Volume 12, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Equivariant covers for hyperbolic groups

Arthur Bartels, Wolfgang Lück and Holger Reich

Geometry & Topology 12 (2008) 1799–1882
Abstract

We prove an equivariant version of the fact that word-hyperbolic groups have finite asymptotic dimension. This is important in connection with our forthcoming proof of the Farrell–Jones conjecture for K(RG) for every word-hyperbolic group G and every coefficient ring R.

Keywords
equivariant, hyperbolic groups, flow spaces, asymptotic dimension
Mathematical Subject Classification 2000
Primary: 20F65, 20F67
Secondary: 37D40, 57M07
References
Publication
Received: 28 September 2006
Accepted: 7 February 2008
Published: 4 July 2008
Proposed: Martin Bridson
Seconded: Steve Ferry, Ralph Cohen
Authors
Arthur Bartels
Westfälische Wilhelms-Universität Münster
Mathematisches Institut
Einsteinstr. 62, D-48149 Münster, Germany
http://www.math.uni-muenster.de/u/bartelsa/bartels
Wolfgang Lück
Westfälische Wilhelms-Universität Münster
Mathematisches Institut
Einsteinstr. 62, D-48149 Münster, Germany
http://www.math.uni-muenster.de/u/lueck
Holger Reich
Heinrich-Heine-Universität Düsseldorf
Mathematisches Institut
Universitätsstr. 1, D-40225 Düsseldorf, Germany
http://reh.math.uni-duesseldorf.de/\%7Ereich/