Volume 12, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Product formulae for Ozsváth–Szabó $4$–manifold invariants

Stanislav Jabuka and Thomas E Mark

Geometry & Topology 12 (2008) 1557–1651
Bibliography
1 D Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer (1995) MR1322960
2 R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999) MR1707327
3 S Jabuka, T Mark, Heegaard Floer homology of a surfaces times a circle, Adv. Math. 218 (2008) 728
4 P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Mathematical Monographs 10, Cambridge Univ. Press (2007) MR2388043
5 T J Li, A Liu, General wall crossing formula, Math. Res. Lett. 2 (1995) 797 MR1362971
6 T Mark, Knotted surfaces in $4$–manifolds arXiv:0801.4367
7 J W Morgan, T S Mrowka, Z Szabó, Product formulas along $T^3$ for Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 915 MR1492130
8 J W Morgan, Z Szabó, C H Taubes, A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706 MR1438191
9 P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 MR1957829
10 P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 MR2065507
11 P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159 MR2113020
12 P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027 MR2113019
13 P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1 MR2031164
14 P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 MR2153455
15 P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 MR2222356
16 P Ozsváth, Z Szabó, An introduction to Heegaard Floer homology, from: "Floer homology, gauge theory, and low-dimensional topology", Clay Math. Proc. 5, Amer. Math. Soc. (2006) 3 MR2249247
17 B D Park, A gluing formula for the Seiberg–Witten invariant along $T^3$, Michigan Math. J. 50 (2002) 593 MR1935154
18 J A Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002) 757 MR1928176
19 R J Stern, Will we ever classify simply-connected smooth $4$–manifolds?, from: "Floer homology, gauge theory, and low-dimensional topology", Clay Math. Proc. 5, Amer. Math. Soc. (2006) 225 MR2249255
20 C H Taubes, $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453 MR1761081
21 C H Taubes, The Seiberg–Witten invariants and $4$–manifolds with essential tori, Geom. Topol. 5 (2001) 441 MR1833751
22 E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 MR1306021