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Examples of exotic stratifications

BRUCE HUGHES

LAURENCE R TAYLOR

SHMUEL WEINBERGER

BRUCE WILLIAMS

We produce examples of manifold stratified pairs in which the lower strata do not
have neighborhoods that are mapping cylinders of fiber bundles, or even block
bundles. Moreover, the examples do not improve in this regard under stabilization by
products with tori. The examples are locally conelike and the lower strata do have
neighborhoods which are mapping cylinders of manifold approximate fibrations. They
are constructed by combining the classification of manifold approximate fibrations
with the authors’ classification of neighborhood germs.

57N80; 19J99, 55R65, 57N55

1 Introduction

This paper is about the glue that holds together stratified spaces. Stratified spaces are
spaces that are made up out of manifold pieces; that is, one has a space X that is
decomposed into subsets, each of which is an open manifold and which “fit together
nicely.” The basic examples one has in mind are algebraic varieties and quotients of
group actions, but it is quite reasonable and occasionally useful to think of manifolds
with boundary or manifolds together with embedded (or immersed) submanifolds as
examples as well.

But, while one might have mental pictures of these examples, to some extent, just saying
“quotient of a group action” or “embedded submanifold” really begs the geometric
question. What kind of regularity shall we assume that the action or the embedding
has? The theory of Whitney stratified spaces (see, eg Whitney [44], Thom [38] and
Mather [28]) is based on modeling on the theory of smooth embedding and smooth
group actions, where one has a good bundle neighborhood (according to the tubular
neighborhood theorem). One assumes that each open manifold stratum in X has a
neighborhood, which is given a bundle structure.

For instance, even nice locally flat topological manifolds do not necessarily have bundle
structures. A theory adequate for (and doubtlessly modeled on) PL topology was
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introduced by Browder and Quinn [7], and is quite similar to the Whitney theory, but
essentially replaces the bundles by block bundles. We will call this an sss = strong
stratification structure. However, even this is not enough for topological applications:
even if one assumes that a group action is locally linear (ie each orbit has an invariant
neighborhood which is equivariantly homeomorphic to an open subset of a representa-
tion space), the quotient space need not have an sss. Moreover, ssss are not unique: had
they been, there would be no possibility for the celebrated phenomenon, discovered by
Cappell and Shaneson [8], of nonlinear similarity of linear representations; DeRham’s
original proof that linear representation spheres are not PL conjugate only made use
of the possibility of deleting in a well defined fashion open regular neighborhoods
of strata. Ssss enable one to have a completely straightforward theory of Whitehead
torsion, and h–cobordism.

In this paper we shall be interested in weakly stratified (or homotopically stratified)
spaces, defined initially by Quinn [32], although our examples will also be CS spaces of
Siebenmann [36]. Both of these are nice topologically invariant notions, but the latter
are a bit less flexible than the former. These spaces are as topologically homogeneous
as one could hope: any two points in the same component of a pure stratum can be
moved to one another by a homeomorphism of X isotopic to the identity. Typically, any
class of space defined by a local homeomorphism condition will sit in the framework,
but often compactifications of covers and similar “wild” constructions will also have
enough homological and homotopical control to fit into, at least, Quinn’s framework.

The work of Anderson and Hsiang [2; 4] (which predated Quinn’s definition, and
hence directly addresses triangulation) shows that, in some sense, the whole difference
between these theories can be attributed to the algebraic K–theory of the fundamental
groups of various links of strata in one another. Thus, for instance, in the situation of
locally flat embeddings, an sss does exist and is unique, because Wh1.e/D 0D eKn.e/

for n< 1.

It is a general yoga that algebraic K–theory obstructions tend to die when one takes
products with a circle; if there is a series of them one could imagine the need to take a
product of several circles: after crossing with a circle, h–cobordisms become products,
finitely dominated complexes become finite, open manifolds with tame ends can be
given (canonical) boundaries, and at the cost of using a number of circles, block bundles
become bundles (see Weiss and Williams [43]). The main result of this paper is that
even for the very simplest stratified spaces with just two strata, this fails for the issue
of a finding an sss.

Main Theorem For every m > 5, there is a locally conelike stratified space X of
dimension m, with singular set a circle, and which has no sss (and certainly no Whitney
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stratification) even after crossing with any torus. Moreover, X can be chosen so that
the singular circle possesses a mapping cylinder neighborhood.

It follows from the theory of Hughes, Taylor, Weinberger and Williams [18] that
there is no manifold M so that M �X has an sss. Our proof combines the teardrop
neighborhood theorem of [18], with the classification of approximate fibrations from
Hughes, Taylor and Williams [19], the classification of bounded concordances from
Anderson and Hsiang [3; 4], known calculations of Whitehead and K–groups, and
results of T Lawson on inertial h–cobordisms [26].

A different approach to these results could be obtained by analogy to the theory of
Rothenberg characteristic classes from Cappell and Weinberger [9]; these were defined
in the PL context and measured the obstruction to concording a PL action with manifold
fixed point set to one which is PL homogeneous: the former all have homotopy stratified
structures and the latter are all sss. They take values in the (ordinary!) cohomology of
the fixed set with coefficients in the Tate cohomology of the group acting. In our setting,
the classes would be associated to the Tate cohomology of a truncated (nonconnective)
Whitehead spectrum associated to the fundamental group of the holink. Whatever
advantages there might be to such a development, brevity is not one of them; we hope
that the current treatment is both more direct and more broadly accessible.

This paper is organized as follows. The Anderson–Hsiang theory and its relation to
inertial h–cobordisms are recalled in Section 2. The theory of controlled homeomor-
phisms and the Hughes–Taylor–Williams manifold approximate fibration classification
are discussed in Section 3. That section also explains how the Hughes–Taylor–Williams
classification interacts with the classical classification of fiber bundles and the special
form that those classifications take on when the base is the circle S1 . The classifications
are combined with known calculations in Section 4 in order to produce exotic manifold
approximate fibrations over S1 ; that is, manifold approximate fibrations that are not
controlled homeomorphic to fiber bundles even after euclidean stabilization. Finally,
these exotic manifold approximate fibrations are combined with the Hughes–Taylor–
Weinberger–Williams neighborhood germ classification in Section 5 in order to produce
the examples in the Main Theorem above.
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2 Anderson–Hsiang theory and inertial h–cobordisms

In this section we recall the theory of Anderson and Hsiang [3; 4] that relates bounded
concordances and bounded homeomorphisms, and give their calculation of the compo-
nents of the space of bounded concordances. This is important for us because manifold
approximate fibrations are classified by bounded homeomorphisms (see Section 3) and
neighborhood germs are classified by manifold approximate fibrations (see Section 5).
This section also contains a purely algebraic fact (Lemma 2.6) about interlocking exact
sequences that we will encounter.

For the remainder of this section, let F denote a closed connected manifold of dimension
n. Let TOPb.F�Ri/ denote the simplicial set of bounded homeomorphisms on F�Ri

so that a k –simplex of TOPb.F�Ri/ consists of a homeomorphism hW F�Ri��k!

F �Ri ��k such that h is fiber preserving over �k and bounded in the Ri –direction.
This latter condition means there exists a constant c > 0 such that p2h is c–close to
p2 where p2W F �Ri ��k ! Ri is projection.

Let Cb.F �Ri/ denote the simplicial set of bounded concordances on F �Ri so that
a k –simplex of Cb.F �Ri/ consists of a homeomorphism hW F �Ri � Œ0; 1���k !

F �Ri � Œ0; 1���k such that h is fiber preserving over �k , hjW F �Ri �f0g��k!

F �Ri � f0g ��k is the identity, and h is bounded over Ri .

A bounded concordance on F �Ri induces a bounded homeomorphism on F �Ri by
restricting the concordance to F �Ri � f1g. This defines a simplicial map

�W Cb.F �Ri/! TOPb.F �Ri/

by setting �.h/DhjW F�Ri�f1g��kDF�Ri��k!F�Ri�f1g��kDF�Ri��k .

Euclidean stabilization induces a simplicial map

� W TOPb.F �Ri/! TOPb.F �RiC1/I h 7! h� idR

and, in particular, a group homomorphism �0TOPb.F �Ri/
�
�! �0TOPb.F �RiC1/

for each i � 0.

Proposition 2.1 (Anderson and Hsiang) There is a homotopy fibration sequence

Cb.F �Ri/
�
�! TOPb.F �Ri/

�
�! TOPb.F �RiC1/:

In particular, there is a short exact sequence

�0Cb.F �Ri/
�
�! �0TOPb.F �Ri/

�
�! �0TOPb.F �RiC1/:
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Proof This is essentially the fibration of Anderson and Hsiang [4, Lemma 9.3]. One
must use Anderson and Hsiang [3, Theorem 4] to identify Cb.F �Ri/ with the fiber
in [4]. Similarly one needs a reinterpretation of TOPb.F �Ri/. See Hughes, Taylor
and Williams [21, Theorem 1.2] for an explicit proof of the reinterpretation. See also
Lashof and Rothenberg [25, Section 8].

An inertial h–cobordism on F is an h–cobordism .W I @0W; @1W / with @0W D

F and @1W homeomorphic to F . It is possible to define the simplicial set of h–
cobordisms on F (eg Waldhausen [39]) and the simplicial set of inertial h–cobordisms
on F . However, for this paper we only need the sets of components of these simplicial
sets. Thus, let �0hcob.F / denote the set of equivalence classes of h–cobordisms
on F such that .W I @0W; @1W / is equivalent to .W 0I @0W 0; @1W 0/ if and only if
there exists a homeomorphism H W W !W 0 such that H jW @0W D F ! @0W 0 D F

is the identity. The set �0Ihcob.F / of inertial h–cobordisms on F is the subset of
�0hcob.F / consisting of all classes represented by inertial h–cobordisms.

The s–cobordism theorem gives a bijection

�0hcob.F /
�
�!Wh1.Z�1F /

provided n�5, which sends an h–cobordism .W I @0W; @1W / to the Whitehead torsion
�.W; @0W / in Wh1.Z�1F /. In general, the image of�0Ihcob.F / in Wh1.Z�1F / need
not be a subgroup (cf Hausmann [16], Ling [27]).

We now recall the well–known region between construction (cf Anderson and Hsiang
[3, Section 8]) which defines a function

ˇW �0TOPb.F �R/ �! �0Ihcob.F /:

If hW F �R! F �R is a bounded homeomorphism representing a class

Œh� 2 �0TOPb.F �R/;

choose a L> 0 so large that h.F�fLg/�F�.0;1/. Let W Dh.F�.�1;L�/nF�

.�1; 0/, @0W DF �f0gDF , and @1W D h.F �fLg/. Then .W I @0W; @1W / is an
inertial h–cobordism on F representing a class ŒW � 2 �0Ihcob.F /. Set ˇ.Œh�/D ŒW �.
The function ˇ is well–defined by the Isotopy Extension Theorem of Edwards and Kirby
[11]. One should not confuse �

�
ˇ.h/

�
with the torsion of the homotopy equivalence

h1W F D F � f0g ,! F �R
h
�! F �R

proj
��! F:

To see the relationship between these two torsions let j W W ! Œ0; 1� be any map
with j�1.0/ D @0W and j�1.1/ D @1W . Since F � f0g ,! F � .�1; 0� and

Geometry & Topology, Volume 11 (2007)



1482 Bruce Hughes, Laurence R Taylor, Shmuel Weinberger and Bruce Williams

h.F � fLg/ ,! h
�
F � ŒL;C1/

�
are homotopy equivalences, so is the inclusion

i W W ,! F �R, and there is a homotopy equivalence of triads

 D .proj ı i/� j W .W I @0W; @1W /! .F � Œ0; 1�IF � f0g;F � f1g/:

Therefore,

�.h1/D �. j@1W W @1W ! F � f1g/D �ˇ.h/� .�1/n�ˇ.h/ 2Wh1.Z�1F /;

where � is induced from the standard involution on Z�1F . Although the composition

�0TOPb.F �R/
ˇ
�! �0Ihcob.F /

�
�!Wh1.Z�1F /

need not be a group homomorphism (cf Ling [27]), it is a crossed homomorphism;
ie, �ˇ.Œh ık�/D h1]�ˇ.Œk�/C �ˇ.Œh�/ for Œh�; Œk� 2 �0TOPb.F �R/ where h1] is the
homomorphism induced by the homotopy equivalence h1W F ! F .

We will need the following version of the Alexander trick in the proof of Proposition
2.3 (cf Hughes [17, Lemma 6.4]).

Lemma 2.2 If hW F �R! F �R is a bounded homeomorphism such that hD id on
F � .�1; 0�, then h is boundedly isotopic to idF�R .

Proof For 0� s < 1 define �sW R!R by �s.t/D t � s
s�1

. Define a bounded isotopy
H W h' idF�R by

Hs D

(
.idF � �s/

�1 ı h ı .idF � �s/ if 0� s < 1

idF�R if s D 1.

Proposition 2.3 If nD dim F � 4, then the sequence

�0TOP.F /
�
�! �0TOPb.F �R/

ˇ
�! �0Ihcob.F / �! 0

is exact in the sense that ˇ maps the set of cosets of �0TOPb.F �R/=Im.�/ bijectively
onto �0Ihcob.F /; ie

(i) if Œh1�; Œh2� 2 �0TOPb.F �R/, then ˇ.Œh1�/D ˇ.Œh2�/ if and only if there exists
Œg� 2 �0TOP.F / such that Œh�1

2
h1�D �.Œg�/, and

(ii) ˇ is surjective.

Proof (i) Let hi W F �R!F �R be bounded homeomorphisms for i D 1; 2. Choose
L>0 such that hi.F�fLg/�F�.0;1/ so that WiDhi.F�.�1;L�/nF�.�1; 0/

is an h–cobordism from F DF�f0g to hi.F�fLg/ and ˇ.Œhi �/D ŒWi �2�0hcob.F /
for iD1; 2. If ŒW1�D ŒW2�, then there exists a homeomorphism H W W1!W2 such that

Geometry & Topology, Volume 11 (2007)



Examples of exotic stratifications 1483

H jW F�f0g!F�f0g is the identity. In particular, Hh1.F�f1g/Dh2.F�fLg/. Let
gW F ! F be the homeomorphism defined by h�1

2
Hh1.x;L/D .g.x/; 1/ 2 F � fLg

for all x 2 F . Extend H via the identity on F � .�1; 0� to a homeomorphismeH W .F � .�1; 0�/[W1! .F � .�1; 0�/[W2 . Define a hybrid homeomorphismehW F �R! F �R by

eh.x; t/D (eHh1.x; t/ if t �L

h2.g.x/; t/ if t �L.

According to Lemma 2.2 both ehh�1
1

and eh.g�1 � idR/h
�1
2

are boundedly isotopic to
the identity. Thus eh is boundedly isotopic to h1 and to h2.g� idR/ so that h�1

2
h1 is

boundedly isotopic to g� idR showing Œh�1
2

h1�D �.Œg�/.

Conversely, if h�1
2

h1 is boundedly isotopic to g � idR for some homeomorphism
gW F ! F , then h1 is boundedly isotopic to h2.g � idR/. If L is large enough,
then the isotopy restricts to an isotopy of embeddings carrying h1.F � fLg/ onto
h2.g.F /� fLg/D h2.F � fLg/ in F � .0;1/. The Isotopy Extension Theorem [11]
shows that there is an isotopy of F �R to itself which is the identity on F � .�1; 0�

and carries h1.F � fLg/ to h2.F � fLg/. In particular, there is a homeomorphism
H W W1!W2 such that H jF � f0g is the identity. Hence ŒW1�D ŒW2� 2 �0hcob.F /.

(ii) follows from Ling [27, Proposition 3.2].

Anderson and Hsiang [3] calculated the homotopy groups of the simplicial set of
bounded concordances. We will need their calculation of the group of components.

Proposition 2.4 (Anderson–Hsiang) If n D dim F � 5, then there exists a group
isomorphism

˛W �0Cb.F �Ri/ �!

8̂<̂
:

Wh1.Z�1F / if i D 1eK0.Z�1F / if i D 2

K2�i.Z�1F / if i > 2.

We need to recall the explicit construction of the isomorphism when i D 1,

˛W �0Cb.F �R/!Wh1.Z�1F /:

If hW F �R� Œ0; 1�! F �R� Œ0; 1� is a bounded concordance representing a class
Œh�2�0Cb.F �R/, choose L> 0 so large that h.F �fLg� Œ0; 1�/�F �.0;1/� Œ0; 1�

and let
W D h.F � .�1;L�� Œ0; 1�/ nF � .�1; 0/� Œ0; 1�;
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@0W DF � Œ0;L��f0g, and @1W D h.F �.�1;L��f1g/nF �.�1; 0/�f1g. Then
.W I @0W; @1W / is a relative h–cobordism. In particular, over the boundary of @0W ,
W restricts to a product h–cobordism

.F�f0g�Œ0; 1�[h.F�fLg�Œ0; 1�/IF�f0;Lg�f0g;F�f0g�f1g[h
�
F�fLg�f1g/

�
:

Define ˛.Œh�/ to be the Whitehead torsion �.W; @0W / 2 Wh1

�
Z�1.F � Œ0;L�/

�
D

Wh1.Z�1F /.

Recall that dim F D n. Define the norm homomorphism

N W Wh1.Z�1F /!Wh1.Z�1F /I x 7! xC .�1/nx

where � is induced from the standard involution on Z�1F .

Proposition 2.5 If nD dim F � 5, then the following diagram commutes:

�0Cb.F �R/
˛

����! Wh1.Z�1F /
N
����! Wh1.Z�1F /

�

??y x??�
�0TOPb.F �R/

ˇ
����! �0Ihcob.F /

�
����! �0hcob.F /:

Proof If Œh� 2 �0Cb.F �R/ adopt the notation above in the explicit description of
˛ so that ˛.Œh�/ D �.W; @0W / D x . For k D 0; 1 let ik W @kW ! W denote the
inclusion and rk W W ! @kW a strong deformation retraction. Then x D �.r0/. Since
.W I @0W; @1W / is a relative h–cobordism between .nC 1/–dimensional manifolds,
it follows that .r0i1/��.r1/D .r0i1/��.W; @1W /D .�1/nC1x by the duality theorem
of Milnor [29, page 394]. Thus, �.i1/D .�1/nC1�.i0/ 2Wh1.Z�1W /.

Let j1W F � f0g � f1g ! W and j2W F � f0g � f1g ! @0W denote the inclusions
and let j3W F � f0g � f1g ! @0W be the map j3.z; 0; 1/ D .z; 0; 0/. Since @0W D

F � Œ0;L�� f0g, �.j3/D 0.

Since �ˇ�.Œh�/ is the Whitehead torsion of .@1W;F � f0g � f1g/ in Wh1.Z�1F /, it
suffices to show that

i1��.j2/D �.i0/D .�1/n�.i0/ 2Wh1.Z�1W /:

The composition formula gives

�.j1/D �.i1j2/D i1��.j2/C �.i1/:

Since j1' i0j3 and �.j3/D 0, the composition formula also gives �.j1/D �.i0j3/D

�.i0/. Thus
i1��.j2/D �.i0/� �.i1/D �.i0/C .�1/nC1�.i0/:
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A similar argument has been used by Siebenmann and Sondow [37, page 266].

Lemma 2.6 (i) Suppose there is a diagram

A??y�1

A0
�1
����! B

ˇ
����! C??y�2

C 0

such that

(1) A;B;A0;C 0 are groups (written additively) C is a set, and �1;�1;�2 are group
homomorphisms,

(2) A
�1
�! B

ˇ
�! C is exact in the sense that ˇ is surjective, and if b1; b2 2 B then

ˇ.b1/D ˇ.b2/ if and only if b2� b1 D �1.a/ for some a 2A,

(3) A0
�1
�! B

�2
�! C 0 is an exact sequence of groups.

If b 2 B , then �2.b/ 2 Im.�2�1W A! C 0/ if and only if ˇ.b/ 2 Im.ˇ�1W A
0! C /.

(ii) Suppose further that the diagram above is extended to a diagram

A??y�1

A0
�1
����! B

ˇ
����! C

�
����! W??y�2

D
�2
����! C 0??y�3

E

such that

(1) A;B;A0;C 0;W;D;E are abelian groups and �2;�3 are group homomorphisms,

(2) � W C !W is a set inclusion,

(3) there is a B –module structure on W which satisfies: if b1; b2 2B and �2.b1/D

�2.b2/, then b1w D b2w for all w 2W ,
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(4) �ˇW B!W is a crossed homomorphism with respect to the B –module structure
(ie �ˇ.b1C b2/D b1�ˇ.b2/C �ˇ.b1/ for all b1; b2 2 B ),

(5) �ˇ.�b/D��ˇ.b/ for all b 2 B ,

(6) N D �ˇ�1W A
0!W is a homomorphism,

(7) D
�2
�! C 0

�3
�!E is an exact sequence of groups.

There exists a function žW Im.�2/!W =Im.N / such that if b 2 B , then �3�2.b/ 2

Im.�3�2�1/ if and only if the class of �ˇ.b/ in W =Im.N / is in žŒIm.�2/\ Im.�2/�:

Proof (i) Suppose first that �2.b/D�2�1.a/ for some a2A. Then the exact sequence
of groups implies that there exists a0 2 A0 such that �1.a

0/ D b C �1.�a/. Thus
�bC �1.a

0/D �1.�a/ and exactness of the other sequence implies ˇ.b/D ˇ�1.a
0/.

Conversely, suppose ˇ.b/D ˇ�1.a
0/ for some a0 2 A0 . Exactness implies that b D

�1.a/C �1.a
0/ for some a 2A. Thus �2.b/D �2�1.a/C �2�1.a

0/D �2�1.a/.

(ii) Define žW Im.�2/!W =Im.N / by ž.x/D �ˇ��1
2
.x/. In order to show that ž is

well–defined, suppose that �2.y1/D �2.y2/ and show that �ˇ.y1/��ˇ.y2/ 2 Im.N /.
Since ker.�2/D Im.�1/, it follows that �ˇ.y1�y2/ 2 Im.N /. Now

�ˇ.y1�y2/�Œ�ˇ.y1/� �ˇ.y2/�D .�y2/�ˇ.y1/�ˇ.�y2/� �ˇ.y1/C �ˇ.y2/

D .�y2/�ˇ.y1/C �ˇ.�y1/D .�y1/�ˇ.y1/C �ˇ.�y1/

D �ˇ.y1�y1/D 0:

Thus, �ˇ.y1�y2/D �ˇ.y1/� �ˇ.y2/ showing ž is well–defined.

Suppose that �3�2.b/ 2 Im.�3�2�1/, say a 2 A with �3�2b D �3�2�1.a/. Then
�2.b/��2�1.a/2 ker.�3D Im�2 , so let d 2D with �2.d/D �2.b/��2�1.a/. Thus,
�2.b/ D �2.d/C �2�1.a/ and �2.d/ 2 Im.�2/\ Im.�2/. It follows that ž�2.d/ D

�ˇ��1
2

�
�2.d/

�
D �ˇ

�
b � �1.a/

�
D �ˇ.b/ � �ˇ

�
�1.a/

�
. Thus, we will be done by

showing that �ˇ.�1.a/ 2 Im.N /. By part (i), this is equivalent to showing that
�2�1.a/ 2 Im.�2�1/, which is obviously true.

Conversely, if the class of �ˇ.b/ in W =Im.N / is in žŒIm.�2/ \ Im.�2/�, choose
x 2 Im.�2/\ Im.�2/ such that ž.x/D �ˇ.b/C Im.N /. Thus, there exists y 2B such

that �2.y/Dx and �ˇ.b/��ˇ.y/2 Im.N /. By exactness of A
�1
�!B

ˇ
�!C there exists

a 2 A such that �1.a/D b � y , from which it follows that �3�2�1.a/D �3�2.b/�

�3�2.y/D �3�2.b/��3�3.x/. But x 2 Im.�2/D ker.�3/, so �3�2�1.a/D �3�2.b/.
This completes the proof.
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3 Controlled homeomorphisms and manifold approximate fi-
brations

In this section we recall the Hughes–Taylor–Williams classification of manifold approx-
imate fibrations, specialize that classification to base spaces S1 �Ri , and discuss the
relationship with the classical classification of fiber bundles. The main result is Theorem
3.7, which gives necessary and sufficient conditions for a manifold approximate fibration
pW M ! S1 with trivial fiber germ to be controlled homeomorphic to a fiber bundle
projection (likewise for p� idR ).

Recall that an approximate fibration is a map with the approximate homotopy lifting
property. More precisely, we say a map pW M !B is an approximate fibration if for
every commuting diagram

Z
f

����! M

�0

??y ??yp

Z � Œ0; 1�
F

����! B

there is a controlled map zF W Z�Œ0; 1��Œ0; 1/!M from F to p such that zF .x; 0;u/D
f .x/ for all .x;u/ 2 Z � Œ0; 1/. To say zF is a controlled map from F to p means
the function Z � Œ0; 1�� Œ0; 1�! B defined by

.z; t;u/ 7!

(
p zF .z; t;u/ if u< 1

F.z; t/ if uD 1

is continuous. See Hughes, Taylor and Williams [19, Section 12] for an explanation of
how this definition relates to others in the literature.

A proper map pW M ! B between manifolds (without boundary) is a manifold ap-
proximate fibration if p is an approximate fibration.

A controlled homeomorphism between two maps pW M ! B and p0W M 0! B is a
one–parameter family huW M !M 0 , 0 � u < 1, of homeomorphisms such that the
function M � Œ0; 1�! B defined by

.x;u/ 7!

(
p0hu.x/ if u< 1

p.x/ if uD 1

is continuous.

Fiber bundles have well–defined fibers up to homeomorphism. Analogously, manifold
approximate fibrations have well–defined fiber germs up to controlled homeomorphism
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(see Hughes, Taylor and Williams [19]). Recall that if pW M ! B is a manifold
approximate fibration with B connected, dim B D i and dim M D n � 5, then the
fiber germ of p is the manifold approximate fibration q D pjW V D p�1.Ri/! Ri

where Ri ,!B is an open embedding (which is orientation preserving if B is oriented).
A trivial fiber germ is the projection F �Ri! Ri for some closed manifold F .

In Hughes, Taylor and Williams [19] manifold approximate fibrations over B with total
space of dimension greater than four are classified up to controlled homeomorphism.
This result is recalled below for the special case B D S1�Ri and trivial fiber germ,
a case that is particularly simple for three reasons. First, the tangent bundle of B

plays a role in the classification theorem, but S1 �Ri is parallelizable. Second, the
homotopy type of S1�Ri allows us to view homotopy classes of maps of S1�Ri into
a classifying space of a simplicial group as just the components of the group. Finally,
the triviality of the fiber germ can be replaced by bounded homeomorphisms.

First recall the classical classification of fiber bundles over S1 �Ri with fiber F . Let
Bun.S1 �Ri/F denote the simplicial set of fiber bundles over S1 �Ri with fiber F ,
so that there exists a homotopy equivalence Bun.S1 �Ri/F 'Map

�
S1;BTOP.F /

�
.

Since �0Map
�
S1;BTOP.F /

�
D �0TOP.F /, there is a classifying isomorphism

c1W �0Bun.S1
�Ri/F ! �0TOP.F /:

We next recall the classification of manifold approximate fibrations over S1 �Ri with
fiber germ F �RiC1! RiC1 . Let MAF.S1 �Ri/F�RiC1 denote the simplicial set of
manifold approximate fibrations over S1�Ri with fiber germ the projection F�RiC1!

RiC1 and assume dim FCi �4. Since S1�Ri is parallelizable it follows from Hughes,
Taylor and Williams [19] that there is a homotopy equivalence MAF.S1�Ri/F�RiC1 '

Map.S1;BTOPc�F �RiC1/
�

where TOPc.F �RiC1/ denotes the simplicial group
of controlled homeomorphisms on F �RiC1 . Since TOPc�F �RiC1/

�
' TOPb.F �

RiC1/ by Hughes, Taylor and Williams [21] and �0Map.S1;BTOPb
�
F �RiC1/

�
D

�0TOPb.F �RiC1/, there is a classifying isomorphism

c2W �0MAF.S1
�Ri/F�RiC1 ! �0TOPb.F �RiC1/:

The next proposition records the relationship between these two classifications.

Proposition 3.1 If dim F C i � 4, then the following diagram commutes:

�0Bun.S1 �Ri/F
'

����! �0MAF.S1 �Ri/F�RiC1

c1

??y' '

??yc2

�0TOP.F /
�

����! �0TOPb.F �RiC1/
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where ' is the forgetful map and � is euclidean stabilization Œh� 7! Œh� idRiC1 �.

Proof This follows from Hughes, Taylor, and Williams [20, Theorem 0.3].

If pW M ! S1 is a manifold approximate fibration with fiber germ F �R! R, then
the monodromy of p is the class c2.p/ D Œh� 2 �0TOPb.F � R/ with hW F � R!

F �R a bounded homeomorphism. The monodromy induces a well–defined homotopy

equivalence F D F � f0g
hj
�! F �R! F which in turn induces a homomorphism

h�W Wh1.Z�1F /!Wh1.Z�1F /, also called the monodromy of p .

Theorem 3.2 Let pW M ! S1 be a manifold approximate fibration with fiber germ
F �R! R and monodromy Œh� with nD dim F � 4.

(i) The following are equivalent:
(1) p is controlled homeomorphic to a fiber bundle projection with fiber F .
(2) �ˇ

�
c2.Œp�/

�
D �ˇ.Œh�/D 0 2Wh1.Z�1F /.

(ii) The following are equivalent:
(1) p� idR is controlled homeomorphic to a fiber bundle projection with fiber

F .
(2) �ˇ

�
c2.Œp�/

�
D �ˇ.Œh�/ 2 ImN �Wh1.Z�1F /:

(iii) There exist a subgroup G of eK0.Z�1F / and a function

N0W G!Wh1.Z�1F /=ImN

such that the following are equivalent.
(1) p� idR2 is controlled homeomorphic to a fiber bundle projection with fiber

F .
(2) The class of �ˇ

�
c2.Œp�/

�
D �ˇ.Œh�/ in Wh1.Z�1F /=ImN is in N0.G/.

Proof (i) follows from Proposition 2.3 and Proposition 3.1.

(ii) Consider the diagram

�0TOP.F /??y�1

�0Cb.F �R/
�1
����! �0TOPb.F �R/

ˇ
����! �0Ihcob.F /??y�2

�0TOPb.F �R2/
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where �1; �2 denote euclidean stabilization and �1; ˇ have been defined above. Ac-
cording to Proposition 3.1, p � idR is controlled homeomorphic to a fiber bundle with
fiber F if and only if �2c2.Œp�/D �2.Œh�/ 2 Im.�2�1/. By Propositions 2.1, 2.3, 2.5
and Lemma 2.6, �2.Œh�/ 2 Im.�2�1/ if and only if ˇ.Œh�/ 2 Im.ˇ�1/ if and only if
�ˇ.Œh�/ 2 Im.N /. Thus, (1) and (2) are equivalent.

(iii) The diagram above can be extended to a diagram:

�0TOP.F /??y�1

�0Cb.F �R/
�1
����! �0TOPb.F �R/

ˇ
����! �0Ihcob.F /

�
����! Wh1.Z�1F /??y�2

�0Cb.F �R2/
�2
����! �0TOPb.F �R2/??y�3

�0TOPb.F �R3/

As above, p � idR2 is controlled homeomorphic to a fiber bundle projection with fiber
F if and only if �3�2.Œh�/ 2 Im.�3�2�1/. Since �0Cb.F � R2/ Š eK0.Z�1F / by
Proposition 2.4, the result will follow from Lemma 2.6(ii) once it is observed that
the action of �0TOPb.F �R/ on Wh1.Z�1F / satisfies items (3) and (5) of Lemma
2.6(ii). The first follows from the fact that if �2.Œh�/ D �2.Œh

0�/, then the induced
homotopy equivalences h1; h

0
1
W F ! F are homotopic and, hence, h1] D h0

1]
. The

second follows from the explicit construction of ˇ .

Remark 3.3 It follows from Hughes, Taylor and Williams [22] that Theorem 3.2
condition (i)(1) holds if and only if p is homotopic to a fiber bundle projection with
fiber F . It seems reasonable to conjecture that Theorem 3.2 condition (ii)(1) holds if
and only if p� idR is properly homotopic to a fiber bundle projection with fiber F .

We will now prepare for a version of Theorem 3.2(i) and Theorem 3.2(ii) where we allow
the fiber of the fiber bundle projections to vary (Theorem 3.7 below). A preliminary
result, Lemma 3.5 below, shows that we do not have to worry about non-manifold
fibers.

In order to establish Lemma 3.5, we need to use a product formula for Farrell’s
fibering obstruction [12; 14; 13]. Such a formula seems to be well-known (and at
any rate is easy to deduce from the product formula for Whitehead torsion), but a
statement does not appear explicitly in the literature. We take this opportunity to
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provide a statement. For notation, suppose pW M ! S1 is a map, where M is a
closed, connected manifold, dim M � 6, p induces a surjection �1M ! �1S1 , and
the infinite cyclic cover M of M is finitely dominated. Farrell’s fibering obstruction
is an element F.p/ 2Wh1.Z�1M / with the property that F.p/D 0 if and only if p

is homotopic to a fiber bundle projection with manifold fiber. We will use the version
of the total fibering obstruction as exposited in Ranicki [33], which we now recall. Let
�WM !M be a generating covering translation and let .d W K !M ;uW M ! K/

be a finite domination (ie, K is a finite complex and du' idM ). There is a natural
homotopy equivalence given as a composition

hWT .u�d/! T .�/!M;

where T .�/ denotes the mapping torus of a map, and the fibering obstruction F.p/ is
defined to be the torsion of h: F.p/ WD �.p/ 2Wh1.Z�1M /.

Lemma 3.4 (Fibering Obstruction Product Formula) Suppose M and F are closed,
connected manifolds, dim M � 6, there is a map pW M ! S1 inducing a surjection
p�W �1.M /! �1.S

1/ such that the infinite cyclic cover M is finitely dominated, q

is the composition qW M �F
proj
��!M

p
�! S1 , and i W M !M �F is the inclusion

x 7! .x;y0/ for a base point point y0 2F . Then the fibering obstruction of q is defined
and satisfies

F.q/D �.F /i�F.p/ 2Wh1

�
Z�1.M �F /

�
;

where �.F / is the euler characteristic of F .

Proof If .d WK!M ;uWM !K/ is a finite domination of M , then

.d � idF W K �F !M �F;u� idF WM �F !K �F /

is a finite domination of the infinite cyclic cover M �F of M �F . Then F.q/ is the
torsion of the composition

T .u�d/�F D T ..u�d/� idF /! T .� � idF /D T .�/�F !M �F:

The required formula follows from the product formula for Whitehead torsion due to
Kwun and Szczarba [24].

Lemma 3.5

(i) If pWM ! S1 is a manifold approximate fibration with mD dim M � 6 and
p is controlled homeomorphic to a bundle projection, then p is controlled
homeomorphic to a bundle projection with manifold fiber.
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(ii) If pW M ! S1 �R is a manifold approximate fibration with mD dim M � 7

and p is controlled homeomorphic to a bundle projection, then p is controlled
homeomorphic to a bundle projection with manifold fiber.

Proof

(i) We may assume that pW M ! S1 is a bundle projection. The fiber is a compact
ANR X such that X �R is a manifold of dimension 6. According to Hughes,
Taylor and Williams [22] it suffices to show that p is homotopic to a bundle
projection with manifold fiber; that is, we need to show that the Farrell fibering
obstruction F.p/ vanishes. Let F be a closed, connected manifold such that

�.F / D 1. Thus, X � F is a manifold and qW M � F
proj
��! M

p
�! S1 is a

fiber bundle projection with manifold fiber. In particular, F.q/ D 0. Since
i�W Wh1.Z�1F /!Wh1

�
Z�1.M �F /

�
is an injection, Lemma 3.4 implies that

F.p/D 0.

(ii) We may assume that pWM ! S1 � R is a bundle projection. The fiber is
a compact ANR X such that X � R2 is a manifold of dimension � 7. Let
W D p�1.S1�f0g/ and q D pjWW ! S1�f0g D S1 . It is unknown whether
X �R is a manifold (cf Daverman [10, Problem 625]). In particular, W might
not be a manifold. However, W � R is homeomorphic to M so that W is
resolvable by Quinn [31, Corollary 3.2.2]; that is, there exists a manifold N ,
dim N D m � 1 � 6, and there exists a cell–like map r WN ! W . Let F

be a closed, connected manifold such that �.F /D 1. Siebenmann’s cell-like
approximation theorem [35] theorem implies that there exists a homeomorphism
gWN �F !W �F (since W �F is a manifold, g arises by approximating

r � idR ). Clearly, the composition W � F
proj
��! W

q
�! S1 is a fiber bundle

projection with manifold fiber (the fiber X �F is a manifold since X �R2 is a
manifold and dim F � 2). Thus, the composition

q0W N �F
g
�!W �F

proj
��!W

q
�! S1

is a fiber bundle projection with manifold fiber. The map q0 is homotopic to

q00W N �F
r�idF
����!W �F

proj
��!W

q
�! S1;

which is seen to be

q00W N �F
proj
��!N

r
�!W

q
�! S1:

By definition, F.q00/ D 0. Hence, by using Lemma 3.4 as above, it follows
that F.qr/D 0. Hence (by Hughes, Taylor and Williams [22]), qr WN ! S1
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is controlled homeomorphic to a fiber bundle projection eq WN ! S1 with
manifold fiber. Since pWM ! S1 � R is fiber preserving homeomorphic to
q � idRW W �R! S1 �R, p is controlled homeomorphic to q � idR . Using
Siebenmann’s theorem [35] again, r � idRWN �R! W �R can be arbitrar-
ily closely approximated by homeomorphisms, so that q � idR is controlled
homeomorphic to qr � idRW N �R! W �R. Finally, q � idR is controlled
homeomorphic to eq � idR , which is a bundle projection with manifold fiber.

Lemma 3.6 Let pW M ! S1 be a manifold approximate fibration with fiber germ
F �R! R, monodromy ŒhW F �R! F �R�, and nD dim F � 4. Suppose F 0 is a
closed manifold for which there is a bounded homeomorphism kW F �R! F 0 �R.

(i) p is a manifold approximate fibration with fiber germ F 0 �R! R and mon-
odromy Œkhk�1W F 0 �R! F 0 �R�.

(ii) If ˇW �0TOPb.F�R/!�0Ihcob.F / and ˇ0W �0TOPb.F 0�R/!�0Ihcob.F 0/
are the region between functions defined in section 2, then there exists x 2

Wh1.Z�1F / such that

�ˇ.Œh�/D .k�1/��ˇ
0.Œkhk�1�/Cx� h�.x/

where .k�1/�W Wh1.Z�1F 0/ ! Wh1.Z�1F / is induced by the composition

F 0 D F 0�f0g
k�1j
���! F �R

F
�!. Moreover, x is represented by the torsion of the

h–cobordism associated to the bounded homeomorphism k�1W F 0�R!F �R .

Proof

(i) If p is considered to have fiber germ F�R!R , then the affect of the classifying
map c2 is to turn pW M ! S1 into a fiber bundle over S1 with fiber F �R

and structure group TOPb.F � R/. The monodromy h is then the classical
monodromy of this bundle. The bundle can be considered to be a bundle with
fiber F 0 � R, structure group TOPb.F 0 � R/ and monodromy khk�1 . See
Hughes, Taylor and Williams [19; 20].

(ii) Choose L> 0 large. Let

W D .khk�1/.F 0 � .�1;L�/ nF 0 � .�1; 0/� F 0 �R

so that
.W IF 0 � f0g; khk�1.F 0 � fLg/

is an h–cobordism whose torsion is �ˇ0.Œkhk�1�/ : Let

Wk D k
�
F � Œ�L;1/

�
nF 0 � .0;1/� F 0 �R
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so that .Wk I k.F � f�Lg/;F 0 � f0g/ is an h–cobordism. Let

Wk�1 D F � .�1; 2L� n k�1
�
F 0 � .�1;L/

�
so that .Wk�1 I k�1.F 0 � fLg/;F � f2Lg/ is an h–cobordism. Let

U D k�1Wk [ k�1W [ hWk�1 � F �R :

Note that k�1Wk\k�1W Dk�1.F 0�f0g/, k�1W \hWk�1Dhk�1.F 0�fLg/,
k�1Wk \ hWk�1 D ∅, and that U D h.F � .�1; 2L�/ n F � .�1;�L/ �

F � R so that
�
U IF � f�Lg; h.F � f2Lg/

�
is an h–cobordism with torsion

�.U;F � f�Lg/D �ˇ.Œh�/ 2Wh1.Z�1F /. The standard sum and composition
formulae imply that

�.U;F � f�Lg/D �.k�1Wk ;F � f�Lg/C .k�1/��.W;F 0 � f0g/

C h�.k
�1/��.kWk�1 ;F 0 � fLg/:

Let x D �.k�1Wk ;F � f�Lg/ 2Wh1.Z�1F /. It is easy to see that

xC .k�1/��.kWk�1 ;F 0 � fLg/D 0

so that �.U;F � f�Lg/D xC .k�1/��.W;F 0 � f0g/� h�.x/:

Theorem 3.7 Let pW M ! S1 be a manifold approximate fibration with fiber germ
F �R! R and monodromy Œh�.

(i) If nD dim F � 5, then the following are equivalent.
(a) p is controlled homeomorphic to a fiber bundle projection.
(b) �ˇ

�
c2.Œp�/

�
D �ˇ.Œh�/D 0 2Wh1.Z�1F /=Im.1� h�/.

(ii) If nD dim F � 6, then the following are equivalent.
(a) p� idR is controlled homeomorphic to a fiber bundle projection.
(b) �ˇ

�
c2.Œp�/

�
D �ˇ.Œh�/D 0 2Wh1

�
Z�1F /=.ImN C Im.1� h�/

�
:

Proof (i) (a) implies (b): By Lemma 3.5(i) we may assume that p is controlled
homeomorphic to a bundle projection with fiber a closed manifold F 0 . By uniqueness of
fiber germs (Hughes, Taylor and Williams [19]) there exists a bounded homeomorphism
kW F �R! F 0 �R. An application of Theorem 3.2(i) with F 0 replacing F implies
that �ˇ0.c2Œp�/ D 0 2Wh1.Z�1F 0/. Now Lemma 3.6(ii) implies that �ˇ.c2Œp�/ D

�ˇ.Œh�/D x� h�.x/ for some x 2Wh1.Z�1F /.

(b) implies (a): If �ˇ.Œh�/ D x � h�.x/ for some x 2 Wh1.Z�1F /, choose an h–
cobordism .W IF;F 0/ such that x D �.W;F /. In fact, there is a bounded homeo-
morphism kW F � R! F 0 � R such that W D k�1.F 0 � .�1;L�/ n F � .�1; 0/
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for some large L > 0 (this is the h–cobordism associated to k�1 ). Lemma 3.6(i)
implies that p is a manifold approximate fibration with fiber germ F 0 �R! R and
monodromy khk�1 . It follows from Lemma 3.6(ii) that .k�1/��ˇ

0.Œkhk�1�/ D 0.
Hence �ˇ0.Œkhk�1�/D 0 2Wh1.Z�1F 0/. Finally, Theorem 3.2(i) implies that p is
controlled homeomorphic to a bundle projection with fiber F 0 .

(ii) (a) implies (b): By Lemma 3.5(ii) we may assume that p � idR is controlled
homeomorphic to a bundle projection with fiber a closed manifold F 0 . As in (i) there
exists a bounded homeomorphism kW F �R! F 0 �R . By Lemma 3.6(ii) there exists
x 2Wh1.Z�1F / such that �ˇ.Œh�/D k�1

� �ˇ0.Œkhk�1�/C x � h�.x/. Lemma 3.6(i)
implies that p is a manifold approximate fibration with fiber germ F 0 �R! R and
monodromy Œkhk�1�. Since p � idR is controlled homeomorphic to a fiber bundle
projection with fiber F 0 , Theorem 3.2 implies that �ˇ0.Œkhk�1�/ D N 0z for some
z 2Wh1.Z�1F 0/ where N 0W Wh1.Z�1F 0/!Wh1.Z�1F 0/ is the norm map. Thus
�ˇ.Œh�/D k�1

� N 0zCx� h�.x/DN k�1
� zCx� h�x .

(b) implies (a): Suppose �ˇ.Œh�/DNzCx�h�x . As in (i) there exist a closed manifold
F 0 and a bounded homeomorphism kW F �R! F 0 �R such that x is represented by
the torsion associated to k�1 via the ‘region between’ construction. Lemma 3.6(ii)
implies that �ˇ.Œh�/D k�1

� �ˇ0.Œkhk�1�/Cx�h�x . Hence, k�1
� �ˇ0.Œkhk�1�/DNz

and �ˇ0.Œkhk�1�/D k�Nz DN 0k�1
� z . Since p is a manifold approximate fibration

with fiber germ F 0�R!R and monodromy khk�1 , Theorem 3.2 implies that p�idR

is controlled homeomorphic to a fiber bundle with fiber F 0 .

Remark 3.8

(i) As in Remark 3.3 it follows from Hughes, Taylor and Williams [22] that Theorem
3.7 condition (i)(a) holds if and only if p is homotopic to a fiber bundle projection.
It seems reasonable to conjecture that Theorem 3.7 condition (ii)(a) holds if and
only if p� idR is properly homotopic to a fiber bundle projection.

(ii) Another way to prove Theorem 3.7(i) is to identify �ˇ
�
c2.Œp�/

�
with the Farrell

fibering obstruction of p .

4 Exotic manifold approximate fibrations

In this section we combine the results of the previous sections with known K–theoretic
calculations in order to produce exotic manifold approximate fibrations over S1 . These
are manifold approximate fibrations that are not controlled homeomorphic to fiber
bundle projections, even after euclidean stabilization.

Let Zq denote the finite cyclic group of order q .
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Proposition 4.1

(i) If �1.F /DZq ,q>3 is prime, and dimFDn�6 is even, then NW Wh1.ZŒZq �/!

Wh1.ZŒZq �/ is not surjective, but �ˇW �0TOPb.F �R/!Wh1.ZŒZq �/ is surjec-
tive.

(ii) If n�5 is odd and q>3 is prime, then there exists a closed manifold F such that
dim F D n, �1.F /D Zq and N W Wh1.ZŒZq �/!Wh1.ZŒZq �/ is not surjective
(in fact, it is the 0 homomorphism), but �ˇW �0TOPb.F �R/!Wh1.ZŒZq �/ is
surjective.

(iii) If q is prime, then eK0.ZŒZq �/ is a finite group and K�i.ZŒZq �/D 0 for all i > 0.
If, in addition, 5� q � 19, then eK0.ZŒZq �/D 0.

Proof Let q > 3 be a prime number. It is known that Wh1.ZŒZq �/ is free abelian of
finite non–zero rank and the standard involution � acts by the identity (Bass [5], Bass,
Milnor and Serre [6], Wall [40]; see Oliver [30, especially Example 1, page 14 and
Corollary 7.5] for an exposition). Let F be a closed manifold with dim F D n� 5 and
�1.F /DZq . Then N W Wh1.Z�1F /!Wh1.Z�1F / is multiplication by 2 if n is even
and multiplication by 0 if n is odd, and therefore not surjective. According to Lawson
[26, Corollaries 1,2], if n is even, �0Ihcob.F /D �0hcob.F /, and if n is odd, there
exist manifolds F as above such that �0Ihcob.F /D �0hcob.F /. Since Proposition
2.3 implies that ˇW �0TOPb.F � R/ ! �0Ihcob.F / D �0hcob.F / is surjective, it
follows that �ˇW �0TOPb.F �R/!Wh1.ZŒZq �/ is surjective. This proves (i) and (ii).

For (iii) see Rosenberg [34, pages 23, 157].

Theorem 4.2

(i) If q is a prime, 5 � q � 19, n � 6 is even, F is any closed manifold with
�1.F /D Zq and dim F D n, then there exists a manifold approximate fibration
pW M ! S1 with fiber germ F �R! R such that for all i � 0, p� idRi W M �

Ri! S1 �Ri is not controlled homeomorphic to a fiber bundle projection with
fiber F .

(ii) If q > 3 is prime, n � 5 is odd, then there exists a closed manifold F with
�1.F /D Zq and dim F D n and a manifold approximate fibration pW M ! S1

with fiber germ F �R!R such that for all i � 0, p� idRi W M �Ri!S1�Ri

is not controlled homeomorphic to a fiber bundle projection with fiber F .

(iii) If n � 6 is even, F is any closed manifold with �1.F /D Z5 and dim F D n,
then there exists a manifold approximate fibration pW M ! S1 with fiber germ
F �R!R such that for all i � 0, p� idRi W M �Ri!S1�Ri is not controlled
homeomorphic to a fiber bundle projection.
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(iv) If n � 5 is odd, then there exists a closed manifold F with �1.F / D Z5 and
dim F D n and a manifold approximate fibration pW M ! S1 with fiber germ
F �R!R such that for all i � 0, p� idRi W M �Ri!S1�Ri is not controlled
homeomorphic to a fiber bundle projection.

Proof

(i) According to Proposition 3.1 we need a manifold approximate fibration pWM !

S1 with fiber germ F �R!R and monodromy Œh�2�0TOPb.F �R/ such that
for all i � 0, Œh� idRi � 2 �0TOPb.F �RiC1/ is not in Im

�
� W �0TOP.F /!

�0TOPb.F �RiC1/
�
. According to Proposition 2.1, Proposition 2.4, and Propo-

sition 4.1(iii), � W �0TOPb.F � R2Ci/! �0TOPb.F � R3Ci/ is injective for
all i � 0. Hence, it suffices to find a manifold approximate fibration p with
monodromy Œh� 2 �0TOPb.F �R/ such that Œh� idR� 2 �0TOPb.F �R2/ is
not in Im

�
� W �0TOP.F /! �0TOPb.F �R2/

�
; that is, such that p� idR is not

controlled homeomorphic to a fiber bundle projection with fiber F . According
to Theorem 3.2(ii) this is equivalent to �ˇ.Œh�/¤ 0 2Wh1.Z�1F /=ImN . Such
monodromies exist by Proposition 4.1(i).

(ii) This is similar to (i) except now we know only that � W �0TOPb.F �R3Ci/!

�0TOPb.F�R4Ci/ is injective for all i � 0. Hence, it suffices to find a manifold
approximate fibration p with monodromy Œh� 2 �0TOPb.F � R/ such that
Œh� idR2 �2�0TOPb.F �R3/ is not in Im

�
� W �0TOP.F /!�0TOPb.F �R3/

�
;

that is, such that p � idR2 is not controlled homeomorphic to a fiber bundle pro-
jection with fiber F . According to Proposition 4.1(ii),(iii) Wh1.Z�1F /=ImN D

Wh1.Z�1F / and is infinite (cf proof of Proposition 4.1). Hence, since Proposi-
tion 4.1(iii) implies that eK0.ZŒZq �/ is finite, the result follows from Theorem
3.2(iii).

(iii) As in (i) it suffices to find a manifold approximate fibration pW M ! S1 with
fiber germ F �R!R and monodromy Œh� 2 �0TOPb.F �R/ such that p� idR

is not controlled homeomorphic to a fiber bundle projection. According to
Theorem 3.7(ii) this is equivalent to �ˇ.Œh�/¤ 02Wh1

�
Z�1F /=.ImN CIm.1�

h�/
�
. But Wh1.Z�1F / D Wh1.ZŒZ5�/ is isomorphic to Z so that h� D ˙1

and 1� h� D 0; 2. As noted in the proof of Proposition 4.1, N D 0 so that
Wh1

�
Z�1F /=.ImN C Im.1� h�/

�
¤ 0 and the result follows from Theorem

3.7(ii).

(iv) is similar to (iii).
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5 Neighborhood germ classification and proof of the Main
Theorem

In this section we recall the classification of neighborhood germs of manifold stratified
pairs given by Hughes, Taylor, Weinberger and Williams [18]. We then combine this
neighborhood germ classification with the results on manifold approximate fibrations
given in Section 4 to prove the Main Theorem of Section 1.

We begin by giving the definition of the special type of stratified pairs that appear in
the Main Theorem, namely, the locally conelike manifold stratified pairs.

Let .X;A/ be a pair of spaces so that A� X . Then X is said to have two strata: the
lower (or bottom) stratum A and the top stratum X nA.

Definition 5.1 A pair .X;A/ is a locally conelike manifold stratified pair provided:

(1) X is a separable metric space and A is a closed subspace of X .

(2) A and X nA are topological manifolds with i D dim A.

(3) For each x 2 A there exists a closed manifold Fx and an open embedding
Ri �

ı
cFx!X such that .0; v/ 7! x and Ri �fvg is mapped into A. Here,

ı
cFx

is the open cone on Fx and v is the cone point.

Locally conelike manifold stratified pairs are precisely the locally conelike TOP strati-
fied sets of Siebenmann [36] with two strata.

The main source of locally conelike manifold stratified for us arise as follows. Let
pW M ! B be a manifold approximate fibration with trivial fiber germ F �Ri! Ri ,
and let X D c

ı
yl.p/, the open mapping cylinder of p . Then .X;B/ is a locally conelike

manifold stratified pair. For if x 2 B and Ri is an euclidean neighborhood of x (with
0 corresponding to x ), then pjW p�1.Ri/! Ri is controlled homeomorphic to the
projection p2W F �Ri ! Ri . Thus, there is a homeomorphism hW c

ı
yl.p2/! c

ı
yl.pj/

that preserves the levels of the mapping cylinders and restricts to the identity of
Ri (see Hughes, Taylor, Weinberger and Williams [18, Proposition 3.16]). Since
c
ı
yl.p2/D

ı
c.F /�Ri and c

ı
yl.pj/ is an open neighborhood of x in X , this shows that

X is locally conelike.

Even though we are interested here in locally conelike stratified pairs, the classification
theorem of Hughes, Taylor, Weinberger and Williams [18] takes place in the more
general setting of manifold stratified pairs. The relevant concepts can be found in Quinn
[32] and Weinberger [42] as well as [18], but we collect here the necessary definitions
for the convenience of the reader.
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If .X;A/ and .Y;B/ are two pairs, then a map f W .X;A/! .Y;B/ is said to be strict,
or stratum–preserving, if f .X nA/� Y nB and f .A/�B . The subspace A of X is
said to be forward tame if there exists a neighborhood N of A in X and a strict map
H W .N � I;A� I [N � f0g/! .X;A/ such that H.x; t/D x for all .x; t/ 2A� I

and H.x; 1/D x for all x 2N .

Let Maps
�
.X;A/; .Y;B/

�
denote the space of strict maps with the compact–open

topology. The homotopy link of A in X is

holink.X;A/DMaps
�
.Œ0; 1�; f0g/; .X;A/

�
:

Evaluation at 0 defines a map qW holink.X;A/!A which should be thought of as a
model for a normal fibration of A in X .

The pair .X;A/ is said to be a homotopically stratified pair if A is forward tame in X

and if qW holink.X;A/!A is a fibration. If in addition, the fiber of qW holink.X;A/!
A is finitely dominated, then .X;A/ is said to be homotopically stratified with finitely
dominated local holinks. (When we say that the fiber of q is finitely dominated and A is
not path connected, we mean that each fiber of q is finitely dominated.) If the strata A

and X nA are manifolds (without boundary), X is a locally compact separable metric
space, and .X;A/ is homotopically stratified with finitely dominated local holinks,
then .X;A/ is a manifold stratified pair.

We now define the set of equivalence classes of neighborhoods that is the subject of the
classification theorem of Hughes, Taylor, Weinberger and Williams [18] recalled below.
Let B be an i –manifold (without boundary) and let n� 0 be a fixed integer. A germ
of a stratified neighborhood of B is an equivalence class represented by a manifold
stratified pair .X;B/ with dim.X nB/D n. Two such pairs .X;B/ and .Y;B/ are
germ equivalent provided that there exist open neighborhoods U and V of B in X

and Y , respectively, and a homeomorphism hW U ! V such that hjB D idB .

Let pW X ! Y �R be a map. The teardrop of p , denoted by X [p Y , is defined to be
the space with underlying set the disjoint union X qY and topology given as follows.
First, let cW X [p Y ! Y � .�1;C1� be defined by

c.x/D

(
p.x/ if x 2X

.x;C1/ if x 2 Y :

Then the topology on X [p Y is the minimal topology such that

(i) X �X [p Y is an open embedding, and

(ii) c is continuous.
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Here is the main result from Hughes, Taylor, Weinberger and Williams [18].

Theorem 5.2 (Neighborhood Germ Classification [18, page 876]) Let n � 5 and
let B be a closed manifold. The teardrop construction defines a bijection from the set
of controlled homeomorphism classes of manifold approximate fibrations over B �R

(with total space of dimension n) to the set of germs of stratified neighborhoods of B

(with top stratum of dimension n).

We can now give the proof of the Main Theorem (which we first restate) of Section 1.

Main Theorem For every integer m � 6 there exists a locally conelike manifold
stratified pair .X;S1/ with dim.X nS1/Dm such that S1 has a manifold approximate
fibration mapping cylinder neighborhood in X , but for each i � 0 S1 �T i does not
have a fiber bundle mapping cylinder neighborhood in X �T i . In fact, S1 �T i does
not have a block bundle mapping cylinder neighborhood in X �T i .

Here, T i denotes the i –dimensional torus, T i D S1 � � � �S1 (i times).

Proof of Main Theorem Let X be the open mapping cylinder c
ı
yl.p/ of a manifold

approximate fibration pW M !S1 constructed in Theorem 4.2(iii) or (iv). Since p has
trivial fiber germ, it follows from the remarks above that .X;S1/ is a locally conelike
manifold stratified pair.

Suppose there exists i � 0 such that S1 � T i had a fiber bundle mapping cylinder
neighborhood in X � T i . Then there are a closed manifold N and a fiber bundle
projection qW N ! S1 �T i such that .X �T i ;S1 �T i/ and .c

ı
yl.q/;S1 �T i/ are

germ equivalent. In other words, the teardrops

..M �T i
�R/[.p�id

T i�idR/ .S
1
�T i/;S1

�T i/

and
..N �R/[.q�idR/ .S

1
�T i/;S1

�T i/

are germ equivalent. It follows from Theorem 5.2 that p� idT i � idRW M �T i �R!

S1�T i �R and q� idRW N �R! S1�T i �R are controlled homeomorphic. Form
the pull–back:

zN
zq

����! S1 �Ri??y ??y
N

q
����! S1 �T i :
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It follows from Lemma 5.3 below that p � idRiC1 W M � RiC1 ! S1 � RiC1 and
zq � idRW

zN �R! S1 �RiC1 are controlled homeomorphic. Since zq � idR is a fiber
bundle projection, this contradicts the choice of p . Hence, S1 �T i does not have a
fiber bundle mapping cylinder neighborhood in X �T i .

Since block bundles with fiber F are classified by B eTOP.F /, equivalence classes
of block bundles over S1 � Ri correspond to �0

eTOP.F /. Since �0TOP.F / !
�0

eTOP.F / is surjective, the result on block bundles follows from the fiber bundle
case.

The following is an elementary lemma used in the proof above.

Lemma 5.3 Suppose pW M !B , qW N !B are two maps, ˛W zB!B is a covering
projection and there are two pull–back diagrams:

zM
zp

����! zB

ˇ

??y ??y˛
M

p
����! B

zN
zq

����! zB



??y ??y˛
N

q
����! B

If p and q are controlled homeomorphic, then so are zp and zq .

Proof Let ht W M!N , 0� t <1, be a controlled homeomorphism from p to q . Thus,

M � Œ0; 1�! B defined by .x; t/ 7!

(
qht .x/ if 0� t < 1

p.x/ if t D 1
is continuous. Define

gW zM � Œ0; 1� ! B by .x; t/ 7!

(
qhtˇ.x/ if 0� t < 1

pˇ.x/ if t D 1
. Thus, g is continuous.

Since pˇ D ˛ zp , there exists (uniquely) a map zgW zM � Œ0; 1�! zB such that zg1 D zp

and ˛zgt D gt for all t 2 Œ0; 1�. Thus, it is possible to define zht W
zM ! zN � N � zB

by zht .x/ D
�
htˇ.x/; zgt .x/

�
for 0 � t < 1. One can check that zht is a controlled

homeomorphism from zp to zq .

Remark 5.4

(i) If .X;B/ is a manifold stratified pair, it is the case that for a torus of sufficiently
high dimension, the quotient X �T=.B �T D B/ does have a block structure.
Moreover, the block structure on the “links” is not arbitrary: it has some nice
transfer invariance properties. In other words, for each simplex � of B one has
a nice manifold which maps to ��T , with control in the T direction. (What
we have shown here is that one cannot block over simplices of B � T .) This
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structure is called a STIBB1 in Weinberger [42] and is applied there to give
a stable surgery exact sequence for stratified spaces. Indeed, if one had block
structures stably then the L–cosheaves in the stable classification theorem [42,
Section 6.2] would have to have the “s” decoration (as in the “PT category” in
[42, Section 6.1]) rather than the �1 decoration that arises. The differences
between these decorations are accounted for by Tate cohomology calculations
rather similar to those done here.
It is not too difficult to combine Theorem 5.2 with the classification theorem of
Hughes–Taylor–Williams [19], and the stabilization theorem of Weiss–Williams
[43] to give a proof of the stable classification theorem for S�1.X rel B/. Using
[19] the stable germ neighborhoods are computed by maps ŒB;BTOPb.F �E/�

which is the same as ŒB;B eTOP
b
.F �E/� by [43], the last of which is computed

by bounded block surgery using L�1.holink/. Different structures with the
same germ near the singular stratum can then be compared using ordinary rel 1
surgery on the complement. The result of this analysis is just a Poincaré duality
away from the result as expressed in Weinberger [42].

(ii) These examples are closely related to those constructed by Anderson [1]. In fact,
the examples in [1] are locally conelike manifold stratified pairs .X;S1/ such
that S1 has a manifold approximate fibration mapping cylinder neighborhood in
X , but S1 does not have a fiber bundle mapping cylinder neighborhood in X .
Anderson was not concerned with the stability issues addressed here.

(iii) Husch [23] used nontrivial inertial h–cobordisms to construct exotic manifold
approximate fibrations over S1 . In fact, our Theorem 3.7(i) is just a precise
formulation of the analysis in [23]. In connection with this, it should be pointed
out that a manifold approximate fibration pW M ! S1 with dim M � 5 is con-
trolled homeomorphic to a fiber bundle projection if and only if p is homotopic
to a fiber bundle projection by Hughes, Taylor and Williams [22].

(iv) Ferry and Pedersen [15] construct interesting embeddings of S1 in Sn . However,
their examples .Sn;S1/ need not be locally conelike manifold stratified pairs.

(v) Using the tables for relative class numbers in Washington [41, page 412], it is
possible to construct a few more even dimensional manifolds as in Theorem
4.2(i) for primes q with 3< q < 67. We do not know of other calculations that
give more manifolds as in Theorem 4.2(iii) and (iv).

1An equivalent notion is used by Yan [45]: one has blocks over ��E where E is an Euclidean space,
and the data is bounded in the E direction.
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