Volume 12, issue 1 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Finite energy foliations on overtwisted contact manifolds

Chris Wendl

Geometry & Topology 12 (2008) 531–616
Abstract

We develop a method for preserving pseudoholomorphic curves in contact 3–manifolds under surgery along transverse links. This makes use of a geometrically natural boundary value problem for holomorphic curves in a 3–manifold with stable Hamiltonian structure, where the boundary conditions are defined by 1–parameter families of totally real surfaces. The technique is applied here to construct a finite energy foliation for every closed overtwisted contact 3–manifold.

Keywords
holomorphic curves, contact geometry, finite energy foliation, transverse surgery
Mathematical Subject Classification 2000
Primary: 32Q65
Secondary: 57R17
References
Publication
Received: 19 November 2006
Accepted: 20 December 2007
Published: 12 March 2008
Proposed: Yasha Eliashberg
Seconded: Leonid Polterovich and Simon Donaldson
Authors
Chris Wendl
Departement Mathematik
HG G38.1
Rämistrasse 101
8092 Zürich
Switzerland
http://www.math.ethz.ch/~wendl/