Volume 12, issue 1 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The braided Ptolemy–Thompson group is finitely presented

Louis Funar and Christophe Kapoudjian

Geometry & Topology 12 (2008) 475–530
Bibliography
1 E Artin, Theory of braids, Ann. of Math. $(2)$ 48 (1947) 101 MR0019087
2 B Bakalov, A Kirillov Jr., On the lego-Teichmüller game, Transform. Groups 5 (2000) 207 MR1780935
3 V N Bezverkhniĭ, Solution of the generalized conjugacy problem for words in $C(p)&T(q)$–groups, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 4 (1998) 5 MR1751577
4 J Birman, K H Ko, S J Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322 MR1654165
5 M G Brin, The Algebra of Strand Splitting. I. A Braided Version of Thompson's Group V arXiv:math.GR/0406042
6 M G Brin, The chameleon groups of Richard J. Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996) MR1441005
7 K S Brown, Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984) 1 MR739633
8 K U Bux, Braiding and tangling the chessboard complex arXiv:math.GT/0310420
9 D Calegari, Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 431 MR2172491
10 J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. $(2)$ 42 (1996) 215 MR1426438
11 F Degenhardt, Endlichkeitseigeinschaften gewiser Gruppen von Zöpfen unendlicher Ordnung, PhD thesis, Frankfurt (2000)
12 P Dehornoy, Geometric presentations for Thompson's groups, J. Pure Appl. Algebra 203 (2005) 1 MR2176650
13 P Dehornoy, The group of parenthesized braids, Adv. Math. 205 (2006) 354 MR2258261
14 P Dehornoy, I Dynnikov, D Rolfsen, B Wiest, Why are braids orderable?, Panoramas et Synthèses 14, Société Mathématique de France (2002) MR1988550
15 I A Dynnikov, Three-page representation of links, Uspekhi Mat. Nauk 53 (1998) 237 MR1691196
16 I A Dynnikov, Recognition algorithms in knot theory, Uspekhi Mat. Nauk 58 (2003) 45 MR2054090
17 D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992) MR1161694
18 D S Farley, Finiteness and $\mathrm CAT(0)$ properties of diagram groups, Topology 42 (2003) 1065 MR1978047
19 V Fock, Dual Teichmüller spaces arXiv:dg-ga/9702018
20 L Funar, R Gelca, On the groupoid of transformations of rigid structures on surfaces, J. Math. Sci. Univ. Tokyo 6 (1999) 599 MR1742596
21 L Funar, C Kapoudjian, The Ptolemy–Thompson group is asynchronously combable arXiv:math.GT/0602490
22 L Funar, C Kapoudjian, On a universal mapping class group of genus zero, Geom. Funct. Anal. 14 (2004) 965 MR2105950
23 S M Gersten, H Short, Small cancellation theory and automatic groups. II, Invent. Math. 105 (1991) 641 MR1117155
24 É Ghys, V Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185 MR896095
25 P Greenberg, V Sergiescu, An acyclic extension of the braid group, Comment. Math. Helv. 66 (1991) 109 MR1090167
26 R I Grigorchuk, V V Nekrashevich, V I Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000) 134 MR1841755
27 V Guba, M Sapir, Diagram groups, Mem. Amer. Math. Soc. 130 (1997) MR1396957
28 C Kapoudjian, V Sergiescu, An extension of the Burau representation to a mapping class group associated to Thompson's group $T$, from: "Geometry and dynamics", Contemp. Math. 389, Amer. Math. Soc. (2005) 141 MR2181963
29 M Kontsevich, Y Soibelman, Affine structures and non-archimedean spaces arXiv:math.AG/0406564
30 P Lochak, L Schneps, The universal Ptolemy-Teichmüller groupoid, from: "Geometric Galois actions, 2", London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press (1997) 325 MR1653018
31 A V Malyutin, Fast algorithms for the recognition and comparison of braids, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 279 (2001) 197, 250 MR1846081
32 D R Mason, On the $2$-generation of certain finitely presented infinite simple groups, J. London Math. Soc. $(2)$ 16 (1977) 229 MR0466324
33 J Matthews, The conjugacy problem in wreath products and free metabelian groups, Trans. Amer. Math. Soc. 121 (1966) 329 MR0193130
34 L Mosher, Mapping class groups are automatic, Ann. of Math. $(2)$ 142 (1995) 303 MR1343324
35 R C Penner, The universal Ptolemy group and its completions, from: "Geometric Galois actions, 2", London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press (1997) 293 MR1653016
36 R C Penner, J L Harer, Combinatorics of train tracks, Annals of Mathematics Studies 125, Princeton University Press (1992) MR1144770
37 D J S Robinson, A course in the theory of groups, Graduate Texts in Mathematics 80, Springer (1996) MR1357169
38 V Sergiescu, Graphes planaires et présentations des groupes de tresses, Math. Z. 214 (1993) 477 MR1245207
39 B Wiest, Diagram groups, braid groups, and orderability, J. Knot Theory Ramifications 12 (2003) 321 MR1983088
40 D Witte, Arithmetic groups of higher $\mathbf{Q}$-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc. 122 (1994) 333 MR1198459