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On the homology of the space of knots

RYAN BUDNEY

FRED COHEN

Consider the space of long knots in Rn , Kn;1 . This is the space of knots as studied
by V Vassiliev. Based on previous work (Budney [7], Cohen, Lada and May [12]), it
follows that the rational homology of K3;1 is free Gerstenhaber–Poisson algebra. A
partial description of a basis is given here. In addition, the mod–p homology of this
space is a free, restricted Gerstenhaber–Poisson algebra. Recursive application of
this theorem allows us to deduce that there is p–torsion of all orders in the integral
homology of K3;1 .

This leads to some natural questions about the homotopy type of the space of long
knots in Rn for n> 3 , as well as consequences for the space of smooth embeddings
of S1 in S3 and embeddings of S1 in R3 .

58D10, 57T25; 57M25, 57Q45

1 Introduction

The purpose of this paper is to give homological properties of the classical spaces of
smooth long embeddings K3;1 D Emb.R;R3/ and smooth embeddings Emb.S1;S3/.
Some results here also apply to the embedding spaces Emb.Sj ;Sn/ and long embed-
ding spaces Kn;j D Emb.Rj ;Rn/ with the main results focused on the 3–dimensional
case j D 1, nD 3.

The approach here to these homological problems follows recent work of Hatcher
[19; 17] and Budney [7; 5]. The homotopy type of the components of Emb.S1;S3/

and K3;1 are understood completely in terms of configuration spaces in the plane,
Stiefel manifolds, isometry groups of certain hyperbolic link complements and various
natural iterated bundle operations. Many of the homological properties of both K3;1

and Emb.S1;S3/ follow from combining this information together with earlier work
of Cohen [12] on configuration spaces.

The space Kn;1 admits the structure of an H –space induced by concatenation of long
embeddings. In addition, this H –space structure for K3;1 was shown to extend to a
free C2 –space in the sense of May, with generating set given by the space of prime
long knots [7].
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100 Ryan Budney and Fred Cohen

One consequence is that the homotopy type of the space of long knots is determined
completely by the homotopy type of the prime long knots. Information concerning
spaces of prime long knots is combined with bundle theoretic constructions to give
a large contribution to the homology groups for spaces of long knots, as well as
Emb.S1;S3/.

The structure of a graded analogue of a Poisson algebra, a Poisson–Gerstenhaber
algebra, arises in the work here. An introduction to Poisson algebras is given in Chari–
Pressley [11, pages 177–182] while some applications are given in Cohen–Lada–May
[12, pages 215–216] and Tourtchine [39]. A Poisson–Gerstenhaber algebra A is a
graded commutative algebra over Q given by An in gradation n together with a graded
skew symmetric bilinear map

f�;�gW As˝At !AsCtC1

which satisfies the following where jaj denotes the degree of an element a in A:

(1) the Jacobi identity

fa; fb; cgg D .�1/jajCjbjCjcjC1
ffa; bg; cgC .�1/jbjjcjCjcjC1

ffa; cg; bg

where the signs will be typically omitted with the above written as

ffa; fb; cgg D .˙1/ffa; bg; cgC .˙1/ffa; cg; bg;

(2) the Leibniz formula

fa � b; cg D a � fb; cgC .�1/jbjjajbfa; cg:

A standard example of such a Gerstenhaber–Poisson algebra is given by the rational
homology algebra of �2.X / for X a bouquet of spheres of dimension at least 3 by
[12] in which the precise axioms are recorded.

The mod–p homology of K3;1 has more detailed structure and is, loosely speaking, a
free restricted Gerstenhaber–Poisson algebra with additional structure satisfied by free
C2 –spaces [12], freely generated on the mod–p homology of the subspace of prime
long knots.

The main results of the current article are Theorem 1.3 on the structure of the homology
of K3;1 , Proposition 1.4 concerning implications for the space of smooth embeddings
of S1 in S3 , Proposition 1.5, a homological characterization of the unknot, as well as
Theorem 9.1 on the minimal i such that Hi.K3;1IZ/ contains p–torsion.
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Definition 1.1 Kn;j WD ff W Rj !Rn W f is an embedding and f .x1;x2; : : : ;xj /D

.x1;x2; : : : ;xj ; 0; : : : ; 0/ for jxj � 1g. Kn;1 is traditionally called the space of long
knots in Rn and Kn;j the space of long j –knots in Rn . Given an element f 2Kn;j

the connected-component of Kn;j containing f is denoted Kn;j .f /. Two knots are
considered equivalent if they are in the same connected component of Kn;j (that is the
knots are isotopic).

Let XK D ff 2 K3;1 W f is primeg, where the word prime is used in the traditional
sense of Schubert [35], that is XK is the union of the connected components of K3;1

which contain knots that are not connected sums of two or more non-trivial knots, nor
are they allowed to contain the unknot.

Theorem 1.2 (Budney [6]) The space K3;1 is homotopy equivalent to

C.R2;XKqf�g/

that is the labelled configuration space of points in the plane with labels in XKqf�g.
Furthermore, the following hold:

(1) each path-component of K3;1 is a K.�; 1/,

(2) the path-components of C2.n/�†n
.XK/

n for all n and thus the path-components
of K3;1 are given by

C2.n/�†f

nY
iD1

K3;1.fi/

for certain choices of f1; : : : ; fn 2XK and Young subgroups †f .

The above theorem can be thought of as a generalization of Schubert’s Theorem which
states that �0K3;1 is a free commutative monoid on countably-infinite many generators
[35]. Schubert’s theorem is about the monoid structure on �0K3;1 induced by the
cubes action, while the above theorem is space-level on K3;1 .

In general, Kn;1 is a homotopy-associative H –space with multiplication induced by
concatenation. This multiplication gives a product operation

Hs.Kn;1/˝Ht .Kn;1/!HsCt .Kn;1/:

Since K3;1 admits the action of the operad of little 2–cubes, there is an induced map

� W S1
�K3;1 �K3;1!K3;1

together with an operation in homology with any coefficients

Hs.K3;1/˝Ht .K3;1/!H1CsCt .K3;1/
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which is denoted, up to sign, by

f˛; ˇg � �1.˛; ˇ/D ��.�˝˛˝ˇ/

for ˛ in Hs.K3;1/, ˇ in Ht .K3;1/ and � 2 H1.S
1/ the fundamental class. These

operations satisfy the structure of a graded Poisson algebra for which the bracket
operation �1.˛; ˇ/ is called the Browder operation in [12].

The next result uses the product operation above as well as the bracket operation
f˛; ˇg D �1.˛; ˇ/ and follows by interweaving the results of Theorem 1.2 and [12].
We will use the notation Fp D Z=pZ to denote the field with p elements, when p is
a prime. To state these results, additional information given by three functors from
graded vector spaces V over a field F are described next with complete details given
in Section 5.

(1) If the characteristic of the field is 0 then the value of the functor on objects V

is the symmetric algebra generated by an algebraically desuspended free Lie
algebra generated by the suspension of V and denoted

S Œ��1LŒ�.V /��:

This last algebra is a free Gerstenhaber–Poisson algebra.

(2) For the field F2 the value of the functor on objects V is the symmetric algebra
generated by an algebraically desuspended free, mod–2 restricted Lie algebra
generated by the suspension of V and denoted

S Œ��1L.2/Œ�.V /��:

This last algebra is a graded version of a free restricted Lie algebra.

(3) For the field Fp (p an odd prime), then the value of the functor on objects V

is the symmetric algebra generated by an algebraically desuspended mod–p

free restricted Lie algebra generated by the suspension of V plus an additional
summand as described in Section 5 and denoted

S Œ��1L.p/Œ�.V /�˚ ��2W p Œ�.V /��:

Theorem 1.3 The homology of K3;1 satisfies the following properties.

(1) The rational homology of K3;1 is a free Gerstenhaber–Poisson algebra generated
by V DH�.XKIQ/.

(2) The homology of K3;1 with Fp coefficients is a free restricted Gerstenhaber–
Poisson algebra generated by V DH�.XKIFp/ as described in [12].

(3) There are isomorphisms of Hopf algebras
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(a) S Œ��1LŒ�.V /��!H�.K3;1IQ/ for V DH�.XKIQ/,
(b) S Œ��1L.2/Œ�.V /��!H�.K3;1IF2/ for V DH�.XKIF2/ and
(c) S Œ��1L.p/Œ�.V /�˚��2W p Œ�.V /��!H�.K3;1IFp/ for V DH�.XKIFp/

in case p is an odd prime.

These isomorphisms specialize to an identification of the homology of each path-
component of K3;1 with the one ambiguity that the homology of the components
of knots arising from hyperbolic satellite operations is not given in a closed form
here. More information is described in Section 3.

(4) The integer homology of K3;1 has p–torsion of arbitrarily large order (with
examples listed in Section 5 and Section 6).

A primary development in this paper is our recursive application of the above theorem.
Let Kc � K3;1 denote the subspace of K3;1 consisting of all cable knots. There is
a homotopy-equivalence Z�S1 �K3;1!Kc . Let Ks �K3;1 denote the subspace
of K3;1 which are connect-sums of any number of cable knots. Then there is a
homotopy-equivalence C2.Kc t f�g/ ! Ks . The composite of the two maps is a
homotopy-equivalence C2..Z�S1 �K3;1/t f�g/!Ks . Since Ks is a collection of
path-components of K3;1 , this map can be iterated, giving a the homology of K3;1 ,
as a Gerstenhaber–Poisson algebra, a fractal-like structure. These statements will be
justified in Section 2 and Section 3 and explored more fully in Section 7 and Section
10.

These results lead to some natural questions about the structure of the homology of
the higher-dimensional embedding spaces Kn;1 (n � 4) studied recently by Sinha
[37], Volic [41], Lambrechts [26] as well as others (Altschüler–Freidel [1], Cattaneo–
Cotta-Ramusino–Riccardo [10], Goodwillie–Weiss [14], Kohno [24] and Sakai [33]).
Constructions related to these questions are also addressed here.

By Theorem 1.3, there is arbitrarily large p–torsion in the homology of K3;1 . Examples
of Theorem 1.3 for knots whose path-components have higher 2–torsion in their integer
homology is given next. This higher torsion can be regarded as a coarse measure of
the complexity of a knot’s JSJ–decomposition.

(1) Let K3;1.f / denote the path-component of a torus knot f . Thus K3;1.f / has
the homotopy type of a circle [17; 5].

(2) Given any space X and a strictly positive integer q , define

E.q;X /D Conf.R2; q/�†q
X q:

Assume that K3;1.f / has the homotopy type of S1 . E.4;K3;1.f // has the
following properties

Geometry & Topology, Volume 13 (2009)
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(a) H2.E.4;K3;1.f ///D Z=2Z.
(b) H3.E.4;K3;1.f ///D 0.
(c) H3.S

1 �E.4;K3;1.f /// is isomorphic to Z=2Z.
(d) Furthermore, E.2s;S1 �E.4;K3;1.f /// has the homotopy type of a path-

component K3;1.g/ for a long knot g as given in Budney [7] and has torsion
of order 2sC1 in its integer homology by Section 6 and Section 7. In this
case, g is a connected-sum of 2s copies of the same summand and that
summand is a p=q–cable of a connected sum of four copies of the same
torus knot. In the language of Budney [6],

g D
��

T .p;q/�4‰H4
�
‰S.p;q/

�
�2s‰H2s

:

The elements of this notation is described in detail in [6] and is summarized
in Section 2.

(e) A second example is E.2s;K3;1.h/// where hD T .p;q/‰W and W is the
Whitehead link. In this case,

K3;1.h/' S1
�

�
S1
�†2

S1
�

where S1 �†2
S1 is the Klein bottle [5]. H1.K3;1.h///D Z=2Z˚Z2 .

A more complete description of the homology of K3;1 is given in Section 5 and Section
6. The homology of each path-component is given in terms of Theorem 1.3 as well as
filtrations of the values of the functors listed in that theorem.

Consider the subspace T K3;1 of K3;1 consisting of the union of the components of
K3;1 corresponding to knots which can be obtained from torus knots via iterations
of the operations given by cabling and connected-sum. These are the knots whose
complements are graph manifolds ie: a union of Seifert-fibered manifolds. The structure
of the homology of T K3;1 is described in Section 10. This is our primary source of
pn –torsion in H�.K3;1IZ/.

A further consequence of Theorem 1.2 is the next result which follows directly and is
proven in Section 4. Let Emb�.S1;Sn/ denote the space of smooth pointed embed-
dings.

Proposition 1.4 The group SO.n� 1/ acts naturally on Kn;1 (rotations that fix the
long axis) and there are morphisms of bundles for which each vertical map is a homotopy
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equivalence:

SO.n/�SO.n�1/Kn;1
i

����! SO.nC 1/�SO.n�1/Kn;1

p
����! SO.nC 1/=SO.n/??y�n

??y�n

??y1

Emb�.S1;Sn/
j

����! Emb.S1;Sn/ ����! Sn

Thus, there is a bundle

SO.nC 1/�SO.n�1/Kn;1! SO.nC 1/=SO.n� 1/

with fibre Kn;1 . Furthermore, there is a homeomorphism

Emb.S1;S3/! S3
�Emb�.S1;S3/

for which Emb�.S1;S3/ denotes the space of smooth pointed embeddings and the
bundle

K3;1! Emb�.S1;S3/! S2

is the induced bundle with fibre K3;1 from the bundle

SO.2/! SO.3/! S2:

Section 4 gives precise relationships (such as the above proposition) between the
homotopy-type of the embedding spaces Kn;j , Emb.Sj ;Sn/ and Emb.Sj ;Rn/.

Notice that the homological properties of each path component thus give knot invariants.
This is illustrated by the following proposition.

Proposition 1.5

(1) A knot f W S1! S3 is the unknot if and only if its component in Emb.S1;S3/

contains no 2–torsion in its 1st homology group.

(2) A long knot f W R1!R3 in K3;1 is the long unknot if and only if its component
has trivial first homology group.

(3) An embedding of S1 in R3 is the unknot if and only if its component in
Emb.S1;R3/ has torsion first homology group. It is also true if and only if its
2nd homology group is trivial.

Theorem 1.6 Let K3;1.f / denote a path-component of K3;1 . Then

H1.K3;1.f /IZ/

is a finite direct-sum of copies of Z and Z=2Z.
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In addition, a characterization of the components of K3;1 such that H1.K3;1.f /IZ/
contains 2–torsion is given in Section 8. A precise identification of those knots f such
that H1.K3;1.f /IZ/ contains a Z=2Z summand is also given. In Section 9 the least
degree in which odd p torsion in H�.K3;1IZ/ occurs is as follows.

Theorem 1.7 Let f denote a long knot and p an odd prime. If Hi.K3;1.f /IZ/
contains Z=pZ, then i � 2p� 2.

Much recent progress has been made on the structure of spaces of embeddings via
finite-dimensional model spaces and approximations. Some of this was first given by
Vassiliev [40] and has been the subject of further study via the Goodwillie Calculus of
Embeddings by Sinha [37], Volic [41], Lambrechts [26], or cohomological techniques
such as Bott–Taubes integrals [4; 10].

The Gerstenhaber–Poisson algebra above was first considered on the E2 –level of the
Vassiliev spectral sequence by Tourtchine [39]. Related progress is given in work of
Altshuler–Freidel [1], Bar-Natan [2], Cattaneo–Cotta-Ramusino–Longoni [10], Kohno
[24], Kontsevich [25], Lescop [27], Polyak–Viro [32], Sakai [33], Watanabe [42] as
well as others.

This paper takes the direction of using Gramain and Hatcher’s techniques for understand-
ing the homotopy type of K3;1 , one component at a time (Gramain [15], Hatcher [17]).
The central construction of Hatcher [17] is to consider the components of the knot space
as the classifying space of the mapping class group of the knot complement. One then
studies how such a mapping class group acts on the JSJ–tree of the knot complement
as in [7; 5], using Hatcher’s results on the homotopy type of diffeomorphism groups
of Haken manifolds [18] to assemble an answer. Thus most of the results here are
complementary to the results of the authors mentioned in the previous two paragraphs.

The authors would like to thank the University of Tokyo, the Max Planck Institute
for Mathematics in Bonn, Institut des Hautes Études Scientifiques, the Institute for
Advanced Study, the Pacific Institute of Mathematics and the American Institute of
Mathematics for partial support during the preparation of this paper.

This work was partially supported by the NSF Grant No. DMS-0072173 and CNRS-
NSF Grant No. 17149

2 Notation, labelling components

Whitney [43] showed that the embedding space Kn;j is connected for n> 2j C 1. By
work of Wu [44], Kn;j is also connected provided both n> 2j and j > 1. That Kn;1
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is also connected for nD 1 is elementary. The fact that K2;1 is connected is equivalent
to the smooth Alexander/Schoenflies theorem in dimension 2. In co-dimension 3

and higher. Haefliger [16] vastly generalized Whitney’s result, proving that Kn;j is
connected provided 2n> 3j C3 and �0Kn;j is non-trivial for 2nD 3j C3. This work
has recently been extended by the first author to a computation of the first non-trivial
homotopy group of Kn;j provided 2n� 3j � 3� 0 [8].

When 2n� 3j C3 the space Kn;j could potentially have many connected components.
�0Kn;j was shown to be a group by Haefliger [16] provided n� j > 2, whereas it is
only a monoid for n� j � 2. A fundamental example is the space K3;1 which has
countably infinite many components and no inverses in the monoid �0K3;1 [36]. Given
f 2Kn;j , let Kn;j .f / denote the path-component of Kn;j containing f .

We will use the notation EC.1;Dn�1/ as defined in [7] for the space of framed long
knots in Rn . Given a compact manifold M , define

EC.k;M /D ff 2 Emb.Rk
�M;Rk

�M /; supp.f /� Ik �M g:

Here the support of f , supp.f / is defined by supp.f /D fx 2Rk �M W f .x/¤ xg

and ID Œ�1; 1�. EC.1;Dn�1/ is not homotopy equivalent to Kn;1 in general, but as
described in [7] there is a fibration

�SO.n� 1/! EC.1;Dn�1/!Kn;1

which splits at the fibre (via a 2–cubes map) for n 2 f1; 2; 3g, allowing us to think of
K3;1 as a sub 2–cubes object of EC.1;D2/.

This section collects information on the indexing of the components of K3;1 which is
given in terms of the companionship tree classification of knots, an application of the
Jaco–Shalen–Johannson (JSJ) decomposition of knot complements. The indexing that
we will use is described in detail in [6]. Aspects of this indexing have been partially
described before in the works of Budney [7], Eisenbud and Neumann [13], Schubert
[36] and the unpublished work of Bonahon and Siebenmann [3], as well as the survey
work of Kawauchi [22]. Indeed, the results in [6] should be thought of as a uniqueness
statement for Schubert’s satellite operations that he describes in [36]. In the book by
Eisenbud-Neumann [13] this method of indexing is called the splice decomposition of
links, but is specialized to the case of links in homology spheres whose complements
are graph manifolds. A terse statement of the results in [6] given next suffice for the
applications here. More complete as well as more specific information is given in [6].

Definition 2.1 An n–component link in S3 is a compact, connected, oriented, 1–
dimensional submanifold of S3 consisting of n path components labelled with distinct

Geometry & Topology, Volume 13 (2009)
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numbers from the set f0; 1; 2; : : : ; n� 1g. Thus the notation LD .L0;L1; : : : ;Ln�1/

is used frequently for n–component links. A knot K (in S3 ) is a 1–component link.

An n–component link L is the unlink if there exists n disjointly embedded 2–discs DD

.D0;D1; : : : ;Dn�1/ in S3 whose boundary is L, @D D .@D0; @D1; : : : ; @Dn�1/ D

.L0;L1; : : : ;Ln�1/DL.

For n� 0 an .nC1/–component link LD .L0;L1; : : : ;Ln/ is said to be a KGL (knot
generating link) if the sublink .L1;L2; : : : ;Ln/ is the unlink.

Given an .nC 1/–component KGL L and n knots J D .J1;J2; : : : ;Jn/ in S3 there
is an operation called splicing defined in [6] which produces a knot J‰L in S3 . Here
is a rough statement of the splicing construction. Fix D D .D1; : : : ;Dn/ n disjointly
embedded discs in S3 such that @DD .L1;L2; : : : ;Ln/. Let �D W Œ�1;1��D2!S3

be a closed tubular neighbourhood of D . Let CL0 be the complement of an open
tubular neighbourhood of .L1; : : : ;Ln/ in S3 and define RW CL0 ! S3 to be unique
continuous function which is the identity outside img.�D/ and on the image of �D

define it to be the conjugate �Dı. zJ1t: : : zJn/ı�
�1
D

, where zJi 2EC.1;D2/ is the framed
long knot in the homotopy-fibre of the map EC.1;D2/!�SO.2/ corresponding to
Ji under the map EC.1;D2/! K3;1 ! Emb.S1;S3/. J‰L is defined to be the
image of L0 under the embedding R. See [6] for details.

Example 2.2 Let W denote the Whitehead link and F8 the figure–8 knot.

W

F8

K D F8‰W

Figure 1: Whitehead double and companionship tree

The role of splicing is that it is an operation that takes knots and KGL’s as input and
produces a knot of greater complexity in the sense that the companionship trees of the
input data is spliced together to produce the companionship tree of J‰L. We proceed
to make these ideas more precise.

Definition 2.3 The Hopf link H1 is the 2–component link in S3 given by

f.z1; 0/ 2C2
W z1 2C; jz1j D 1g[ f.0; z2/ W z2 2C; jz2j D 1g � S3
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where S3 is regarded the unit sphere in C2 .

If one takes a connected-sum of p copies of the Hopf link along a common component,
one obtains the .pC 1/–component link, which we will call the .pC 1/–component
keychain link Hp (see Figure 2).

f.z1; 0/ 2C2
W jz1j D 1g[

p[
kD1

f
1
p

2
.e

2�ik
p ; z2/ W jz2j D 1g � S3:

H1

� � �

Hp

Figure 2: Hopf link and keychain link

For any .p; q/ 2 Z�N , the .p; q/–Seifert link S.p;q/ is defined to be

f.z1; 0/ 2C2
W jz1j D 1g[ f.z1; z2/ 2C2

W jz1j D jz2j D
1
p

2
; z

q
1
D z

p
2
g � S3:

The .p; q/–Seifert link has GCD.p; q/C 1 components (see Figure 3).

p
q

S.p;q/

Figure 3: Seifert link

For any .p; q/ 2 Z�N , GCD.p; q/D 1, the .p; q/–torus knot T .p;q/ is

f.z1; z2/ 2C2
W jz1j D jz2j D

1
p

2
; z

q
1
D z

p
2
g � S3:

Theorem 2.4 ([6]) Given a knot K in S3 there is a finite, labelled, rooted tree-valued
invariant of K denoted GK having the following properties.
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(1) Each vertex of the tree is labelled by a link and any link from the following list is
admissible:
(a) torus knots T .p;q/ for p=q 2Q, GCD.p; q/D 1, q � 2,
(b) Seifert links S.p;q/ for GCD.p; q/D 1, q � 1,
(c) keychain links Hp for p � 2,
(d) hyperbolic KGLs and
(e) the unknot.

(2) Given any vertex in GK , the number of children of the vertex is one less than
the number of components of the link that decorates the vertex.

(3) If any vertex is decorated by a keychain link Hp , none of its children are allowed
to be decorated by keychain links.

(4) A vertex of the tree GK can be decorated by the unknot if and only if the tree
GK consists of only one vertex.

(5) If one changes all the labels on the tree GK by substituting for each vertex label
L its complement CL one obtains GK , the JSJ–tree of K [6]. This is the tree
whose vertex set is the set of path components of the knot complement CK split
along its JSJ–tori and the edges are the JSJ–tori of CK .

(6) If GK consists of more than one vertex, then K D J‰L where the root of GK

is labelled by L and GJi
are the subtrees rooted at the children of L in GK .

(7) The number of vertices of GK is one more than the number of tori in the JSJ–
decomposition of the complement of K in S3 . Thus for example, GK is a
one-vertex tree if and only if K is either hyperbolic, a torus knot, or the unknot.

The above properties 1 through 4 are complete, in the sense that any tree satisfying
properties 1 through 4 is realizable as GK for some knot K . GK is known as the
companionship tree of K .

Given a vertex v of GK , there is a maximal subtree of GK rooted at v and this subtree
is the companionship tree of a unique knot in S3 , Kv . Kv is called a companion knot
to K .

Item (6) implies that if one writes down the postorder (reverse Polish) listing of GK ,
one is simply writing K as an iterated splice knot where all the KGLs used in splicing
come from the list (1). Thus GK could simply be considered a precise way to specify
K as a splice of atoroidal KGLs.

Unlike links with Seifert-fibred complements, hyperbolic KGLs have no known canon-
ical enumeration.

Some elementary examples of hyperbolic KGLs are:
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� the figure–8 knot

� the Whitehead link

� the Borromean rings.

Hyperbolic KGLs of arbitrarily many components are known to exist by the work of
Kanenobu [21]. For details on the hyperbolic structures, see for example the textbook
of Thurston [38].

GK DK

A trefoil knot K D T .�3;2/

T .�3;2/‰S.17;2/

Figure 4: Trefoil and (17,2)–cable

n F8 ..T .3;2/;F8/‰H2/‰S.�17;2/

Figure 5: Cable of connect sum of trefoil and figure–8 knot

Figure 4 and Figure 5 give examples of knots K and the associated tree GK and
the corresponding splice notation, where F8 denotes the figure–8 knot. Let B D

.B0;B1;B2/ denote the Borromean rings and let Bi;j be the 3–component link in S3

obtained from B by doing i Dehn twists about the spanning disc of B1 and j Dehn
twists about the spanning disc for B2 .

The spaces EC.1;Dn�1/ admit an action of the operad of little 2–cubes [7]. Using
the connectedness of Kn;1 for n� 4 together with the cubes action one can prove that
EC.1;Dn�1/ has the homotopy type of a 2–fold loop space for n� 4. At present it is
not known what the 2–fold de-looping of EC.1;Dn�1/ is. Recently, P Salvatore [34]
has constructed an action of the operad of 2–cubes on Kn;1 for all n� 4.

Geometry & Topology, Volume 13 (2009)



112 Ryan Budney and Fred Cohen

.F8;T
.3;2//‰B GK .F8;T

.3;2//‰B0;3 GK

Figure 6: Various Borromean splices

The previously described fibre bundle

Emb.S1;S3/! SO.4/=SO.2/

whose fibre inclusion i W K3;1! Emb.S1;S3/ is induced by the one-point compact-
ification is explored more deeply in Section 4. For the purpose of this section and
the study of the components of K3;1 and Emb.S1;S3/ respectively, we note that
the inclusion K3;1! Emb.S1;S3/ induces bijection on path-components. Thus, our
indexing of �0Emb.S1;S3/ above by companionship trees GK is also an indexing of
�0K3;1 .

3 The homotopy type of K3;1

A detailed description of the homotopy type of K3;1 is given in this section. This
description is given in terms of the splicing operations as described in Section 2. A
good general reference for these results is the work [5].

(1) If f is the unknot then K3;1.f / is contractible by work of Hatcher [17].

(2) If f is a p=q–cabling of g then by work of Hatcher [17], there is a homotopy
equivalence

S1
�K3;1.g/!K3;1.f /:

We consider a torus knot to be a cable of the unknot, so we are claiming all
non-trivial torus knots f satisfy K3;1.f /' S1 .

(3) If f D .f1; f2; : : : ; fn/‰Hn where ffi W i 2 f1; 2; : : : ; ngg are the prime sum-
mands of f and n� 2, then there is a homotopy equivalence

C2.n/�†f

nY
iD1

K3;1.fi/!K3;1.f /
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where †f � †n is the Young subgroup corresponding to the partition � of
f1; 2; : : : ; ng given by i � j , K3;1.fi/ D K3;1.fj /. This result originally
appears in [7].

(4) If a knot f D .f1; f2; : : : ; fn/‰L where L is a hyperbolic KGL then there is
a homotopy-equivalence:

S1
�

 
SO.2/�Af

nY
iD1

K3;1.fi/

!
!K3;1.f /:

We define Af as a subgroup of BL . BL is the subgroup of the group of
hyperbolic isometries of the complement of L in S3 which:

� extend to diffeomorphisms of S3 ,
� the extensions preserve L0 and its orientation (ie: they act on the cusp

corresponding to L0 by translations),
� put together, the above two properties imply there is an embedding BL!

Diff.S3IL;L0/.

It is a non-trivial fact [5] that the composite is an embedding of groups BL!

Diff.S3IL;L0/ ! DiffC.L0/ where DiffC.L0/ is the group of orientation-
preserving diffeomorphisms of L0 . Regard BL as a finite subgroup of SO.2/.
There is a representation of BL given by the composite:

BL! Diff.S3;L;L0/! Diff.tn
iD1Li/! �0Diff.tn

iD1Li/�†
C
n ;

where we identify �0Diff.tn
iD1

Li/ with †Cn , the signed symmetric group on
f1; 2; : : : ; ng. †n acts on Kn

3;1
by permutation of factors. †2 acts on K3;1 by

knot inversion – fix an axis perpendicular to the long axis and rotate a knot by �
about this axis, this is knot inversion. Stated another way, the group of rotations
which preserve the long axis, O.2/� SO.3/, acts on K3;1 by conjugation. Fix
an element $ 2 O.2/ n SO.2/, then $ acts as an involution on K3;1 , thus
defining an action of †2 on K3;1 . These two actions extend to an action of
†Cn on Kn

3;1
. Af is the subgroup of BL that preserves the path-componentQn

iD1K3;1.fi/ of Kn
3;1

.

As mentioned in part (4) above, K3;1 is naturally an O.2/–space. Parts (1), (2) and
(3) above all are O.2/–equivariant homotopy equivalences, as shown in [5]. Case (4)
is only an SO.2/–equivariant homotopy-equivalence, although the homotopy-class of
$ acting on K3;1 is computed.
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4 Relations among various spaces

The goal of this section is to compare the homotopy types of the spaces:

� Kn;1 ,

� Emb.S1;Sn/,

� Emb.S1;Rn/.

The space of pointed, smooth embeddings Emb�.S1;Sn/ will be a useful auxil-
iary space. Relationships between the embedding spaces Kn;j , Emb.Sj ;Sn/ and
Emb.Sj ;Rn/ will also be listed.

Proposition 4.1 For all n� 1 there are morphisms of fibrations for which each vertical
map is a homotopy equivalence:

SO.n/�SO.n�1/Kn;1
i

����! SO.nC 1/�SO.n�1/Kn;1

p
����! SO.nC 1/=SO.n/??y‚n

??y‚n

??y1

Emb�.S1;Sn/
j

����! Emb.S1;Sn/ ����! Sn

Kn;1
i

����! SO.n/�SO.n�1/Kn;1

p
����! SO.n/=SO.n� 1/??y1

??y‚n

??y1

Kn;1

j
����! Emb�.S1;Sn/ ����! Sn�1:

Proof Consider the maps ‚nW SO.nC 1/ �Kn;1 ! Emb.S1;Sn/ obtained from
the natural SO.nC 1/–action on Emb.S1;Sn/ together with the natural inclusion
Kn;1! Emb.S1;Sn/. Notice that the map ‚n is SO.n� 1/–equivariant and thus
there is an induced map

‚nW SO.nC 1/�SO.n�1/Kn;1! Emb.S1;Sn/:

Consider the natural fibrations

Emb�.S1;Sn/! Emb.S1;Sn/! Sn;

and
Kn;1! Emb�.S1;Sn/! Sn�1:

The first map is a fibration by the isotopy extension theorem. Indeed, Palais proved
that, in general, restriction maps are locally trivial fibre bundles [31]. The map

Geometry & Topology, Volume 13 (2009)



On the homology of the space of knots 115

Emb�.S1;Sn/! Sn�1 is the composition of the restriction map Emb�.S1;Sn/!

Emb�.U;Sn/ with the homotopy equivalence Emb�.U;Sn/! Sn�1 given by the
derivative at � where U is some closed interval neighbourhood of � in S1 . Thus there
is a map of fibrations:

SO.n/�SO.n�1/Kn;1
i

����! SO.nC 1/�SO.n�1/Kn;1

p
����! SO.nC 1/=SO.n/??y‚n

??y‚n

??y1

Emb�.S1;Sn/
j

����! Emb.S1;Sn/ ����! Sn

as well as

Kn;1
i

����! SO.n/�SO.n�1/Kn;1

p
����! SO.n/=SO.n� 1/??y1

??y‚n

??y1

Kn;1

j
����! Emb�.S1;Sn/ ����! Sn�1

The map ‚nW SO.n/�SO.n�1/Kn;1!Emb�.S1;Sn/ is thus a homotopy equivalence.
Hence the map

‚nW SO.nC 1/�SO.n�1/Kn;1! Emb.S1;Sn/

is also a homotopy equivalence.

Restrict attention to the special case given by nD 3.

Corollary 4.2 There is a homeomorphism

S3
�Emb�.S1;S3/! Emb.S1;S3/:

Furthermore, the bundle

K3;1! Emb�.S1;S3/! S2

is the induced bundle with fibre K3;1 from the bundle

SO.2/! SO.3/! S2

where SO.2/ acts on K3;1 by rotation about the long axis, as previously described.
Thus, up to a homotopy-equivalence Emb�.S1;S3/ is the union of two copies of
D2�K3;1 along their common boundary, where the gluing map S1�K3;1!S1�K3;1

is given by .z; f / 7�! .z; z2:f / 2 S1 �K3;1 , where we identify S1 � SO.2/ and its
action by rotation about the long axis.

Geometry & Topology, Volume 13 (2009)



116 Ryan Budney and Fred Cohen

Observe that Proposition 4.1 generalizes to a proposition about the embedding spaces
Emb.Sk ;Sn/. We skip the proof as it is essentially the same as Proposition 4.1.

Proposition 4.3 Provided n � j � 1, there is a homotopy-equivalence SO.n C

1/�SO.n�j/Kn;j ! Emb.Sj ;Sn/.

Given f 2 Kn;j , let Pf 2 Emb.Sj ;Sn/ be the one-point compactification of f .
Consider Sn to be the one-point compactification of Rn . The inclusion Rn ! Sn

induces an inclusion Emb.Sj ;Rn/!Emb.Sj ;Sn/. This inclusion induces a bijection
�0Emb.Sj ;Rn/! �0Emb.Sj ;Sn/ provided n� j � 2. Given f 2 Kn;j let xf 2
Emb.Sj ;Rn/ be such that Pf is isotopic (in Sn ) to xf . These conventions give us a
one-to-one correspondence between �0Kn;j , �0Emb.Sj ;Sn/ and �0Emb.Sj ;Rn/

for n� j � 2.

If f 2Kn;j is a long knot, let Xf denote the component of xf in Emb.Sj ;Dn/ and
let Cf denote the complement of an open tubular neighbourhood of Pf in Sn . Given
f 2Kn;j define Cf ÌKn;j .f /D f.p;g/ W g 2Kn;j ;p 2 Cg; where g isotopic to f g
and define C ÌKn;j to be the union of the spaces Cf ÌKn;j .f / for all f 2Kn;j

Proposition 4.4 Provided n� j > 0, Emb.Sj ;Rn/ is homotopy-equivalent to the
space SO.n/�SO.n�j/

�
C ÌKn;j

�
. In particular the components Xf of Emb.Sj ;Rn/

have the homotopy-type of SO.n/�SO.n�j/

�
Cf ÌKn;j .f /

�
. SO.n� j / � SO.n/

acts on SO.n/ as the subgroup fixing a j –dimensional subspace and SO.n� j / acts
on Cf ÌKn;j diagonally.

Proof See [8, Proposition 2.2].

5 On the homology of C2.X qf�g/

The purpose of this section is to recall the homology of

C2.X qf�g/

for X not necessarily path-connected. These results will then be combined with
Theorem 1.2 to obtain Theorem 1.3. The space X is assumed to be compactly generated
and weak Hausdorff as a topological space [12]; the base-point f�g is non-degenerate
by construction.

Formal constructions are given next for which F is a field and all modules are assumed
to be vector spaces over F . Let V denote a graded vector space which splits as a direct
sum

V D VC˚V�
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for which VC consists of the elements concentrated in even degrees and V� consists of
the elements concentrated in odd degrees. Let �.V / denote the algebraic suspension
of V . That is �.V / is the module V with all degrees raised by one. In addition, define
�n.V /D �.�n�1.V //: The algebraic desuspension of V denoted ��1.V / is defined
by requiring �.��1.V //D V:

Next consider the free Lie algebra

LŒ�.V /�

and, if F D Fp , the free restricted Lie algebra over Fp denoted L.p/Œ�.V /�: In this
last case, consider the natural inclusion

j W LŒ�.V /�!L.p/Œ�.V /�

with co-kernel denoted W p Œ�.V /� (for which LŒ�.V /� is the free Lie algebra defined
over the field Fp ). The definition of a restricted Lie algebra is given in Jacobson’s book
“Lie Algebras” [20] with graded restricted Lie algebras treated in Milnor–Moore [30].
Graded restricted Lie algebras may be regarded as the module of primitive elements in
the tensor algebra T Œ�.V /� defined over the field Fp . Notice that ��1.�V /D V , but
that ��1LŒ�.V /� is not isomorphic to LŒV � in general.

Let EŒV�� denote the exterior algebra generated by V� and let F ŒVC� denote the
polynomial algebra generated by VC . Consider the symmetric algebra S ŒV � defined
as follows.

(1) For the field Q, S ŒV �DEŒV��˝F ŒVC�.

(2) For the field F2 , S ŒV �D F ŒV �, the polynomial algebra generated by V .

(3) For the field Fp with p an odd prime, S ŒV �DEŒV��˝F ŒVC�.

We describe the homology of C2.X qf�g/ with coefficients in the field (1) Q, (2) F2

and (3) Fp for p and odd prime.

Consider case (1). Let V DH�.X;Q/; and then form the symmetric algebra

S Œ��1LŒ�.H�.X IQ/��:

By [12], there is an isomorphism of Hopf algebras

S Œ��1LŒ�.H�.X IQ//��! H�.C2.X qf�g/IQ/

with co-product determined by that of H�.X IQ/.

The analogous theorem for F2 is given as follows. Let V DH�.X IF2/; and form the
symmetric algebra

S Œ��1L.2/Œ�.H�.X IF2//��:
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By [12], there is an isomorphism of Hopf algebras

S Œ��1L.2/Œ�.H�.X IF2//��! H�.C2.X qf�g/IF2/

with co-product determined by that of H�.X IF2/. Remark: The role of the restriction
in a restricted Lie algebra over F2 is to create the Araki–Kudo–Dyer–Lashof operation,
the operation which sends an element �.v/ to Q1.�.v//.

The result for odd primes p with Fp is given as follows. Let V DH�.X IFp/; and
form the symmetric algebra

S Œ��1L.p/Œ�.V /�˚ ��2W p Œ�.V /��:

By [12], there is an isomorphism of Hopf algebras

S Œ��1L.p/Œ�.V /�˚ ��2W p Œ�.V /��! H�.C2.X qf�g/IFp/

with coproduct determined by that of H�.X IFp/.

6 On the homology of K3;1

Recall the homotopy equivalence of Theorem 1.2,

C.R2;XKqf�g/!K3;1:

Thus there are isomorphisms of Hopf algebras

(1) S Œ��1LŒ�.V /��!H�.K3;1IQ/ for V DH�.XKIQ/,

(2) S Œ��1L2Œ�.V /��!H�.K3;1IF2/ for V DH�.XKIF2/ and

(3) S Œ��1L.p/Œ�.V /�˚ ��2W p Œ�.V�/�� for V DH�.XKIFp/ for odd primes p .

Further information concerning the the homology of XK is given in Section 10.

Thus the above isomorphisms give the homology of K3;1 with field coefficients. The
first and second parts of Theorem 1.3 follow. The proof of Theorem 1.3 will be
concluded in Section 7 in which higher torsion is constructed.

Notice that the space C2.X q f�g/ is naturally a disjoint union of X with another
space. Thus, there is a natural direct sum decomposition of graded vectors spaces

xH�.X IF/˚�.X IF/! H�.C2.X qf�g/IF//

for a choice of graded vector space

�.X IF/
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which is functor of H�.X IF/.

The construction �.X IF/ is used in Section 10 to describe the homology of the
subspace of K3;1 generated by torus knots, as well as the operations of connected
sums, cablings and the action of the little two-cubes.

7 Higher p–torsion in the integer homology of K3;1

One way in which higher order p–torsion in the homology of K3;1 arises is summa-
rized next. The way in which little cubes C2.n/ are related to configuration spaces
Conf.R2; n/ is as follows. There are maps C2.n/ ! Conf.R2; n/ which are both
homotopy equivalences and equivariant with respect to the action of the symmetric group
†n (May [29]). Thus it suffices to exhibit higher torsion in the integer homology of
Conf.R2; n/�†n

X n for certain choices of spaces X DK3;1.f /. Since the construction
Conf.R2; n/�†n

X n occurs numerous times below, it is convenient to define

En.X /D Conf.R2; n/�†n
X n

as given in the introduction.

Given a prime long knot f , consider the path-component K3;1.g/ where

g D #nf � f�n‰Hn:

Here #nf denotes the connected-sum of n copies of the same knot f , with the splice
notation from Section 2 given. There are homotopy equivalences

K3;1.g/! Conf.R2; n/�†n
K3;1.f /

n
DEL.K3;1.f //:

First consider p–torsion of order exactly p obtained from the equivariant cohomology
of Conf.R2;p/ as constructed in [12].

Proposition 7.1 Let Y denote any connected CW–complex.

(1) If H2t�1.Y IFp/ is non-zero, then Fp is a direct summand of

H2pt�2.Conf.R2;p/�†p
Y p
IZ/:

(2) If Z=psZ is a direct summand of H2t�1.Y IZ/, then

H2tpr�1.Epr .Y /IZ/DH2tpr�1.Conf.R2;pr /�†pr Y pr

IZ/

has a Z=psCqZ–summand.
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(3) There is a homotopy equivalence

En.K3;1.f //!K3;1.#nf /:

(4) Thus if K3;1.f / has any non-trivial mod–p homology in degree 2t � 1, then
Fp is a direct summand of

H2pt�2.Ep.K3;1.f //IZ/:

Hence
H2pt�2.K3;1.#pf /IZ/D Fp˚A

for some abelian group A.

(5) Furthermore, if Z=psZ is a direct summand of H2t�1.K3;1.f /IZ/, then

H2tpr�1.Epr .K3;1.f //IZ/DH2tpr�1.K3;1.#pr f /IZ/D Z=psCr Z˚A

for some abelian group A.

Assume that
Hj .K3;1.f /IZ/D Z=psZ˚A

for some abelian group A. Label this Z=psZ–summand (ambiguously) by
hf; j ;Z=psZi:

Example 7.2 By [17] or [5] if f is a non-trivial torus knot, then K3;1.f / has the
homotopy type of a circle. A direct application of Proposition 7.1 gives that

H2p�2.Conf.R2;p/�†p

�
K3;1.f /

�p
IZ/DH2p�2.K3;1.#pf /IZ/

D h#pf; 2p� 2;Fpi˚A

for some abelian group A.

Next, consider the prime knot h given by a cabling of f .

Example 7.3 The examples here arise by an iterated cabling construction as follows.
Let ˛=ˇ 2Q satisfy ˇ � 1 with GCD.˛; ˇ/D 1. hD f‰S.˛;ˇ/ is the ˛=ˇ–cabling
of f .

There is a homotopy equivalence

K3;1.f /�S1
!K3;1.h/DK3;1.f‰S.˛;ˇ//

as described in Section 3.

Next, consider an m–fold iterated cabling hm of f defined by
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� h1 D f‰S.˛;ˇ/ ,
� hiC1 D hi‰S.˛;ˇ/ for i � 1, defined recursively.

Then there are homotopy equivalences

K3;1.hm/!K3;1.f /� .S
1/m:

Assume that
H2t�1.K3;1.f //IFp/D hf; 2t � 1;Fpi˚A

for some abelian group A. Then the integer homology of K3;1.hm/DK3;1.f /�.S
1/m

has a summand denoted (ambiguously) by

hf; 2t � 1;Fpi˝H�..S
1/mIZ/:

Thus if m� 1, there are elements of order p in both odd as well as even degrees in the
integer homology of K3;1.hm//. If m is large, then there are many elements of order
exactly p which are of both odd and even degree. This fussiness concerning parity of
degrees has consequences for higher torsion in homology.

The above remarks give examples of long knots with torsion of order exactly p

concentrated in odd degrees for the integer homology of their path-components. One
choice of f is a torus knot. The next proposition shows that p–torsion of order exactly
p in the homology of K3;1.g/ gives rise higher ps –torsion in the homology of other
components related components as follows.

Recall that Example 7.3 provides instances of prime knots f such that

H2t�1.K3;1.f /IZ/D hf; 2t � 1;Fpi˚A

for some abelian group A. Consider the long knot g given by the ps –fold connected
sum

g D f�ps‰Hps

� #psf

as used in the next proposition.

Proposition 7.4 Let f denote a prime long knot such that

H2t�1.K3;1.f /IZ/D hf; 2t � 1;Fpi˚A

for some abelian group A. Let

g D f # : : : #f D #psf:

Then
H2tps�1.K3;1.g/IZ/D h#psf; 2tps

� 1;Z=psC1Zi˚A
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for some abelian group A.

Proof Assume that the integer homology of K3;1.f / has a non-trivial Fp summand
in degree 2t � 1 as guaranteed by Example 7.3. Thus, in the mod–p reduction of
the integer homology of K3;1.f /, there are classes x of degree 2t � 1, the mod–p

reduction of a class of order p , as well as a class y in degree 2t which corresponds
to the contribution forced by x in the Tor term in the classical universal coefficient
theorem.

Since H2t�1.K3;1.f /IZ/ has a Fp –summand, there are elements in the mod–p

homology of K3;1.f / with

(1) x in H2t�1.K3;1.f /IFp/,

(2) y in H2t�1.K3;1.f /IFp/ and

(3) the first Bockstein of y is x ,

ˇ1.y/D x:

A classical computation of the Bockstein spectral sequence gives that the .sC 1/th
Bockstein is defined with

ˇsC1.y
ps

/D x �y�1Cps

C I

in case s � 1 for which I denotes the indeterminacy of this operation. The proposition
follows as these classes survive in the Bockstein spectral sequence for C.R2;XKqf�g/.

Two concrete examples are listed next.

Example 7.5

(1) Let f denote a non-trivial torus knot with

H1K3;1.f /D Z:

Then the long knot
#pf D f # � � � #f

satisfies the property that

K3;1.#pf /DEp.K3;1.f //

with
H2p�2.K3;1.#pf /IZ/D h#pf; 2p� 2;Z=p1Zi˚A

for some abelian group A.
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(2) Denote a cable of #pf by .#pf /‰S˛;ˇ . There are homotopy equivalences

K3;1..#pf /‰S˛;ˇ/!K3;1.#pf /�S1

with the property that

H2p�1.K3;1..#pf /‰S˛;ˇ/IZ/D h.#pf /‰S˛;ˇ; 2p� 1;Fpi˚A

for some abelian group A.

(3) The ps –fold connected sum of .#pf /‰S˛;ˇ ,

#ps

�
.#pf /‰S˛;ˇ

�
has the property that

H2psC1�1

�
K3;1

�
#ps

�
.#pf /‰S˛;ˇ

��
IZ
�

D h#ps

�
.#pf /‰S˛;ˇ

�
; 2psC1

� 1;Z=psC1Zi˚A

for some abelian group A.

The third part of Theorem 1.3 follows, thus concluding the proof.

8 On H1K3;1

H�K3;1 has torsion of all orders, it is natural to ask for the lowest dimension i.p;n/ so
that Hi.p;n/K3;1 contains torsion of order pn . This question is answered in this section
for the special case .p; n/D .2; 1/. This section contains a proof of Theorem 1.6.

The idea of the proof is to describe H1K3;1 inductively, component-by-component.
The most complicated case from the point of view of torsion is the hyperbolic satellite
case, since there is currently insufficient control of the representations BL ! †Cn .
In addition, better control over the class of the inversion-map H1K3;1!H1K3;1 is
required.

First, the base-case: knots whose JSJ–trees have one vertex.

� If f is a torus knot H1K3;1.f / ' Z and f is invertible and the †2 action
(inversion action on H1K3;1.f /) is given by multiplication by .�1/. This is a
direct corollary of [5].

� If f is a hyperbolic knot H1K3;1.f / ' Z2 . In the case that f is invertible,
the (inversion) action of †2 on Z2 is multiplication by .�1/. This also follows
immediately from [5].
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The next proposition gives H1.K3;1.f /IZ/ inductively, via the JSJ–tree of f . Given
a group G acting on an abelian group A, let AG denote the module of co-invariants,
the quotient group of A modulo the subgroup generated by fa�g � a W g 2G; a 2Ag.
The following lemma follows from the Leray–Serre spectral sequence for any fibration
with a section.

Lemma 8.1 Given a fibration F !E!B with a section, with both the base and the
fibre path-connected, then H1E 'H1B˚ .H1F /�1B .

In principle, one can deduce the following result from the presentation of the groups
�1.Conf.R2; n/=Y IZ/ given by Manfredini [28], alternatively using some elementary
facts about the abelianization of the braid group or from the description in [12]. The
proof is omitted.

Lemma 8.2 Let Y be a Young subgroup of †n . We think of †n as the group of
bijections of the set f1; 2; : : : ; ng. Let k be the number of distinct orbits of Y and let
f be the number of fixed-points of Y acting on f1; 2; : : : ; ng. Let l D k � f . Then
H1.Conf.R2; n/=Y IZ/ is a free-abelian group of rank l C

�
k
2

�
.

Proposition 8.3 Given any component K3;1.f / of K3;1 , H1.K3;1.f /IZ/ is finitely-
generated and a direct-sum of groups of the form: Z and Z=2Z. Moreover, if
f is an invertible knot, the involution of H1.K3;1.f /IZ/ preserves a splitting of
H1.K3;1.f /IZ/ into a direct sum H1.K3;1.f /IZ/D V1˚V2 where the involution
acts on V1 as the identity and acts on V2 by multiplication by .�1/.

Proof

The proof is by induction on the height of the JSJ–tree of f . The height one case was
dealt with at the start of this section. The inductive step is as follows.
� Consider the cases that f is a cable of g , then H1K3;1.f /D Z˚H1K3;1.g/

[5]. In the case that f is invertible, the homotopy-equivalence is F2 –equivariant
with F2 –action on S1�Kg being complex conjugation on S1 and the inversion
involution on Kg . Thus the F2 –action on H1S1 �K3;1.g/D Z˚H1K3;1.g/

is simply the direct sum of F2 –modules Z (with the non-trivial involution)
and H1K3;1.g/ with its own inversion involution, completing this part of the
inductive step.

� Consider the case that f is a connected sum of prime knots f1; f2; : : : ; fn with
n� 2. Then by Lemma 8.1,

H1.K3;1.f /IZ/DH1.Conf.R2; n/=Y IZ/˚

 
nM

iD1

H1.K3;1.fi/IZ/

!
=Y
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where Y is the Young subgroup of †n given by the equivalence relation
i � j , K3;1.fi/ D K3;1.fj /. H1.Conf.R2; n/=Y IZ/ ' ZlC.k

2/ where l

is the number of orbits of Y with more than 1 element and k is the number
of orbits of Y by Lemma 8.2. If f is invertible, the involution action on
K3;1.f /' Conf.R2; n/�Y

Qn
iD1K3;1.fi/ was described in [5] as a map that

preserved the above product structure, acting by mirror reflection along a line
in R2 on Conf.R2; n/ and by permutation of the factors of K3;1.fi/ combined
with the inversion involution on K3;1.fi/ for each i 2 f1; 2; : : : ; ng. Since
the abelianization of �1.Conf.R2; n/=Y / was computed entirely in terms of
linking numbers, mirror reflection along a line induces multiplication by .�1/

on H1.Conf.R2; n/=Y IZ/. This completes this step of the inductive argument.
� Consider the case of a hyperbolic satellite operation. In this case, H1Kf D

Z2˚
�
˚H1K3;1.fi/

�
=Af [5]. Thus H1Kf consists of Z2 direct sum various

groups, one for each orbit of Af acting on f1; 2; : : : ; ng. Denote the orbits
by f1; 2; : : : ; ng D Y1 [ Y2 [ � � � [ Yk . The summand corresponding to or-
bit Yi is either H1K3;1.fj / for j 2 Yi or .H1K3;1.fj //=†2 depending on
whether or not Af has an element that reverses the orientation of Lj or not.
.H1K3;1.fj //=†2 is also a direct sum of groups of the form Z and Z=2Z by
the inductive hypothesis. Now consider the case that f is invertible. By [5]
the †2 –action on Kf 'M � .SO.2/�Af

Qn
iD1K3;1.fi// respects the bundle

structure, thus on Z2˚
�
˚H1K3;1.fi/

�
=Af it acts by multiplication by .�1/

on the Z2 –factor. On the remaining factors it either acts trivially on the i th
summand if the inversion symmetry of L does not reverse the orientation of Li

or it acts by inversion on that summand.

Thus the result follows.

Corollary 8.4 H1.K3;1.f /IZ/ contains 2–torsion if and only if there is a hyperbolic
link L so that one of the vertices of Gf is decorated by L and if we let g be the
knot whose JSJ–tree is the subtree rooted at L, then Ag must contain an isometry that
reverses the orientation of some Li .

9 The first occurrence of odd torsion

Theorem 9.1 Let f denote a long knot and p an odd prime. If Hi.K3;1.f /IZ/
contains Fp , then i � 2p� 2.

Notice that the theorem does not assert that there is torsion in H�K3;1.f /, but rather
the least dimension in which p–torsion can possibly occur. There are long knots f
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such that H�K3;1.f / is torsion free. Furthermore, there are long knots g such that
H2p�2.K3;1.g/IZ/ contains copies of Fp by Example 7.2. This theorem follows a
classical pattern which is exhibited for both K.Bn; 1/ as well as �nSnC1 .

Proof It suffices to prove that Hi.K3;1IZ/ contains no p–torsion for i < 2p� 2.

Since the homology groups H�K3;1.f / are torsion free for the unknot, torus knots and
hyperbolic knots, it suffices to check that that p–torsion cannot occur in dimensions
less than 2p� 2 in the following three cases.

(1) The knot f is a cable of g in which case K3;1.f /' S1 �K3;1.g/.

(2) The knot f is hyperbolically spliced.

(3) The knot f is a connected-sum of knots gi such that the homology of K3;1.gi/

is p–torsion free in dimensions less than 2p� 2.

Case 1 follows directly from the classical Künneth theorem. Cases 2 and 3 follow
inductively by the next three lemmas.

Consider the k –fold product X k with the natural (left) action of †k on X k . The
free Cn –space generated by X qC is denoted Cn.X qC/. Recall that this space is
homotopy-equivalent to the disjoint union of Conf.Rn; k/�†k

X k for all k � 0.

Lemma 9.2 Assume that X is a topological space of the homotopy type of a CW–
complex (alternatively, one can substitute compactly generated, weak Hausdorff for
having the homotopy-type of a CW–complex in this lemma) without p–torsion in
homology of dimensions less than 2p� 2 for p an odd prime. Then the homology of
Cn.XqC/ and �n†n.XqC/ also do not have p–torsion in homology of dimensions
less than 2p�2. Thus the homology of Conf.Rn; k/�†k

X k does not have p–torsion
in homology of dimensions less than 2p� 2.

The proof follows directly from the computations in [12] or can be done classically by
chain level arguments (in the spirit of Nakaoka and Steenrod).

Lemma 9.3 Let AD Z=pr Z act on the pr –fold product of a path-connected CW–
complex X pr

by a cyclic permutation of order pr and on S1 freely via a rotation of
order pr . If Hi.X IZ/ is p–torsion free and finitely generated for all i < q , then

Hj .S
1
�A X pr

IZ/

is p–torsion free for all j < q .
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Proof Consider the space
S1
�A X pr

:

Classically, there are chain equivalences

B�˝ZŒA� C�.X /
˝pr D˝1pr

�����! B�˝ZŒA� C�.X
pr

/ ����! C�.S
1 �A X pr

/

where
(1) AD Z=pr Z,
(2) B� denotes the chain complex of right ZŒA�–modules (chain equivalent to the

total singular chain complex of a circle)

� � � ����! f0g ����! ZŒA�
D
����! ZŒA�

for which D.1/D 1� � where � is a generator for A,
(3) C�.X / denotes the total singular chain complex of X for which Ci.X / denotes

the singular chains in degree i and
(4) C�.X /

˝pr

and C�.X
pr

/ is given the natural structure of left ZŒA�–modules.

Since X is assumed to be of finite type,

Hi.X /D Fi ˚Ti

where Fi is a finite direct sum of copies of Z and Ti is a finite direct sum of finite
cyclic groups. If i < q , it may be assumed that Ti is of order prime to p and thus
this summand will not contribute p–torsion to the homology of the chain complex
B�˝ZŒA� C�.X /

˝pr

(details are omitted).

Furthermore, there is a map
�i W Fi! Ci.X /

which
(1) induces a map of chains complexes (with trivial differential for the source) and
(2) induces a homology isomorphism in degrees i < q with coefficients in Z.p/

(the integers localized at p meaning those rational numbers with denominators
prime to p ).

Thus it suffices to check that the homology of the chain complex

B�˝ZŒA� .˚i<qFi/
˝pr

is p–torsion free homology in dimensions less than q for p an odd prime. Since Fi is
free abelian, notice that .˚i<qFi/

˝pr

is a sum of permutation representations ( over
the integral group ring of A ) each of which are cyclic ZŒA�–modules which have the
following generators:
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(1) v˝pr

where v is an element in Fi of even degree,

(2) v˝pr

where v is an element in Fi of odd degree,

(3) v1˝ v2˝ � � �˝ vpr where the vi run over a basis for the ˚i<qFi with at least
two distinct basis elements appearing.

Thus it suffices to work out the torsion in the chain complex

B�˝ZŒA�M

where M denotes the free abelian group which is a cyclic ZŒA�–module with one of
the elements in (1–3) as generators. These are considered next.

(1) Let M denote the cyclic ZŒA�–module generated by v˝pr

where v is an element
in Fi of either odd or even degree. Since p is odd, the associated permutation
representation is trivial and thus the chain complex

B�˝ZŒA�M

is isomorphic to .B�˝ZŒA�Z/˝Z M . The homology of this chain complex is
isomorphic to H�.S

1/˝Z M as a graded abelian group and is thus torsion free.

(2) Let M denote the cyclic ZŒA�–module generated by v1˝ v2˝� � �˝ vpr where
the vi run over a basis for the ˚i<qFi with at least two distinct basis elements
appearing among the vi . The action of A D Z=pr Z has isotropy subgroup
given by Z=psZ for some 0� s < r . Thus the module M is isomorphic to to

ZŒA�˝ZŒZ=psZ�Z

as a left ZŒA�–module and there is an induced isomorphism of chain complexes

B�˝ZŒA� .ZŒA�˝ZŒZ=psZ�Z/! B�˝ZŒA�M:

Since the chain complex B�˝ZŒA� .ZŒA�˝ZŒZ=psZ�Z/ is isomorphic to

B�˝ZŒZ=psZ�Z;

the chain complex has torsion free homology.

Lemma 9.4 Let g D .f1; : : : ; fn/‰L where n� 1 and L a hyperbolic KGL. If for
all j 2 f1; 2; : : : ; ng, HiK3;1.fj / contains no elements of order p for all i < 2p� 2,
then HiK3;1.g/ contains no elements of order p for i < 2p� 2.
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Proof In this case, there is a homotopy equivalence

K3;1.g/' S1
�

 
SO.2/�Ag

nY
iD1

K3;1.fi/

!

where Ag is a cyclic group acting via permutations on the factors in
Qn

iD1K3;1.fi/.

To determine whether there is p–torsion in the homology of K3;1.g/, it suffices to
determine the p–torsion in case Ag is replaced by the p–Sylow subgroup of Ag given
by H D Z=pnZ as the induced map

S1
�

 
SO.2/�H

nY
iD1

K3;1.fi/

!
! S1

�

 
SO.2/�Ag

nY
iD1

K3;1.fi/

!
induces a split epimorphism on the p–torsion subgroup by a classical transfer argument
a la Cartan–Eilenberg.

Consider the covering map 
SO.2/�H

nY
iD1

K3;1.fi/

!
!

 
SO.2/�Af

nY
iD1

K3;1.fi/

!
for which the group of covering translations is abelian with group of covering transfor-
mations Af =H .

Homologically, this map is onto the p–torsion elements of

H�

 
SO.2/�Af

nY
iD1

K3;1.fi/

!
since the composite of the transfer map with the covering map:

H�

 
SO.2/�Af

nY
iD1

K3;1.fi/

!
!H�

 
SO.2/�Af

nY
iD1

K3;1.fi/

!

is multiplication by jAf
H
j which is coprime to p .

The lemma follows at once from Lemma 9.3.

10 On the subspace generated by cabling and summation

The purpose of this section is to describe the subspace T K3;1 of K3;1 , consisting of
the path components of K3;1 containing the unknot and all knots generated from the
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unknot by iterating the cabling and connected-sum operations. An alternate description
of the space T K3;1 is that it consists of precisely those long knots whose complements
have JSJ–decompositions containing only Seifert-fibred manifolds.

First define the space

T Dq1<p<q;.p;q/D1K3;1.f .p; q//

where f .p; q/ denotes a .p; q/–torus knot. Thus K3;1.f .p; q// has the homotopy
type of S1 . Consider the James construction

J.T qf�g/Dq0�nT n

with T 0 D f�g, the base-point. Write

JK Dq1�nT n

with
J.T qf�g/D JKqf�g:

Spaces Yn are specified inductively in terms of JK as follows.

* Y0 D C2.JKqf�g/ and

* YnC1 D f.ŒC2.Yn/��Yn/�JK/gqYn .

Notice that Yn is naturally a subspace of YnC1 and that all of these may be regarded
as subspaces of K3;1 in the following way: There are induced maps

K3;1 �J.T qf�g/!K3;1

induced by cabling.

Define
T K3;1 D[n�0Yn:

Notice that T K3;1 is the subspace of K3;1 which contains the path-components of
p=q–torus knots and which is closed under the operations of cabling and sums. That
is, there are induced maps K3;1 �J.T qf�g/!K3;1 induced by cabling. There is
an induced inclusion T K3;1!K3;1 .

The remainder of this section gives features of the homology of T K3;1 . First notice
that homology commutes with inductive co-limits and so there are isomorphisms

lim
�!

H�.Yn/! H�.lim
�!

Yn/! H�.T K3;1/:

Recall the construction �.X / as given in Section 5.
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To describe the homology of Yn , restrict to field coefficients. F , Recall the natural
splitting of graded vectors spaces

xH�.X IF/˚�.X IF/! H�.C2.X /IF//

for a choice of graded vector space

�.X IF/

which is functor of H�.X IF/ as listed in Section 5. Thus H�.YnC1/ is given in terms
of the construction �.X IF/ in case X D Yn .

Proposition 10.1 The natural map H�.Yn/! H�.YnC1/ is a split monomorphism.

Notice that the homology of T K3;1 exhibits a fractal-like behaviour reflecting the
geometry in Budney’s theorem [7] and iterations of the constructions �.X / as given in
Section 5. Namely, this homological behaviour arises by first considering Y1D C2.JK/

together with the homology H� .C2.X qf�g/IF/ as given in Section 5 as follows
where

V DH�.X IF/:

(1) S Œ��1LŒ�.V �� if the characteristic of F is 0,

(2) S Œ��1L.2/Œ�.V /�� if F D F2 and

(3) S Œ��1L.p/Œ�.V /�˚ ��2W p Œ�.V /�� if F D Fp for odd primes p .

On a simpler note, let @K3;1 denote the subspace of K3;1 consisting of: all unknots,
torus knots and all connect-sums of torus knots. Thus, @K3;1 is a 2–cubes subspace
of K3;1 and

@K3;1 ' C2

 
f�gt

G
Z

S1

!
:

By May [29],

B.@K3;1/'�
2†2

 
f�gt

G
Z

S1

!
which has the homotopy-type of

�2

 _
Z

�
S2
_S3

�!
where the union and wedge index set Z corresponds to the isotopy classes of torus
knots. Thus, by the Hilton–Milnor theorem the homotopy groups of B.@K3;1/ contain
the homotopy groups of all spheres (of dimension � 2) in profusion.
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11 Closed Knots and Homology

The purpose of this section is to use results of the earlier sections to give information
about the space Emb.S1;S3/. Recall the homeomorphism

S3
�Emb�.S1;S3/! Emb.S1;S3/

for which Emb�.S1;S3/ denotes the pointed embeddings. Thus there are isomor-
phisms

H�.Emb.S1;S3//!H�.S
3/˝H�.Emb�.S1;S3//

by Corollary 4.2.

Information giving the structure of the bundle K3;1!Emb�.S1;S3/!S2 was worked
out earlier. That structure is used to provide information concerning H�.Emb�.S1;S3//

by a Mayer–Vietoris argument.

Let D1 and D2 be two discs in S2 whose union is S2 and whose intersection is S1 . Let
A1 and A2 be the preimages of D1 and D2 under the projection map Emb�.S1;S3/!

S2 , then both A1 and A2 are homeomorphic to K3;1 �D2 . Consider the Mayer–
Vietoris sequence for Emb�.S1;S3/DA1[A2 where A1\A2 is homeomorphic to
S1 �K3;1 .

Identify A1 � D2 �K3;1 and A2 � D2 �K3;1 then the gluing map from @A1 D

S1�K3;1! @A2DS1�K3;1 is the map S1�K3;1 3 .t;x/ 7�! .t; t2:x/2S1�K3;1 .
Thus the Meyer–Vietoris sequence has the form:

� � �!H�.S
1
�K3;1/!H�.D

2
�K3;1/˚H�.D

2
�K3;1/!H�.Emb�.S1;S3//!� � �

where H�.S
1 �K3;1/ is identified with H�K3;1˚H��1K3;1 and H�.D

2 �K3;1/ is
identified with H�.K3;1/. The map HnK3;1˚Hn�1K3;1!Hn.K3;1/˚Hn.K3;1/ is

given by the 2� 2 matrix
�

I 0

I 2�n

�
where �W SO.2/�K3;1!K3;1 is the SO.2/–

action on K3;1 and �nW Hn�1K3;1!HnK3;1 satisfies �n.x/D ��.SO.2/�x/:

Corollary 11.1 There is a short exact sequence

0! coker.2�n/!HnEmb�.S1;S3/! ker.2�n�1/! 0:

Corollary 11.2 A knot f W S1 ! S3 is the unknot if and only if its component in
Emb.S1;S3/ contains no torsion in its homology. Moreover, the component of a
non-trivial knot in Emb.S1;S3/ always has 2–torsion in its integral homology.
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Proof If f is the unknot, the component of f has the homotopy type of V4;2 D

S3 �S2 which has no torsion in its homology.

If f is non-trivial, then first consider its long knot component, K3;1.f /. This has a
Z embedded in its its fundamental group, embedded as the 2� rotation around the
long axis [15]. We call the embedding Z! �1K3;1.f / the Gramain map. In [5] it’s
shown that there is a map K3;1.f /! S1 which when composed with the Gramain
map is not null-homotopic. It follows that H1K3;1.f / contains a copy of the integers,
generated by the Gramain element. Thus since the image of 2�1 is generated by twice
the Gramain element, coker.2�1/ must contain 2–torsion.

The short exact sequence in Corollary 11.1 is not ideal because it leaves us with
extension problems. We show how the extension problems can be solved using the
techniques of Section 3.

Observe that, if f 2K3;1 is a prime knot, then there is an SO.2/–equivariant homotopy-
equivalence K3;1.f /' SO.2/�X.fi/ where the SO.2/–action on SO.2/�X.f / is
a product action, given by left-multiplication on SO.2/ and the trivial action on X.f /

(here X.f / is just K3;1.f /=SO.2/). So prime knot components of Emb.S1;S3/

have the homotopy type of S3 � SO.3/�X.f /. As mentioned earlier, the unknot
component has the homotopy-type of S3 �S2 .

We now investigate the case of a connected-sum of n� 2 prime knots, f D f1# � � � #fn .
By the above argument, we can assume K3;1.fi/ ' SO.2/ � X.fi/ for X.fi/ D

K3;1.fi/=SO.2/. Thus, the component corresponding to f in Emb�.S1;S3/ has the
homotopy-type of C2.n/�†f

��
SO.3/�SO.2/ SO.2/n

�
�
Qn

iD1 X.fi/
�
.

We determine the homotopy-type of SO.3/�SO.2/ SO.2/n as a †n –space. Consider
SO.2/n to be Rn=Zn . Let D � Rn be the diagonal D D f.t; t; : : : ; t/W t 2 Rg. Let
P �Rn be the perp of D , ie: P Df.x1;x2; : : : ;xn/ W

Pn
iD1 xiD0g. Thus P=.P\Zn/

is an .n�1/–dimensional torus, which we will denote P .n/. We also define a subgroup
Z.n/� P .n/. The integer lattice Zn projects (orthogonally) onto a subgroup of P ,
we further take the image of this subgroup under the quotient map P ! P .n/ and
denote this image Z.n/. There is a naturally defined homomorphism Z.n/! SO.2/

given by considering the embedding P .n/! SO.2/n �Rn=Zn . For every element
z 2Z.n/ there is a unique element t 2 SO.2/ so that t:z D 0 2 SO.2/n .

Proposition 11.3 Provided n� 1,

SO.3/�SO.2/ SO.2/n ' SO.3/�Z.n/ P .n/

where the action of Z.n/ on SO.3/ is given by the homomorphism Z.n/! SO.2/.
Moreover, this is an †n –equivariant homeomorphism where the action of †n on
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SO.3/ �Z.n/ P .n/ is a product action, trivial on SO.3/ and the natural action on
P .n/ � SO.2/n . Since the homomorphism Z.n/! SO.2/ is null-homotopic (as a
continuous function), the above bundle is homeomorphic to a product SO.3/�Z.n/

P .n/' SO.3/� .P .n/=Z.n//.

Corollary 11.4 If f is a connected-sum of n prime knots n� 2, then

SO.3/�SO.2/K3;1.f /' SO.3/� C2.n/�†f

 
P .n/=Z.n/�

nY
iD1

X.fi/

!

where K3;1.fi/ D SO.2/�X.fi/, so the fibration SO.3/�SO.2/ K3;1.f /! S2 is
just projection onto SO.3/ then onto S2 .

We now perform the analogous computations for Emb.S1;R3/. Proposition 4.4 gives
us the analogous bundle C ÌK3;1! Emb.S1;R3/! S2 . Decomposing S2 as the
union of two discs, one gets a Meyer–Vietoris sequence

� � �!H�.S
1
�.C ÌK3;1//!H�.C ÌK3;1/˚H�.C ÌK3;1/!H�.Emb.S1;R3//!� � �

which splits into short exact sequences as in Corollary 11.1:

0! coker.2�0n/!HnEmb.S1;R3/! ker.2�0n�1/! 0

where �0nW Hn�1.C Ì K3;1/ ! Hn.C Ì K3;1/ is given by ��.SO.2/ � �/ for the
SO.2/ action � on C ÌK3;1 . The bundle Cf ! Cf ÌK3;1.f /! K3;1 is split and
the monodromy acts trivially on H�Cf since Cf is a homology S1 with H1.Cf /

generated by a meridional curve. Thus, H�.C Ì K3;1/ ' H�S
1 ˝ H�K3;1 and

Hn.C ÌK3;1/D .H0S1˝HnK3;1/˚ .H1S1˝Hn�1K3;1/.

�0n has a description in terms of �n and �n�1 . Let ˛i 2HiS
1 represent the standard

generators of HiS
1 for i D 0; 1. Then �0n.˛0 ˝ x/ D ˛1 ˝ x C ˛0 ˝ �n.x/ and

�0n.˛1˝x/D�˛1˝ �n�1.x/. Thus, �0n can be thought of as a map �0nW Hn�2K3;1˚

Hn�1K3;1!Hn�1K3;1˚HnK3;1 given by �0n.x;y/D .��n�1.x/Cy; �n.y//. Since
�nı�n�1D 0, ker.2�0n/ is given by the solutions to the equation �2�n�1.x/C2yD 0

for .x;y/ 2Hn�2K3;1˚Hn�1K3;1 . Thus,

ker.2�0n/'Hn�2K3;1˚ �2Hn�1K3;1

where if A is an abelian group and p an integer, �pA is the subgroup of A killed by
multiplication by p . Similarly,

coker.2�0n/'Hn�1K3;1=2Hn�1K3;1˚HnK3;1:
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Proposition 11.5 There is a short exact sequence

0!Hn�1K3;1=2Hn�1K3;1˚HnK3;1!HnEmb.S1;R3/

!Hn�3K3;1˚ �2Hn�2K3;1! 0:

Thus, the component of the unknot in Emb.S1;R3/ is the unique component such
that its first homology group is torsion. It is also the unique component so that its 2nd
homology group is trivial.

Proof The short exact sequence follows from the above observations.

That H1 of a non-trivial component is non-torsion follows from [5, Proposition 6.1]
and the above short exact sequence. That H1 of the unknot component is torsion
follows from Proposition 4.4 and the results in Section 3. Thus, the component of the
unknot in Emb.S1;R3/ has the homotopy-type of SO.3/ and H1SO.3/' Z2 .

The statement about H2 follows from [5, Proposition 6.1] and the above short exact
sequence.

Proposition 1.5 gives a criteria for testing whether a long knot f is the long unknot
which can be modified to to compare two arbitrary long knots. That procedure involves
forming a difference to be defined precisely. Namely, it is not the case that an arbitrary
long knot admits an inverse. It is necessary to pass to a setting for which the inverses
exists in order to take differences. That world is the group completion of K3;1 ,

�.BK3;1/:

This last space admits inverses up to homotopy. Given two long knots f and g ,
consider their classes in �.BK3;1/ denoted Œf � and Œg� respectively. Next, consider
the product

Œf � � Œg��1
2�.BK3;1/:

The path-component of Œf � � Œg��1 2�.BK3;1/ has vanishing first homology group if
and only if f and g are in the same path-component of K3;1 .

12 Problems

The purpose of this section is to list problems which arise naturally from the work
above.

(1) Interpret the rational cohomology of K3;1 in terms of iterated integrals in the
sense of Kohno–Kontsevich–Chen.
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(2) Compare the Vassiliev invariants of braids as studied by T Kohno [23] and the
Lie algebra obtained from the descending central series for the fundamental
groups of the spaces C2.n/�K3;1.f1/� � � � �K3;1.fn/ as well as the induced
invariants for C2.n/�†f

�
K3;1.f1/� � � � �K3;1.fn/

�
.

(3) A natural connection between the space of long knots and the mod–2 Steenrod
algebra arises from the group completion of K3;1 given �B.K3;1/ [29]. No-
tice that the collapse map XK! f�g induces a map pW C.R2;XKqf�g/!

C.R2;S0/ and there is an induced map pW C.R2;XKqf�g/!Z�BO induced
by the regular representation bundle. Thus there are maps

�B.K3;1/!�2
0S2
! BO

with composite denoted �W �B.K3;1/! Z�BO . The Thom spectrum of � is
a wedge of Eilenberg-Mac Lane spectra HF2 and thus the mod–2 co-homology
of the Thom spectrum M�B.K3;1/ is free over the mod–2 Steenrod algebra.
Interpret the Steenrod operations in terms of knots.

(4) The Goodwillie Calculus mapping space models AMj .I
n/ for Kn;1 constructed

by Sinha [37] have a natural homotopy-associative pairing. This pairing makes
�0AM3.I

3/ into a group, isomorphic to the integers. As an invariant of knots,
�0K3;1! �0AM3.I

3/'Z is the essentially unique type-2 finite-type invariant
of knots [9]. This raises the question, do the maps Kn;1 ! AMj .I

n/ factor
through the group completion, Kn;1!�BKn;1!AMj .I

n/?

(5) Combine the structures here with that of Khovanov homology.
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Basel (1994) 97–121 MR1341841

[26] P Lambrechts, V Turchin, I Volic, The rational homotopy type of spaces of knots in
codimension > 2 , preprint

[27] C Lescop, On configuration space integrals for links, from: “Invariants of knots and
3–manifolds (Kyoto, 2001)”, (T Ohtsuki, et al, editors), Geom. Topol. Monogr. 4 (2002)
183–199 MR2002610

[28] S Manfredini, Some subgroups of Artin’s braid group, Topology Appl. 78 (1997)
123–142 MR1465028 Special issue on braid groups and related topics (Jerusalem,
1995)

[29] J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271,
Springer, Berlin (1972) MR0420610

[30] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. .2/ 81
(1965) 211–264 MR0174052

[31] R S Palais, Local triviality of the restriction map for embeddings, Comment. Math.
Helv. 34 (1960) 305–312 MR0123338

[32] M Polyak, O Viro, On the Casson knot invariant, J. Knot Theory Ramifications 10
(2001) 711–738 MR1839698 Knots in Hellas 1998, Vol. 3 (Delphi)

[33] K Sakai, Non-trivalent graph cocycle and cohomology of the long knot space, Algebr.
Geom. Topol. 8 (2008) 1499–1522

[34] P Salvatore, Knots, operads, and double loop spaces, Int. Math. Res. Not. (2006) Art.
ID 13628, 22 MR2276349

[35] H Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S-B Heidel-
berger Akad. Wiss. Math.-Nat. Kl. 1949 (1949) 57–104 MR0031733

[36] H Schubert, Knoten und Vollringe, Acta Math. 90 (1953) 131–286 MR0072482

[37] D Sinha, The topology of spaces of knots arXiv:math.AT/0202287

[38] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathemat-
ical Series 35, Princeton University Press, Princeton, NJ (1997) MR1435975 Edited
by Silvio Levy

[39] V Tourtchine, On the other side of the bialgebra of chord diagrams, J. Knot Theory
Ramifications 16 (2007) 575–629 MR2333307

Geometry & Topology, Volume 13 (2009)



On the homology of the space of knots 139

[40] V A Vassiliev, Complements of discriminants of smooth maps: topology and applica-
tions, Translations of Mathematical Monographs 98, American Mathematical Society,
Providence, RI (1992) MR1168473 Translated from the Russian by B Goldfarb
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