Volume 12, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
A combination theorem for strong relative hyperbolicity

Mahan Mj and Lawrence Reeves

Geometry & Topology 12 (2008) 1777–1798
Bibliography
1 E Alibegović, A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459 MR2131400
2 J Behrstock, C Drutu, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity arXiv:math/0512592
3 M Bestvina, Geometric group theory problem list, available at http://math.utah.edu/ bestvina
4 M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 MR1152226
5 M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 MR1445386
6 B H Bowditch, Relatively hyperbolic groups, preprint, Southampton (1997)
7 B H Bowditch, The Cannon–Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35 MR2262721
8 I Bumagin, On definitions of relatively hyperbolic groups, from: "Geometric methods in group theory", Contemp. Math. 372, Amer. Math. Soc. (2005) 189 MR2139687
9 F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933 MR2026551
10 B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810 MR1650094
11 F. Gautero, Geodesics in trees of hyperbolic and relatively hyperbolic groups arXiv:0710.4079
12 É Ghys, P d l Harpe, editor, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990) MR1086648
13 R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321 MR1389776
14 M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 MR919829
15 G Hruska, D Wise, Packing subgroups in relatively hyperbolic groups arXiv:math.GR/0609369
16 M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001) MR1792613
17 E Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999) 1031 MR1713300
18 M Mitra, Maps on boundaries of hyperbolic metric spaces, PhD thesis, UC Berkeley (1997)
19 M Mitra, Cannon–Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998) 135 MR1622603
20 M Mitra, Height in splittings of hyperbolic groups, Proc. Indian Acad. Sci. Math. Sci. 114 (2004) 39 MR2040599
21 M Mj, Cannon–Thurston maps for pared manifolds of bounded geometry arXiv:math.GT/0503581
22 M Mj, Cannon–Thurston maps for surface groups I: amalgamation geometry and split geometry arXiv:math.GT/0512539
23 M Mj, Cannon–Thurston maps, i-bounded geometry and a theorem of McMullen arXiv:math.GT/0511041
24 M Mj, A Pal, Relative hyperbolicity, trees of spaces and Cannon–Thurston maps arXiv:0708.3578
25 L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305 MR1393118
26 L Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447 MR1443845
27 A Pal, Cannon–Thurston maps and relative hyperbolicity, PhD thesis, Indian Statistical Institute, Calcutta (expected 2009)
28 Z Sela, Diophantine geometry over groups. I. Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31 MR1863735
29 G A Swarup, Proof of a weak hyperbolization theorem, Q. J. Math. 51 (2000) 529 MR1806457