Volume 12, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Geodesible contact structures on $3$–manifolds

Patrick Massot

Geometry & Topology 12 (2008) 1729–1776
Abstract

In this paper, we study and almost completely classify contact structures on closed 3–manifolds which are totally geodesic for some Riemannian metric. Due to previously known results, this amounts to classifying contact structures on Seifert manifolds which are transverse to the fibers. Actually, we obtain the complete classification of contact structures with negative (maximal) twisting number (which includes the transverse ones) on Seifert manifolds whose base is not a sphere, as well as partial results in the spherical case.

Keywords
contact structures, totally geodesic, Seifert manifolds, twisting number
Mathematical Subject Classification 2000
Primary: 57M50
Secondary: 57R17
References
Publication
Received: 14 December 2007
Revised: 21 May 2008
Accepted: 25 April 2008
Published: 4 July 2008
Proposed: Peter Ozsváth
Seconded: Yasha Eliashberg, Ron Stern
Authors
Patrick Massot
École Normale Supérieure de Lyon 69364 LYON Cedex 07
France
http://www.umpa.ens-lyon.fr/~pmassot/