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Growth of Casson handles and transversality
for ASD moduli spaces

TSUYOSHI KATO

In this paper we study the growth of Casson handles which appear inside smooth four-
manifolds. A simply-connected and smooth four-manifold admits decompositions
of its intersection form. Casson handles appear around one side of the end of them,
when the type is even. They are parameterized by signed infinite trees and their
growth measures some of the complexity of the smooth structure near the end. We
show that with respect to some decompositions of the forms on the K3 surface, the
corresponding Casson handles cannot be of bounded type in our sense. In particular
they cannot be periodic. The same holds for all logarithmic transforms which are
homotopically equivalent to the K3 surface. We construct Yang–Mills gauge theory
over Casson handles of bounded type, and verify that transversality works over them.

57M30, 57R57; 14J80

1 Introduction

Casson handles are open four-manifolds with boundary, which arise when simply-
connected, oriented four-manifolds are decomposed topologically with respect to their
intersection forms. Let us describe how Casson handles appear inside smooth four-
manifolds. Let M be a simply-connected, smooth, closed and oriented four-manifold
of even type. Let us fix an isomorphism of the form

ˆW .H2.M IZ/; . ; // 7! .Z8k
˚Z2l ;�kE8˚ lH /

where H is the hyperbolic matrix (the standard form of S2 � S2 ). It is called a
marking.

M Freedman constructed an oriented, topological and closed four-manifold j�E8j with
�1.M /D 1 whose intersection form is isomorphic to �E8 . Moreover any ˆ above is
induced from a homeomorphism:

'W M Š kj�E8j#l.S2
�S2/

as ˆD'� , where kj�E8j is the k times connected sums of j�E8j (see Freedman [5]).
There exists an open subset S � M homeomorphic to l.S2 � S2/n pt, which is
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1266 Tsuyoshi Kato

compatible with the decomposition of the forms. In particular S admits an induced
smooth structure. This smoothing on the end is far from the standard product S3�Œ0;1/

in general. Casson and Freedman constructed the end of S explicitly. Let D4 be
the zero handle, a standard open four ball with boundary. Then S admits a smooth
decomposition:

S ŠD4
[
S2l

iD1CH.Ti/:

CH.Ti/ are called Casson handles, which are embedded inside M smoothly.

Each Casson handle can be represented by an infinite tree Ti with one end point, whose
edges are assigned with signs ˙. We call Ti signed infinite trees, or just signed trees.
When two signed trees admit an embedding T � T 0 , then correspondingly there is
a smooth embedding of Casson handles CH.T 0/� CH.T / preserving the attaching
circles. Thus growth of the signed trees representing S above measures the complexity
of the smooth structure of S �M on the end.

There are sufficiently many Casson handles. In fact, for each signed infinite tree, one
can associate a Casson handle. It is known that there are uncountably many Casson
handles which are mutually nondiffeomorphic (see the references in Kato [10]). In fact
even the simplest cases, periodic Casson handles, are known to be exotic (see Bižaca
and Gompf [1]). On the other hand, they are all homeomorphic to the standard open 2

handle . xD2 �D2;S1 �D2/ (see Freedman [5]).

We say that an open four-manifold S has tree-like end if there is a finite family of
signed trees T1; : : : ;Tl , such that S is diffeomorphic to D4[

Sl
jD1CH.Tj /, where

every CH.Tj / is attached to the zero handle D4 along the attaching S1 of the first
stage kinky handle (which corresponds to the end point in Tj ). Notice that there is a
natural smooth structure on it induced from the handle body.

In [10; 11], we defined a subclass of signed infinite trees which are called homogeneous
trees of bounded type. These are constructed by iterating to attach infinitely many half
periodic trees. To be precise, let RC be the nonnegative real line equipped with the
same signs on each edge C or �. The corresponding CH.RC/ is the periodic Casson
handles. There are two types of them with respect to the signs ˙. The set of vertices
in RC are RC �N D f0; 1; 2; : : : g. Attach another infinite number of the same RC
on each vertex in RC as

T 0
2 DRC[

S
n2NRC:

Again let us take infinite number of the same T 0
2

, and attach the base vertex of each
T 0

2
with each n 2N �RC . Then one obtains

T 0
3 DRC[

S
n2NT 0

2 :
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One can iterate the same process and obtain T 0
m , mD 1; 2; : : : . There are 2m numbers

of type T 0
m with respect to choices of signs, and these are the homogeneous trees of

bounded type.

Definition 1.1 A connected signed infinite subtree of a homogeneous tree of bounded
type is called a tree of bounded type.

A Casson handle of a tree of bounded type is also said to be of bounded type.

Thus a Casson handle of bounded type contains one of homogeneously bounded type
preserving the attaching circle. It is known that they are all exotic (see [10]). Notice
that any tree of bounded type grows polynomially, and so for example regular infinite
trees of valency more than two, like the binary trees are not included in this class.

Let M be as above, and take an SO.3/ bundle E!M . With respect to any marking
H2.M W Z/Š Z8k ˚Z2l , the second Stiefel–Whitney class w2 of E decomposes as
w2 D w

1
2
˚w2

2
. Let us say that a marking is generic with respect to the SO.3/ bundle

E , if both w1
2
¤ 0 and w2

2
¤ 0 do not vanish.

Let us recall that any marking gives an open four-manifold S �M . In this paper we
show the following Theorem.

Theorem 1.2 Let M be K3 surface or its logarithmic transforms Xp for odd p . Then
there is an SO.3/ bundle E!M with w2.E/¤ 0 which admits nonempty generic
markings, so that for any generic marking, the corresponding embedded Casson handles
in S can not be all of bounded type.

There are many logarithmic transforms which are homotopically equivalent to K3,
but nondiffeomorphic (see Friedman and Morgan [6], Gompf and Mrowka [9] and
Kronheimer [12]).

This bundle admits many generic markings. In fact the construction of E above shows
that with respect to the decomposition of the form over the Kummer surface, there is
some Z12 � Z8˚Z8 �H2.M W Z/ on the �2E8 side such that w2 does not vanish
on each generating element in Z12 . By the results on the unimodular forms, there are
automorphisms of the form so that any generator in the �2E8 side can be transformed
into the 3H side.

Diffeomorphisms 'W M ŠM induce the automorphisms on the lattices. Let ˆ be
a generic marking, and denote the induced one by '�.ˆ/. Then the open subset S 0

corresponding to '�.ˆ/ also satisfies the conclusion of Theorem 1.2, and so the Casson
handles in S 0 cannot be all of bounded type. This leads to a question whether one can
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remove the condition of genericity in Theorem 1.2, by use of diffeomorphisms. The
situation drastically depends whether M is K3 or homotopy K3.

For the K3 surface, many of automorphisms of lattices are induced by diffeomorphisms.
Let O.�2E8˚ 3H / be the group of automorphisms of the lattices.

Proposition 1.3 (Matumoto [13]) There is an index 2 subgroup OC �O.�2E8˚

3H / so that any element in OC is induced by a diffeomorphism on the K3 surface.

Corollary 1.4 For any marking on the K3 surface, the corresponding embedded
Casson handles in S cannot all be of bounded type.

Proof The following argument is due to Furuta. Let ˆ0 be a generic marking on
K3. Then the conclusion follows for ˆ0 by Theorem 1.2. Let us take any marking ˆ.
When an element g in OC transforms ˆ0 to ˆ as ˆD g.ˆ0/, then the conclusion
follows for ˆ by Proposition 1.3.

Let us consider the remaining case. With respect to the splitting �2E8 ˚ 3H D

H ˚ .�2E8˚ 2H /, let us denote the basis of the first factor H by x;y . Let R0 be
an element in O.�2E8˚ 3H / such that

x!�y; y!�x; �! � .� 2 .Z20;�2E8˚ 2H //:

Then it is known that O.�2E8˚ 3H / is generated by R0 and elements of OC (Wall
[18], see Matumoto [13]).

Now suppose a marking ˆ satisfies ˆ D gR0.ˆ0/ for some g 2 OC . Since R0

transforms one factor H into itself and on the other factors acts as the identity, it
preserves genericity of markings. So R0.ˆ0/ is also generic. Since an element g 2OC
transforms ˆ to a generic marking, it follows by the above argument that the conclusion
also holds for ˆ. This verifies the remaining case.

Let us consider the case of homotopy K3, including Xp for p odd. The Seiberg–
Witten invariant SWM gives strong constraints. It is a functional on the set of spinc

structures Spinc
D fˇ 2H 2.M W Z/ W ˇ � w2.TM /mod 2g. The set of basic classes

is given by spinc structures with nonvanishing SW invariants. It is known that the set
is finite. More strongly for any symplectic homotopy K3 surface, the lattice spanned
by the basic classes LM is known to be isotropic, and so its rank is less than 3 (see
Chen and Kwasik [2]). Since SWM is a diffeomorphism invariant, if ˇ 2LM , then
'�.ˇ/ 2LM must be also satisfied for any diffeomorphism ' . This observation gives
several constraints on the sizes of diffeomorphism groups, when LM is nontrivial. On
the other hand, by the work on symplectic four-manifolds by Taubes [14; 15], LM is
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known to be trivial (zero) for the standard K3, since in this case the canonical bundle
is trivial.

Thus for homotopy K3 surfaces, it is hopeless to approach the above question by use
of diffeomorphisms, however still it seems reasonable to expect the conclusion of
Theorem 1.2 for any markings on homotopy K3 surfaces.

The analytic tools to study such structure of Casson handles are Yang–Mills gauge
theory and the Donaldson invariant. In the application of gauge theory, there are two
ingredients from functional analytic view points: one is Fredholm theory of linearized
equations and the other is transversality of instanton moduli spaces. For the former
we have treated this in [10]. The main theme in this paper is the construction for the
latter. For application of the gauge theory to growth of Casson handles, the basic idea
is described also in [11].

Theorem 1.2 follows from Theorem 1.9 and Proposition 1.5 below. Let ˆ be any
marking on the K3 surface, and w2 Dw

1
1
Cw2

2
be the corresponding decomposition

of the second Stiefel–Whitney class w2 2H 2.M W Z2/.

Proposition 1.5 (Kronheimer [12]) Let M be K3 surface and Xp be the logarithmic
transforms. Then over both M and Xp , there are SO.3/ bundles E with jp1.E/j D 6

and generic markings satisfying w1
2
; w2

2
¤ 0 so that the Donaldson invariants satisfy:

Q.M /D˙1; Q.Xp/D˙p:

We have Fredholm property for the Atiyah–Hitchin–Singer (AHS) complex.

Theorem 1.6 (Kato [10]) Let S DD4[
S2l

jD1 CH.Tj / have a tree-like end whose
trees are homogeneous of bounded type. Then there is a pair, a complete Riemannian
metric g and a weight function w both of bounded geometry on S so that the bounded
complex

0 �!W kC1
w .S;g/

d
�!W k

w ..S;g/Iƒ
1/

dC

�!W k�1
w ..S;g/Iƒ2

C/ �! 0

is Fredholm with the cohomology groups H 0.AHS/ D 0, H 1.AHS/ D 0 and
l D dim H 2

C.S WR/� dim H 2.AHS/� 2l D dim H 2.S WR/.

One can construct Riemannian metrics explicitly on each building block and kinky
handle, and attach them isometrically.

Let S be an oriented open four-manifold which is simply-connected and also simply-
connected at infinity. A pair of a complete Riemannian metric g and a weight function
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w , both of bounded geometry on S , is called admissible if the triplet .S;g; w/ satisfies
the conclusion of Theorem 1.6.

The proof of Theorem 1.2 relies only on admissibility of metrics and weight functions,
and do not use other special properties. Thus we have the following Theorem.

Theorem 1.7 Let S � M be the open four-manifolds with tree-like ends in the
Theorem 1.2. Then there are no admissible pairs of metrics and weight functions .g; w/
on S .

Thus the Fredholm theory for the AHS complex cannot work on such Casson handles
in the K3 surface and its logarithmic transforms.

This complex is the linearization of the Yang–Mills moduli space (ASD moduli space)
which is one of the most important subjects in four dimensional geometry. Let E! S

be an SO.3/ bundle whose trivialization near the end is fixed. Notice that both the end
of S and S itself are simply-connected. A connection A over E is called anti self
dual (ASD), if its curvature FA satisfies the equation

FC
A
� FAC�FA D 0:

Let A0 be an ASD connection over .E;S;g/ whose curvature is L2 finite, that is,
kFA0

kL2.S;g/ < 1. Then the ASD moduli space M.A0/w is given by the set of
the ASD solutions in A0CW k

w .S IE˝T �S/ modulo gauge transformation, where
W k
w are the weighted Sobolev k spaces. It is a smooth finite dimensional manifold

near A 2 A0 CW k
w .S IE ˝ T �S/, when dC

A
is surjective. Notice that the base

connection A0 has a meaning only when the space S is open. Let †1; : : : ; †n � S

be embedded surfaces. Then as in the construction of the Donaldson invariant, one
obtains the restricted ASD moduli space M.A0/w.†1; : : : ; †n/. Its dimension is dim
M.A0/w � 2n.

In order to realize transversality we study the perturbed ASD equations by use of
holonomy. In this paper it will play one of the most important roles. The holonomy
perturbation is local, and it has metrics when one considers families of solutions over
an infinite sequences of spaces. Also in Section 3.2.8 we will use a property that it
gives enough supplementary sections. As far as these properties are satisfied, basically
our argument can be applicable for other local perturbations.

Let M be a simply-connected, oriented, closed, smooth four-manifold of even type,
equipped with a marking

ˆW .H2.M IZ/; h; i/Š .˚
8kZ˚2l Z; k.�E8/˚ lH /
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where k � 2 and l � 3. In this paper we always assume l is odd. By Casson–Freedman
[5], one finds an open four-manifold S with tree-like end, homeomorphic to the
interior of l.S2�S2/nD4 , and finds a smooth embedding S ,!M which induces an
embedding of the form:

.H 2.S W Z/; h ; i/Š .˚2lZ; lH / ,! .H 2.M W Z/; h ; i/:

Definition 1.8 Let E!M be an SO.3/ bundle and take a generic marking ˆ. The
triplet .M;E; ˆ/ is nondegenerate, if there are exhausting compact subsets K0 �

K1 � � � � � S and a family of generic Riemannian metrics fgigi so that:

(1) the SO.3/ Donaldson invariant Q.EI Œ†1�; : : : ; Œ†n�/ is nonzero for some classes
Œ†1�; : : : ; Œ†n� 2H2.S IZ/,

(2)
ˇ̌
jgi jKi �gjKi j

ˇ̌
C l ! 0 as i !1 for all l D 0; 1; : : :

(3) for any family of (perturbed) ASD connections Ai 2M.EI†1; : : : ; †n/ over
.M;gi/, a subsequence converges after gauge transformations, to an ASD con-
nection A over .S;g/ without bubbling on S on each compact subset in C1 .

By Uhlenbeck compactness (see Lemma 2.1) any family of such connections contains
a convergent subsequence, but in general bubbling may occur.

The main Theorem follows.

Theorem 1.9 Suppose M has a nondegenerate triplet .M;E; ˆ/. Then with respect
to ˆ, the embedded Casson handles cannot be all of bounded type.

This gives an answer to the continuity problem addressed in [11] under the nondegen-
eracy condition.

When jp1.E/j is small, bubbling does not occur as below (see the proof of Lemma
2.4).

Lemma 1.10 Let E be an SO.3/ bundle with jp1j � 6 and equip with a generic
marking. Suppose the SO.3/ Donaldson invariant Q.E/ does not vanish. Then the
condition in Definition 1.8(3) is satisfied.

Proof Since Q.E/ ¤ 0, families of (perturbed) ASD solutions exist. Thus the
conclusion follows except for the bubbling statement. By Uhlenbeck compactness,
a subsequence of the family fAigi converges to A on each compact subset in C1

except bubbling points. One can assume that the family fAigi itself converges by
replacing the indices and fKigi by fKli

gi if necessarily.
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As the space M is deformed by the family of Riemannian metrics, E splits as E1 and
E2 over S and Sc respectively. By genericity, both bundles E1 and E2 are nontrivial.
Since the base spaces S and Sc are both simply-connected, they are not flat bundles.

If bubbling could occur, then the estimate

jp1.E1/j � 6� 4� 2D 0

would hold, and hence E1 would be flat. This is a contradiction.

Let us describe the idea of the proof of the main Theorem roughly. For simplicity,
assume the generic ASD moduli space M.E/ over M is zero-dimensional. Suppose
the embedded Casson handles are all of bounded type with respect to the generic
marking ˆ. Then by Theorem 1.6 there exists an admissible triplet .S;g; w/. We
induce a contradiction by the following argument. Let us take an exhaustion on S by
compact subsets as

K0 �K1 � � � � � S �M:

Choose a family of generic Riemannian metrics fgigi such that gi jKi � gjKi are
sufficiently near each other in C1 . By the condition in Definition 1.8(3), there exists
a family of ASD connections Ai with respect to .M;gi/ which converges to an L2

ASD connection A with respect to .S;g/. By taking A as a base connection, one can
construct the ASD moduli space M.A;g/w , where we use weighted Sobolev spaces.
Its formal dimension is finite, and so if g could be generic with respect to .S;A/, then
it should be a nonempty finite dimensional smooth manifold. But its dimension is in
fact negative, which gives a contradiction.

This argument implies that these Casson handles should grow much more than bounded
type so that the Fredholm theory breaks under nondegeneracy condition. In this paper
we show that in fact this argument essentially works. Because we use infinitely many
spaces at the same time, the perturbation is required to be local. Here we use holonomy
perturbation by Floer [4].

In order to see the difficulty of the transversality condition, let us try to follow a
standard argument of generic perturbation of metrics. The Freed–Uhlenbeck generic
perturbation method of Riemannian metrics also works over the open manifold S .
Let C be the set of sufficiently small perturbations of g by automorphisms of the
tangent spaces. Then there exists a Baire set C.A/ � C so that for any g0 2 C.A/,
the corresponding weighted ASD moduli spaces M.A;g0/w will be a smooth finite
dimensional manifold, if it is nonempty. Now let us choose any g0 as above. One can
choose another generic family fg0igi with g0i! g0 as i !1 and ASD connections
fA0igi over .M;g0i/. Then again a subsequence converges to another A0 which is ASD

Geometry & Topology, Volume 12 (2008)



Growth of Casson handles and transversality for ASD moduli spaces 1273

with respect to .S;g0/. The point is that A0 may not be an element in M.A;g0/w ,
since a priori, their difference

A�A0 2L2..S;g0/Iƒ1
˝Ad P /

is just in L2 . In order for A0 in M.A;g0/w , the difference should be in the weighted
L2 space L2

w..S;g
0/Iƒ1˝Ad P /. On the other hand if one chooses A0 as a base

connection, then the moduli space M.A0;g0/w may not be a smooth manifold, since
g0 2 C.A/ depends on A and is generic only for M.A; /w .

In this paper we overcome this difficulty by using the projection method of function
spaces so that irrelevant parts of connections which might affect the estimate norms
of connections are eliminated, and we pick up only restrictions of connections on
S �M . More precisely even though Aj jK

c
j will degenerate very badly, we show

that the Aj jKj part behaves very much like the ordinary convergence so that one
can apply the above idea. For this we use the quotient Sobolev spaces SW �w .Ki ;g/�

W �w .S;g/=W �w .K
c
i ;g/0 . By use of holonomy perturbation, essentially we show that

if we project perturbed connections xA0j , then they converge to some A0 which is
uniformly bounded from A in W kC1

w .S;g/. Following the contradiction argument
above, if embedded Casson handles could be of bounded type, then using the Fredholm
property of the AHS complex with respect to the admissible triplet .S;g; w/, one
would be able to obtain the nonempty perturbed ASD moduli space Mb.A/w over S

for a generic element b of the perturbation. Thus it becomes a regular manifold, but
its formal dimension should be negative, which gives a contradiction.

In order to follow the above idea using these function spaces, we will use mostly more
general arguments of functional analysis which are not special to ASD equations, and
will work also for general operators of Fredholm type. In fact in order to find out A0

above in the proof of Theorem 1.9 in Section 3.2, we use a particular property of ASD
only in Section 3.2.9 and Section 3.2.10, that the Donaldson invariant does not vanish.

We believe that detailed analysis of bubbling phenomenon will allow the extension
of our method to the case of higher dimensional moduli spaces. It would have some
applications to our contents as follows. Our bounded type Casson handles are required
to have some conditions on signs on the corresponding trees. In Theorem 1.2, one
would expect to exclude Casson handles whose signed trees can be changed to bounded
type by blowing up, since it can eliminate negative double points from immersed
surfaces without changing their homology classes. Then the blowing up formula of
Friedman and Morgan [7] gives nonzero Donaldson invariants on the blow up of the
K3 surface or its log transforms, where higher dimensional moduli spaces are used.
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We conjecture the following: Let M be a simply-connected, smooth, closed and
oriented four-manifold of even type. Suppose an SO.3/ bundle over M has nonvan-
ishing Donaldson invariant on H2.S IZ/ as above. Then for any generic marking, the
corresponding embedded Casson handles will not be all of bounded type.

Our basic analytic tool is Yang–Mills gauge theory. On the other hand, Seiberg–Witten
monopoles have contributed much to recent research in low dimensional topology and
the study of smooth 4–manifolds, by the topological methods of Ozsváth and Szabó. It
would be natural to try to construct a parallel method by SW monopoles to the content
of this paper. For the moment we have already encountered some difficulty in the
framework of SW monopoles, to obtain Riemannian metrics and weight functions on
open four-manifolds which should give Fredholm linearized complexes. In fact we
have used de Rham cohomology computation to obtain the conclusion in Theorem 1.6,
where linearized Yang–Mills equation involves Laplace operators.
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2 ASD moduli spaces

2.1 Bundles over noncompact spaces

Let .S;g/ be a complete Riemannian open four-manifold of bounded geometry.
Bounded geometry requires two properties on Riemannian manifolds. One is uniformity
of injectivity radius from below �x > c > 0 independently of x 2 S . The other is that
there are constants Ck � 0 and local trivializations on some neighbourhoods of any
points x 2 S so that the corresponding connection matrices .!i

j / satisfy uniformity
k.!i

j /kC k � Ck for all k D 0; 1; : : :, independently of x 2 S . We denote the Sobolev
k norms as W k.S/ which are given by kuk2

W k.S/
D
P

i�k kr
i.u/k2

L2.S/
.

We always assume that both the end of S and S itself are simply-connected. For
our application later, it is enough to assume that the end of S is homeomorphic to
.1;1/�S3 .

Let E! S be an SO.3/ vector bundle over S , and denote the corresponding frame
bundle by P . Let us assume that E admits an L2 ASD connection A with

FAC�FA D 0 and kFAkL2.S;g/ <1:

Geometry & Topology, Volume 12 (2008)



Growth of Casson handles and transversality for ASD moduli spaces 1275

Let us fix a small �0 > 0, and U � S be the �0 neighbourhood of x 2 S so that E

admits a trivialization over U , EjU Š U �R3 . Since .S;g/ is of bounded geometry,
the following Lemma holds.

Lemma 2.1 (Uhlenbeck [16; 17]) There are constants � > 0 and Ck , k D 0; 1; : : : ,
independent of x 2 S , such that if the curvature FA satisfies kFAkL2.U / � � , then
there is a gauge transformation g over EjU so that the following estimates hold:

kg�.A/kW k.U / � CkkFAkL2.U /

By the Sobolev embeddings, there are estimates kg�.A/kC k.U / � C 0
k
kFAkL2.U / ,

where C 0
k

again are independent of x 2 S . Let Ad P be the adjoint bundle.

Proposition 2.2 For a large compact subset K � S , there is a bundle trivialization of
E over SnK so that A D d C u satisfies the estimates kukW k.SnK / <1 on SnK

for all k , where u is a section of Ad P ˝T �S jSnK .

Proof Let us choose a sufficiently large K � S so that kFAkL2.SnK / � � holds. Let
x0 2 SnK be a fixed point and U � SnK be a small neighbourhood of x0 . Let us
choose a trivialization of E over U by use of the parallel transform. Then Lemma 2.1
tells us that such a bundle trivialization gives the estimates kukW k.U / �CkkFAkL2.U /

for some constant Ck independent of x0 and U since the parallel transform is defined
by use of the connection matrix.

Let us choose another x 2 SnK . For any smooth loop l in SnK between x0 and x ,
the parallel transform is denoted by �l . Let us choose two such loops l and l 0 between
x0 and x . Then there is some gl;l 0 2 Aut Ex so that �l D gl;l 0�l 0 holds. We claim
that for any small ı > 0, there is a sufficiently large K independent of x , such that
gl;l 0 lies in a ı neighbourhood N of the identity in Aut Ex Š SO.3/ In particular N

admits a contraction to the identity. This holds by Lemma 2.1 when both l and l 0 are
contained inside a small neighbourhood of x0 . For the general case this also holds,
since S is simply-connected at infinity as follows. Let c D l�1 ı l 0W Œ0; 1�! SnK

be the closed loop and H W Œ0; 1�� Œ0; 1�! SnK be a contracting homotopy so that
H.0; /D c and H.1; /� x0 . One can cover the image of H by small balls. Then
successive applications of Lemma 2.1 on each ball again give the same conclusion, as
desired.

The rest follows by a general argument. Let us choose a triangulation on SnK covered
by sufficiently small simplices. Take any geodesics from x0 to vertices. They give a
trivialization of E on the set of vertices by use of parallel transport. Let � be any
simplex and take a vertex x 2 �. Again by use of parallel transport from x , one
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obtains a trivialization of E on �. For any other vertices y 2 �, this trivialization
on Ey will be certainly different from the previous one which used parallel transport
from x0 . However the difference is small, where by the above argument, there is some
g 2 Aut Ey which gives difference of these two trivializations, and it lies within a
ı neighbourhood of the identity as above. Thus by this property, one can extend these
local trivializations on simplices so that they give a global trivialization of E on SnK .
Moreover such a bundle trivialization gives the estimate kukW k.U / < CkkFAkL2.U /

for any small open subset U � SnK , since it is constructed by extending local
trivializations by small perturbations of parallel transforms.

This gives a trivialization EjSnKŠ .SnK/�R3 and ensures that the desired estimate
kukW k.SnK / <1 on SnK for all k .

Later on we fix a trivialization of E over SnK . E is determined by w2.E/ 2

H 2.S IZ2/ and p1.E/.

2.2 ASD moduli spaces

Let us denote the weighted Sobolev k spaces by W k
w .S;g/, where their norms are

defined by

kuk2
W k

w .S;g/
D

X
i�k

Z
S

exp.w/jriuj2vol :

Let A be as in Section 2.1, and define an affine Hilbert space as:

Ak.A/D fAC aja 2W k
w .S IAd P ˝T �S/g; k � 3:

Let us take g 2 C 1
loc.S IAut E/. By embedding as g 2 C 1

loc.S IHom.E;E//, one may
consider rAg 2 C 0.S IHom.E;E/˝T �S/. Notice that if g is locally W 4 , then it
is of C 1 class. Now one defines the weighted Sobolev gauge groups (l � 4):

Gl.P /D fh 2W l
loc.S IAut.E//jrAh 2W l�1

w .S IHom.E;E/˝T �S/g;

Gl.P /0 D fh 2W l
loc.S IAut.E//jh� id 2W l

w.S IHom.E;E/˝T �S/g:

The Lie algebras of Gl.P / and Gl.P /0 are correspondingly as follows:

gl.P /D fh 2W l
loc.S IAd.P //jrAh 2W l�1

w .S IAd.P /˝T �S/g;

gl.P /0 DW l
w.S IAd.P //:

These spaces all admit structure of Banach manifolds. GkC1.P /0 acts on Ak.P /0
by g�.AC a/D g�1rAgCg�1ag . Notice that GkC1.P / does not act on Ak.P /0 ,
since A is only in L2.S;g/.
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Let us put

yMk.A/w D fA
0
2ACW k

w ..S;g/IT
�S ˝Ad P / W FC.A0/D 0g:

For any A0 2 yMk.A/w , one has the following AHS complex with coefficient A0 :

0 �!W kC1
w ..S;g/Iƒ0

˝Ad P /
dA0

�!W k
w ..S;g/Iƒ

1
˝Ad P /

d
C

A0

�!W k�1
w ..S;g/Iƒ2

C˝Ad P / �! 0
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Proposition 2.3

(1) GkC1.P /0 acts on both OMk.A/w and Ak.A/ freely.

(2) If the AHS complex without coefficient is Fredholm, then so is the above com-
plex.

(3) Suppose the above complex is Fredholm, and dC
A0
W W k

w .S IAd P ˝ T �S/ 7!

W k�1
w .S IAd P ˝ƒ2

C/ is a surjection for A0 2 yMk.A/w . Then Mk.A/w D

yMk.A/w=GkC1.P /0 is a finite dimensional smooth manifold at ŒA0�. Its
dimension dim ker dC

A0
= im dA0 is equal to �2p1.P / C 3.dim H 1.AHS/ �

dim H 2.AHS//.

Proof For details of the proof, see [10, 1.B].

In the case when S is an open four-manifold with tree-like ends whose trees are
homogeneous of bounded type, then by Theorem 1.6 S admits a pair .g; w/ so that the
assumption in (2) is satisfied, and the dimension in (3) is less than �2p1.P /�3b2

C.S/.

The quotient space
Mk.A/w D yMk.A/w=GkC1.P /0

is the (weighted) Yang–Mills moduli space, which plays the central role throughout the
paper.

Now let M be an oriented, closed and smooth four-manifold with �1.M /D1. Suppose
the form is of even type with bC

2
.M /D l . Let us take an SO.3/ bundle E over M

with �p1.E/D s . Then the dimension of the generic ASD moduli space M.E/ is
d � 2s� 3.1C l/.

Let us take a generic marking with respect to the SO.3/ bundle E ! M , where
both w1

2
.E/; w2

2
.E/¤ 0 do not vanish. Let S �M be the corresponding open four-

manifold with tree-like ends, and assume that the trees are homogeneous of bounded
type. Let us choose an admissible pair .g; w/ by Theorem 1.6, and suppose an L2 ASD
connection A over E1! .S;g/ is obtained as in Section 1, by choosing exhaustion
K0 �K1 � � � � � S �M .

Lemma 2.4 The formal dimension D of M.A/w satisfies the inequality

D � d � 4C 3D d � 1:

Proof By Proposition 2.3(3) and the remark following it, the inequality D � d C 3C

2p1.E/� 2p1.E1/ holds, where the 3 comes from the constant gauge transformation.
Let us see that �p1.E1/ is strictly smaller than s D�p1.E/. In fact A is obtained
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as a limit of a sequence of ASD connections .Ai ;gi/ restricted on S , where the
convergence is in C1 on each compact subset. Moreover the Riemannian metrics gi

on M converge to g in C1 on each compact subset in S . By the ASD condition, the
equalities

�p1.E/D
1

4�2

Z
M

t r.FAi
^FAi

/D
1

4�2

Z
M

jFAi
j
2

hold, and so the inequalities

�p1.E1/D
1

4�2

Z
S

jFAj
2
�

1

4�2

Z
M

jFAi
j
2
D�p1.E/

hold too.

Now suppose that equality holds in the above inequality. With respect to a topological
decomposition M Š l.S2 �S2/#kj�E8j, the bundle E also splits topologically as
E1#E2 by Proposition 2.2 for all large i . Then E2 must be flat, in fact trivial, since
l.S2 � S2/ is simply-connected. However since w2 does not change under such a
limit, this cannot happen. This implies that the inequality must be strict.

Since the form is even, p1.E1/ takes an even value.

In particular if d D 0, then D is negative and so the generic ASD moduli space M.A/w
should be empty. This will be a crucial point in our argument of the proof of the main
theorem.

2.2.1 Proof of Theorem 1.9 under a favorable case Even though the complete
proof of Theorem 1.9 contains some complicated analysis which occupies the whole of
this paper, the basic idea is relatively simple. Here we will describe it assuming some
analytically favorable situation.

Let M be as above in Section 2.2, equipped with a generic marking ˆ. Suppose
the corresponding Casson handles are all of bounded type. Then there is an open
subset S � M homeomorphic to l.S2 � S2/n pt, and by Theorem 1.6 there is an
admissible pair .g; w/ on S . Let E!M be an SO.3/ bundle and suppose .M;E; ˆ/

could consist of a nondegenerate triplet. We have a contradiction under some analytic
condition as below. For simplicity of the argument, we consider the case without
embedded surfaces. Thus the SO.3/ Donaldson invariant Q.E/ is nonzero.

By definition, ˆ is generic so that w1
2
; w2

2
¤ 0 do not vanish with respect to the

decomposition w2 D w1
2
˚ w2

2
as in Section 1. Let us take exhausting compact

subsets K0 �K1 � � � � � S and a family of generic Riemannian metrics fgigi so thatˇ̌
jgi jKi �gjKi j

ˇ̌
C l ! 0 as i !1 for all l D 0; 1; : : : . Choose a sequence of ASD
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connections Ai 2M.E/ over .M;gi/. After gauge transformations, a subsequence
converges to an ASD connection A over .E0; .S;g// on each compact subset in C1 .

Now by use of the triple .g; w;A/ on S , one obtains the weighted Yang–Mills moduli
space Mk.A/w for a large k , which is nonempty since A 2Mk.A/w .

Suppose dC
A
W W k

w .S IAd P ˝T �S/ 7!W k�1
w .S IAd P ˝ƒ2

C/ is a surjection. Then
by Proposition 2.3(3), it is a finite dimensional smooth manifold. By the assumption,
the dimension of the moduli space M.E/ over M is zero. Then by Lemma 2.4, the
formal dimension of M.A/w becomes negative. It follows from surjectivity of the
above differential that the dimension of M.A/w should coincide with the formal one.
Since it is nonempty and the formal dimension is negative, this is a contradiction.

Remark 2.5 The main point in considering the general case is that one cannot assume
surjectivity of the differential as above. Thus one has to perturb the ASD equation
over S . By following the above procedure by use of a perturbed one, one will choose
another family of connections on M . The most important analytic step in this paper is
to control the sizes of Sobolev norms of differences of these families of connections. At
present if we allow bubbling phenomena on S in Definition 1.8(3), then we will lose
control of such sizes between connections, and will encounter difficulties in obtaining
surjective differentials. In the above proof of the easiest case, we do not have to care
about bubbling, since we have assumed surjectivity from the beginning.

2.3 Holonomy perturbation

Perturbation of equations often uses Banach spaces. In our analytic setting, we need
technically to use Hilbert spaces B as perturbation spaces. In this paper we use a
variant of the Floer holonomy perturbation, where our space B contains the Floer
Banach space P densely. For our construction of perturbed connections this extension
is auxiliary, and finally we will choose generic paths inside P .

Let us take a fixed point p0 2K0 � S �M and fix a trivialization of EjU on some
small neighbourhood U of p0 . Let .l1; : : : ; lK / be a family of smooth loops in K0

with li.0/D p0 . For any SO.3/ connection A on M or on S let

Hol.A/D .Holl1
.A/; : : : ;HollK .A// 2 SO.3/K

be the set of holonomy around these loops.

Lemma 2.6 There is a large K and a family of smooth loops fl1; : : : ; lK g so that for
all large i � i0 , the corresponding holonomy maps

Hol.Ai/;Hol.A/ 2 SO.3/K
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have no isotropy subgroups with respect to the diagonally adjoint SO.3/ action respec-
tively.

The same properties also hold near ŒAi � and ŒA�.

Proof By modifying Hol slightly still depending only on the restriction of connections
to K1 , we construct the desired map as below. There is a small ˛ 2 so.3/ with j˛j<< 1

so that Hol0.A/� .Hol.A/; exp.˛//2SO.3/K has no isotropy subgroup under SO.3/

adjoint action. We extend it to Hol0W BkC1.A/! SO.3/K=SO.3/ so that Hol0.A0/
still depends only on A0jK1 as follows. Let U �W kC1

w be a small open subset with
the local slice for the gauge group action ACU Š V �W , where V � U and W �

GkC2.P /0 , and diam V < �0 . Choose two functions, ' 2 C1c .K1/ with 'jK0 � 1,
and a decreasing function f W Œ0; �0�! Œ0; 1� with f .0/ D 1 and f .�0/ D 0. Then
for v 2 V and A0 DAC v , we put Hol0.A0/D .Hol.A0/; exp.f .jj'vjj/˛//. One can
extend Hol’ equivariantly on AkC1.A/, since gauge group action is free by Proposition
2.3(1). Hol0 depends only on A0jK1 and the restricted action GkC2.P /0jK1 , which
is the desired map. The Ai case is similar. This completes the proof.

Let us extend these embedded loops as li W D
3�S1 ,!M , and take a smooth compactly

supported function  2 C1.D3/c with
R

D3  D 1. Then we extend the holonomy
maps to Hol0i.Ai/ 2 SO.3/ which are small perturbations of:Z

D3

 .x/Holli .x; /.Ai/:

By this way one obtains a smooth map

B.M;E/D A.E/=G.E/! SO.3/K=SO.3/

which is an embedding on compact subsets near ŒAi � and ŒA� for all large i .

Floer constructed a Banach space P as a perturbation space by use of a subspace of
C1 functions C

x̌
.U / � C1.U /0 . In this paper we use a Sobolev space B as the

perturbation space, which contains P .

When one chooses b 2 BnP , then the corresponding perturbed moduli spaces will
be C l manifolds, rather than C1 , for some l . This will still work sufficiently for
our applications. But here in fact we see that at last one can take b 2 P and so the
corresponding moduli spaces are smooth, since P � B is dense.

Let us choose a sufficiently large m� k . For any u 2 C 0
c .U /

9 and a connection A,
let us assign

‰.u;A/ 2 C 0.M Iƒ2
C˝Ad P /
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by identifying u in this space by use of A. Let us identify ƒ2
CR4˝ so.3/ŠR9 and

let


 D SO.3/K �SO.3/R9

be the vector bundle over SO.3/K=SO.3/. Then we define B by

B DW m.
 �U /0:

This embeds into C l
�
SO.3/K � xU IR9

�
SO.3/ by the Sobolev embedding for some l ,

where the perturbation space P is a dense subspace of C1
0

�
SO.3/K �U IR9

�
SO.3/ .

In particular P is dense in our space B .

The map ‰ induces a perturbation s0W BkC1.E/�B!W k.M Iƒ2
C˝Ad P / by

s0

�
ŒA�;

X
i

ui ˝ vi

�
D‰

�X
i

ui.Hol A/˝ vi ;A
�
:

Let us fix a small �0 > 0, and put

s D �0s0W BkC1.E/�B!W k.M Iƒ2
C˝Ad P /:

Let us consider the perturbed map

FCs D FCC sW AkC1.E/�B!W k.M Iƒ2
C˝Ad P /:

Let gi be a Riemannian metric on M . For any choice b 2B , we denote the perturbed
ASD moduli space by

Mb.M;gi/D f.A; b/ W F
C.A/C s.A; b/D 0g=GkC2.E/:

Recall AkC1.A/DACW kC1
w ..S;g/Iƒ1˝Ad P /. Since the holonomy perturbation

is local, it also induces another one:

FCs D FCC sW AkC1.A/�B!W k
w ..S;g/Iƒ

2
C˝Ad P /

Let us denote its differential

DC
A
W W kC1

w ..S;g/ Wƒ1
˝Ad P /˚T0B!W k

w ..S;g/ Wƒ
2
C˝Ad P /:

Proposition 2.7 The linearization map

DC
A
� dC

A
C dsW W kC1

w ..S;g/Iƒ1
˝Ad P /˚T0B!W k

w ..S;g/Iƒ
2
C˝Ad P /

is surjective.
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The essential point for this is that the restrictions on U of any nonzero elements in
the cokernel are still nonzero, which follows from unique continuity for solutions of
elliptic operators .dC

A
/�w.u/D 0. Once one has this property, then it is immediate to

see surjectivity: suppose not and choose a nonzero element u 2 ker.DC
A
/�wi

. As above,
the restriction ujU on the open subset is still nonzero. Thus one can choose some
v 2 C1c .U / so that the L2

wi
inner product with u is still nonzero hu; viL2

wi

¤ 0. By
Lemma 2.6, there are no isotropy subgroups for Hol.A/ 2 SO.3/K , and so one can
choose some  2 P so that  .Hol A; /D v . In particular hds.A;0/.0;  /;uiL2

wi

¤ 0

which cannot happen, since u lies in the cokernel of DC
A

.

Let us put
V D im dA; W D V ? �W kC1

w ..S;g/Iƒ1
˝Ad P /

where V ? is the W kC1
w .S;g/ orthogonal complement. Let us consider the restriction

DC
A
W W ˚T0B!W k

w ..S;g/Iƒ
2
C˝Ad P /:

The same proof of the above gives the following Corollary.

Corollary 2.8 The above restriction is still surjective.

Later on we choose and fix a small � > 0 so that the � ball D� � T0B is identified
with an open subset in B near zero.

By the Sard–Smale transversality, there exist positive ı1; ı2 > 0 so that for the ıi balls
Dı1
�W kC1

w .S;g/ and Dı2
� B , one obtains the following Proposition.

Proposition 2.9 There is a Baire set B.S;g/�Dı2
such that for any b 2B.S;g/ the

perturbed moduli space Mb.S;g/w \ .ACDı1
/=G is a finite dimensional manifold.

One obtains similar statements by replacing .S;g/ by .M;gi/.

Remark 2.10 In general for small perturbation, not necessarily compact, the conclu-
sion of Proposition 2.9 still holds if the surjectivity condition in Proposition 2.7 holds
and the operator norm kds.A;0/k is sufficiently small.

For our case of holonomy perturbation, there is a small constant c0 > 0 so that the
operator norm kds.A;0/jT0Bk< c0 is bounded by c0 . Since s is compact, the spectral
decomposition f. i ; �i/gi of .ds.A;0/jT0B/�ds.A;0/jT0B for nonzero eigenvalues,
shows that �i! 0 goes to zero, and so the sets

L.s; c/� fv 2 T0B W ckvk< kds.A;0/.v/kg
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are finite dimensional for any positive c > 0. Let us fix a small c > 0. Then one can
modify s so that the result s0 still satisfies kds0

.A;0/
jT0Bk< c0 , but L.s0; c/ is infinite

dimensional. In fact one can modify these perturbations on .M;gj / so that the results
sj satisfy the estimates kd.sj /.A;0/. l/k� ck lk for l � j and sj .A;  k/D s.A;  k/

for k � j C 1. The sj are still compact and limj!1 sj D s0 holds. By the above
remark, if one replaces s with s0 , then Proposition 2.7 and Proposition 2.9 still hold
on .S;g/. We will use these modifications of perturbations in Section 3.2.8.

Since P � B is dense, for any b 2 B and small � > 0, there is some b0 2 P so that
kb�b0kB <� . Since surjectivity is an open condition, one can choose generic elements
b 2 P . Later we will use this property.

Now let gi be a generic Riemannian metric on M . When one uses a smooth perturba-
tion, then the smooth transversality follows by Floer [4]:

Lemma 2.11 (Floer [4]) There is a Baire set P .M;gi/ � P , so that the per-
turbed moduli space Mb.M;gi/ is a smooth manifold of finite dimension for any
b 2 P .M;gi/. Moreover if gi is already generic, then there is a smooth cobordism
between M.E;gi/ and Mb.E;gi/.

Let gi be as in Section 1. Now the countable intersection of Baire sets is dense.
Thus by putting P 0 D

T
i P .M;gi/ � P , one obtains a dense subset in P so that

for any b 2 P 0 , the perturbed moduli spaces Mb.M;gi/ and Mb.A/w are all finite
dimensional manifolds if nonempty. Moreover in that case, there are cobordisms
between M.M;gi/ and Mb.M;gi/ by a generic smooth path bt .

For our application, we need families of moduli spaces by two dimensional pa-
rameterization in Section 3.2.10. Let cW Œ0; 1�2 ! P be a smooth map and put
Mc.M;gj /D f.ŒA�; c.s; t// W F

C
s .ŒA�; c.s; t//D 0; 0� s; t � 1g.

Let bt and b0t be two generic paths. The same argument as that with cobordisms gives
the following Lemma.

Lemma 2.12 Let cW Œ0; 1�2! P be a smooth map with c.0; t/D bt and c.1; t/D b0t .
Then for a Baire set of paths c as above, Mc.M;gj / gives smooth finite dimensional
manifolds with corners.

3 Proof of Theorem 1.9

Perturbing Riemannian metrics produces families of moduli spaces. In order to analyse
these families of spaces for our purpose, one has to study estimates of injectivity radii
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of regular moduli spaces. Such estimates are given by the infinite dimensional implicit
function theorem, which we will recall for convenience.

Let V;W;G be Banach spaces, ADB.x0/2ı1
�B.y0/2ı2

be the open subset of V �W

and f W A!G be a C1 map, where B.x0/ı1
is the ı1 ball with the center x0 , and

B.y0/ı2
is similar. Suppose at .x0;y0/2A, f .x0;y0/D0 and D2f .x0;y0/W W ŠG

is the linear isomorphism, where D2 is the derivative with respect to the second variable.
Then there are positive �1; �2 > 0, and a C1 map gW B.x0/�1

! B.y0/�2
such that

g.x0/D y0 , and any .x;y/ 2 B.x0/�1
�B.y0/�2

satisfies f .x;y/D 0 if and only if
y D g.x/. Moreover Dg.x/D�ŒD2f .x;g.x//�

�1Df .x;g.x// holds.

Lemma 3.1 The positive constants �1; �2 depend only on the constants C1 , C2 and
C3 of the norms

C1 � kD2f .x;y/kinf; kDf .x;y/k � C2; kD
2
2f .x;y/k � C3

for all .x;y/ 2 B.x0/ı1
�B.y0/ı2

, where kD2f .x;y/kinf D infa¤0
jjD2f .x;y/.a/k

kak
.

Later we need uniformity of these �1 and �2 from below, when one constructs families
of moduli spaces under the process of perturbing the metrics.

Let E be the SO.3/ bundle over M , and choose a generic marking ˆ with respect to E .
Below we assume that the triplet .M;E; ˆ/ is nondegenerate, and the corresponding
S �M has an admissible triple .S;g; w/. Under these two conditions, we will induce
a contradiction. Our final step of the proof is to construct a regular and perturbed
moduli space whose formal dimension is negative.

We verify Theorem 1.9 when the generic ASD moduli space M.E/ is 0–dimensional.
If it has positive dimension then by taking embedded surfaces †1; : : : ; †n �M one
can consider the restricted 0–dimensional moduli space M.EI†1; : : : ; †n/ as the
construction of the Donaldson invariant. The argument is parallel for this case.

Let us choose an exhaustion by compact subsets K0 � K1 � � � � � S . Choose a
generic family of Riemannian metrics fgigi and ASD connections Ai with respect to
.M;gi/ so that

ˇ̌
jgi jKi �gjKi j

ˇ̌
C k ! 0 for all k D 0; 1; : : : . One may assume after

gauge transformation and by taking subsequence if necessarily, that Ai converge to an
L2.S;g/ ASD connection A over E0! S in C1 on each compact subset. By the
assumption, bubbling does not occur on the family fAigi restricted on S . A priori the
weighted Yang–Mills moduli space M.A/w will not be regular, and so its dimension
may not coincide with the formal one.

Let us choose a generic element b 2B with respect to all the family fAigi and A. We
choose it so that its norm kbkB is small. We seek for a pair .A0; b/ with FCs .A

0; b/D 0
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and A�A0 2W kC1
w ..S;g/Iƒ1˝Ad P /. Then one will obtain a nonempty, regular,

weighted and perturbed ASD moduli space

Mb.A/w

over S , whose dimension should be negative by Lemma 2.4. This is a contradiction,
and is enough to verify Theorem 1.9.

In order to guarantee existence of elements of the moduli spaces under small perturba-
tions, we assume that the Donaldson invariant is nonvanishing. Let M.M;gi/ be a
regular ASD moduli space.

Lemma 3.2 There is an element ŒAi � 2M.M;gi/ and a parameterization bt , b0 D 0

and b1 D b of small norms kbtk � 1 so that for any t 2 Œ0; 1�, there are solutions
.At

i ; bt / with FCs .A
t
i ; bt /D 0 over E!M and A0

i DAi .

Proof Since both gi and b are generic and the Donaldson invariant does not vanish,
there is a cobordism between the ASD moduli space M.M;gi/ and its perturbed form
Mb.M;gi/ in B.E/�B . From this, the result follows.

Let us take a family of C1 weight functions

wi W M ! Œ0;1/

so that wi jKi D wjKi hold, where w is the fixed one on S . Then using weighted
Sobolev spaces W k

wi
..M;gi/Iƒ

�/ instead of the usual ones W k..M;gi/Iƒ
�/, one

can obtain the same ASD moduli spaces over .M;gi/, since M is compact.

3.1 Test case

Here we verify Theorem 1.9 assuming some analytic conditions on operators. This
will clarify what causes a complicated situation for the proof of the general case.

Let .M;E; ˆ/ be the nondegenerate triplet, and assume that the corresponding S �M

has an admissible triple .S;g; w/. Let K0� � � ��Ki � � � ��S �M be an exhaustion,
fgigi be a generic family of Riemannian metrics, as in Definition 1.8, and choose
ASD connections ŒAi � 2M.M;gi/ from the regular moduli spaces. By definition
of nondegeneracy, this family of ASD connections converges to an ASD connection
A over E0 ! S in C1 on each compact subset of S , by taking a subsequence if
necessary.
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3.1.1 Uniformity of spectral radii Let us consider the surjective differentials

dC
Ai
W W kC1

wi
..M;gi/Iƒ

1
˝Ad P /!W k

wi
..M;gi/Iƒ

2
C˝Ad P /

and let

.dC
Ai
/�wi
W W kC1

wi
..M;gi/Iƒ

2
C˝Ad P /!W k

wi
..M;gi/Iƒ

1
˝Ad P /

be the L2
wi

weighted adjoint operator. In the application of the implicit function
theorem, surjectivity of the differentials is used, which is equivalent to lower bounds
of the weighted adjoint operators k.dC

Ai
/�wi
kinf � ci > 0.

In the case where uniform estimates of spectral radii

k.dC
Ai
/�wi
kinf � c > 0 .�/

hold, where c is independent of i , then the proof of Theorem 1.9 goes very simply as
follows. In fact in this quite restrictive situation, the connection A itself also becomes
regular and satisfies the estimates k.dC

A
/�wkinf � c as below.

For any i � j , let W l
wj
.Ki/0 be the closure by W l

wj
norms of C1.Ki/c , the set of

functions compactly supported inside Ki . Since wj jKi D wi jKi holds,

W kC1
wj

.Ki Iƒ
2
C˝Ad P /0

is contained in the domain of .dC
Aj
/�wj

. Let 'i 2 C1.Ki/0 be cut off functions
satisfying 'i.Ki�1/ � 1. Let w 2 W kC1

w .S Iƒ1 ˝ Ad P / be any element with
kwk

W
kC1

w
D 1. Then for any small 0 < � � c , there is a sufficiently large i0 so

that
k'i0

wk
W

kC1
w .Ki0

Iƒ1˝Ad P/0
� 1� �:

Since the family fAigi converges to A as above, for any small ı > 0, there is another
large i1 � i0 so that k.dC

Ai1

/�wi1
� .dC

A
/�wk � ı holds on W kC1

wi0
.Ki0
Iƒ2
C˝Ad P /0 .

Now we have the estimates

k.dC
A
/�w.w/kW k

w
� k.dC

A
/�w.'i0

w/kW k
w
�k.dC

A
/�w..1�'i0

/w/kW k
w

� k.dC
Ai1

/�wi1
.'i0

w/kW k
wi0

�k..dC
Ai1

/�wi1
� .dC

A
/�w/.'i0

w/kW k
w

�k.dC
A
/�w..1�'i0

/w/kW k
w

� ck'i0
wk

W
kC1

wi0

� ı� �:

In particular if both � and ı are sufficiently small with respect to c , then one has the
estimate

k.dC
A
/�w.w/kW k

w
�

c
2
k'i0

wk
W

kC1
wi0

�
c
3
kwk

W
kC1

w
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as desired.

Since the differential dC
A

becomes surjective, the rest of the proof of the theorem is
reduced to the argument in Section 2.2.1.

Remark 3.3 The above analytic method of cut and paste type is used in [10] in many
places and detailed estimates are given there. For example, see [10, Lemma 1.5, Lemma
5.2].

3.1.2 Uniformity of injectivity radii of moduli spaces Here we describe the basic
direction of the proof of Theorem 1.9 again by assuming some analytic conditions. In
particular we see how to use uniform sizes of local charts of the moduli spaces in the
implicit function theorem.

Let us choose ŒAi � 2M.M;gi/ and parameterization bt as in Lemma 3.2. Assume
uniform estimates 0< c � k.dC

Ai
/�wi
k � c0 and kDdC

Ai
k � c00 where D is the abstract

differentials as in the implicit function theorem above. By Lemma 3.1, there are positive
constants �1; �2 > 0 such that if we choose smooth path bt with sufficiently small
norms kbtk� 1 with respect to these constants �i , then for any t 2 Œ0; 1�, the solutions

FCs .A
t
i ; bt /D 0

exist with respect to .M;gi/ inside

B.x0/�1
�B.y0/�2

�W kC1
wi

..M;gi/Iƒ
1
˝Ad P /˚B:

In particular uniform estimates

kAi �At
ikW kC1

wi
.M;gi Wƒ1˝Ad P/

� C

hold. Then a subsequence fA1
im
gm converges to some A0 over .S;g/ which satisfies

the perturbed ASD solution FCs .A; b/D 0. Moreover the estimate

kA�A0k
W

kC1
w .S Iƒ1˝Ad P/

� C

holds. In particular one obtains an element in the regular moduli space Mb.A/w . This
will lead a contradiction as we have already explained.

In both Section 3.1.1 and Section 3.1.2, it is of course too much to expect such situations,
and we will need a refined argument below. The basic reason why these spectral radii
collapse is that connections Ai on the regions Kc

i �M (which contain kj�E8j parts)
will behave quite badly. A fundamental idea below is to remove Ai jK

c
i parts by use

of quotient function spaces. In Section 3.2, we follow the direction of the proof of
Theorem 1.9 described in Section 3.1.2 by changing function spaces as above.
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3.2 Proof of Theorem 1.9

Now let us treat the general case, where we no longer have control of the spectrums
with respect to i .

Let H � W k
w ..S;g/ W ƒ

2
C˝Ad P / be the finite dimensional subspace of cokernel

of dC
A

. Later on, we will assume that H has positive dimension. Otherwise we have
nothing to do with, since the moduli space M.A/w would be regular when H D 0

(see Section 2.2.1).

The idea is to verify that the spectrum as above are certainly uniformly bounded for
particular directions in Hilbert spaces. Firstly let us describe what are the situations
we encounter. When bt 2 B is a generic path between 0 and b , then since the
Donaldson invariant does not vanish, both moduli spaces M.M;gi/ and Mb.M;gi/

admit nonempty cobordisms. In particular there are continuous paths At
i satisfying

the equations FCs .A
t
i ; bt /D 0 by Lemma 3.2. Roughly speaking, one has to estimate

the norms kAi�At
ikW kC1

wi

.Ki/ from above. Recall that one has obtained an L2 ASD
connection A over .S;g/ by taking limit of a subsequence of fAigi . The final aim is
to verify that A� limi!1A1

i jS is bounded in W kC1
w .S;gIƒ1˝Ad P / for suitable

choices of paths bt .

The main point here is that connections on the complements of Ki will affect for our
analysis. We will use a method to eliminate them on such domains by use of quotient
function spaces. Let Ai be an ASD connection on .M;gi/. Usual analysis in gauge
theory uses function spaces like W k

wi
..M;gi/Iƒ

�˝Ad P /. Below we use quotients of
such function spaces as SW k

wj
.Ki/�W k

wj
.M;gj /=W k

wj
.Kc

i /0 for j � i (see Section
3.2.1). We collect basic properties of these new spaces. In particular we see that the
self dual curvature operator still induces functional on the quotient ones (see Lemma
3.5). In Section 3.2.2, a merit of use of these spaces is given by uniform estimates
of differentials (see Corollary 3.11), which will not be satisfied for the usual function
spaces. Here we use some comparing method among Sobolev spaces with different
base spaces by cut and paste type argument. They are the basic estimates which we
will use iteratively.

3.2.1 Quotient spaces Recall that the family of weight functions fwigi on M is
fixed, which satisfy the equalities wi jKi DwjKi . Notice that for j � i , the equalities
wj jKi D wi jKi hold. Later on we fix a family of cut off functions 'i 2 C1c .KiC1/

satisfying 'i jKi � 1.

Let us fix i and j � i . Let Kc
i � M be the complement of Ki . We denote

W k
wj
..Kc

i ;gj /Iƒ
� ˝ Ad P /0 � W k

wj
..M;gj /Iƒ

� ˝ Ad P / as the completion of
C1c .Kc

i Iƒ
�˝Ad P / by the Sobolev W k

wj
norms. Thus they are closed subspaces.
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Let us decompose

W k
wj
..M;gj /Iƒ

�
˝Ad P /

DW k
wj
..Kc

i ;gj /Iƒ
�
˝Ad P /?0 ˚W k

wj
..Kc

i ;gj /Iƒ
�
˝Ad P /0

�W k
wj
..Ki ;gj /Iƒ

�
˝Ad P /˚W k

wj
..Kc

i ;gj /Iƒ
�
˝Ad P /0

with respect to the W k
wj

inner products. We denote the quotient spaces as

SW k
wj
..Ki ;gj /Iƒ

�
˝Ad P /

DW k
wj
..M;gj /Iƒ

�
˝Ad P /=W k

wj
..Kc

i ;gj /Iƒ
�
˝Ad P /0:

On .S;g/, one also has similar spaces for j � i :

W k
w ..S;g/Iƒ

�
˝Ad P /DW k

w ..K
c
i ;g/Iƒ

�
˝Ad P /?0˚W k

w ..K
c
i ;g/Iƒ

�
˝Ad P /0

SW k
w ..Ki ;g/Iƒ

�
˝Ad P /DW k

w ..S;g/Iƒ
�
˝Ad P /=W k

w ..K
c
i ;g/Iƒ

�
˝Ad P /0

We equip with the metrics on these quotient spaces by use of orthogonal decomposition.
Thus SW �w .Ki ;g/ and SW �wj

.Ki ;gj / are the same spaces, but they are equipped with
different metrics. The projectionsxWW �wj

..M;gj /Iƒ
�˝Ad P /! SW �wj

..Ki ;gj /Iƒ
�˝

Ad P / are all distance decreasing maps.

We show that SW k
wj
..Ki ;gj /Iƒ

�˝Ad P / and SW k
w ..Ki ;g/Iƒ

�˝Ad P / are uniformly
equivalent as metric spaces. In fact they are asymptotically isometric in the following
sense.

Lemma 3.4 For any small � > 0 there is a constant N � 0 independent of choice of
i; j , so that for j � i CN , the metrics on them are .1� �; 1C �/–equivalent:

.1� �/kxuk SW k
wj
.Ki ;gj /

� kxuk SW k
w .Ki ;g/

� .1C �/kxuk SW k
wj
.Ki ;gj /

hold for all u.

Proof Let u 2 W k
wj
..Ki ;gj /Iƒ

� ˝ Ad P / and u0 2 W k
w ..Ki ;g/Iƒ

� ˝ Ad P / be
representatives of xu. Then for some i � i0 � j � 1, the estimate:

kukW k
wj
.Ki0C1nKi0

;gj /
� �kukW k

wj
.M;gj /

should hold, where Œ1=�� D N . Let 'i0
2 C1c .Ki0C1/ be the cut off function at

the beginning of Section 3.2.1. Then k'i0
ukW k

wj
.M;gj /

� .1C C�/kukW k
wj
.M;gj /

holds where C is independent of i; j and � . At the same time one may regard
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'i0
u 2W k

w .S;g/. Since x'i0
uD xu have the same quotient element, this implies the

estimates:

kxuk SW k
w .Ki ;g/

D ku0kW k
w .S;g/

� k'i0
ukW k

w .S;g/
D k'i0

ukW k
wj
.M;gj /

� .1CC�/kukW k
wj
.M;gj /

D .1CC�/kxuk SW k
wj
.Ki ;gj /

:

By the same argument, the converse estimates kxuk SW k
wj
.Ki ;gj /

� .1CC�/kxuk SW k
w .Ki ;g/

hold. Since � can be chosen arbitrarily small by taking large j � i , this completes
the proof.

Since metrics are all uniformly equivalent, later on one can choose any of them.

Let us consider the perturbed self dual curvature operators

FCs W Aj CW kC1
wj

..M;gj / Wƒ
1
˝Ad P /˚B!W k

wj
..M;gj / Wƒ

2
C˝Ad P /

by FCs .Aj C˛; b/� FC.Aj C˛/C s.Aj C˛; b/.

Lemma 3.5 Suppose FCs .Aj ; b/D 0 holds over .M;gj /. Then the above operator
induces the functional

xFCs . ; b/W Aj C
SW kC1
wj

..Ki ;gj /Iƒ
1
˝Ad P /˚B! SW k

wj
..Ki ;gj /Iƒ

2
C˝Ad P /:

Proof It is enough to check that for ˛ 2W kC1
wj

..Kc
i ;gj /Iƒ

1˝Ad P /0 , the element
FCs .Aj C˛; b/ lies in W k

wj
..Kc

i ;gj /Iƒ
2
C˝Ad P /0 . By the condition,

FCs .Aj C˛; b/D dC
Aj
.˛/CPC.˛^˛/

since the support of s lies in K0 , where PC is the projection to the self dual part.
From the Sobolev inequality, the result follows.

Let x be the projection onto SW �wj
.Ki ;gj /.

Corollary 3.6 Let ˛ 2 W kC1
wj

..M;gj / W ƒ
1˝Ad P /. If FCs .Aj C ˛; b/ D 0 then

still xFCs .Aj C x̨; b/D 0.

Lemma 3.7 Let us take an ASD connection Aj on .M;gj / with FC.Aj /D 0. Then
the projection induces maps

d xAj
W SW kC2

wj
..Ki ;gj /IAd P /! SW kC1

wj
..Ki ;gj /Iƒ

1
˝Ad P /;

dC
xAj

W SW kC1
wj

..Ki ;gj /Iƒ
1
˝Ad P /! SW k

wj
..Ki ;gj /Iƒ

2
C˝Ad P /:
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In particular, if dC
Aj

is surjective, then dC
xAj

is still the same.

Proof This follows since

dC
Aj
.W kC1

wj
..Kc

i ;gj /Iƒ
1
˝Ad P /0/�W k

wj
..Kc

i ;gj /Iƒ
2
C˝Ad P /0:

Let us recall the three constants in Lemma 3.1 of the abstract implicit function theorem,
where f W A!G ,

C1 � kD2f .x;y/kinf; kDf .x;y/k � C2 and kD2
2f .x;y/k � C3:

We apply it to our operators.

Lemma 3.8 There are constants C2;C3 such that for any i , there is a large j0 � i so
that for all j � j0 , the differentials of

xFCs W Aj C
SW kC1
wj

..Ki ;gj /Iƒ
1
˝Ad P /�B! SW k

wj
..Ki ;gj /Iƒ

2
C˝Ad P /

satisfy uniform estimates kD xFCs k � C2 and kD2 xFCs k � C3 near .Aj ; 0/.

A uniform lower bound from below by C1 is given in Corollary 3.11 below.

Proof Since we have assumed that the sequence fAigi converges to A in C1 on
each compact subset in S , it follows that for any i and j � j0 as above, the Aj jKi are
near AjKi in C l for a large l . Thus the uniform estimates of the former follow. The
latter also follows since the curvature operator involves only twice multiplication of the
connection coefficients, and so the equality D2 xFCs .
; b/.ˇ; ˛/DD2s.
; b/.ˇ; ˛/C

PC.Œˇ; ˛�/ holds.

3.2.2 Comparison method on estimates Let us state a general functional analytic
property for the linearized operator of the ASD equation. Let Aj be an ASD connection
over .M;gj / with FC.Aj /D 0. Let us consider the differentials

dC
Aj
W W kC1

wj
..M;gj /Iƒ

1
˝Ad P /!W k

wj
..M;gj /Iƒ

2
C˝Ad P /;

and their subspaces

im dC
Aj
�W k

wj
..M;gj / Wƒ

2
C˝Ad P /

and .ker dC
Aj
/? �W kC1

wj
..M;gj /Iƒ

1
˝Ad P /:

dC
Aj
W .ker dC

Aj
/? Š im dC

Aj
gives an isomorphism, and for all u 2 .ker dC

Aj
/? the

estimates kdC
Aj
.u/kW k

wj

� CjkukW kC1
wj

hold for some positive constants Cj > 0.
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Let
dC
xAj

W SW kC1
wj

..Ki ;gj /Iƒ
1
˝Ad P /! SW k

wj
..Ki ;gj /Iƒ

2
C˝Ad P /

be the induced map, and consider the subspace .ker dC
xAj

/? . Below we have a weak
version of the estimates.

Lemma 3.9 Suppose dC
Aj

is surjective. Then for xu 2 .ker dC
xAj

/? , the estimate

dC
xAj

.xu/



SW k

wj

� Cjkxuk SW kC1
wj

still holds, where Cj is the same constant as above.

Proof dC
Aj
W .ker dC

Aj
/? Š im dC

Aj
with the constant Cj above is equivalent to that the

image of the unit ball contains the � D Cj ball

dC
Aj
.B1/�D�

where B1 � .ker dC
Aj
/? and D� � im dC

Aj
.

Let us take any SW 2 SW k
wj
..Ki ;gj /Iƒ

2
C˝Ad P /, and choose the unique representative

w 2W k
wj
..M;gj /Iƒ

2
C˝Ad P /. Thus

 SW 



SW k
wj

D kwkW k
wj

:

Let kwkW k
wj

<� . Then by the assumption, there exists u2W kC1
wj

..M;gj /Iƒ
1˝Ad P /

with kuk
W

kC1
wj

< 1 satisfying dC
Aj
.u/D w . Now decompose uD u1Cu2 where

u1 2W kC1
wj

..Kc
i ;gj /Iƒ

1
˝Ad P /?0 and u2 2W kC1

wj
..Kc

i ;gj /Iƒ
1
˝Ad P /0:

Since dC
Aj
.u2/ 2 W k

wj
..Kc

i ;gj /Iƒ
2
C ˝ Ad P /0 , the equality dC

xAj

.xu1/ D SW holds.
Since kxu1k SW kC1

wj

� kuk
W

kC1
wj

< 1 the result follows.

If one follows the above proof, then the constants Cj > 0 above will a priori depend on
i and j . Below we have a comparison method which induces a uniform lower bound
of constants, where we will compare the Ki part of functions between M and S .

Let A be an L2 ASD connection over .S;g/, obtained as limi Ai as before. Recall
that in Section 2.3 we have a perturbed map

FCs W AkC1.A/�B!W k
w ..S;g/ Wƒ

2
C˝Ad P /

and its surjective differential

DC
A
W W kC1

w ..S;g/ Wƒ1
˝Ad P /˚T0B!W k

w ..S;g/ Wƒ
2
C˝Ad P /:
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We put U D .ker DC
A
/? �W kC1

w ..S;g/Iƒ1˝Ad P /˚ T0B . As above, there is a
constant C > 0 so that kDC

A
.u/kW k

w .S;g/
� Ckuk

W
kC1

w .S;g/
hold for all u 2 U .

Let SW �w .Ki ;g/DW �w .S;g/=W �w .K
c
i ;g/0 be the quotient spaces, and

DC
xA
W SW kC1

w ..S;g/ Wƒ1
˝Ad P /˚T0B! SW k

w ..S;g/ Wƒ
2
C˝Ad P /

be the induced map.

Corollary 3.10 There is a uniform bound

DC
xA
.xu/



SW k

w .Ki ;g/
� Ckxuk SW kC1

w .Ki ;g/

for all xu 2 xU � .ker DC
xA
/? , where C > 0 is the same constant as above.

Proof By Proposition 2.7, DC
A

is surjective. Then the result follows by the same
argument as Lemma 3.9.

On .M;gj /, one also has perturbed maps

FCs W AkC1.M;gj /�B!W k
wj
..M;gj / Wƒ

2
C˝Ad P /

and their differentials

DC
Aj
W W kC1

wj
..M;gj / Wƒ

1
˝Ad P /˚T0B!W k

wj
..M;gj / Wƒ

2
C˝Ad P /:

By Lemma 3.4, if j is sufficiently large, then the metrics are uniformly equivalent

1
2
k k SW �w .Ki ;g/

� k k SW �wj
.Ki ;gj /

� 2k k SW �w .Ki ;g/
:

Thus one obtains the main uniform estimates.

Corollary 3.11 There are constants C > 0 and N independent of i; j so that for
ji � j j �N , the uniform estimates

DC

xAj

.xu/



SW k

wj
.Ki ;gj /

� Ckxuk SW kC1
wj

.Ki ;gj /

hold for all xu 2 xU j D
�
ker DC

xAj

�? .

3.2.3 Convergence of image spaces So far we have treated function spaces like
SW k
wj
.Ki/ for j � i . Roughly speaking these are functions with support on Ki

equipped with metrics induced from gj . Our basic idea of the paper is to induce
some uniform estimates of functions on SW k

wj
.Ki/ by use of that on W k

w .S/. One
may think that in some sense, SW k

wj
.Ki/ approach W k

w .S/ as i goes to infinity. Let
xV

j
i �

SW k
wj
.Ki/ be a family of subspaces and V �W k

w .S/ be another closed subspace.
Below we formulate notions of convergence of the family f xV j

i gi to V .
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3.2.4 Notions of convergence Let us consider a family of subspaces

xV
j

i �
SW kC1
wj

..Ki ;gj /Iƒ
1
˝Ad P /; j � i

and also a closed subspace V �W kC1
w ..S;g/Iƒ1˝Ad P /. For each i , we denote

its quotient by xV � SW kC1
w ..Ki ;g/ Wƒ

1˝Ad P /.

Definition 3.12 A bounded sequence fxuj
i gj�i in f xV j

i gj�i lies inside V at infinity, if
there are some xvj

i 2
xV so that for any small � > 0, there exist an arbitrarily large i0

and i 0 � i0 so that for all j � i � i 0 , the estimates

kxu
j
i � xv

j
i k SW kC1

w ..Ki0
;g/Iƒ1˝Ad P/

< �

hold, where we regard xuj
i as elements in SW kC1

w ..Ki0
;g/Iƒ1 ˝ Ad P / by taking

further distance decreasing quotients, xW SW �w .Ki ;g/! SW
�
w .Ki0

;g/.

We write limi;j!1

˚
xu

j
i

	
2 V , when a bounded sequence

˚
xu

j
i

	
j�i

in
˚
xV

j
i

	
j�i

lies
inside V at infinity. We say that

˚
xV

j
i

	
lies inside V at infinity, if any bounded sequence˚

xu
j
i

	
lies inside V as above.

The family of spaces
˚
xV

j
i

	
is said to converge to V , if they lie inside V at infinity,

and for any v 2 V , there is a bounded sequence
˚
xu

j
i

	
so that for any small � > 0, there

exist an arbitrarily large i0 and i 0 � i0 so that for all j � i � i 0 , the estimates

xuj
i � xv




SW

kC1
w ..Ki0

;g/Iƒ1˝Ad P/
< �

hold. A closed space T � W kC1
w ..S;g/ Wƒ1 ˝Ad P / is said to be orthogonal to

limi;j!1
xV

j
i , if for any bounded sequence xuj

i 2
xV

j
i , another bounded sequence

v
j
i 2 T and any small � > 0, there exist an arbitrarily large i0 and i 0 � i0 so that for

all j � i � i 0 , the estimates

xuj
i � xv

j
i




SW

kC1
w ..Ki0

;g/Iƒ1˝Ad P/
� .1� �/



xuj
i




SW

kC1
w ..Ki0

;g/Iƒ1˝Ad P/

hold. Let us introduce an abstract notion in function spaces. Let 'i be the cut off
functions as before. A linear subspace V �W kC1

w ..S;g/ Wƒ1˝Ad P / is said to be
quasi local, if for any � > 0, there is some N � 0 so that for any bounded sequence
fvigi � V with kvik � 1, and k > 0, there are some k � nk;i � k C N so that
k pr.'nk;i

vi/k < � , where prW W kC1
w ..S;g/ W ƒ1˝Ad P /! V ? is the orthogonal

projection.

Any finite dimensional subspaces are quasi local: im dA�W kC1
w ..S;g/ Wƒ1˝Ad P /

and ker dC
A

are both quasi local, where for the former closedness of im dA is used (see
the proof of Lemma 3.16).
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Lemma 3.13 Let V � U � W kC1
w ..S;g/ W ƒ1˝Ad P / be embeddings of closed

subspaces. Assume that both V and T D V ? \ U are quasi local. If a bounded
sequence fx̨j

i g lies inside U and is orthogonal to V at infinity, then fx̨j
i g converges to

T at infinity.

Proof Notice that in general, for any bounded sequences faigi � V and fbigi � T , if

kxai �
xbik SW kC1

w .Ki0
;g/
! 0

as i !1 for all i0 , then both kxaik SW kC1
w .Ki0

;g/
and kxbik SW kC1

w .Ki0
;g/

must go to
zero.

By definition, there is a sequence fuj
i g � U so that

kx̨
j
i � xu

j
i k SW kC1

w .Ki0
;g/
< �

for all i 0� i�j . Let us decompose u
j
i Dui

j .1/˚ui
j .2/ and ˛j

i D˛
j
i .1/C˛

j
i .2/C˛

j
i .3/

with respect to W kC1
w D V ˚T ˚U? respectively. Firstly by convergence to U ,

x̨j

i .3/



SW

kC1
w .Ki0

;g/
! 0:

Thus
k.x̨

j
i .1/� xu

j
i .1//C .x̨

j
i .2/� xu

j
i .2//k SW kC1

w .Ki0
;g/
! 0;

and so in particular


x̨j

i .1/� xu
j
i .1/




SW

kC1
w .Ki0

;g/
! 0.

We show the estimates 

x̨j
i � xu

j
i .2/




SW

kC1
w .Ki0

;g/
< �

for all i 00 � i � j for some i 0 � i 00 . Suppose not, and assume the estimates

x̨j
i � xu

j
i .2/




SW

kC1
w .Ki0

;g/
� �0 > 0

for some �0 for i 00 � i � j . Then the lower bounds

x̨j
i .1/




SW

kC1
w .Ki0

;g/
� �0

hold. This contradicts to the assumption of orthogonality of the sequence to V .

Remark 3.14 Our notion of convergence does not care on behaviour at infinity of
individual functions, since we concern norms on compact subsets.
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3.2.5 Finite dimensionality of cokernels at infinity Let us fix i and take sufficiently
large j � i . We consider the quotient spaces SW �wj

..Ki ;gj /Iƒ
�˝Ad P /. Let

d xAj
W SW kC2

wj
..Ki ;gj /IAd P /! SW kC1

wj
..Ki ;gj /Iƒ

1
˝Ad P /

be the differentials, and put xV j
i D im d xAj

. Let us consider the closed subspaces

V D im dA; U D ker dC
A
�W kC1

w ..S;g/Iƒ1
˝Ad P /

and denote its quotient by xV � SW kC1
w ..Ki ;g/Iƒ

1˝Ad P /.

The next Proposition is crucial for our later discussion.

Proposition 3.15 The orthogonal subspace T � U to limi;j!1
xV

j
i is finite dimen-

sional.

For this, we have the following Lemma.

Lemma 3.16 The family
˚
xV

j
i

	
j�i

lies inside U and contains V at infinity.

Proof Let xuj
i 2
xV

j
i be a bounded sequence with



xuj
i




SW

kC1
wj

.Ki ;gj /
� C . We choose

representatives u
j
i 2W kC1

wj
.M;gj / with

xuj

i




SW

kC1
wj

.Ki ;gj /
D


u

j
i




W

kC1
wj

.M;gj /
:

Let us take any i0 . Then for any � > 0, there is a larger i 0 such that for all i � i 0 , there
are some i0 � i 00 � i such that

u

j
i




W

kC1
wj

.Ki00C1nKi00 ;gj /
� �:

Let 'i00 2 C1c .Ki00C1/ be the cut off function in Section 3.2.1. Then one has the
estimates 

dC

Aj
.'i00u

j
i /




W k
wj
.M;gj /

� C�

where C is independent of i; j .

Now regard 'i00u
j
i 2W kC1

w .S;g/ and decompose

'i00u
j
i D w

j
i C z

j
i

with respect to W kC1
w .S;g/D U ˚U? , where



z
j
i




W

kC1
w

.S;g/� C� hold. Since
the metrics

k k SW �wj
.Ki0

;gj /
and k k SW �w .Ki0

;g/
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are uniformly equivalent by Lemma 3.4, it follows that wj
i is the desired family. Thus

one has shown that limi;j
xV

j
i � U .

Next we show surjectivity, that the orthogonal subspace to limi;j!1
xV

j
i in V is equal

to zero.

Let uD dA.f / 2W kC1
w ..S;g/Iƒ1˝Ad P / be a unit element. Then since dA has

closed range with zero kernel [10], there is a positive constant C > 0 so that the
estimate

kf k
W

kC2
w
� CkdA.f /kW kC1

w
D C

holds. Thus for any small � > 0, there are sufficiently large i so that the estimate:

ku� dA.'if /kW kC1
w

< �

holds. Since one can assume 'if 2W kC2
wj

..M;gj / W Ad P /, the assertion holds.

Proof of Proposition 3.15 Since H 1.A/ D ker dC
A
=dA.W

kC2
w ..S;g/IAd P / is of

finite dimension by Theorem 1.6, the above lemma already implies that T � U is of
finite dimension.

Corollary 3.17 Suppose a bounded sequence
˚
xv

j
i

	
i;j

is orthogonal to V D im dA at
infinity. If

limi;j!1 dC
xAj

.xv
j
i /D 0

holds, then the above sequence lies inside a finite dimensional subspace T at infinity.

The first condition of orthogonality is realized by use of Coulomb gauge representatives.
As before suppose ASD connections Aj over .M;gj / converge to A over .S;g/.
Let us consider connections on the quotients xA0j DAj C x̨

j
i 2Aj C

SW kC1
wj

..Ki ;gj / W

ƒ1˝Ad P /.

Proposition 3.18 There is some positive constant c > 0 independent of i; j so that
after gauge transformation by elements

xuj 2
SW kC2
wj

.Ki ;gj /\Aut.EjKi/;

and taking subindices of .i; j /, the connections x̌j � xu�j . xA
0
j /�Aj are orthogonal to

VD im dA at infinity, as far as uniform estimates

kx̨
j
i k SW kC1

wj

< c

hold. Moreover


 x̌

j




SW

kC1
wj

is bounded by C


x̨j

i




SW

kC1
wj

, where C is independent of
i , j and c .
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We combine the standard choice of Coulomb gauge representatives over .S;g/ with
the cut and paste method.

Sublemma 3.19 Let A0DAC˛2ACW kC1
w ..S;g/ Wƒ1˝Ad P / satisfy k˛k

W
kC1

w
�

c for some positive constant c> 0. Then there is a gauge transformation u2GkC2.P /0
(see Section 2.2), so that .dA/

�
w.u
�.A0/�A/ D 0 holds. Thus ˇ D u�.A0/�A is

orthogonal to im dA .

Proof This is standard for compact base Donaldson–Kronheimer [3, page 56]. For
our case, it also works since the proof uses only the implicit function theorem. We
seek for a solution to the equation G.u/ � .dA/

�
w.dA.u/u

�1 � u˛u�1/ D 0, where
u 2 GkC2.P /0 . Its derivative is given by DG.v/ D .dA/

�
w.dA.v/C Œ˛; v�/, where

DGW W kC2
w ..S;g/ W Ad P /!W k

w ..S;g/ W Ad P /. By Theorem 1.6 and Proposition
2.3(2), dA has closed range, and so DG is a surjection, if k˛k

W
kC1

w
is sufficiently

small. Thus by the implicit function theorem, the result follows.

Proof of Proposition 3.18 The rest uses cut and paste method in Lemma 3.16 We
choose representatives ˛j

i 2W kC1
wj

..M;gj / Wƒ
1˝Ad P / with

x̨j

i




SW

kC1
wj

.Ki ;gj /
D


˛j

i




W

kC1
wj

.M;gj /
:

Let us take a small � > 0 and i � Œ��1�C 1, where Œ � is the integer part. Then there is
some i 00 � i and infinite subindices of j so that

k˛
j
i kW kC1

wj
.Ki00nKi00�1;gj /

� �:

Regarding 'i00�1˛
j
i 2W kC1

w .S;g/, one can apply Sublemma 3.19 since 'i00�1˛
j
i still

have small norms. Thus there are gauge transformations uj such that ǰ D u�j .B
0
j /�A

is orthogonal to im dA , where B0j D AC 'i00�1˛
i
j . Then the quotient of the family

xuj 2
SW kC2
wj

.Ki ;gj / is the desired one, as follows. By a similar argument, taking other
subindices if necessary, one may assume that

k ǰkW kC1
wj

.Ki00nKi00�1;gj /
� �:

Then 'i00�1 ǰ satisfy the estimatesˇ̌̌
h'i00�1ˇ

j
i ;uiW kC1

wj
.M;gj /

ˇ̌̌
� �kuk

for any u 2 im dA . Since Ai converge to A, the family

x̌0
j � xu

�
j .Aj C x̨

i
j /�Aj 2

SW kC1
wj

..Ki ;gj / Wƒ
1
˝Ad P /

is orthogonal to im dA at infinity.
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3.2.6 Uniformity in implicit function theorems In Section 3.1, we have seen that
for our purpose some uniformity of spectral radii are seriously related. At the first part
of Section 3.2, we have explained that Kc

i regions of connections Ai jK
c
i will affect to

control the behaviour of the spectrum, and this is the reason why we are using quotient
function spaces SW k

w . On the other hand we have seen in Section 3.1.2 that once one
has obtained some uniformity of injectivity radii from below, then there are families
of balls with uniform sizes where one can apply the implicit function theorem and
perturbation for families of spaces.

Now we use quotient function spaces SW k
wj
.Ki ;gj Iƒ

�/ to apply the abstract implicit
function theorem for families in Lemma 3.1, and induce some spectral information on
W k
w .S;gIƒ

�˝Ad P /.

Let Aj be ASD connections over .M;gj / which converges to A over .S;g/ as before.
Let

FCs W Aj CW kC1
wj

..M;gj / Wƒ
1
˝Ad P /�B!W k

wj
..M;gj / Wƒ

2
C˝Ad P /

be the parameterized self dual curvature operators, and denote their differentials at Aj

DC
Aj
W W kC1

wj
..M;gj / Wƒ

1
˝Ad P /˚T0B!W k

wj
..M;gj / Wƒ

2
C˝Ad P /:

Similarly one obtains

DC
A
W W kC1

w ..S;g/ Wƒ1
˝Ad P /˚T0B!W k

w ..S;g/ Wƒ
2
C˝Ad P /:

These are all surjective maps by Proposition 2.7. By putting A�A1 , one obtains a
family of operators fDC

Aj
g0�j�1 .

Let us fix i , and for any i � j �1, one obtains projections

xW W k
wj
..X; h/ Wƒ�˝Ad P /! SW k

wj
..Ki ; h/ Wƒ

�
˝Ad P /

where .X; h/D .M;gj / or .S;g/.

Let us take � > 0 so that the image of the unit ball contains the � ball

DC
A
.B1/�D�

where B1 �W kC1
w ..S;g/ Wƒ1˝Ad P /˚T0B and D� �W k

w ..S;g/ Wƒ
2
C˝Ad P /.

This is equivalent to the estimates

DC
A
.u; c/




W k

w
� �k.u; c/k

W
kC1

w ˚T0B

for all .u; c/ 2 .ker DC
A
/? (see proof of Lemma 3.9). Let us denote the induced map:

DC
xA
W SW kC1

w ..Ki ;g/ Wƒ
1
˝Ad P /˚T0B! SW k

w ..Ki ;g/ Wƒ
2
C˝Ad P /:

Geometry & Topology, Volume 12 (2008)



Growth of Casson handles and transversality for ASD moduli spaces 1301

Similarly for sufficiently large j � i , there are the induced maps

DC
xAj

W SW kC1
wj

..Ki ;gj / Wƒ
1
˝Ad P /˚T0B! SW k

wj
..Ki ;gj / Wƒ

2
C˝Ad P /:

By Proposition 2.7 and Lemma 3.7, these induced maps are all surjective. By Corollary
3.11, one has uniformity of spectral radii

kDC
xAj

.xu; c/k SW k
wj

� Ck.xu; c/k SW kC1
wj
˚T0B

for all .xu; c/ 2 .ker DC
xAj

/? and for all large i� j �1, where C is independent of i

and j .

For i � j �1, let us consider

FCs W Aj C
SW kC1
wj

..Ki ;gj / Wƒ
1
˝Ad P /�B! SW k

wj
..Ki ;gj / Wƒ

C

2
˝Ad P /;

where at i D1, we regard SW k
wj
.Ki ;gj /DW k

w .S;g/. Let us denote the kernels of
the surjective differentials DC

xAj

and their orthogonal complements by

xRj
D ker DC

xAj

and xU j
D
�
ker DC

xAj

�?
in SW kC1

wj
..Ki ;gj / Wƒ

1˝Ad P /˚T0B . respectively.

Let us identify open neighbourhoods of AjC
SW kC1
wj

�
.Ki ;gj / W ƒ

1˝Ad P
�
�B at

.Aj ; 0/ by xN j
1
� xN

j
2
� SW kC1

wj

�
.Ki ;gj / W ƒ

1˝Ad P
�
�T0B , where xN j

1
� xRj and

xN
j
2
� xU j . Thus one may regard the above map as FCs W

xN
j
1
� xN

j
2
! SW k

wj
. Let D2 be

the differential on the second factor with respect to the decomposition SW kC1
wj

..Ki ;gj / W

ƒ1˝Ad P /˚T0B D xRj ˚ xU j , as in the abstract implicit function theorem.

Combining Lemma 3.8 with Corollary 3.11, one obtains the following conditions which
are required to apply Lemma 3.1.

Corollary 3.20 There exists �0> 0 such that for all .a; b/2 xN j
1
� xN

j
2

with k.a; b/k�
�0 , there are constants C1;C2;C3 such that for any i , there is a large j0 � i so that for
all 1� j � j0 , the differentials

xFCs WAj C
SW kC1
wj

..Ki ;gj /Iƒ
1
˝Ad P /˚B! SW k

wj
..Ki ;gj /Iƒ

2
C˝Ad P /

satisfy uniform estimates

0< C1 �


D2
xFCs


; 

D xFCs




inf � C2 and



D2
2
xFCs


� C3

at .a; b/.
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The implicit function theorem states that for all i � j �1, there are smooth maps
Gj W
xB

j
1
! xB

j
2

, where xBj
2
� xU j and xBj

1
� xRj are open neighbourhoods, such that

FCs .
xA0; b0/D 0 for . xA0; b0/2 xBj

1
C xB

j
2

, if and only if . xA0; b0/D . xB; c/CGj . xB; c/ for
some . xB; c/ 2 xBj

1
. Moreover d.Gj /. xA0;b0/ D�

��
DC
. xA0;b0/

j xU j
��1
ıDC

. xA0;b0/

�
holds.

Now we are in a position to apply Lemma 3.1.

Corollary 3.21 For all i � j �1, the following hold.

(1) There exist ı; � > 0, independent of i and j , such that for the ı–ball xDj

ı
�

SW kC1
wj

�
.Ki ;gj / Wƒ

1˝Ad P
�

and the �–ball D� � T0B , xBj
1
C xB

j
2

contains
xD

j

ı
�D� .

(2) There are uniform estimates of norms

kdGjk � C:

Proof

(1) By Lemma 3.1, there exist ı1; ı2>0, independent of j� i such that xBj
m contain

ım balls B.ım/ for mD 1; 2. Since they are open subsets, there exist ı; � > 0

such that for xDj

ı
and D� as above, the inclusion xDj

ı
�D� � B.ı1/CB.ı2/

holds.

(2) By Corollary 3.11, one obtains uniform estimates


.DC

xAj

j xU j /�1


 � C�1 of

operator norms.

Thus the result follows from Corollary 3.20 and the formula for dGj above.

3.2.7 Restriction of the differentials Let us consider dC
A
W W kC1

w ..S;g/ W ƒ1 ˝

Ad P /!W k
w ..S;g/ Wƒ

2
C˝Ad P /, and denote

V D im dA; W D V ? �W kC1
w ..S;g/ Wƒ1

˝Ad P /:

By Corollary 2.8, the restriction of the differential of FCs at .A; 0/

DC
A
W W ˚T0B!W k

w

�
.S;g/ Wƒ2

C˝Ad P
�

is still surjective.

Later on, we will restrict on the closed subspace W . This becomes important in Section
3.2.8.

Let us put

U1 � .W ˚T0B/\ ker DC
A
; U2 D .W ˚T0B/\ .ker DC

A
/?:
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Then by the implicit function theorem again, there are balls B1 � U1 and B2 � U2 ,
and a smooth function GW B1! B2 such that any solution .A; b/ 2 B1CB2 is on
the graph of G .

3.2.8 Dimension comparisons by (in)finiteness Here we carefully choose a generic
path bt 2 B . We will assume that the space H of the cokernel of dC

A
has positive

dimension (see the second paragraph of Section 3.2).

Firstly let
T D ker dC

A
\ .im dA/

?
�W kC1

w ..S;g/ Wƒ1
˝Ad P /

be the finite dimensional subspace (see Proposition 3.15). Let D � T and B1 � T0B

be the unit balls. We define the projection

prW W kC1
w ..S;g/ Wƒ1

˝Ad P /˚T0B! T0B;

and let Gr be the graph of G above. Let us put�Gr.D; 0/DGr \D �B1 �W ˚T0B:

The following Lemma is a key to the proof of the Theorem. It says that a perturbation
bt can be chosen transverse to the projection of the tangent space at ŒA� of the slice of
the universal moduli space.

Lemma 3.22 There is some constant C > 0 and smooth path bt 2B with b0 D 0 so
that the estimates

kbt � pr ı�Gr.D; 0/k � C t

hold for all 0� t � 1.

Proof We start by explaining the idea of the proof in the special case T D 0. Consider
the linear space

zV D ker DC
A
\T0B:

By the construction of the perturbation, zV � T0B has infinite codimension. In fact the
image ds.0;T0B/ is already infinite dimensional. We define the map�G0W

zV ! T0B

by c! pr ıG.0; c/. Let �G0r be the graph of �G0 . Then since kdGk � C is bounded,
and zV ? � T0B is infinite dimensional, there is a smooth path bt which satisfies the
lower bound 

bt �

�G0r \B


� C t

for all t , as follows. Let T �G0r D fvCd�G0.v/g � T0B be the closed linear subspace.
Then since zV ? is infinite dimensional, its orthogonal complement .T �G0r/? is also
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infinite dimensional. In particular one can choose a smooth path bt 2 B such that
d
dt

bt

ˇ̌
tD0
2 .T �G0r/? . Since kdGk � C is bounded, this gives a path satisfying the

above estimate.

The conclusion follows immediately for the general case, if we use positivity of dim
H > 0 and a special property of the holonomy perturbation that, if we restrict to
W kC1
w ..S;g/ Wƒ1˝AdP /�W kC1

w ..S;g/ Wƒ1˝AdP /˚T0B , then the restriction
ds.A;0/jW

kC1
w ..S;g/ W ƒ1 ˝AdP / � 0. On the other hand by the same proof as

Lemma 2.6 one can modify s so that ds.A;0/jT is injective. However we shall in fact
use a different method which is applicable to general local perturbations. The proof
that follows implies that the conclusion also holds if we replace T by another finite
dimensional linear subspace T 0 which is sufficiently near T .

We follow a parallel argument to the special case. Let B1 � T0B and B0
1
�W be the

unit balls. Let Gr be the graph of G . For each c 2 B1 , let us define a set

S.c/D fpr ıGr.m; c/ W .m; c/ 2 U1\ .B
0
1 �B1/g:

This defines a multi-valued map�GW B1\ .pr ıU1/! T0B:

We claim that each �G.c/ has at most finite dimension bounded by dim T . In order to
verify this, it is enough to see that the set

dS.c/� fpr ıdGr.m; c/ W .m; c/ 2 T0U1g

is finite dimensional.

For .m; c/ 2 T0U1 , DC
A
.m; c/ D 0 holds, since U1 D ker DC

A
\ .W ˚ T0B/. Let

us put dGr.m; c/ D .m; c/C dG.m; c/. Suppose pr ıdGr.m; c/ D pr ıdGr.m0; c/

hold for some .m; c/; .m0; c/ 2 T0U1 . Then m�m0 2 ker DC
A
\W . We see that this

space is finite dimensional. Let us decompose W D T ˚ .ker dC
A
/? . Then there is

a constant C > 0 independent of the perturbation such that for any v 2 .ker dC
A
/? ,

kdC
A
.v/k � Ckvk holds. Since the perturbation is sufficiently small, one may assume

the estimate kDC
A
.v/k � Ckvk still holds. In particular the projection

ker DC
A
\W ,! T

is injective, where the latter space is finite dimensional. This verifies the claim.

Let us verify that the closure of pr ı �Gr.D; 0/� T0B has infinite codimension. Then
one can obtain the desired bt by the same argument as the first paragraph of the proof.
We next verify this infinite codimensionality.
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Let us choose small and positive constants 1 >> c0 > c > 0, and denote the infinite
dimensional linear space:

J D fw 2 T0B W c0kwk � kds.0; w/k � ckwkg

consisting of vectors of bounded spectrum (Remark 2.10).

We show that .T �J /\U1 is finite dimensional. Suppose not. By compactness of the
unit ball of T , for any orthonormal sequence f.mi ; vi/gi such that k.mi ; vi/k D b > 0

with f.mi ; vi/gi 2 T �J \U1 , there is some m 2 T so that limi!1mi Dm holds.
By definition of J , the estimates ckvi � vjk � kds.0; vi � vj /k hold. On the other
hand for any small � > 0,

kds.0; vi � vj /k D kD
C

A
.0; vi � vj /k< �

hold for all large i; j .

Now suppose kmk D b . Then limi kvik D 0 and so f.mi ; vi/gi are not orthogonal.
Thus 0� kmk< b holds. Then 0< limi kvik D a� b , and so

lim
i;j
kvi � vjk D

p
2a> 0:

But this can not happen by the above estimates. This is a contradiction.

Finally we claim that the closure of pr ıU1 � T0B has infinite codimension. For
simplicity of notation, we assume pr ıU1 � T0B is closed. The proof in this case
carries over to the general case. We argue by contradiction. Assume it has finite
codimension less than l � 1<1, where l is sufficiently large more than dim T . The
argument is complicated by the fact that pr U1\ pr U2 may have positive dimension.

By infinite dimensionality, we can choose linearly independent vectors .mi ; c
0
i/ 2

W �M for i D 1; : : : ; l . Let us put ci D w0C c0i and consider .mi ; ci/ 2 W � J .
Each .mi ; ci/ decomposes as

�
m

j
i ; c

j
i

�
, j D 1; 2 with respect to ker DC

A
˚.ker DC

A
/? .

By the finite codimension assumption, there are real numbers faigi ¤ 0 such that the
inclusion

P
i aic

2
i 2 pr U1 should hold. One may assume

P
i ai D 1. Then there is

some m 2W such that .m; 0/C
P

i ai.m
2
i ; c

2
i / 2 U1 . Thus the inclusion

.m; 0/C
X

i

ai.mi ; ci/ 2 .W �J /\ ker DC
A

holds. This space is finite dimensional.

This implies that if one takes linearly independent vectors .mi ; c
0
i/ 2 W �M , i D

1; : : : ; l 0 for a sufficiently large l 0� l , then for some real numbers faj gj ¤ 0, the linear
combination

Pl 0

jD1aj .mj ; cj /2W �fw0g. This contradicts the infinite dimensionality
of J and completes the proof.
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Remark 3.23 (1) An ASD connection A over .S;g/ is obtained as a limit of Aj

over .M;gj /. Such choices of limits are not unique. Thus if one chooses another limit,
then one will obtain another connection A0 2 ACL2..S;g/ W ƒ1˝Ad P /, and so
the choice of path bt in Lemma 3.22 depends on such limits. We want to choose bt

independently of choice of such limits, and for this we modify the perturbation space as
follows. Let us take another Hilbert space C which is the closure of the infinite sumsL1

B as another perturbation space. Let us choose a sufficiently decreasing sequence
of constants �i > 0, limi �i D 0, and put the perturbation xsW Ak.E/�C !W k

w by
xs
�
A0;

L
i bi

�
�
P
�is0.A

0; bi/. Then one can choose a path bt 2 C independently of
choices of limits and so of A, which satisfies the conclusion of Lemma 3.22 as follows.
In fact by covering L2..S;g/ Wƒ1˝Ad P / by countably many small open subsets,
there are infinite number of paths bi

t 2 B , i D 0; 1; : : : , for which, any A have some
bi

t which satisfy the conclusion of Lemma 3.22. Then one has the desired path in C

by .b0
t ;

1
2
b1

t ; : : : ;
1
2i bi

t ; : : : / 2 C . Later on we will assume that a path bt in Lemma
3.22 are chosen independent of A. Such property of independence of bt is used in
Section 3.2.9.

(2) When the tangent space of the ASD moduli space T D TŒA�M.A/w happens to
be zero dimensional, then the proof of Lemma 3.22 becomes simpler as shown at the
start of the proof above. Moreover the proof of Proposition 3.24 below also becomes
much easier. It follows from Theorem 1.6 that such situations can occur if the limit
of the ASD connections is trivial, since in this case the first cohomology of the AHS
complex is zero. This can be seen by looking at the second Stiefel–Whitney classes of
the bundles in detail (see Lemma 2.4). Notice also that in this case the gauge group
actions are free, since they are assumed to be the identity at infinity. This situation will
be considered elsewhere.

3.2.9 Asymptotic solutions So far we have not used any special properties of ASD
equations, rather we have worked within a general functional analytic framework. Here
we use the assumption that the Donaldson invariant does not vanish over E!M .

Let Aj 2M.M;gj / be a sequence of ASD connections on regular moduli spaces
j D 1; 2; : : : , and suppose they converge to an L2 ASD connection A over .S;g/.
We denote by M.M;gj / the usual ASD moduli spaces, and M.A/w be the weighted
moduli space in section 1. Similarly we denote the perturbed moduli spaces Mb.M;gj /

or Mb.A/w in Section 2.3. Concerning M.M;gj /, we will choose the Floer element
b 2 P for generic values of the perturbation. In particular these are all smooth and
finite dimensional manifolds.

Let Bj DAj C j̨ be a connection on .M;gj /. Let us fix i and for j � i , denote by
xBj DAj C x̨j the projection of Bj on Aj C

SW kC1
wi

..Ki ;gj / Wƒ
1˝Ad P /.
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Let xDj

ı
� SW kC1

wj
..Ki ;gj / Wƒ

1˝Ad P / be the ı ball, and D� � T0B be the � ball.
By Corollary 3.21, there are ı; � > 0 independent of j � i so that one has obtained
local charts

xD
j

ı
�D� �

SW kC1
wj

..Ki ;gj / Wƒ
1
˝Ad P /˚T0B

around xAj , in which the implicit function theorem works for the perturbed ASD
equations FCs .

We now prove the following proposition.

Proposition 3.24 There is a regular point b 2 B with respect to Mb.A/w with a
sufficiently small norm, such that there exist elements

. xAj �
xCj ; b/ 2 . xD

j

ı
�D�/

satisfying the equations FCs .
xCj ; b/D 0 with respect to .Ki ;gj /.

In particular there is a uniform constant C independent of i and j so that the estimates

 xAj �
xCj




SW

kC1
wj

..Ki ;gj /Wƒ1˝Ad P/
� C

hold for all i � j .

Proof Here we use the property that the generic moduli spaces M.M;gi/ are
nonempty, since the Donaldson invariant is not zero. Even though there are cobordisms
between M.M;gj / and Mb.M;gj /, one has to check that the latter is nonempty
inside xDj

ı
�D� after taking the quotient.

Now let P � B be the Floer perturbation. Since DC
A
jW ˚T0P is already surjective

by Corollary 2.8, and since the inclusion is dense, one can replace any small generic
element b 2 B by another one b0 2 P with kb� b0k sufficiently small. In particular
for bt in Lemma 3.22, one may assume that it is a generic path inside P .

Since each ASD connection Aj is regular and so if b is generic, then there exists one
dimensional cobordism between M.M;gj / and Mb.M;gj / parameterized by At

j .
Below we show that its image xA1

j under the projection gives the desired xCj .

By the Sard–Smale transversality theorem, there is a generic path bt 2 B , b0 D 0 and
b1 D b with respect to all M.M;gj /, j D 1; 2; : : : . One may assume that bt satisfies
the conclusion of Lemma 3.22. Since the Donaldson invariant does not vanish, there
are nonempty cobordisms between M.M;gj / and Mb.M;gj /. In particular for each
j , one can choose some Aj so that there is a parameterization At

j , 0 � t � 1 with
A0

j DAj and satisfying the equations FCs .A
t
j ; bt /D 0.
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Let us put Aj �At
j D ˛

t
j and denote the quotients

xAt
j DAj C x̨

t
j 2Aj C

SW kC1
wj

�
.Ki ;gj / Wƒ

1
˝Ad P

�
:

Lemma 3.25 One may assume that the family fx̨t
j gj is orthogonal to im dA at infinity,

after gauge transformations.

Proof This follows from Proposition 3.18.

The next Lemma is the heart of the proof of the Theorem. We show that if the x̨t
j

lose control of their norms, then they should contain some sequences, as t ! 0,
which approach to the tangent to the slice of the moduli space M.A/w , while keeping
uniformly bounded norms from below. This contradicts Lemma 3.22.

Lemma 3.26 There exists some t0 > 0 such that
�
x̨

t0

j ; bt0

�
2 xD

j

ı
�D� for all j � i .

Proof Suppose the contrary, and let us fix a small 0< �0� ı; �� 1. Then there are
indices ftmgm , tm > 0 and fim; jmgm , tm! 0 and im; jm!1 such that

 xAj �

xA
tm

jm




SW

kC1
wjm

..Kim ;gjm /Wƒ
1˝Ad P/

D �0:

Let us put x̨j � xAj �
xA

tm

jm
. By Lemma 3.25, the sequence fx̨j gj are orthogonal to

im dA at infinity, and so it follows from Corollary 3.17 that the differentials of the family
fx̨j gj converge to the finite dimensional subspace T . Let us denote the projection on
T by xT � SW kC1

wj
..Ki ;gj / Wƒ

1˝Ad P /, and let x̨j j xT be the orthogonal projection.

Then by Corollary 3.21 the estimates


x̨j j xT 

 � 1

2
�0 and



x̨j � x̨j j xT 

 � C�2
0

hold,
where C is independent of �0 .

It follows from the property of bt in Lemma 3.22 and positivity of tm > 0 that
FCs

�
xA

tm

jm
; btm

�
D 0 cannot happen, if we have chosen a sufficiently small �0 > 0. This

completes the proof of Lemma 3.26.

Now the path may not be generic with respect to A, since one has chosen the sequence
fAj gj after the choice of bt . Notice that originally possible number of A may have
the one of the choices of sequences which is the Cantor set.

Thus let us choose another generic path b0t 2 P which is sufficiently near bt that it
is generic with respect to all M.M;gj / for all j , and Mb0t

.A/w are regular for all
0< t � t0 � 1 for some t0 .

Now by Lemma 2.12, let cW Œ0; 1�2 ! P be a generic map with c.0; t/ D bt and
c.1; t/D b0t . Thus Mc.M;gj / are smooth manifolds with corners. For each j , we
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have chosen Aj so that there are nonempty parameterizations At
j with respect to bt .

Since the moduli spaces are manifolds, this implies that their parameterizations can be
extended as A

.s;t/
j so that the equations FCs

�
A
.s;t/
j ; c.s; t/

�
D 0 hold.

In particular there are solutions Bt
j�A

.1;t/
j with FCs

�
Bt

j ; b
0
t

�
D0. By Lemma 3.26, one

can find another solutions
�
xB

t0

j ; b
0
t0

�
with FCs

�
xB

t0

j ; b
0
t0

�
D 0 which satisfy uniformity

of norms 

 xAj �
xB

t0

j




SW

kC1
wj

.Ki ;gj /
� c

for a small constant c > 0. Then one can put xCj D
xB

t0

j and b D b0t0
. This completes

the proof of Proposition 3.24.

3.2.10 Completion of the proof of Theorem 1.9 Now we replace b0 by b and t0
by 1 by reparameterization. We complete the proof of Theorem 1.9.

We have a Lemma concerning abstract functional analysis.

Lemma 3.27 Let W kC1.K/ be the Sobolev spaces on a compact K � S . Then
any bounded sequence fuj gj �W kC1.K/, kujkW kC1.K / � C admits a convergent
subsequence to u in W k.K/ with kukW kC1.K / � C .

Proof This follows from the Rellich lemma, see Gilberg–Trudinger [8, pages 168–
169].

In order to specify the indices i , let us write xC i
j for xCj above. Thus we have obtained

a family of solutions . xC i
j ; b/ with FCs .

xC i
j ; b/ D 0 over .Ki ;gj / and xAj �

xC i
j 2

SW kC1
wj

..Ki ;gj / Wƒ
1˝Ad P /, which satisfy the uniform estimates:

k xAj �
xC i
j k SW kC1

wj
..Ki ;gj /Iƒ1˝Ad P/

� C:

Recall that as j !1, gj jKi! gjKi , where g is the metric on S .

Then for each i , using Lemma 3.27, one takes a convergent subsequence xC i
jm

to xC i

over .Ki ;g/. This satisfies the equation FCs .
xC i ; b/D 0 with respect to gjKi , and the

estimates hold
k xA� xC i

k SW kC1
w ..Ki ;g/Iƒ1˝Ad P/

� C:

Finally one takes another subsequence f xC imgm which converges to a smooth connection
A0 over .S;g/. It satisfies the equation FCs .A

0; b/D 0 over .S;g/ and the estimate

kA�A0k
W

kC1
w ..S;g/Wƒ1˝Ad P/

� C

holds. This is the desired connection, and one has finished the proof of Theorem 1.9.
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