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Combinatorial Morse theory and minimality of hyperplane
arrangements

MARIO SALVETTI

SIMONA SETTEPANELLA

Using combinatorial Morse theory on the CW-complex S constructed in Salvetti [15]
which gives the homotopy type of the complement to a complexified real arrangement
of hyperplanes, we find an explicit combinatorial gradient vector field on S , such that
S contracts over a minimal CW-complex.

The existence of such minimal complex was proved before Dimca and Padadima [5]
and Randell [14] and there exists also some description of it by Yoshinaga [19]. Our
description seems much more explicit and allows to find also an algebraic complex
computing local system cohomology, where the boundary operator is effectively
computable.

32S22; 52C35, 32S50

1 Introduction

In Dimca and Papadima [5] and Randell [14] it was proven that the complement to a
hyperplane arrangement in Cn is a minimal space, ie it has the homotopy type of a
CW-complex with exactly as many i –cells as the i –th Betti number bi . The arguments
use (relative) Morse theory and Lefschetz type theorems.

This result of “existence” was refined in the case of complexified real arrangements in
Yoshinaga [19]. The author considers a flag V0 � V1 � � � � � Vn � Rn , dim.Vi/D i ,
which is generic with respect to the arrangement, ie Vi intersects transversally all
codimension–i intersections of hyperplanes. The interesting main result is a cor-
respondence between the k –cells of the minimal complex and the set of chambers
which intersect Vk but do not intersect Vk�1 . The arguments still use the Morse
theoretic proof of the Lefschetz theorem, and some analysis of the critical cells is given.
Unfortunately, the description does not allow one to understand exactly the attaching
maps of the cells of a minimal complex.

In this paper we give, for a complexified real arrangement A, an explicit description
of a minimal CW-complex which does not use the Lefschetz theorem. The idea is that,
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1734 Mario Salvetti and Simona Settepanella

since an explicit CW-complex S which describes the homotopy type of the complement
already exists (see Salvetti [15]), even if not minimal, one can work over such complex
trying to “minimize” it. A natural tool for doing that is to use combinatorial Morse
theory over S. We follow the approach of Forman [7; 8] to combinatorial Morse theory
(ie Morse theory over CW-complexes).

We explicitly construct a combinatorial gradient vector field over S, related to a given
system of polar coordinates in Rn which is generic with respect to the arrangement A.
Let S be the set of all facets of the stratification of Rn induced by the arrangement A
(see Bourbaki [2]). Then S has a natural partial ordering given by F �G if and only
if clos.F /�G . Our definition of genericity of a coordinate system, which is stronger
than that used in [19], allows to give a total ordering C on S , which we call the polar
ordering of the facets.

The k –cells in S are in one-to-one correspondence with the pairs ŒC � Fk �, where C

is a chamber in S and Fk is a codimension–k facet of S which is contained in the
closure of C . Then the gradient field can be recursively defined as the set of pairs

.ŒC � Fk�1�; ŒC � Fk �/

such that Fk�1 � Fk and Fk C Fk�1 and such that the origin cell of the pair is
not the end cell of another pair of the field. We also give a nonrecursive equivalent
characterization of the field (Theorem 4.12 (ii)) only in terms of the partial ordering �
and of the total ordering C.

Analogous to index–k critical points in the standard Morse theory, there are singular
cells of dimension k : they are those k –cells which do not belong to the gradient field
[7]. In our situation, they are given (see Corollary 4.13) in terms of the orderings by
those ŒC � Fk � such that

(i) Fk C FkC1 , for all FkC1 such that Fk � FkC1 ;

(ii) Fk�1 C Fk , for all Fk�1 such that C � Fk�1 � Fk .

It is easy to see that associating to a singular cell ŒC � Fk � the unique chamber C 0

which is opposite to C with respect to Fk , gives a one-to-one correspondence between
the set of singular cells in S and the set of all chambers in S . So we also derive the
main result in [19] with our method.

The minimality property of the complement follows easily, so the above singular cells
of S give an explicit basis for the integral cohomology, which depends on the system of
polar coordinates (we call such a basis a polar basis for the cohomology). A minimal
complex is obtained from S by contracting all pairs of cells which belong to the vector
field.
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Our construction also gives an explicit algebraic complex which computes local system
cohomology of M.A/. In dimension k such a complex has one generator for each
singular cell of S. The boundary operator is obtained by a method which is the
combinatorial analog to “integrating over all paths” which satisfy some conditions. We
give a reduced formula for the boundary, which is effectively computable in terms only
of the two orderings �;C. For abelian local systems, the boundary operator assumes
an even nicer reduced form. There exists a vast literature about calculation of local
system cohomology on the complement to an arrangement: several people constructed
algebraic complexes computing local coefficient cohomology in the abelian case (see
for example Cohen [3], Cohen and Orlik [4] Esnault, Schechtman and Viehweg [6],
Kohno [11], Libgober and Yuzvinsky [12] Schechtman, Terao and Varchenko [17],
Suciu [18] and Yoshinaga [19]). Our method seems to be more effective than the
previous ones.

In the last part we find a generic polar ordering on the braid arrangement. We give
a description of the complex S in this case in terms of tableaux of a special kind;
next, we characterize the singular tableaux and we find an algorithm to compare two
tableaux with respect to the polar ordering.

Some of the most immediate remaining problems are: first, to compare polar bases
with the well-known nbc–bases of the cohomology (see Björner and Ziegler [1] and
Orlik and Terao [13]); second, to characterize polar orderings in a purely combinatorial
way (using for example an oriented matroid counterpart of generic polar coordinates).

Acknowledgements The first author was partially supported by M.U.R.S.T. 40.

2 n–Dimensional polar coordinates

For the reader’s convenience, we recall here n–dimensional polar coordinates. Since
usually one knows only standard 3–dimensional formulas, we give here coordinate
changes in general.

Start with an orthonormal basis
e1; :::; en

of the Euclidean n–dimensional space V and let

P � .x1; :::;xn/

be the associated cartesian coordinates of a point P . We will confuse the point P and
the vector OP ,O being the origin of the coordinate system.
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Let in general

prW W V !W

be the orthogonal projection onto a subspace W of V . Consider the two flags of
subspaces

Vi D he1; :::; eii; i D 0; :::; n.V0 D 0/

Wi D hei ; :::; eni; i D 1; :::; n:and

Let Pi WD prWi
.P /; i D 1; :::; n

(so P1 D P ). One has

Pi D prWi
.Pj /; j � i

so there are orthogonal decompositions

Pi D PiC1 C xiei ; xi 2 R; i D 1; :::; n

(set PnC1 D 0).

Pi D 0) Pj D 0 for j � i;Clearly

Pi ¤ 0) Pj ¤ 0 for j � i:

Let �n�1 2 .��; ��

be the angle that OPn�1 forms with en�1 (in the 2–plane Wn�1 ). Let then

�i 2 Œ0; ��; i D 1; :::; n� 2

be the angle that OPi makes with ei .

The polar coordinates of P will be given by the “modulus”

�D kPk

together with more “arguments” (if P ¤ 0)

�1; :::; �n�1

(defined only for i �maxfj W Pj ¤ 0g).
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The coordinate change between polar and cartesian coordinates is given by:

(1)

x1 D � cos.�1/

x2 D � sin.�1/ cos.�2/
:::
:::
:::

xi D � sin.�1/::: sin.�i�1/ cos.�i/
:::
:::
:::

xn�1 D � sin.�1/::: sin.�n�2/ cos.�n�1/

xn D � sin.�1/::: sin.�n�1/

Notice that these formulas make sense always if we conventionally set �i D 0 for
Pi D 0.

The inverse formulas are:

�2 D x2
1
C :::Cx2

n

cos2.�1/ D
x2

1

x2
1
C:::Cx2

n

:::
:::
:::

cos2.�i/ D
x2

i

x2
i
C:::Cx2

n

:::
:::
:::

cos2.�n�1/ D
x2

n�1

x2
n�1
Cx2

n

3 Combinatorial Morse theory

We recall here the main points of Morse theory for CW-complexes, from a combinatorial
viewpoint. All the definitions and results in this section are taken from Forman [7; 8].

We restrict to the case of our interest, that of regular CW-complexes.

3.1 Discrete Morse functions

Let M be a finite regular CW-complex, let K denote the set of cells of M , partially
ordered by

� < � ” � � �;

and Kp the cells of dimension p.

Definition 3.1 A discrete Morse function on M is a function

f W K �! R

satisfying for all � .p/ 2Kp the two conditions:

Geometry & Topology, Volume 11 (2007)



1738 Mario Salvetti and Simona Settepanella

(i) #f� .pC1/ > � .p/ j f .� .pC1//� f .� .p//g � 1,
(ii) #fv.p�1/ < � .p/ j f .� .p//� f .v.p�1//g � 1

We say that � .p/ 2Kp is a critical cell of index p if the cardinality of both these sets
is 0.

Remark 3.2 One can show that, for any given cell of M , at least one of the two
cardinalities in (i) or (ii) is 0 [7].

Let mp.f / denote the number of critical cells of f of index p . As in the standard
theory one can show [7] the following.

Proposition 3.3 M is homotopy equivalent to a CW-complex with exactly mp.f /

cells of dimension p.

3.2 Gradient vector fields

Let f be a discrete Morse function on a CW-complex M . One can define the discrete
gradient vector field Vf of f as

Vf D f.�
.p/; � .pC1// j � .p/ < � .pC1/; f .� .pC1//� f .� .p//g:

By definition of Morse function and Remark 3.2, each cell belongs to at most one pair
of Vf . More generally, one defines:

Definition 3.4 A discrete vector field V on M is a collection of pairs of cells

.� .p/; � .pC1// 2M �M; � .p/ < � .pC1/

such that each cell of M belongs to at most one pair of V .

Given a discrete vector field V on M , a V –path is a sequence of cells

(2) �
.p/
0
; �
.pC1/
0

; �
.p/
1
; �
.pC1/
1

; �
.p/
2
; � � � ; � .pC1/

r ; �
.p/
rC1

such that for each i D 0; � � � ; r ,

.� .p/r ; � .pC1/
r / 2 V and �

.p/
i ¤ �

.p/
iC1

< �
.pC1/
i :

Such a path is a nontrivial closed path if � .p/
0
D �

.p/
rC1

. One has:

Theorem 3.5 A discrete vector field V is the gradient vector field of a discrete Morse
function if and only if there are no nontrivial closed V-path.

Remark 3.6 An equivalent combinatorial definition of discrete vector field is that of
matching over the Hasse diagram of the poset associated to the CW-complex (see, for
example, Forman [8]).

Geometry & Topology, Volume 11 (2007)



Combinatorial Morse theory and minimality of hyperplane arrangements 1739

4 Applications to hyperplane arrangements

4.1 Notation and preliminaries

Let ADfH g be a finite arrangement of affine hyperplanes in Rn . Assume A essential,
so that the minimal dimensional nonempty intersections of hyperplanes are points
(which we call vertices of the arrangement). Equivalently, the maximal elements of the
associated intersection lattice L.A/ [13] have rank n

Let M.A/D Cn
n

[
H2A

HC

be the complement to the complexified arrangement. We use the regular CW-complex
SD S.A/ constructed in Salvetti [15] which is a deformation retract of M.A/ (see
also Gelfand and Rybnikov [10], Björner and Ziegler [1], Orlik and Terao [13] and
Salvetti [16]). Here we recall very briefly some notation and properties.

Let S WD fFk
g

be the stratification of Rn into facets Fk which is induced by the arrangement [2],
where the exponent k stands for codimension. Then S has standard partial ordering

F i
� Fj if and only if clos.F i/� Fj :

Recall that k –cells of S bijectively correspond to pairs

ŒC � Fk �

where C D F0 is a chamber of S .

Let jF j be the affine subspace spanned by F , and let us consider the subarrangement

AF D fH 2A W F �H g:

A cell ŒD �Gj � is in the boundary of ŒC � Fk � (j < k ) if and only if

(i) Gj � Fk ,

(ii) the chambers C and D are contained in the same chamber of AGj .

The previous conditions are equivalent to say that D is the chamber of A which is
“closest” to C among those which contain Gj in their closure.

Notation 4.1 (i) We denote the chamber D which appear in the boundary cell
ŒD �Gj � of a cell ŒC � Fk � by C:Gj .
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1740 Mario Salvetti and Simona Settepanella

(ii) More generally, given a chamber C and a facet F , we denote by C:F the unique
chamber containing F in its closure and lying in the same chamber as C in AF k .
Given two facets F; G we will use also for .C:F /:G the notation (without brackets)
C:F:G .

It is possible to realize S inside Cn with explicitly given attaching maps of the cells
[15]. Recall also that the construction can be given for any oriented matroid (see the
above cited references).

4.2 Generic polar coordinates

In general, we distinguish between bounded and unbounded facets. Let B.S/ be the
union of bounded facets in S . When A is central and essential (ie

T
H2A H is a

single point O 2 V ) then B.S/D fOg. In general, it is known that B.S/ is a compact
connected subset of V and the closure of a small open neighborhood U of B.S/ is
homeomorphic to a ball (so U is an open ball; see, for example, Salvetti [15]).

Given a system of polar coordinates associated to O; e1; :::; en , the coordinate subspace
Vi ; i D 1; :::; n (see section 1) is divided by Vi�1 into two components:

Vi nVi�1 D Vi.0/[Vi.�/

Vi.0/D fP W �i.P /D 0gwhere

Vi.�/D fP W �i.P /D �gand

(this makes sense for i D n too, setting �n as the angle between Pn and en ). More
generally, we indicate by (i � n� 1)

(3) Vi.x�i ; :::; x�n�1/ WD fP W �i.P /D x�i ; :::; �n�1.P /D x�n�1g

where by convention x�j D 0 or �) x�k D 0 for all k > j I so in particular, Vi.0/D

Vi.0; :::; 0/ and Vi.�/ D Vi.�; 0; :::; 0/ (n� i components). The space Vi.x�/ is an
i –dimensional open half-subspace in the Euclidean space V , and we denote by jVi.x�/j

the subspace which is spanned by it. We have from (1)

jVi.x�i ; :::; x�n�1/j D he1; :::; ei�1;xei

where xeDxe.�i ; :::; �n�1/ WD

nX
jDi

� j�1Y
kDi

sin.�k/

�
cos.�j /ej :

For all ı 2 .0; �=2/ the space

zB WD zB.ı/ WD fP W �i.P / 2 .0; ı/; i D 1; :::; n� 1; �.P / > 0g
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is an open cone contained in Rn
C .

Definition 4.2 We say that a system of polar coordinates in Rn , defined by an origin
O and a base e1; :::; en , is generic with respect to the arrangement A if it satisfies the
following conditions:

(i) The origin O is contained in a chamber C0 of A.

(ii) There exist ı 2 .0; �=2/ such that

B.S/� zB D zB.ı/

(therefore, for each facet F 2 S one has F \ zB ¤∅).

(iii) Subspaces Vi.x�/D Vi.x�i ; :::; x�n�1/ which intersect clos. zB/ (so x�j 2 Œ0; ı� for
j D i; :::; n�1) are generic with respect to A, in the sense that, for each codim–k

subspace L 2L.A/,

i � k) Vi.x�/\L\ clos. zB/¤∅ and dim.jVi.x�/j \L/D i � k:

It is easy to see that the genericity conditions imply that the origin O of coordinates
belongs to an unbounded chamber. It turns out that such chamber must intersect the
infinite hyperplane H1 in a relatively open set. This is equivalent to saying that the
subarrangement given by the walls of the chamber is essential.

In fact we have:

Theorem 4.3 For each unbounded chamber C such that C \H1 is relatively open,
the set of points O 2 C such that there exists a polar coordinate system centered in O

and generic with respect to A forms an open subset of C .

Proof We proceed by first proving the following:

Lemma 4.4 Let A be a central essential arrangement in V . Then there exist or-
thonormal frames e1; :::; en which are generic with respect to A, in the sense that each
subspace Vi WD he1; :::; eii; i D 1; :::; n, intersects transversally each L2L.A/. Given
a chamber C , the first vector e1 can be any vector inside C .

Actually, the set of generic frames is open inside the space of orthonormal frames in V .

Proof of lemma Let O 0 be the intersection of all hyperplanes, and take an orthonormal
coordinate system with basis e0

1
; :::; e0n . Then each hyperplane H is given by a linear

form
Hi D fx W .˛i � x/D 0g; i D 1; :::; jAj
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where we denote by . � / the canonical inner product. Any codimension–k L 2L.A/
is given by an intersection of k linearly independent hyperplanes Hi1

; :::;Hik
of A.

The genericity condition on a frame e1; :::; en is written as

rk Œ.˛ir
� es/� rD1;:::;k

sD1;:::;i

Dminfk; ig

or, equivalently

(4) rk Œ.˛ir
� es/� rD1;:::;k

sD1;:::;k

D k:

It is clear that genericity applied to V1 gives that e1 is not contained in any hyperplane,
ie it belongs to some chamber of A. Equation (4) is easily translated into the equivalent
one

(5) dim.h˛i1
; :::; ˛ik

; ekC1; :::; eni/D n:

Passing on to the dual space V � by using the inner product, the set of all hyperplanes

h˛i1
; :::; ˛in�1

i � V �

gives an arrangement A� . Since e1 belongs to a chamber of A, each subspace
h˛i1

; :::; ˛ik
i intersects transversally the orthogonal e?

1
, so A� induces an arrangement

A1 WDA�\ e?
1

over e?
1

. Condition (5) requires an orthonormal basis e2; :::; en 2 e?
1

which is generic with respect to the flag

V 01 WD heni; :::;V
0

i WD hen�iC1; :::; eni; : : : :

Then we conclude the proof of the first and second assertions by induction on n.

For the last one, notice that
e1; en; e2; en�1; :::

can vary respectively in a chamber of the arrangements

A;A1 DA�\ e?1 ;A1;n WD .A1/
�
\ e?n ;A1;n;2 WDA�1;n\ e?2 ; :::

which is an open set inside orthonormal frames.

We come back to the proof of the theorem.

Special Case A central and essential.

Let O 0 be the center of A. According to the previous lemma we can find e1; :::; en

generic with respect to A, and with e1 WDOO 0=kOO 0k. If we consider a system of
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polar coordinates associated to O; e1; :::; en then the subspaces Vi satisfy condition
(iii) of genericity. Perform a small translation onto A,

xi! xi C �; 0< � � 1

which moves the center O 0 into the positive octant. Then if

� � ı� 1

all conditions in Definition 4.2 are satisfied by continuity and the fact that genericity is
an open condition.

General case In case of an affine arrangement referred to a system of cartesian
coordinates O 0; e0

1
; :::; e0n , hyperplanes are written as

Hi D fx W .˛i � x/D aig ; i D 1; :::; jAj:

Let H 0
i WD f.˛i � x/D 0/g

be the direction of Hi and let A0 be the associated central arrangement. Notice that if
A is essential then so is A0 . We can assume without loss of generality that k˛ik D 1,
for all i , so the vector

ai �˛i

represents the translation taking H 0
i into Hi .

Let C be an unbounded chamber of A such that C \H1 is relatively open in H1 .
Then the directions of the walls of C are the walls of a chamber C 0 in A0 . From the
previous case, there exist points O in C 0 and systems of polar coordinates O; e1; :::; en

which are generic with respect to A0 . Let ı > 0 satisfy Definition 4.2 for one of such
systems. We can assume (up to a homothety of center O 0 )

jai j � ı; for all i:

Then the same system satisfies the definition for A.

Of course, the condition of genericity is open, finishing the proof of the theorem.

4.3 Orderings on S

Fix a system of generic polar coordinates, associated to a center O and frame e1; :::; en .
Let ı > 0 be the number coming from Definition 4.2. We denote for brevity xB WD
clos. zB.ı//. Each point P has polar coordinates P � .�0; �1; :::; �n�1/, where we use
the convention �0 WD � .
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We remark that when the pole O is very far, the cartesian coordinates of points inside
zB.ı/ are approximately the same as the products (see (1)) xi � �0 � � � �i .

Notice that (3) makes sense also for i D 0, being

V0.x�0; x�1; :::; x�n�1/

given by a single point P with

�.P /D x�0; �1.P /D x�1; ::: ; �n�1.P /D x�n�1:

Given a codimension–k facet F 2 S , let us denote by

F.�/ WD F.�i ; :::; �n�1/ WD F \Vi.�i ; :::; �n�1/; �j 2 Œ0; ı�; j D i; :::; n� 1

(notice F D F.�/D F \Vn with � D∅).

By genericity conditions, if i � k then F.�/ is either empty or it is a codimension
kC n� i facet contained in Vi.�i ; :::; �n�1/.

For every facet F.�/, set

iF.�/ WDminfj � 0 W Vj \ clos.F.�//¤∅g:

Still by genericity, setting L WD jF.�/j, one has

L\Vj ¤∅” j � codim.F.�//

so also

(6) iF.�/ � codim.F.�//:

When the facet F.�/ WD F.�i ; :::; �n�1/; i > 0, is not empty and iF.�/ � i (ie
clos.F.�//\Vi�1D∅), then among its vertices (0–dimensional facets in its boundary)
there exists, still by genericity, a unique one

(7) P WD PF.�/ 2 clos.F.�//

such that

(8) �i�1.P /Dminf�i�1.Q/ W Q 2 clos.F.�//g

(of course, PF.�/ D F.�/ if dim.F.�//D 0, ie i D k ).

When iF.�/ < i then the point P of (7) is either the origin 0 (, iF.�/ D 0 , F is
the base chamber C0 ) or it is the unique one such that

(9) �iF.�/�1.P /Dminf�iF.�/�1.Q/ W Q 2 clos.F.�//\ViF.�/
g:
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Definition 4.5 Given any facet F.�/D F.�i ; :::; �n�1/ let us denote by

PF.�/ 2 clos.F.�//

the “minimum” vertex of clos.F.�//\ViF.�/
(as in (7)) (for F 2 S we briefly write

PF ).

We associate to the facet F.�/ the n–vector of polar coordinates of PF.�/

‚.F.�// WD .�0.F.�//; :::; �iF.�/�1.F.�//; 0; :::; 0/

(n� iF.�/ zeroes) where we set

�j .F.�// WD �j .PF.�//; j D 0; :::; iF.�/� 1:

We want to define another ordering over the poset S;�. We give a recursive definition,
actually ordering all facets in Vi.�/ for any given � D .�i ; :::; �n�1/.

Definition 4.6 (Polar Ordering) Given F;G 2 S , and given x� D .x�i , :::; x�n�1/,
0� i � n; x�j 2 Œ0; ı� for j 2 i; ::; n�1, (x� D∅ for i D n) such that F.x�/;G.x�/¤∅,
we set

F.x�/C G.x�/

if and only if one of the following cases occurs:

(i) P
F.x�/
¤ P

G.x�/
. Then ‚.F.x�// < ‚.G.x�// according to the antilexicographic

ordering of the coordinates (ie the lexicographic ordering starting from the last
coordinate).

(ii) P
F.x�/
D P

G.x�/
. Then one of the two cases holds:

(iia) dim.F.x�//D 0 (so P
F.x�/
D F.x�/) and F.x�/¤G.x�/ (so dim.G.x�// > 0).

(iib) dim.F.x�// > 0; dim.G.x�// > 0. In this case let i0 WD i
F.x�/
D i

G.x�/
.

When i0 � i one can write

‚.F.x�//D‚.G.x�//D .z�0; :::; z�i�1; x�i ; :::; x�i0�1; 0; :::; 0/:

Then for all �; 0< �� ı , it must be the case that

F.z�i�1C �; x�i ; :::; x�i0�1; 0; :::; 0/C G.z�i�1C �; x�i ; :::; x�i0�1; 0; :::; 0/:

If i0 < i then one can write

‚.F.x�//D‚.G.x�//D .z�0; :::; z�i0�1; 0; :::; 0/:

Then for all �; 0< �� ı , it must be the case that (n� i0 zeroes)

F.z�i0�1C �; 0; :::; 0/C G.z�i0�1C �; 0; :::; 0/:
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Condition (iib) says that one has to move a little bit the suitable Vj .�
0/ which intersects

clos.F.�// and clos.G.�// in the point P .F.�//DP .G.�// (according to (8) or (9)),
and consider the facets which are obtained by intersection with this “moved” subspace.

It is quit clear from the definition that irreflexivity and transitivity hold for C so we
have:

Theorem 4.7 Polar ordering C is a total ordering on the facets of Vi.x�/, for any
given x� D .x�i ; :::; x�n�1/. In particular (taking x� D∅) it gives a total ordering on S .

The following property, comparing polar ordering with the partial ordering �, will be
very useful.

Theorem 4.8 Each codimension–k facet Fk 2S (k < n) such that Fk \Vk D∅ has
the following property: among all codimension–.kC1/ facets GkC1 with Fk �GkC1 ,
there exists a unique one FkC1 such that

FkC1 C Fk :

If Fk \Vk ¤∅ (so Fk \Vk D P .Fk/) then

Fk C GkC1; for all GkC1 with Fk
�GkC1:

Proof In the latter case, where Fk \ Vk D P .Fk/, for every facet GkC1 in the
closure of Fk one has P .GkC1/ 62 Vk (by (6)), so Fk C GkC1 .

In general, for all facets G contained in the closure of Fk , one has either P .G/¤

P .Fk/ and ‚.Fk/ < ‚.G/, so Fk C G , or P .G/D P .Fk/: For those GkC1 such
that P .GkC1/D P .Fk/ one reduces, after �–deforming (may be several times) like
in Definition 4.6, to the case where F is a one-dimensional facet contained in some
Vh nVh�1 , with h� 1, and for such case the assertion is clear.

Let S.k/ WD S \ Vk be the stratification induced onto the coordinate subspace Vk .
A codimension–j facet in Vk is the intersection with Vk of a unique codimension–
j facet in S , j � k . Let Ck be the polar ordering of S.k/ , induced by the polar
coordinates associated to the basis e1; :::; ek of Vk . By construction, for all F; G 2 S
which intersect Vk , one has

F \Vk Ck G \Vk if and only if F C G:

So we can say that Ck is the restriction of C to Vk and also Ck is the restriction of
Ch for k < h.
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From the genericity conditions, for each Fk 2 S there exists a unique Fk
0

with the
same support and intersecting Vk (in one point).

The following recursive characterization of the polar ordering will be used later. The
proof is a direct consequence of Definition 4.6 and Theorem 4.8.

Theorem 4.9 Assume that, for all k D 0; :::; n, we know the polar ordering of all the
0–facets (=codimension–k facets) of S.k/ (in particular, for all Fk we know whether
Fk \ Vk ¤ ∅). Then we can reconstruct the polar ordering of all S . Assuming we
know it for all facets of codimension � kC 1, then given Fk ;Gk we have that

� if both Fk ; Gk intersect Vk then the ordering is the same as the restriction to
S.k/ ;

� if one intersects Vk and the other does not, the former is the lower one;

� if no of the two facets intersects Vk , then let F 0.kC1/ , (resp. G0.kC1/ ) be the
facet in the boundary of Fk (resp. Gk ) which is minimum (see Theorem 4.8)
with respect to C. Then

Fk C Gk

if and only if either

F 0.kC1/ C G0.kC1/

F 0.kC1/
DG0.kC1/ but G

.k/
0

C F
.k/
0
;or

where F
.k/
0

(resp. G
.k/
0

) means (as above) the unique facet with the same support
which intersects Vk .

Moreover, each Fk intersecting Vk is lower than any codimension–.kC 1/ facet. If
Fk does not intersect Vk then Fk is bigger than its minimal boundary F 0.kC1/ and
lower than any codimension–.kC 1/ facet which is bigger than F 0.kC1/ .

This determines the polar ordering of all facets of codimension � k .

Remark 4.10 We ask whether it is possible to characterize polar orderings in purely
combinatorial ways. The problem is more or less that of finding a good “combinatorial”
description of a flag of subspaces (or better, of half-subspaces) which corresponds to a
generic system of polar coordinates, so that we are able to decide what facets belong
to coordinate half-spaces. It seems quite reasonable that this can be done by specifying
combinatorially a “generic” flag in the given oriented matroid.
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4.4 Combinatorial vector fields

We consider here the regular CW-complex SD S.A/ of section 3.1. Recall that k –cells
correspond to pairs ŒC � Fk �, where C is a chamber and Fk is a codimension–k

facet in S . We will define a combinatorial gradient vector field ˆ over S. One can
describe ˆ (see section 2.2) as a collection of pairs of cells

ˆD f.e; f / 2 S�S j dim.f /D dim.e/C 1; e 2 @.f /g

so that ˆ decomposes into its dimension–p components

ˆD

nG
pD1

p̂; p̂ � Sp�1 �Sp

(Sp being the p–skeleton of S). Let us indicate by

�; x�W ˆ! S; �.a; b/D a; x�.a; b/D b

the first and last cells of the pairs of ˆ.

We give the following recursive definition:

Definition 4.11 (Polar Gradient) We define a combinatorial gradient field ˆ over S
in the following way:

The .j C 1/–th component ĵC1 of ˆ, j D 0; :::; n� 1, is given by all pairs

.ŒC � Fj �; ŒC � FjC1�/; Fj
� FjC1

(same chamber C ) such that

(1) FjC1 C Fj ,

(2) for all Fj�1 � Fj such that C � Fj�1 , the pair

.ŒC � Fj�1�; ŒC � Fj �/ is not in ĵ :

Condition 2 of Definition 4.11 is empty for the 1–dimensional part ˆ1 of ˆ, so

ˆ1 D f.ŒC � C �; ŒC � F1�/ W F1 C C g:

According to the definition of generic polar coordinates, only the base-chamber C0

intersects the origin O D V0 , so by Theorem 4.8 all 0–cells ŒC �C �; C ¤C0 , belong
to exactly one pair of ˆ1 .
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Theorem 4.12 One has:

(i) ˆ is a combinatorial vector field on S which is the gradient of a discrete Morse
function (according to Section 3).

(ii) The pair
.ŒC � Fj �; ŒC � FjC1�/; Fj

� FjC1

belongs to ˆ if and only if the following conditions hold:
(a) FjC1 C Fj ,
(b) for all Fj�1 such that C � Fj�1 � Fj , one has Fj�1 C Fj .

(iii) Given Fj 2 S , there exists a chamber C such that the cell ŒC � Fj � 2 x�.ˆ/ if
and only if there exists Fj�1 � Fj with Fj C Fj�1 . More precisely, for each
chamber C such that there exists Fj�1 with

(10) C � Fj�1
� Fj ; Fj C Fj�1

the pair .ŒC � xFj�1�; ŒC � Fj �/is in ˆ, where xFj�1 is the maximum .j � 1/–
facet (with respect to polar ordering) satisfying conditions (10).

(iv) The set of k –dimensional singular cells is given by

(11) Singk.S/D fŒC � Fk � W Fk
\Vk ¤∅; Fj C Fk ; for all C � Fj – Fk

g:

Equivalently, Fk \Vk is the maximum (in polar ordering) among all facets of
C \Vk .

Proof Clearly ˆ1 satisfies (ii) with j D 0. We assume by induction that ĵ is a
combinatorial vector field satisfying (ii). Consider now a j –cell ŒC �Fj �2S. Assume
condition (b) of (ii) holds for Fj W then if there exists FjC1 with Fj �FjC1; FjC1 C
Fj (and this happens by Theorem 4.8 if and only if Fj \Vj D∅) then

.ŒC � Fj �; ŒC � FjC1�/ 2 ĵC1:

If (b) of (ii) does not hold (j � 2) then let Fj�1 be the biggest (according to polar
ordering) codimension j � 1 facet such that

C � Fj�1
� Fj ; Fj C Fj�1:

Take any Fj�2 such that C �Fj�2�Fj�1 . We assert that Fj�2 CFj�1 . Otherwise,
certainly there exists another facet Gj�1 with

Fj�2
�Gj�1

� Fj

and by Theorem 4.8 it should be Fj�2 C Gj�1 , contradicting the maximality of Fj�1 .
So by induction

.ŒC � Fj�1�; ŒC � Fj �/ 2 ĵ
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(this proves (iii)), and the cell ŒC � Fj � cannot be the origin of a pair of ĵC1 .

To show that ĵC1 is a vector field, we have to see that no cell ŒC � FjC1� is the end
of two different pairs of ĵC1 . After �–deforming we reduce to the case where FjC1

is 0–dimensional. Then the unicity of a j –facet Fj such that C � Fj � FjC1 , and
such that (a) and (b) of (ii) hold easily comes from convexity of the chamber C .

This proves both that ˆ is a combinatorial vector field and (ii).

Next, we prove that ˆ is a gradient field by using Theorem 3.5 of Section 3: we have
to show that ˆ has no closed loops.

So let

. ŒC1 � F
j
1
�; ŒC1 � F

jC1
1

�; ŒC2 � F
j
2
�; ŒC2 � F

jC1
2

�; :::

:::; ŒCm � Fj
m�; ŒCm � FjC1

m �; ŒCmC1 � F
j
mC1

� /

be a ˆ–path (see (2)). First, notice that the j C 1–facets are ordered

FjC1
m C :::C F

jC1
1

:

In fact, by definition of path and the boundary in S (see Section 4.1) we have at the
k –th step:

F
j

kC1
� F

jC1

k
; F

j

kC1
� F

jC1

kC1
; F

jC1

kC1
C F

j

kC1
:

If also F
jC1

k
C F

j

kC1

then by Theorem 4.8 F
jC1

kC1
D F

jC1

k
; otherwise we have necessarily

F
jC1

kC1
C F

j

kC1
C F

jC1

k
:

Then if the path is closed it follows (still by Theorem 4.8) that all the F
jC1

k
equal a

unique FjC1 . Moreover, up to �–deforming, we can assume that the path is contained
in some Vi.�/ with FjC1 a 0–dimensional facet. Under these assumptions, we show
that

F
j
1

C :::C Fj
m:

Let Vi�1.�i�1; �i ; :::/ � Vi.�/ be the subspace containing the point FjC1I after �–
deforming, the path can be seen inside the subspace

zV WD Vi�1.�i�1C �; �i ; :::/

where for each cell ŒCk � F
j

k
� one has that Ck is a convex open polyhedron in zV (may

be infinite) and F
j

k
is, by point (iii), its maximum vertex: all the facets of Ck are lower

(in polar ordering) than F
j

k
.
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By the definition of boundary in Section 4.1 the two chambers Ck ;CkC1 belong to the
same chamber of AF

j

kC1
. Such a chamber is a convex cone with maximum facet (with

respect to polar ordering) F
j

kC1
, and such that each of its facets has the same support

as some facet of CkC1 of the same dimension, having the vertex F
j

kC1
as one of its

0–facets. Then clearly all the facets of Ck are lower (in polar ordering) than F
j

kC1
. In

particular F
j

k
C F

j

kC1
, which proves that there are no nontrivial closed ˆ–paths.

It remains to prove part (iv). In view of (ii), (iii), a cell ŒC � Fk � does not belong to
ˆ if and only if
(A) Fk C FkC1; for all Fk � FkC1 .

(B) Fk�1 C Fk ; for all C � Fk�1 � Fk :

Condition (A) holds by Theorem 4.8 if and only if P WD Fk \Vk ¤∅. Then P is a
0–dimensional facet in Vk , and (B) holds if and only if P is the maximum facet of the
chamber C \Vk (according to polar ordering). This is equivalent to (iv), and finishes
the proof of the theorem.

As an immediate corollary we have:

Corollary 4.13 Once a polar ordering is assigned, the set of singular cells is described
only in terms of it by

Singk.S/ WD
˚
ŒC � Fk � W

.a/ Fk C FkC1; for all FkC1 such that Fk
� FkC1;

.b/ Fk�1 C Fk ; for all Fk�1 such that C � Fk�1
� Fk

	
:

Remark 4.14 Of course, condition (b) of Corollary 4.13 is equivalent to

F 0 C Fk for all F 0 in the interval C � F 0 � Fk :

Remark 4.15 By (iv) of Theorem 4.12 Singk.S/ corresponds to the pairs .C; v/
where C is a chamber of the arrangement Ak WDA\Vk and v is the maximum vertex
of C . Then v is the minimum vertex of the chamber zC of Ak which is opposite
to C with respect to v . Of course, zC \ Vk�1 D ∅, so we re-find the one-to-one
correspondence between the singular k –cells of S and the chambers of Ak which
does not intersect Vk�1 [19].

Remark 4.16 By easy computation, the integral boundary of the Morse complex
generated by singular cells [7] is zero, so we obtain the minimality of the complement.
Alternatively, the same result is obtained by noticing that singular cells are in one-
to-one correspondence with the set of all the chambers of S by Remark 4.15. ButP

bi D jfchambersgj (see, for example, Zaslavsky [20] and Orlik and Terao [13]).
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Remark 4.17 Our description gives also an explicit additive basis for the homology
and for the cohomology in terms of the singular cells in S. We can call it a polar basis
(relative to a given system of generic polar coordinates). It would be interesting to
compare such basis with the well-known nbc–basis of the cohomology [1; 13].

5 Morse complex for local homology

The gradient field indicates how to obtain a minimal complex from S, by contracting all
pairs of cells in the field. For each pair of cells .ek�1; ek/ in ˆ, one has a contraction
of ek into @.ek/ n int.ek�1/, by “pushing” int.ek�1/[ int.ek/ onto the boundary.

In particular, it is possible to obtain a Morse complex which computes homology and
cohomology, even with local coefficients. We describe here such an algebraic complex,
computing homology with local coefficients for the complement M.A/. The boundary
operators depend only on the partial ordering � and on the polar ordering C.

First, we give to the coordinate space Vi the orientation induced by the ordered basis
e1; :::; ei . Given a codimension–i facet F i 2S , the support jF i j is transverse to Vi , so
we give the orthogonal space jF i j? the orientation induced by that of Vi . Recall from
[15] that the complex S has a real projection <W S! Rn which induces a dimension-
preserving cellular map onto the dual cellularization S_ � Rn of S . We give to a cell
e.F i/ 2 S_ , dual to F i , the orientation induced by that of jF i j? . We give to a cell
ŒC � F i � 2 S the orientation such that the real projection <W ŒC � F i �! e.F i/ is
orientation preserving.

Let L be a local system over M.A/, ie a module over the group-algebra of the
fundamental group �1.M.A// The basepoint is the origin O 2 C0 of the coordinates,
which can be taken as the unique 0–cell of S (and of S_ ) contained in C0 . Up
to homotopy, we can consider only combinatorial paths in the 1–skeleton of S, ie
sequences of consecutive edges. Sequences, or galleries,

C1; :::;Ct

of adjacent chambers uniquely correspond to a special kind of combinatorial paths in
the 1–skeleton of S, which we call positive paths. Two galleries with the same ends
and of minimal length determine two homotopic positive paths [15]. One says that a
positive path, or gallery, crosses an hyperplane H 2A if two consecutive chambers in
the path are separated by H .

Remark that the 1–dimensional part ˆ1 of the polar field gives a maximal tree in the
1–skeleton of S. Each 0–cell v.C / of S is determined by its dual chamber C 2 S .
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Then each v.C /2 S is connected to the origin O by a unique path �.C / of ˆ1 , which
is a positive path, determined by a gallery of chambers starting in C and ending in C0 .
We have

Lemma 5.1 For all chambers C , the path �.C / is minimal, ie it crosses each hyper-
plane at most once.

Proof One has that �.C / consists of a sequence of 1–cells ŒC �F1� where F1 C C .
It is sufficient to see that the hyperplane H D jF1j separates C from C0 . This comes
immediately from the definition of polar ordering, since one has P .F1/D P .C / and
(after �–deforming until we reduce to dimension 1) F1 is encountered before C by a
half-line V1.�1; :::/.

Notation 5.2 (i) Given two chambers C; C 0 we denote by H.C;C 0/ the set of
hyperplanes separating C from C 0 .

(ii) Given an ordered sequence of (possibly not adjacent) chambers C1; :::;Ct we
denote by u.C1; :::;Ct / the rel-homotopy class of

u.C1; :::;Ct /D u.C1;C2/u.C2;C3/ � � �u.Ct�1;Ct /

where u.Ci ;CiC1/ is a minimal positive path induced by a minimal gallery starting in
Ci and ending in CiC1 . We denote by

xu.C1; :::;Ct / 2 �1.M.A/;O/

the homotopy class of a path which is the composition

xu.C1; :::;Ct / WD .�.C1//
�1u.C1; :::;Ct /�.Ct /:

We denote by
xu.C1; :::;Ct /� 2 Aut.L/

the automorphism induced by xu.C1; :::;Ct /.

We need also some definitions.

Definition 5.3 A cell ŒC �F � 2 S will be called locally critical if F is the maximum,
with respect to C, of all facets in the interval fF 0 W C � F 0 � Fg of the poset .S;�/.

By Corollary 4.13 and Remark 4.14 a critical cell is also locally critical. By Theorem
4.12 (iii) the cell ŒC � Fk � belongs to the k –dimensional part ˆk of the polar field if
and only if it is not locally critical.
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Definition 5.4 Given a codimension–k facet Fk such that Fk \Vk ¤∅, a sequence
of pairwise different codimension–.k � 1/ facets

F.Fk/ WD .F
.k�1/
i1

; � � � ;F
.k�1/
im

/;m� 1

such that F
.k�1/
ij

� Fk ; for all j

and Fk C F
.k�1/
ij

for j <m

while for the last element
F
.k�1/
im

C Fk

is called an admissible k –sequence.

It is called an ordered admissible k –sequence if

F
.k�1/
i1

C � � �C F
.k�1/
im�1

:

Notice that in an admissible k –sequence with mD 1, it remains only a codimension–
.k � 1/ facet which is lower (in polar ordering) than the given codimension–k facet.

Two admissible k –sequences

F.Fk/ WD .F
.k�1/
i1

; � � � ;F
.k�1/
im

/;

F.F 0k/ WD .F 0.k�1/
j1

; � � � ;F
0.k�1/
jl

/;

Fk ¤ F 0k , can be composed into a sequence

F.Fk/F.F 0k/ WD .F .k�1/
i1

; � � � ;F
.k�1/
im

;F
0.k�1/
j1

; � � � ;F
0.k�1/
jl

/

when for the last element of the first one it is the case that

F
.k�1/
im

� F 0k :

In case F
.k�1/
im

D F
0.k�1/
j1

we write this facet only once, so there are no repetitions in
the composed sequence.

Definition 5.5 Given a critical k –cell ŒC � Fk � 2 S and a critical .k � 1/–cell
ŒD �Gk�1� 2 S, an admissible sequence

F D F.ŒC�F k �; ŒD�G.k�1/�/

for the given pair of critical cells is a sequence of codimension–.k � 1/ facets

F WD .F .k�1/
i1

; � � � ;F
.k�1/
ih

/
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obtained as composition of admissible k –sequences

F.Fk
j1
/ � � �F.Fk

js
/

such that

(a) Fk
j1
D Fk (so Fk�1

i1
� Fk ),

(b) Fk�1
ih
DGk�1 and the chamber

C:Fk�1
i1

: � � � :Fk�1
ih

(see Notation 4.1) equals D ,

(c) for all j D 1; � � � ; h the .k � 1/–cell

ŒC:Fk�1
i1

: � � � :Fk�1
ij
� Fk�1

ij
�

is locally critical.

We have an ordered admissible sequence if all the k –sequences that compose it are
ordered.

Lemma 5.6 All admissible sequences are ordered.

Proof Let s be an admissible sequence. One has to show that each k –sequence
composing s is ordered. This follows by Definition 5.5 (c), and by the definition of
polar ordering.

Denote by
Seq D Seq.ŒC � Fk �; ŒD �G.k�1/�/

the set of all admissible sequences for the given pair of critical cells. Of course, this is
a finite set which is determined only by the orderings �;C. In fact, the “operation”
which associates to a chamber C and a facet F the chamber C:F is detected only
by the Hasse diagram of the partial ordering �. The chamber C:F is determined by:
C:F � F and C:F is connected to C by the shortest possible path (= sequence of
adjacent chambers) in the Hasse diagram of �.

Given an admissible sequence s D .Fk�1
i1

; :::;Fk�1
ih

/ for the pair of critical cells
ŒC � Fk �, ŒD �Gk�1�, we denote (see Notation 5.2) by

u.s/D u.C;C:Fk�1
i1

; � � � ;C:Fk�1
i1

: � � � :Fk�1
ih

/

xu.s/D xu.C;C:Fk�1
i1

; � � � ;C:Fk�1
i1

: � � � :Fk�1
ih

/:and by

Set l.s/ WD h for the length of s and b.s/ for the number of k –sequences forming s .

Now we have a complex which computes local system homology.
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Theorem 5.7 The homology groups with local coefficients

Hk.M.A/;L/

are computed by the algebraic complex .C�; @�/ such that in dimension k

Ck WD ˚L:eŒC�F k �;

where one has one generator for each singular cell ŒC � Fk � in S of dimension k .

The boundary operator is given by

@k.l:eŒC�F k �/D
X

A
ŒC�F k �

ŒD�Gk�1�
.l/:eŒD�Gk�1�

(l 2L) where the incidence coefficient is given by

(12) A
ŒC�F k �

ŒD�Gk�1�
WD

X
s2Seq

.�1/l.s/�b.s/
xu.s/�;

summing over all possible admissible sequences s for the pair ŒC � Fk �; ŒD �Gk�1�.

Proof The proof follows by the definition of the vector field, from Theorem 4.12
and from the definition of boundary in S. In fact, condition (c) implies (by (iii) of
Theorem 4.12) that the .k � 1/-cell ŒC:Fk�1

i1
: � � � :Fk�1

ij
� Fk�1

ij
� does not belong to

ˆk�1 , so the pair

.ŒC:Fk�1
i1

: � � � :Fk�1
ij
� Fk�1

ij
�; ŒC:Fk�1

i1
: � � � :Fk�1

ij
�Ek � 2ˆ

for some Ek and for j < h. The result is obtained by substituting into

ŒC:Fk�1
i1

: � � � :Fk�1
ij
� Fk�1

ij
�

the remaining boundary

@.ŒC:Fk�1
i1

: � � � :Fk�1
ij
�Ek �/ n ŒC:Fk�1

i1
: � � � :Fk�1

ij
� Fk�1

ij
�

and keeping into account the given orientations.

Remark 5.8 The sign in formula (12) can be expressed in the following way. If
s D .Fk�1

i1
; :::;Fk�1

ih
/ then set

˛ WD #fj < h W Fk�1
ij

C Fk�1
ijC1
g

and set � D 0 or 1 according whether the first element Fk�1
i1

C Fk or Fk C Fk�1
i1

Then one has
.�1/l.s/�b.s/

D .�1/˛C�:
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Many admissible sequences in the boundary operator cancel, because of the sign rule.
We give a very simplified formula in the following.

Definition 5.9 (1) Given a pair of critical cells ŒC � Fk �; ŒD �Gk�1�, we say that
an admissible sequence

s D .Fk�1
i1

; :::;Fk�1
ih

/ 2 Seq

is m-extensible by the facet F 0k�1 if the following hold:

(a) F 0k�1 can be inserted into the sequence s to form another sequence s0 of length
hC 1 which is still admissible with respect to the same pair of critical cells, and
such that

xu.s/� D xu.s
0/�:

(b) F 0k�1 is the minimum (with respect to C) codimension–.k � 1/ facet which
satisfies (a) (then we call s0 the m-extension of s by F 0k�1 ).

(c) F 0k�1 is the minimum of the facets F 00k�1 in the sequence s0 such that the
sequence s” WD s0 nF 00k�1 obtained by removing F 00k�1 is still admissible, and

xu.s”/� D xu.s0/� D xu.s/�:

In other words, s is not the m-extension of some s” by F 00k�1 , with F 00k�1 C
F 0k�1 .

(2) We say that an admissible sequence

s D .Fk�1
i1

; :::;Fk�1
ih

/ 2 Seq

is m-reducible by the facet F 0k�1 in s , if the sequence s0 obtained by removing F 0k�1

is m-extensible by F 0k�1 .

Set Seqe and Seqr be the set of m-extensible, resp. m-reducible (by some codimension–
.k � 1/ facet), admissible sequences for a given pair of critical cells. By definition

Seqe
\Seqr

D∅:

The following lemma is also clear from the previous definition.

Lemma 5.10 There is a one-to-one correspondence

Seqe
$ Seqr

which associates to a sequence s which is m-extensible by F 0k�1 its extension s0

(obtained by adding F 0k�1 ).
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Denote the set of sequences which are not m-extensible and not m-reducible by

Seq0
WD Seq n .Seqe

[Seqr /:

Since the sign in formula (12) which is associated to an m-extensible sequence s and
to its extension s0 is opposite, it follows:

Theorem 5.11 The coefficient of the boundary operator in (12) of Theorem 5.7
satisfies

A
ŒC�F k �

ŒD�Gk�1�
WD

X
s2Seq0

.�1/l.s/�b.s/
xu.s/�:

The reduction of Theorem 5.11 is strong.

We consider now abelian local systems, ie modules L such that the action of �1.M.A//
factorizes through H1.M.A//. Then to each elementary loop 
H turning around an
hyperplane H in the positive sense it is associated an element tH 2 Aut.L/, so one
has homomorphisms

ZŒ�1.M.A//�! ZŒH1.M.A//�! ZŒt˙1
H �H2A � End.L/:

An abelian local system as that just defined is determined by the system T WD ftH ; H 2

Ag, so we denote it by L.T /.

Given an admissible sequence s D .Fk�1
i1

; :::;Fk�1
ih

/ relative to the pair ŒC �Fk �; ŒD�

Gk�1�, and given an hyperplane H 2A, we indicate by �.s;H / the number of times
the path u.s/ crosses H .

Lemma 5.12 For s;H as before, one has the following:

(1) For H 2H.C0;C /\H.C0;D/:

�.s;H /D 0 if Fk 6�H or Fk �H and Fk�1
i1

C Fk ;

�.s;H /D 2 otherwise:

(2) For H 2H.C0;D/\H.C;D/, we have �.s;H /D 1.

(3) For H 2H.C0;C /\H.C;D/:
� if Fk 6�H then �.s;H /D 1,
� if Fk �H then

Fk�1
i1

C Fk) �.s;H /D 1,
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Fk C Fk�1
i1
)

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�.s;H /D 3 if either H separates C0 from the first
element in s which is lower than Fk or
H separates C0 from the last element
in s which is bigger than Fk (these two
conditions do not appear at the
same time),

�.s;H /D 1 otherwise.

If H does not separate any two among C0; C; D then �� 2.

Proof The proof is very similar to that of Lemma 5.1.

Theorem 5.13 For the local system L.T / the coefficient xu.s/� in Theorem 5.11 is
given by

xu.s/� D
Y

H2A

t
m.s;H /
H

where if s D .Fk�1
i1

; :::;Fk�1
ih

/ then

m.s;H / WD

�
�.s;H /� �.C /C �.D/

2

�
where �.C / (resp. �.D/) holds 1 or 0 according whether H separates the base chamber
C0 from C (resp. D ).

Therefore one always has m.s;H /� 1, with m.s;H /D 1 if

(i) H 2H.C0;C /\H.C0;D/ and

Fk
�H; Fk C Fk�1

i1
;

(ii) H 2H.C0;C /\H.C;D/ and

Fk
�H; Fk C Fk�1

i1

with H separating C0 from the first element in s which is lower than Fk or
separating C0 from the last element in s which is bigger than Fk .

In the other cases we have
m.s;H /� 1

if H does not separate any two of the three chambers C0;C;D , otherwise

m.s;H /D 0:
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Proof The proof follows directly from the previous lemma, by computing, for each s ,
the number of times the path xu.s/ turns around some hyperplane.

Theorem 5.13 gives an efficient algorithm to compute abelian local systems in terms of
the polar ordering (see also [3; 4; 6; 11; 12; 16; 17; 18; 19]).

6 The braid arrangement

In this section, we describe the combinatorial gradient vector field for the braid ar-
rangement A D fHij D fxi D xj g; 1 � i < j � nC 1g. Let us start with some
notation.

6.1 Tableaux description for the complex S.An/

We indicate simply by An the symmetric group on nC 1 elements, acting by permuta-
tions of the coordinates. Then ADA.An/ is the braid arrangement and S.An/ is the
associated CW-complex (see Section 4.1).

Given a system of coordinates in RnC1 , we describe S.An/ through certain tableaux
as follow.

Every k –cell ŒC �F � is represented by a tableau with nC1 boxes and nC1�k rows
(aligned on the left), filled with all the integers in f1; :::; nC 1g. There is no monotone
condition on the lengths of the rows. One has the following.

� .x1; : : : ;xnC1/ is a point in F if and only if
(1) i and j belong to the same row if and only if xi D xj , and
(2) i belongs to a row less than the one containing j if and only if xi < xj .

� The chamber C belongs to the half-space xi < xj if and only if
(1) either the row which contains i is less than the one containing j , or
(2) i and j belong to the same row and the column which contains i is less

than the one containing j .

(See also Fuchs [9] for an equivalent description of a CW-complex for the braid
arrangement).

Notice that the geometrical action of An on the stratification induces a natural action
on the complex S, which, in terms of tableaux, is given by a left action of An : �T is
the tableau with the same shape as T , and with entries permuted through � .

Geometry & Topology, Volume 11 (2007)



Combinatorial Morse theory and minimality of hyperplane arrangements 1761

6.2 Construction of singular tableaux and polar ordering

In this part we use Theorem 4.9 constructing and ordering “singular” tableaux, corre-
sponding to codimension–k facets which intersect Vk . We give both an algorithmic
construction, generating bigger dimensional tableaux from the lower dimensional ones,
and an explicit one.

Denote by T.An/ the set of “row-standard” tableaux, ie with entries increasing along
each row. Each facet in S corresponds to an equivalence class of tableaux, where the
equivalence is up to row preserving permutations. So there is a 1� 1 correspondence
between T.An/ and the set of facets in A.An/. Let Tk.An/ be the set of tableaux of
dimension k (briefly, k� tableaux), ie tableaux with exactly nC1�k rows. Moreover,
write T � T 0 if and only if F � F 0 , where the tableaux T and T 0 correspond
respectively to F and F 0 . Our aim is to give a polar ordering on T.An/.

Definition 6.1 (Moving Function) Fixing an integer 1� r � nC1, for each 0� j �

n� k , define the moving function

Mj ;r W TkC1.An/ �! T.An/;

where the tableau Mj ;r .T
kC1/ is obtained from T kC1 moving the entry r to the j –th

row. Case j D 0 means that r becomes the only entry of the first row in Mj ;r .T
kC1/.

Of course, if r is the unique element of its row, moving r makes the preceding and
following rows become adjacent. So, the number of rows of the new tableau can
increase or decrease by 1, or it can remain equal (when the row of r has at least two
elements and j > 0). Given a tableau T k , where r is in the i –th row, we define the set
of tableaux Mr .T

k/D fMj ;r .T
k/g0<j<i . We assign to Mr .T

k/ the reverse order
with respect to j .

Let us consider the natural projection pn;mW T.An/�! T.Am/ obtained by forgetting
the entries r �mC 2 in each tableau (“empty” rows are deleted). For any T 2 T.An/

denote by mT the minimum integer 1 � m � n such that pn;m.T / preserves the
dimension of T . So, each j >mT C 1 is the unique element of its row.

Definition 6.2 (T-Blocks) Let T be a k –tableau in T.An/ and ei.T / the first entry
of its i –th row. Then, if mT < n, for any integer mT C 1� k < h � nC 1� k we
define a new ordered set

(13) Qn;h.T /D
[

mTC1�k<i�h

Mei .T /.Ti�1/;TmT�kC1DT and TiDM0;ei .T /.Ti�1/;

where Mei .T /.Ti�1/ are already ordered and tableaux in Mei .T /.Ti�1/ are less than
tableaux in Mej .T /.Tj�1/ if and only if i < j .
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Let T 2 T.An/ be a tableau representing a facet F . The symmetry in RnC1 with
respect to the subspace generated by F preserves the arrangement AF , so it induces an
involution rT on the set of tableaux in T.An/ corresponding to facets G � F . Given
a k –tableau T 2 Tk.An/ with mT < n, let Qn;h.T /D fTig1�i�p , where the indices
follow the ordering introduced in the previous definition. For any k –tableau ST , define
recursively STi as follows:

(1) ST1 D
ST ,

(2) STi D rTi
STi�1 if STi�1 � Ti , STi D

STi�1 otherwise.

Denote the last tableau STp by rQn;h.T /.
ST /.

Let im;nW T.Am/ �! T.An/ be the natural inclusion map, ie im;n.T / is obtained by
attaching to T exactly n �m rows of length one having entries mC 2; : : : ; nC 1

increasing along the first column.

Let �0.An/ be the set given by the identity 0–tableau (ie one column with growing
entries); we define �kC1.An/� TkC1.An/ as the image of the map

SQn;nC1�k W �k.An�1/ �! TkC1.An/;

Ti �!Qn;nC1�k.Ti;i/
(14)

where Ti;1 D in�1;n.Ti/ and Ti;j D rQn;nC1�k.Tj�1;j�1/.Ti;j�1/ for j � i .

We inductively order �k.An/ by requiring that the map in (14) is order preserving and
using the ordering of the T-blocks involved.

Remark 6.3 Remark that the k –tableau Ti;i in the above definition is Ti;i D rT .Ti;1/

where T D imTi
;n.T

mTi / and T mTi is the unique tableau (having only one row) of
TmTi .AmTi

/.

Now let us explicitly describe tableaux T k in �k.An/. Define the following operations
between tableaux:

(1) T �T 0 is the new tableau obtained by attaching vertically T 0 below T .

(2) T �i h is the tableau obtained by attaching the one-box tableau with entry h to
the i –th row of T .

(3) T op is the tableau obtained from T by reversing the row order. Notice that
.T �T 0/op D T 0op �T op .
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Let us fix k integers 1 < j1 < � � � < jk � nC 1 and, for 1 � h � k C 1, let Th be
the 0–tableau (= one-column tableau) with entries Jh D fjh�1C 1; : : : ; jh� 1g in the
natural order (set j0 D 0; jkC1 D kC 2).

Then, for any suitable choice of integers i1; : : : ; ik we define a k –tableau:

(15) T k
D ..� � � ....T

op
1
�i1

j1/�T2/
op
�i2

j2/�T3/
op
� � � /op

�ik
jk/�TkC1:

Proposition 6.4 A k –tableau in T.An/ is in �k.An/ if and only if it is of the form
(15). Moreover, the order in �k.An/ is the one induced by lexicographic order between
sequences of pairs ..j1; i1/; : : : ; .jk ; ik//, where .jt ; it / < .j

0
t ; i
0
t / if and only if either

jt < j 0t or jt D j 0t and it > i 0t .

Proof The proof is by induction on the dimension n of A.An/. The result holds
trivially for nD 1. Let T k be a tableau in T.An/ such that the .nC 1� k/–th row
has length one and entry nC 1. Then, by construction, T k 2 �k.An/ if and only if
pn;n�1.T

k/ 2 �k.An�1/ and the proof comes by inductive hypothesis. Otherwise
jk D nC 1, ie

T k
D ..� � � ...T

op
1
�i1

j1/�T2/
op
�i2

j2 �T3/
op
� � � /op

�ik�1
jk�1 �Tk/

op
�ik

.nC 1/:

If we define a .k � 1/–tableau as

T k�1
D .� � � ...T

op
1
�i1

j1/�T2/
op
�i2

j2 �T3/
op
� � � /op

�ik�1
jk�1 �Tk

then T k�1 2 �k�1.An�1/ by induction and T k 2 SQn;nC1�.k�1/.T
k�1/ by construc-

tion, ie T k 2 �k.An/. By construction, given T;T 0 2 SQn;nC1�.k�1/.T
k�1/, one has

that T is lower than T 0 if and only if either jk < j 0
k

or jk D j 0
k

and ik > i 0
k

. The
proof then follows from the inductive hypothesis.

Let us consider the subset Uk.An/ of rank–k elements in the lattice L.A.An// [13]:
in other words, the set of codimension–k intersections of hyperplanes from A. The
support of the facet represented by T k 2 Tk.An/ is denoted by jT k j 2 Uk.An/.

From arguments similar to those used in the proof of Proposition 6.4, one obtains the
following result.

Lemma 6.5 �k.An/ is a complete system of representatives for Uk.An/, ie any affine
space in Uk.An/ is the support of a tableau in �k.An/ and any two k –tableaux in
�k.An/ have different supports.

Remark 6.6 It follows that the cardinality of �k.An/ is the number of k –codimension
subspaces of the intersection lattice L.A.An//, ie the Stirling number S.nC 1; nC

1� k/ [13].
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Now let us prove that tableaux in �k.An/ describe critical cells of Sk.An/ with respect
to a suitable system of polar coordinates.

Proposition 6.7 There exists a system of polar coordinates, generic with respect
to A.An/, such that a codimension–k facet F meets the Vk space if and only if
the tableau which represents F is in �k.An/. Moreover, the induced order between
codimension–k facets intersecting Vk equals that introduced before for �k.An/.

Proof We start defining

A.An
n�1/D in�1;n.A.An�1//; A.An

n�1/
c
DA.An/ nA.An

n�1/:

Set also �k�1.A
n
n�1

/D in;n�1.�k�1.An�1//.

The proof is by double induction on the dimension n of A.An/ and the dimension k

of sections Vk . The result holds trivially for nD 1; 2 and also for k D 0 and any n.

By induction, it is possible to find a system of generic polar coordinates V 0
0
; :::;V 0n

in Rn which satisfies the theorem for An�1 . Using arguments similar to those used
in Section 4.2 one can embed this system to a generic one V0; :::;Vn;VnC1 D RnC1

for An , where the embedding is compatible with in;n�1 (ie it takes A.An�1/ inside
A.An

n�1
/).

By induction on k , we assume that the system verifies the assertion up to codimension–
.k � 1/ facets.

Let Lk.�k�1.A
n
n�1

// be the set of all affine lines realized as intersections between
Vk and Uk�1.A.An

n�1
//. By Lemma 6.5 any line Li in Lk.�k�1.A

n
n�1

// lies in the
support of one and only one tableau T k�1

i 2 �k�1.A
n
n�1

/.

Now notice that for any T k�1
i 2 �k�1.A

n
n�1

/, the last row is composed only of the
entry .nC 1/. Moreover, by Remark 6.3, the tableau T k�1

i;i is obtained from T k�1
i

without moving the entry nC 1. Then, by construction, �k.A
n
n�1

/ is given by the
ordered union of Qn;n�.k�1/.T

k�1
i / for T k�1

i 2 �k�1.A
n
n�1

/.

Therefore (by induction) the line Li intersects in order all k –facets represented by
Qn;n�.k�1/.T

k�1
i / and, after that, all hyperplanes in A.An

n�1
/c . These last intersec-

tions have to occur along a gallery of k –tableaux starting from the .k � 1/–tableau

zT k�1
i WD rQn;n�.k�1/.T

k�1
i

/.T
k�1
i /:

But M
e.nC1/�.k�1/. zT

k�1
i

/
. zT k�1

i /DMnC1. zT
k�1
i /
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is the only choice in order to have a gallery throughout hyperplanes in A.An
n�1

/c and
starting from zT k�1

i .

This proves the first statement of the proposition.

According to Definition 4.5 let

PF k
i;h
WD clos.Fk

i;h/\Vk

where Fk
i;h

is the facet represented by the tableau T k
i;h
2Qn;.nC1/�.k�1/.T

k�1
i /. By

Definition 4.6 we need to understand the ordering of such points P 0s .

From the above considerations and the inductive hypothesis it follows that in �k.A
n
n�1

/

one has
PF k

i1;h1

C PF k
i2;h2

if and only if the pair .i2; h2/ follows the pair .i1; h1/ according to the lexicographic
ordering. By simple geometric considerations this lexicographic ordering is preserved
when we pass to �k.An/. But this corresponds exactly to the ordering which we
defined before for �k.An/.

Remark 6.8 It follows from Theorem 4.9 that one can reconstruct the ordering of
T.An/ from that of �k.An/; k D 0; :::n.

In order to identify critical cells of S.A.An// we just apply Theorem 4.12.
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