Volume 11, issue 4 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23, 1 issue

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Other MSP Journals
The Seiberg–Witten equations and the Weinstein conjecture

Clifford Henry Taubes

Geometry & Topology 11 (2007) 2117–2202
Bibliography
1 C Abbas, K Cieliebak, H Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771 MR2182700
2 M Berger, P Gauduchon, E Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Mathematics 194, Springer (1971) MR0282313
3 N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer (2004) MR2273508
4 W Chen, Pseudo-holomorphic curves and the Weinstein conjecture, Comm. Anal. Geom. 8 (2000) 115 MR1730894
5 S Y Cheng, P Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981) 327 MR639355
6 V Colin, K Honda, Reeb vector fields and open book decompositions I: the periodic case, preprint (2005)
7 Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 MR1826267
8 D T Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749 MR2284049
9 H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515 MR1244912
10 H Hofer, Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)" (1998) 255 MR1648034
11 H Hofer, Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35 MR1702942
12 H Hofer, Holomorphic curves and real three-dimensional dynamics, Geom. Funct. Anal. (2000) 674 MR1826268
13 K Honda, The topology and geometry of contact structures in dimension three, from: "International Congress of Mathematicians. Vol. II", Eur. Math. Soc., Zürich (2006) 705 MR2275619
14 M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169 MR2207793
15 A Jaffe, C Taubes, Vortices and monopoles, Progress in Physics 2, Birkhäuser (1980) MR614447
16 T Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften 132, Springer New York, New York (1966) MR0203473
17 P. Kronheimer, T. Mrowka, Monopoles and Three-Manifolds, New Mathematical Monographs 10, Cambridge University Press (2007) 770
18 S. Molchanov, Diffusion process in Riemannian geometry, Uspekhi Mat. Nauk 30 (1975) 1
19 C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966) MR0202511
20 Y G Oh, Floer mini-max theory, the Cerf diagram, and the spectral invariants arXiv:math.SG/0406449
21 T H Parker, Geodesics and approximate heat kernels
22 M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419 MR1755825
23 R T Seeley, Complex powers of an elliptic operator, from: "Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966)", Amer. Math. Soc. (1967) 288 MR0237943
24 S Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965) 861 MR0185604
25 C H Taubes, Asymptotic spectral flow for Dirac operators, to appear in Commun. Analysis and Geometry arXiv:math.DG/0612126
26 C H Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221 MR1324704
27 C H Taubes, $\mathrm{Gr}{\Rightarrow}\mathrm{SW}$: from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203 MR1728301
28 C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg Witten and Gromov invariants for symplectic 4-manifolds" (editor C H Taubes), First Int. Press Lect. Ser. 2, Int. Press, Somerville, MA (2000) 1 MR1798137
29 C H Taubes, Seiberg Witten and Gromov invariants for symplectic 4—manifolds, First International Press Lecture Series 2, International Press (2000) MR1798809
30 A Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979) 353 MR543704