Volume 12, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Lagrangian matching invariants for fibred four-manifolds: II

Tim Perutz

Geometry & Topology 12 (2008) 1461–1542
Abstract

In the second of a pair of papers, we complete our geometric construction of “Lagrangian matching invariants” for smooth four-manifolds equipped with broken fibrations. We prove an index formula, a vanishing theorem for connected sums and an analogue of the Meng–Taubes formula. These results lend support to the conjecture that the invariants coincide with Seiberg–Witten invariants of the underlying four-manifold, and are in particular independent of the broken fibration.

Keywords
four-manifold, Lefschetz fibration, Seiberg–Witten invariant, pseudo-holomorphic curve, Lagrangian correspondence
Mathematical Subject Classification 2000
Primary: 53D40, 57R57
Secondary: 57R15
References
Publication
Received: 7 June 2006
Revised: 14 November 2007
Accepted: 11 December 2007
Published: 10 June 2008
Proposed: Peter Oszváth
Seconded: Simon Donaldson, Ron Stern
Authors
Tim Perutz
DPMMS
Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UK
Department of Mathematics
Columbia University
2990 Broadway
New York, NY 10027
USA