Volume 12, issue 2 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Legendrian knots, transverse knots and combinatorial Floer homology

Peter Ozsváth, Zoltán Szabó and Dylan Thurston

Geometry & Topology 12 (2008) 941–980
Bibliography
1 Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 MR1946550
2 P R Cromwell, Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995) 37 MR1339757
3 I A Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006) 29 MR2232855
4 J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89 MR1867893
5 J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier B. V., Amsterdam (2005) 105 MR2179261
6 J B Etnyre, K Honda, Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63 MR1959579
7 D Fuchs, S Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025 MR1445553
8 P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993) 773 MR1241873
9 C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, to appear in Ann. of Math. (2) arXiv:math.GT/0607691
10 C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339 MR2372850
11 L Ng, Computable Legendrian invariants, Topology 42 (2003) 55 MR1928645
12 L Ng, A Legendrian Thurston–Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5 (2005) 1637 MR2186113
13 L Ng, P Ozsváth, Z Szabó, Transverse knots distinguished by knot Floer Homology, to appear in J. Symplectic Geom. arXiv:math.GT/0703446
14 P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 MR2026543
15 P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 MR2065507
16 P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 MR2153455
17 P Ozsváth, Z Szabó, Holomorphic disks, link invariants, and the multi-variable Alexander polynomial, to appear in Algebr. Geom. Topol. 8 (2008) arXiv:math.GT/0512286
18 O Plamenevskaya, Bounds for the Thurston–Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004) 399 MR2077671
19 O Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13 (2006) 571 MR2250492
20 J A Rasmussen, Khovanov homology and the slice genus, to appear in Invent. Math. arXiv:math.GT/0402131
21 J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) arXiv:math.GT/0306378
22 L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155 MR1309974