X \Y lift to segments in H2 crossing the
entire angle from r1 to r2 in N . The integral of dm along each of these subsegments
is the same strictly positive number. If these segments may be chosen to be disjoint,
then

R
X dmD1, a contradiction. Otherwise we conclude that r 0 D p.r/, that r 0 is

isolated, and that r 0 carries an atom of dm. Hence, by Theorem 11.1 (Atoms and
closed curves), r 0 D p.L/ is a simple closed leaf. Any other leaf L0 satisfying the
properties of L must have projection p.L0/ with the same limit geodesic r 0 ; as above,
p.L0/ D r 0 . Two lifts of the same simple closed curve with a common endpoint at
infinity are equal. Hence LDL0 and (2) is satisfied.

Measured laminations satisfy the following two weak continuity properties.
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Theorem 11.3 (Continuity property 1) If (�; dm/ is a measured lamination and A a
positive constant, then there is a positive constant B such that each geodesic segment
 in H2 of length �A has integral

R
 dm� B .

Proof Otherwise, take segments i of length � A converging to a segment in the
interior of a segment Y;

R
i

dm!1. Let X denote a segment transverse to  . For
all i sufficiently large, each leaf of �0 hitting i hits  or X . Hence

1D lim
Z
i

dm�

Z
[X

dm<1;

a contradiction.

Theorem 11.4 (Continuity property 2) If .�; dm/ is a measured lamination, then
there is a positive number C such that, if i is any sequence of geodesic segments
converging to any geodesic segment  , then�

lim sup
Z
i

dm

�
�C �

Z


dm�

�
lim inf

Z
i

dm

�
CC:

Proof Use property 1 to find a positive number B such that each geodesic segment
of length � 1 has integral � B . Take C D 2B .

Let � be a geodesic segment in Int with length .�/ > length. / � 1. If Int
intersects j�0j, choose � to contain a point of j�0j.

Let C be a geodesic segment containing  in its interior with length .C/ <

length. /C 1.

Let X denote a geodesic segment transverse to  at a point of � with length.X / < 1.
If � intersects j�0j and does not lie in j�0j, take X � j�0j.

Case 1  � j�0j Note that
R
 dm �

R
X dm < B < C . For all i sufficiently large,

each leaf of �0 intersecting i also intersects X . Hence
R
i

dm�
R
X dm< B < C .

Hence
ˇ̌̌R
 dm�

R
i

dm
ˇ̌̌
< C .

Case 2 .Int / \ j�0j D ∅ Then for  and for all i , i sufficiently large, j�0j
intersects each of  and i in two segments of total length < 1. Hence by choice of
B;
R
 dm� 2B D C and

R
i

dm� 2B D C .

Case 3 .Int /\ j�0j ¤∅ and X � j�0j For all i sufficiently large, each leaf of �0

that intersects � also intersects i . HenceZ


dm�

�Z
�

dm

�
C 2B �

�Z
i

dm

�
CC:
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Also, for all i sufficiently large, each leaf of �0 that intersects i intersects C . HenceZ
i

dm�

Z
C

dm�

Z


dmC 2B D

�Z


dm

�
CC:

Cases 1, 2 and 3 exhaust the possibilities and complete the proof of Property 2.

12 Measured laminations binding a surface

Two measured laminations .�1; dx/ and .�2; dy/ are said to bind S if the associated
geodesic laminations �1 and �2 bind S in the sense of Section 10 (Laminations
binding a surface).

Theorem 12.1 (Laminations give good pseudometric on surface) Suppose .�1; dx/

and .�2; dy/ denote measured laminations binding S , and define

d�2
D dx2

C dy2

Then d� lifted to H2 defines a G.S/–invariant pseudo-metric � on H2 quasicompara-
ble with the hyperbolic metric dH .

Proof If x 2H2 , define �.x;x/D 0. If x and y are distinct points of H2 and  is
the geodesic segment joining x to y , define

�.x;y/D

Z


d�:

Then � clearly satisfies the conditions for a pseudometric: 0D �.x;x/; 0� �.x;y/ <

1; �.x;y/D �.y;x/, and �.x; z/� �.x;y/C �.y; z/.

The quasicomparability of � and dH entails the existence of positive constants K and
K0 such that

.�/ max.�; dH / >K0 ) .1=K/dH � � �KdH :

We prove the existence of K and K0 as follows.

By Theorem 11.3 (Continuity property 1) there is a constant D such that each geodesic
segment of dH –length not exceeding 1 has �–length not exceeding D . Thus if
dH .x;y/ > 1, with dH .x;y/D nC k , 0� k < 1, n� 1,

�.x;y/� .nC 1/D D
nC 1

nC k
DdH .x;y/� 2DdH .x;y/:

This proves the second inequality of formula .�/. The first inequality of .�/ follows
in an exactly analogous way from the following assertion: there is a positive integer N
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and a positive integer i such that each geodesic segment  of dH –length exceeding
N has �–length exceeding 1= i . Indeed, if the assertion is correct, let K0 >K > 2N i .
If �.x;y/ � dH .x;y/ >K0 , then dH .x;y/D .nC k/N , k � 1 positive and n � 1

integral. Since dH .x;y/ > n �N , our assertion implies that �.x;y/ > n � .1= i/ so that

dH .x;y/

K
<

nN C kN

2N i
D

nC k

2i
�

n

i
< �.x;y/:

This would prove the first inequality of formula .�/.

There are a number of steps in the proof of the assertion. Assume the assertion false.

(1) Fix N and for each i let  .N; i/ denote a geodesic segment of dH –length N and
�–length � 1= i . Without loss, the segments  .N; i/ converge to a segment  .N / of
dH –length N . By Theorem 11.4 (Continuity property 2)  .N / has �–length � C; C

a suitably chosen universal constant.

(2) Now let N vary. Without loss  .1/;  .2/; : : : converge to a geodesic ray  of
�–length � 2C , by Theorem 11.4 (Continuity property 2).

(3) We complete the proof by showing that every geodesic ray  has infinite �–length.
Indeed, let ı denote a limit geodesic for  . (Section 8, Hyperbolic surfaces and limit
geodesics). By Theorem 10.1 (Laminations binding a surface) item (3), ı crosses a leaf
of �0

1
[�0

2
. By the definition of limit geodesic,  crosses a fixed neighborhood of ı

infinitely often. Since the support of dx is j�0
1
j and the support of dy is j�0

2
j, it follows

easily that
R
 d�D1. This contradiction completes the proof of the theorem.

13 Pseudo-Anosov diffeomorphisms

A diffeomorphism � W S ! S is termed pseudo-Anosov provided that there exist
measured laminations .�1; dx/ and .�2; dy/ binding S and a positive number k > 1

such that �.j�i j/ D j�i j;
R
�./ dx D 1=k

R
 dx and

R
�./ dy D k

R
 dy for each

path  on S . The lamination �1 is called the stable lamination and �2 the unstable
lamination for � .

For the remainder of this section we fix a pseudo-Anosov diffeomorphism � with
associated laminations .�1; dx/ and .�2; dy/ and multiplier k > 1. We define d�2 D

dx2C dy2 as in Section 12 (Measured laminations binding a surface).

Theorem 13.1 (Stable laminations irreducible) The laminations �1 and �2 have no
simple closed leaves. The measures dx and dy have no atoms. The pseudometric
�D

R
d� is continuous on H2 �H2 .
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Proof The third assertion clearly follows from the second. The second assertion is, by
Theorem 11.1 (Atoms and closed curves) a consequence of the first. Hence, it suffices
to show that neither �1 nor �2 has a simple closed leaf.

Suppose, on the contrary, that �1 had a simple closed leaf L. The surface S cannot
contain infinitely many disjoint, nonparallel, nontrivial simple closed curves. Hence,
for some positive integer n;L and �nL are parallel closed geodesics, hence equal.
But then

0<

Z
L

dy D

Z
�n.L/

dy D kn

Z
L

dy <1;

a contradiction.

14 Cellular decompositions of two-manifolds

A decomposition G of a space X is simply a collection of disjoint nonempty sets whose
union is X . With each decomposition G of X there is an associated decomposition
space or identification space X=G and identification map � W X !X=G ; the elements
of G are the points of X=GI�.x/ is the unique element of G containing xIU �X=G

is open if and only if ��1.U / is open in X .

A decomposition G of X satisfies the upper semicontinuity property provided that,
given g 2G and V open in X containing g , the union of those g0 2G contained in
V is an open set in X . Equivalently, � is a closed map.

A decomposition G of a 2–manifold-without-boundary M is cellular provided G

is upper semicontinuous and provided each g 2 G is compact, connected and has a
nonseparating embedding in the Euclidean plane E2 .

The following theorem was proved by R L Moore [5] for the case M D S2 or E2 and
was extended to arbitrary 2–manifolds-without-boundary by Roberts and Steenrod.

Theorem 14.1 (Approximating cellular maps) Let G denote a cellular decomposition
of a 2–manifold M without boundary. Then the identification map � W M !M=G can
be approximated by homeomorphisms. In particular, M and M=G are homeomorphic.

For the remainder of this section we fix two geodesic laminations �1 and �2 of S

satisfying the following three conditions:

(1) �1 and �2 bind S .

(2) �1 and �2 have no isolated leaves.

(3) �1 and �2 each satisfy conclusion (1) of Theorem 11.2 (Zero-angle).
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We note that if �1 and �2 are the laminations associated with a pseudo-Anosov
diffeomorphism of S , then �1 and �2 satisfy (1), (2) and (3) by Theorems 11.2
(Zero-angle) and 13.1 (Stable laminations irreducible).

With �1 and �2 we associate three decompositions S2.�1/;S2.�2/;S2.�1; �2/ of S2 ;
a decomposition H2.�1; �2/ of H2 ; and a decomposition S.�1; �2/ of S , all satisfying
the conditions of R L Moore’s cellular decomposition theorem, as follows.

S2.�1/: Consider the 2–sphere S2 as the union of two copies B2
� and B2

C of the
closed disk B2 DH2[ S1

1 , B2
� intersecting B2

C in the common boundary S1
1 . Lift

�1 to �0
1

in H2 and consider �0
1

as a subset of the copy B2
� of B2 . An element g of

the decomposition S2.�1/ of S2 is of one of three types:

(i) g is the closure in B2
� � S2 of a component of H2

���
0
1

;

(ii) g is the closure in B2
� � S2 of a leaf of �0

1
not contained in an element of type

(i);

(iii) g is a singleton not contained in an element of types (i) or (ii).

No two elements of type (i) intersect by conditions (2) and (3) on �1 . No element of
type (i) intersects an element of type (ii) by condition (3) on �1 . Hence S2.�1/ is a
decomposition of S2 into disjoint, hyperbolically convex, hence cellular, compacta.
Upper semicontinuity is easily checked by means of the fact that j�j is closed in S .

S2.�2/: The construction is exactly like that of S2.�1/ except that j�0
2
j is taken to

lie in B2
C .

S2.�1; �2/: The elements are either of type (i) or (ii) in B2
� from S2.�1/, or of type

(i) or (ii) in B2
C from S2.�2/, or a singleton from S1

1 not contained in any other
element. That no two elements of S2.�1; �2/ intersect follows easily from Theorem
10.2 (Neighborhoods at infinity). Upper semicontinuity is checked as before.

H2.�1; �2/: We now consider both �0
1

and �0
2

in the same copy of H2 . An element
g of the decomposition H2.�1; �2/ is of one of three types:

(i) g is the closure in H2 of a component of H2�
�
j�0

1
j [ j�0

2
j
�
.

(ii) g is the closure in H2 of a component of j�0
1
j � j�0

2
j or of a component of

j�0
1
j � j�0

2
j not contained in an element of type (i).

(iii) g is the intersection of a leaf of �0
1

and a leaf of �0
2

not contained in an element
of types (i) or (ii).
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It follows from Theorem 10.1 (Laminations binding a surface) that the elements of
H2.�1; �2/ are cellular. It follows from condition (2) on �1 and �2 that no two
elements of H2.�1; �2/ intersect. Again upper semicontinuity is easily checked.

S.�1; �2/: We claim that each element g of H2.�1; �2/ has a neighborhood in H2

that is embedded in S by the covering map p W H2! S . Since p is a covering map,
it suffices to show that the element g itself is embedded by p . The key fact is that
no leaf of �1 or �2 is isolated. Using this fact one checks that, if � W H2! H2 is a
covering translation that takes a point x of g to a point y of g , then either � does not
leave �0

1
and �0

2
invariant, or � shows the existence of a closed geodesic not crossed

by any leaf of �0
1
[�0

2
, a contradiction.

Hence the decomposition H2.�1; �2/ of H2 induces a cellular decomposition S.�1; �2/

of S equivariantly covered by H2.�1; �2/.

Finally, if we make the additional supposition,

(4) �1 and �2 support transverse measures dx and dy without atoms,

then �D
R
.dx2Cdy2/1=2 induces a continuous pseudometric on H2 and S that pushes

down to a true metric on H2=H2.�1; �2/ and S=S.�1; �2/. Indeed, the elements of
the decompositions H2.�1; �2/ are precisely the equivalence classes of points at zero
distance from one another. The images in S=S.�1; �2/ of �1 and �0

2
are transverse

measured foliations on the closed surface S=S.�1; �2/ in the sense of [4].

We shall use these decompositions in describing the topology of the Peano curve.

15 The topology of the Peano curve

The Peano curve is exactly that induced by the decomposition obtained by collapsing
the two laminations. It is technically easier at this point to work with the two foliations
obtained by collapsing the complementary domains of the union of the two laminations.

The main theorem supplies the map j in the following commutative diagram:

B2
j // B3

H2 //

��

?�

OO

H2 � f0g
� � i // H2 �R

Q //

��

H3

��

?�

OO

S
� � h // M � M
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Vertical arrows are either inclusions or universal coverings; S is the hyperbolic fiber of
the fibered manifold M ; Q is the covering-induced quasi-isometry between H2 �R,
with the invariant metric

ds2
D .ktdx/2C .k�tdy/2C .log k � dt/2;

and H3 , with its standard hyperbolic metric; B2 and B3 are the natural compactifica-
tions of hyperbolic space that add the circle or sphere at infinity.

The restriction f Dj j@B2 W @B2!@B3 is the Peano curve that we wish to analyze more
precisely. We compactify H2�R in the following way: H2�RD Int.B2�I/; H2D

IntB2; RD IntI; I D Œ�1;C1�. Then the analysis of f proceeds in the following
steps.

(1) Extend f W .@B2 D @.B2 � f0g//! @B3 to a map f � W @.B2 � I/! @B3 .

(2) Define a cellular, upper semicontinuous decomposition G of the 2–sphere @.B2�

I/ that shrinks the leaves of the two foliations as asserted.

(3) Show that f � W @.B2 � I/ ! @B2 factors through the decomposition space
projection p W @.B2 � I/! @.B2 � I/=G :

@.B2 � I/
f � //

p

��

@.B3/

@.B2 � I/=G � @.B2 � I/=G

q

OO

(4) Show that q is a homeomorphism.

These four steps show that the topological model for the Peano curve is as asserted.

Step 1 Definition of the extension f �

If p is a point of .@B2/�I , let r.p/ denote any ray in H2�R with infinite endpoint at
p . If p is an element of H2�f�1;C1g, let r.p/ denote a vertical ray in H2�R with
infinite endpoint at p . Then Q.r.p// is a ray in H3 that clusters at some nonempty
set in @B3 . Define f �.p/ to be that set.

At this point we know from the proof of the main theorem that f � is a well-defined
continuous function when restricted to .@B2/� I . We do not know that it is single-
valued on H2�f�1;C1g, nor do we know that it is continuous on B2�f�1;C1g.
These defects will be cared for as we examine Step 3.
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Step 2 The cellular decomposition

The appropriate cellular, upper semicontinuous decomposition G of @.B2 � I/ is
defined as follows. We lift the transverse measured foliations of our pseudo-Anosov
diffeomorphism of S to H2 D IntB2 via the inverse of the universal covering map
IntB2 DH2! S and compactify by adding all cluster points at infinity to each leaf.
Let F1 and F2 denote these compactified foliations. (We may assume that dx is the
measure transverse to F1 and dy is the measure transverse to F2 .) If L is a leaf of
F1 , then a segment of L has zero measure with respect to dx and has length measured
entirely by dy . Recalling the invariant metric

ds2
D .ktdx/2C .k�tdy/2C .log k � dt/2;

on H2�R, where t is the standard variable and dt is the standard measure on the real
line, IntI , we note that this measure contracts as this leaf L is pushed toward t D1

through the product structure on H2 . Let the union

.L�1/[ ..@L/� I/

be an element of G . Similarly, if L0 is a leaf of F2 , then the leaf contracts in measure
as it is pushed toward t D�1. Let the union

.L0 ��1/[ ..@L0/� I/

be an element of G . Elements of G of these two types fill up all of .@B2�I/ with the
exception of a dense Gı subset of .@B2/� I . Each vertical fiber p � I of that subset
is also to denote an element of G .

Preamble to steps 3 and 4: The quasi-isometric extension principle

Our arguments are based on the principles:

.�/ Quasigeodesic sets near infinity have uniformly small Euclidean diameter. In
particular:

.��/ If hyperbolic k –space is mapped quasi-isometrically into hyperbolic n–space,
then the mapping may be extended continuously so as to map the k � 1–sphere
at infinity injectively into the .n� 1/–sphere at infinity.

We outline the easy argument that deduces .��/ from .�/:

If p is a point at infinity in hyperbolic k –space, let L denote a geodesic or quasi-
geodesic ray with infinite endpoint at p . The images of terminal subrays of L have,
by principle .�/, ever decreasing Euclidean diameter in hyperbolic n–space. Hence
they must cluster at a unique point p0 of the .n� 1/–sphere at infinity. We define p0

as the image of p .
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By examining the quasi-isometric images of decreasing half-k –spaces containing p ,
one easily deduces from .�/ the continuity of the extended function.

In order to prove that the extended function is injective, one only need consider a
geodesic L joining any two points, p and q , in the ..k � 1/–sphere at infinity. The
quasi-isometric image of L lies in a bounded hyperbolic neighborhood of the geodesic
L0 in hyperbolic n–space joining the images, p0 and q0 , of p and c respectively. If p0

and q0 coincide, it follows that the image of L lies at infinity in hyperbolic n–space, a
contradiction.

Step 3 Factoring f � through the decomposition space projection

With the quasi-isometric extension principle in hand, we are ready to show

(i) f � is well-defined (that is, single-valued);

(ii) f � factors through the decomposition space projection;

(iii) f � is continuous.

Proof of (i) Let p 2H2 . Since a vertical line LD fpg � .�1;1/ is isometric with
hyperbolic 1–space, Q.L/ lies within a bounded distance of a true hyperbolic geodesic
in H3 and, by the quasi-isometric extension principle, induces an embedding of its two
points at infinity. This establishes that f � is single valued at the points where that had
not previously been established.

Proof of (ii) Take a point p in H2 . The point p is in a unique fiber L1 of the
compactified foliation F1 , and in a unique fiber L2 of the compactified foliation F2 .
We first consider the point pC D fpg �1. Let L0

1
denote a maximal arc in L1 that

passes through p . The vertical disk L0
1
� I has induced metric of the form

ds2
D .k�tdy/2C .log k � dt/2;

since the metric dx is 0 along fibers of F1 . The substitution, T D kt , transforms this
metric into the metric

ds2
D .dy2

C dT 2/=.T 2/;

the standard metric for hyperbolic 2–space in the upper half-plane model. Hence the
quasi-isometric extension principle applies to the restriction of Q to this set. Hence, if
C is the complement in this hyperbolic 2–space of a very large circle perpendicular to
the boundary of that half-space model, then the image of C in hyperbolic 3–space is
quasigeodesic and near infinity, hence of small Euclidean diameter. Letting C approach
infinity, we find that there is a unique limit point at infinity in hyperbolic 3–space to
which we should map pC . Furthermore, that point is the same point to which we have
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already mapped .@L0
1
/� I . For the point p� D fpg � �1, one uses the fiber L2

of F2 through p . One concludes that each element of G is identified under f � to a
single point of @B3 . This proves (ii).

Proof of (iii) The continuity of the extended map f � of f follows from the facts that

(iv) the decomposition space of .@B2/� f0g induced by the decomposition G of
@.B2�I/ is naturally homeomorphic with the decomposition space of @.B2�I/

by G ; and

(v) f is continuous.

(Fact (iv) is evident since every element of G intersects .@B2/� f0g; fact (v) was the
content of the main theorem.)

Step 4 q is a homeomorphism

We recall the argument of the preceding paragraph which considered vertical disks:
Take a maximal arc L0

1
in a single leaf L1 of the compactified foliation F1 . The

vertical disk L0
1
� I has induced metric of the form

ds2
D .k�tdy/2C .log k � dt/2;

since the metric dx is 0 along fibers of F1 . The substitution, T D kt transforms this
metric into the metric

ds2
D .dy2

C dT 2/=.T 2/;

the standard metric for hyperbolic 2–space in the upper half-plane model. The quasi-
isometric extension principle applies to the mapping Q restricted to this 2–space and
shows that f � embeds the circle at infinity. This embedding shrinks the entire element

..@L01/� I/[ .L01 � fC1g/

of G to a single point in @B3 and identifies precisely the endpoints of the arc

L01 � f�1g

in forming an embedded simple closed curve in @B3 .

This argument shows that we have a large family of disks embedded by the union of
the mappings Q and f � . These embedded disks will suffice to show that the factor
mapping q is 1� 1, hence an embedding.

We have defined for every point p of @.B2 � I/ a ray r.p/ in H2 �R with infinite
endpoint at p such that the mapping QW H2 �R! H3 takes the ray to a set in H3
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that clusters only at f �.p/ in the 2–sphere at infinity. We shall find this ray useful
in our proof that f � identifies two points of @.B2 � I/ only if they lie in the same
element of G .

Let a and b be two points of @.B2�I/ that are identified by f � . Since every element
of G intersects .@B2/� I and since f � identifies each element of G to a point, we
may assume that a and b are in the set .@B2/� I .

We claim that

Fact 1 There are points a0 and b0 in H2�f�1;C1g arbitrarily close (with respect
to the hyperbolic metric dH or the pseudometric ds ) to a and b , respectively,
such that all of a, a0 , b and b0 are identified by f � .

Fact 2 The points a0 and b0 lie in the same element of G .

Assuming these two facts for the moment, then taking limits as a0 approaches a and b0

approaches b , we find that a and b are in a common element of G . Hence it suffices
to establish these two facts.

Proof of Fact 1 Let L be a leaf of one of the two foliations whose corresponding
vertical disk lies near the vertical fiber through a and separates a from b . The image
of L is a very small embedded disk in the compactification B3 of H3 that separates
terminal rays of the image of r.a/ from terminal rays of the image of r.b/. But
f �.a/D f �.b/ is in the closure of both the image of r.a/ and of the image of r.b/.
It follows that f �.a/ lies in the boundary of that separating disk. The preimage of that
boundary point may always be taken to lie in the interior of one of the open disks at
the end of B2 � I . The preimage may be taken as a0 . One obtains b0 in a similar way.

Proof of Fact 2 Let aC be the projection of a0 into H2 �1 and a� the projection
into H2��1. Define bC and b� similarly. We assume that a0 D aC . We shall show
that:

Fact 3 The fiber of F1 �1 that contains aC also contains bC .

Assuming Fact 3 for the moment, we complete the proof of Fact 2. Fact 3 implies
that aC and bC are identified and lie in the same element of G . If b0 D bC , then we
are done. If not, then b0 D b� , and we discover that b� is identified to aC , which is
identified to bC . But that says that bC and b� are identified, a contradiction to the
quasi-isometric extension principle.

Proof of Fact 3 We first note that the leaf La of F2�1 through aC does not contain
bC , for that would imply that aC is identified with no other point of @.L� I/ under
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f � in particular is not identified with b0 , a contradiction. Let Lb denote the leaf of
F2�1 that contains bC . The leaves of F2�1 that separate aC from bC in B2�1

are linearly ordered, and form an open arc of leaves with La and Lb as endpoints of
that arc. The leaf K of F1�1 that passes through aC intersects a last of these leaves
in the linear order. We claim that this last leaf intersected is Lb . Suppose not. Let L0

be the leaf. The leaf L0 has maximal simple subarcs A and B having the property that
A separates both b0 and L0nA from a0 , while B separates both a0 and L0nB from b0 .
The argument for Fact 1 shows that both A� I and B � I contain a boundary point
identified with both a0 and b0 , where the first of these may be taken in K . Since K

does not have a point at infinity in common with a leaf of F2 �1, that point must
lie IntA. But no point of IntA is identified with any other point of L0 � I . Hence the
point in IntA must coincide with point in B . But the leaf through any point in IntB
continues into every domain of H2 �1 whose closure contains that point. But the
continuation intersects further leaves that separate aC and bC , a contradiction. This
completes the proof that K hits Lb , in fact at an interior point b00 of Lb . Hence b0

and b00 are identified to a0 . Thus, b0 D b00 and b00 D bC . This proves Fact 3.

16 The figure-eight-knot complement

When the surface S is not a closed, orientable, hyperbolic surface, but rather a punctured,
orientable, hyperbolic surface, we conjecture that the main theorem is still true. As
experimental evidence, we explain how to create computer approximations to the
resulting 2–sphere-filling Peano curve in the case where S is a once-punctured torus
T .

We begin with the simplest case, namely, the complement in S3 of the figure-eight
knot K , Figure 2. The punctured torus T arises as the Seifert surface spanning K .

Figure 2: The figure-eight knot

We first describe an explicit hyperbolic structure on the 3–manifold M D S3 nK . If
we push two 3–cells together, one from above K and one from below K , so as to fill
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d

Figure 3: The figure-eight knot complement as an identification space created
by sewing together two 3–cells

S3 nK , we find that M is an identification space of two 3–cells C1 and C2 , from each
of which four vertices (boundary points) have been removed, Figure 3, under the face
identifications: �

1 c 2 d 4 a

20 c 40 d 10 a

� �
2 b 3 d 4 c

30 b 40 d 20 c

�
�

1 b 3 d 4 a

30 b 40 d 10 a

� �
1 c 2 b 3 a

20 c 30 b 10 a

�
�

1 b 3 a

30 b 10 a

� �
4 c 2 d

20 c 40 d

�
The last two face pairs are digons that may be collapsed to arcs. When this is done, the
cells become ideal tetrahedra �1 and �2 , Figure 4, with face identifications:�

1 2 4

20 40 10

� �
2 3 4

30 40 20

� �
1 3 4

30 40 10

� �
1 2 3

20 30 10

�

1

2

3

4

10

20

30

40

Figure 4: The figure-eight knot complement realized as the union of two ideal tetrahedra
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The resulting edge cycles have length 6:

12! 2040! 43! 1040! 42! 2030! 12

14! 2010! 13! 3040! 23! 3010! 14

There is an ideal tetrahedron � in H3 that is regular: Indeed, the regular Euclidean
tetrahedron with vertices

.0; 0; 1/ .0; 2
p

2=3;�1=3/ .�
p

6=3;�
p

2=3;�1=3/ .
p

6=3;�
p

2=3;�1=3/

is inscribed in the unit ball B3 and may be considered as regular ideal hyperbolic in
the Klein model.

The dihedral angles of � are �=3: Indeed, pass to the upper-half-space model for
H3 with one vertex of � at 1. The hyperbolic isometry that fixes 1 and cyclically
permutes the other three vertices (existence obvious in the Klein model) must be a
Euclidean isometry of order 3, hence a rotation of 2�=3. We conclude that the three
planar vertices form an equilateral triangle. The three vertical dihedral angles emanating
from 1 are therefore obviously �=3.

We may thus realize M as the union of two regular ideal hyperbolic tetrahedra
and the face identifications as hyperbolic isometries of ideal triangles. Since the edge
cycles have length 6, the total hyperbolic angle at each of the two edges of M is
6 � .�=3/D 2� . We thus obtain a smooth, complete hyperbolic structure on M , with
no singularities.

We obtain T �M as follows: The two faces
�
1 3 4

�
D
�
30 40 10

�
and

�
1 3 2

�
of

the tetrahedron �1 form a quadrilateral Q (with ideal vertices) whose opposite sides
are identified in pairs to form a punctured torus t . Since there are only two edge classes
in M , the diagonal

�
1 3

�
of Q is actually also identified with one of the sides so that

t is singular. If Int.Q/ is pushed into Int.�1/, this singularity of t is removed, and we
obtain the punctured torus T . Usually, however, we shall work directly with t .

We identify the universal cover M 0 of M with the upper-half-space model of H3

and lift t to t 0 � H3 as follows: We lift one copy of �1 D
�
1 4 2 3

�
to � 0

1
D

.1; 0; 1; ! D .1=2/� .
p

3=2/i/, and we lift one copy of QD .1 3 4/[ .1 2 3/� @�1

to Q0 D .1! 0/[ .1 1!/ � @� 0
1

. These normalizations completely determine the
entire triangulations of M 0 DH3 by the lifts of �1 and �2 and the triangulation of the
universal cover t 0 of t containing Q0 .

We concentrate on those 3–simplexes of M 0 and those 2–simplexes of t 0 contain-
ing 1: The former create a “plane” of 3–simplexes projecting naturally to an equi-
lateral triangulation of the complex plane C � @H3 , and the latter create a “zig-zag
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line” of 2–simplexes projecting naturally to a zig-zag line in the 1–skeleton of the
triangulation of C ; see Figure 5.

1

12

3

3

4

4

10

20 40
30

30

10 40
203

4 2

3

2 1
4

30

10 40
20 3

2 1
30

10
40 20

1

2 4
10

30 20
40 1

4 3
2

10

30 20
40 1

4 3
10

20 40
30 3

4 2

Figure 5: Projections into the complex plane of the tetrahedra and the trian-
gles containing 1
The zig-zag line associated with the figure-eight knot complement

Each triangle represents a tetrahedron lifted from either �1 or �2 ; the central number
indicates the vertex at1. The zig-zag curve appears to be periodic of period 3 until one
examines the labels that reveal the actual period of 6. Each of the six vertices in a period
represents one of the six directed edges dual to the 1–skeleton of the triangulation of t ;
see Figure 6.

Base vertex Base vertex Base vertex

3 1
23

1

2

3

12
31

2

3

1

210 40

30 10

40 30

10

40

30 10 4030 10 40

30

Figure 6: The identifications forming a period of a zig-zag curve (in the abstract)

Theorem 16.1 (Zig-zag curves) The zig-zag curve determines t 0 .
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Proof Order the triangles of t 0 into subcollections t 0
0
; t 0

1
; t 0

2
; � � � where t 0

0
consists

of those triangles of t 0 containing 1, t 0
1

consists of those remaining triangles that
share an edge with a triangle from t 0

0
, and, in general, t 0n consists of those remaining

that share an edge with a triangle from t 0
n�1

, etc. [Note that in the abstract zig-zag
curve above, in the second and fourth fundamental domains, the triangles .1 2 3/ and
.10 30 40/, respectively, belong to t 0

1
and not to t 0

0
.]

We have already placed each triangle of t 0
0

. Assume the triangles of t 0
n�1

placed and
assume that �1 is a triangle of t 0n sharing an edge with a triangle �0 of t 0

n�1
. There

is a pair �0
0
[�0

1
in the placement of t 0

0
(one of six models) corresponding exactly

to the union �0 [�1 so that the common edge comes from 1. There is a unique
hyperbolic isometry taking �0

0
to �0 that preserves the correspondence. The image

of the fourth vertex completes the placement of �1 .

Construction The image of t 0n has an “outer edge” furthest from the image of t 0
0

in t 0 . It projects naturally to a polygonal curve in the complex plane C . This curve
approximates our 2–sphere-filling Peano curve.

17 Punctured torus bundles over S1

Let S denote the once-punctured torus, � W S ! S a pseudo-Anosov diffeomorphism
and M the resulting 3–manifold. By Thurston [7] or Sullivan [6], M admits a complete
hyperbolic metric of finite volume. We may therefore identify the universal cover M 0

of M with hyperbolic 3–space H3 . We may also identify the universal cover S 0 of
S with hyperbolic 2–space H2 . As noted before, the lift of S 0 D H2 to M 0 D H3

has the entire 2–sphere S2 D @H3 as its space at infinity. We conjecture that the map
S 0 DH2!H3 extends continuously to a map B2! B3 so that the circle S1 D @H2

maps continuously onto the 2–sphere S2 D @H3 . [Note added, 2007: This conjecture,
in the case discussed in this section, is now known due to the work of Minsky and
McMullen.] Assuming this conjecture, we describe the conjectural topological nature
of the Peano curve and method for approximating this curve geometrically.

Topological description of the Peano curve Let � and � denote the measured
foliations associated with the pseudo-Anosov diffeomorphism � . Lift � to a foliation
�0 of H2 and complete �0 by adding to each leaf ` of �0 its limit points in the circle
S1 D @H2 at infinity. View B2 D H2 [ @H2 as the central slice in the 3–ball B3 .
Project the completed �0 upward onto the northern hemisphere B2

C of S2 D @B3 to
obtain a foliation �00 . Lift � to a foliation �0 of H2 , complete �0 as �0 was completed,
and project the completed � downward onto the southern hemisphere B2

� of S2 to

Geometry & Topology, Volume 11 (2007)



1350 James W Cannon and William P Thurston

obtain a foliation �00 of B2
� . Now declare any two points of S2 to be equivalent if

they lie in either a single leaf of �00 or a single leaf of �00 . Extend this notion of
equivalence to an equivalence relation. In contrast to the case where S was a closed
surface, corresponding to each ideal vertex of S 0 , there will be an equivalence class
that is a union of a countable infinity of completed leaves, put together at the ideal
vertex so as to form a spider, with infinitely many arms that lie alternately in B2

C and
B2
� . Nevertheless, the equivalence classes will form a cellular upper-semicontinuous

decomposition of S2 , each element of which intersects the equator S1 . By R L Moore’s
theorem, the quotient space is a 2–sphere, and the equator of the original 2–sphere
maps onto the image 2–sphere continuously. This quotient map gives the conjectured
topological description of the Peano curve.

The zig-zag curve associated with S 0 �M 0 DH3 As with the figure-eight knot, a
fundamental domain for S may be realized as an ideal topological quadrilateral that is
the union of two ideal triangles. We may assume that these two triangles lift to two
ideal triangles in hyperbolic space so that the entire surface S 0 is triangulated by ideal
triangles. (Again, there may be singularities which can be ignored.) We use the upper
half-space model of H3 , and we place one of the ideal vertices of S 0 at infinity. We let
T0 be the collection of triangles in S 0 that contain that particular vertex. Each projects
to a line segment in the plane at infinity. These segments again form a zig-zag curve
Z in the plane which has period 6. The curve Z completely determines the surface
S 0 by simple algorithm, as in the case of the figure-eight knot. Hence one may use the
curve Z to approximate the Peano curve. Thus it remains only to describe how one
might find the curve Z .

Finding the zig-zag curve Z We find the zig-zag curve associated with M by
analyzing the monodromy map � . Any two homeomorphisms of S that are homotopic
determine the same manifold M . Hence we seek to understand � as an element of the
orientation preserving mapping class group of the punctured torus. This mapping class
group is isomorphic to SL.2;Z/.

The connection of SL.2;Z/ with homeomorphisms of the punctured torus S is
realized in the following way. Each element of SL.2;Z/ is a 2� 2 integer matrix of
determinant 1. It defines a linear homeomorphism of the plane R2 which permutes the
elements of the integer lattice Z2 and pushes down to a homeomorphism of the torus
T D R2=Z2 and the punctured torus S that is the complement in T of the image of
the lattice Z2 .
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The group SL.2;Z/ is generated by two elements, called L and R (left and right)
that have the following descriptions as matrices:

LD

�
1 0

1 1

�
and RD

�
1 1

0 1

�
Thus we may assume that � is given as a word in L and R.

We may lift a natural two-ideal-triangle triangulation T of S to H3 to obtain an ideal
triangulation T 0 of one lift of S , and we may lift T to R2 to obtain an ideal triangula-
tion T 00 of R2 nZ2 . We examine the action of L and R on these triangulation.The
matrices L and R act on the triangulation of R2 as in Figures 7 and 8.

origin

L R

.1; 1/

.1; 2/

.0; 1/

.1; 0/ .1; 0/

.0; 1/ .1; 1/ .1; 1/ .2; 1/

Figure 7: The action of L and R on the ideal triangulation

Figure 8: The effect of the transformation R
Left: An old fundamental domain subdivided by dotted line into two ideal
triangles
Right: A new fundamental domain subdivided by dotted line into two new
ideal triangles Notice the implied tetrahedron.

The vertices of the triangulation T 00 remain unchanged, but the fundamental quadrilat-
eral is skewed by R or by L . In H3 , the ideal vertices of T 0 remain unchanged, but
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the pair of triangles in T 0 viewed as fundamental domain changes. The two triangles
used as new fundamental domain form two of the four sides of an ideal tetrahedron.
One replaces those two triangles by the complementary two sides of the tetrahedron and
extends equivariantly to all similar pairs. As a consequence, the surface T 0 changes,
as does the zig-zag curve.

Composing the actions of the various letters R˙1 and L˙1 in the expression of � , one
moves the zig-zag curve to a new position that is the exact image of the old under � ,
where � is considered as an element of the Kleinian group �1.M /. Since � must be
a parabolic element fixing 1, the two curves must be parallel. In the next paragraph,
we describe exactly how one can calculate the new curve after action of R or L. The
procedure is outlined in Figure 9.

Z:

LZ:

RZ:

A�1 A0 A1 A2 A3 A4 A5 A6 A7

A0 B1 A1 A3 C1 A4 A6 B2 A7

A�1 D1 A0 A2 E1 A3 A5 D2 A6

30 1 10 3 40 2 30 1

10 40 3 2 2 1 1030 10 40 3 23 2 1
40 30

30 10 40
1 3

Figure 9: Actions of R and L on a zig-zag curve Z : Letters label the
vertices of Z in the plane. Numbers label the vertices of the fundamental
domain of the punctured torus. Vertices at the top are at infinity. Solid lines
delineate copies of the fundamental domain. Dotted lines divide those copies
into triangles.

The zig-zag curve is periodic of period 6. A single period involves four lifts of the
quadrilateral that is the fundamental domain. Five lifts are pictured in the diagram. The
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dotted lines divide the five quadrilaterals into triangles. Notice that the central lower
vertex of the second and fourth lift are not vertices of the zig-zag curve.

The action of L removes from a period the vertices labelled A2 and A5 and inserts
new vertices B1 and C1 , as pictured. The action of R removes vertices A1 and A4

and inserts new vertices D1 and E1 , as pictured.

The new vertices become the base vertices of the image diagram.

The order in which one composes these actions is important. If �D�1ı�2ı� � �ı�k , as
a standard right-to-left composition of linear maps or multiplication of matrices, where
each �i is either R˙1 or L˙1 , then, as action on zig-zag curves, one must compose
from left to right (column operations on the bases for a planar lattice). Failure to notice
this distinction can be very confusing. Thus, for example, with the complement of
the figure-eight knot, where � DL ıR, the action on zig-zag curves is Action.R/ ı
Action.L/.

Our task is simply to describe how the new vertices B1 , C1 , D1 and E1 are found.
Since the new vertices are vertices of the original lift t 0 of t , they may be found by
equivariance: one maps one triangle of a fundamental domain by the appropriate linear
fractional transformation, and the fourth vertex will be carried to the new vertex. (Then,
of course, one pushes the surface across the four-vertex tetrahedron to find the new
surface and new zig-zag curve.) Each of the four linear fractional transformations
needed has the same form: the image and preimage of 1 are prescribed, and the image
of one other point is prescribed. We describe the transformation as a permutation, the
upper row giving the three domain points, the lower row giving the corresponding
image points. Here is the common form:�

˛ ˇ 1

1  ı

�
D
ız� ıˇC  .ˇ�˛/

z�˛

We require four of these maps:�
A3 A2 1

1 A1 A0

�
D

A0z�A0A2CA1.A2�A3/

z�A3

W A1 7! B1�
A1 A2 1

1 A3 A4

�
D

A4z�A4A2CA3.A2�A1/

z�A1

W A3 7! C1�
A2 A1 1

1 A0 A�1

�
D

A�1z�A�1A1CA0.A1�A2/

z�A2

W A0 7!D1�
A5 A4 1

1 A3 A2

�
D

A2z�A2A4CA3.A4�A5/

z�A5

W A3 7!E1
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The first takes A1 to B1 . The second takes A3 to C1 . The third takes A0 to D1 , the
second takes A3 to E1 .

How does one find the zig-zag curve in general? Periodicity allows one to identify the
zig-zag curve with six complex numbers, hence as a point of complex six-dimensional
space C 6 . Both R and L, hence also the monodromy map � , act on zig-zag curves,
hence on the space of all zig-zag curves. The desired zig-zag curve is a fixed point
under this action. Starting with the known solution to the fixed point problem for the
figure-eight knot, one can work one’s way toward longer words in R and L by means
of Newton’s method.

Z Action.L/.Z/ Action.R/ Action.L/.Z/
= Action.LR/.Z/

Figure 10: Figure-eight knot – zig-zag curve and its tranforms by the holo-
nomy � DL ıR

Note that the final image is parallel to Z . Each move is an equivariant push
across a tetrahedron, where the tetrahedron is indicated by a shaded triangle.
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