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Tutte chromatic identities
from the Temperley–Lieb algebra

PAUL FENDLEY

VYACHESLAV KRUSHKAL

This paper introduces a conceptual framework, in the context of quantum topology
and the algebras underlying it, for analyzing relations obeyed by the chromatic
polynomial �.Q/ of planar graphs. Using it we give new proofs and substantially
extend a number of classical results concerning the combinatorics of the chromatic
polynomial. In particular, we show that Tutte’s golden identity is a consequence
of level-rank duality for SO.N / topological quantum field theories and Birman–
Murakami–Wenzl algebras. This identity is a remarkable feature of the chromatic
polynomial relating �.�C 2/ for any triangulation of the sphere to .�.�C 1//2 for
the same graph, where � denotes the golden ratio. The new viewpoint presented here
explains that Tutte’s identity is special to these values of the parameter Q . A natural
context for analyzing such properties of the chromatic polynomial is provided by the
chromatic algebra, whose Markov trace is the chromatic polynomial of an associated
graph. We use it to show that another identity of Tutte’s for the chromatic polynomial
at QD �C 1 arises from a Jones–Wenzl projector in the Temperley–Lieb algebra.
We generalize this identity to each value Q D 2C 2 cos.2�j=.nC 1// for j < n

positive integers. When j D 1 , these Q are the Beraha numbers, where the existence
of such identities was conjectured by Tutte. We present a recursive formula for this
sequence of chromatic polynomial relations.

57M15; 05C15, 57R56, 81R05

1 Introduction

In a series of papers in 1970 [23; 22], W T Tutte discovered several remarkable
properties of the chromatic polynomial �.Q/ of planar graphs evaluated at the special
value QD �C 1, where � denotes the golden ratio, � D .1C

p
5/=2. Among these

is the “golden identity”: for a planar triangulation T ,

(1-1) �T .�C 2/D .�C 2/ �3 V .T /�10 .�T .�C 1//2;

where V .T / is the number of vertices of the triangulation. Tutte used this identity to
establish that �

T
.�C 2/ is positive, a result interesting in connection to the four-color
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theorem. Another property (see (11.15) in [24]) is the relation

(1-2) �Z1
.�C 1/C�Z2

.�C 1/D ��3
�
�Y1

.�C 1/C�Y2
.�C 1/

�
;

where Yi , Zi are planar graphs which are locally related as shown in Figure 1.

Z1 Z2 Y1 Y2

Figure 1: The graphs in Tutte’s identity (1-2). There can be any number of
lines from each vertex to the boundary of the disk, and the graphs are identical
outside the disk.

The main purpose of this paper is to show that Tutte’s results naturally fit in the
framework of quantum topology and the algebras underlying it. We give conceptual
proofs of these identities, very different from the combinatorial proofs of Tutte’s. This
allows us to show that both identities (1-1) and (1-2) are not ad hoc, but are (particularly
elegant) consequences of a deeper structure. We generalize the linear relation (1-2) to
other special values of Q, dense in the interval Œ0; 4�.

For example, the identity analogous to (1-2) at Q D 2 is simply that �
�
.2/ D 0

whenever the graph � includes a triangle. This vanishing is completely obvious from
the original definition of ��.Q/ for integer Q as the number of Q–colorings of �
such that adjacent vertices are colored differently. Nevertheless, this vanishing does
not follow immediately from the contraction-deletion relation used to define �.Q/ for
all Q. We use the algebraic approach to fit this obvious identity and the rather nontrivial
identity (1-2) into a series of identities at special values of Q which are independent
of the contraction-deletion relation, although of course are consistent with it.

We show that Tutte’s golden identity (1-1) is a consequence of level-rank duality for
SO.N / TQFTs (or equivalently Uq.so.N // representation theory) and the Birman–
Murakami–Wenzl algebras underlying the construction of the (doubled) TQFTs. Level-
rank duality is an important property of conformal field theories and topological quantum
field theories. It implies that the SO.N / level k , and the SO.k/ level N theories are
isomorphic; see Mlawer et al [17] (in our conventions the level k of SO.3/ corresponds
to the level 2k of SU.2/, so the SO.3/ theories are labeled by the half-integers). We
exploit the isomorphism between the SO.3/4 and SO.4/3 theories, and then show that
the latter splits into a product of two copies of SO.3/3=2 . The partition function of an
SO.3/ theory is given in terms of the chromatic polynomial, specifically �.�C 2/ for
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SO.3/4 and �.�C 1/ for SO.3/3=2 . These isomorphisms enable us to give a rigorous
proof of the golden identity (1-1). This new viewpoint makes it clear that the fact that
golden identity relates a chromatic polynomial squared to the chromatic polynomial
at another value is very special to these values of Q: generalizations using level-rank
duality SO.N /4$ SO.4/N do not involve the chromatic polynomial.

An important and rather natural tool for analyzing the chromatic polynomial relations
is the chromatic algebra CQ

n introduced (in a different context) by Martin and Wood-
cock [16], and analyzed in depth by the authors in [6]. The basic idea in the definition
of the chromatic algebra is to consider the contraction-deletion rule as a linear relation
in the vector space spanned by graphs, rather than just a relation defining the chromatic
polynomial. In this context, the right object to study is the space of dual graphs, and the
algebra is defined so that the Markov trace of a graph is the chromatic polynomial of its
dual. The parameter Q in the chromatic algebra CQ is related to the value of the loop
(or dually the value of the chromatic polynomial of a single point). Several authors
have considered similar algebraic constructions, for example Jones [11] in the context
of planar algebras, Kuperberg [15] in the rank 2 case, Martin and Woodcock [16] for
deformations of Schur algebras and Walker [25; 26] in the TQFT setting. In fact, the
relation between SO.3/ representation theory and colorings of planar graphs dates
back to spin networks of Penrose [19]. We use the chromatic algebra to systematically
analyze the structure of the chromatic polynomial of planar graphs.

Relations between algebras and topological invariants like the chromatic polynomial
are familiar from both knot theory and statistical mechanics. Our companion paper [6]
discusses these connections in detail. In particular, the relation between the SO.3/
Birman–Wenzl–Murakami algebra and the chromatic algebra described initially by the
first author and Read [7] is derived there. This in turn yields a relation between the
chromatic algebra and the Temperley–Lieb algebra [7], which is described in Section 2.
Readers familiar with the Potts model and/or the Tutte polynomial may recall that it
has long been known (indeed from Temperley and Lieb’s original paper [21]) that the
chromatic polynomial and the more general Tutte polynomial can be related to the
Markov trace of elements of the Temperley–Lieb algebra. The relation derived in [7]
and here is quite different from the earlier relation; in statistical-mechanics language
ours arises from the low-temperature expansion of the Potts model, while the earlier
one arises from Fortuin–Kasteleyn cluster expansion [6].

The relation of the chromatic algebra to the Temperley–Lieb algebra utilized here
makes it possible to rederive and greatly extend Tutte’s identities. In this context,
linear identities such as Tutte’s (1-2) are understood as finding elements of the trace
radical: elements of the chromatic algebra which, multiplied by any other element of
the algebra, are in the kernel of the Markov trace. For example, it is well known how
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the Jones–Wenzl projectors P .k/ , crucial for the construction of SU.2/ topological
quantum field theories, are defined within the Temperley–Lieb algebra. We define these
relations in the chromatic algebra, for special values of the parameter Q, as a pullback
of the Jones–Wenzl projectors. Tutte’s relation (1-2) is a pullback of the projector P .4/ ,
corresponding to QD �C1. More precisely, in this algebraic setting the relation (1-2)
for the chromatic polynomials of the graphs in Figure 1 is a consequence of the fact
that

(1-3) �Z1 C
�Z2 ��

�3
� �Y1 C

�Y2

�
is an element of the trace radical of the algebra C�C1

2
. Here �Yi , �Zi are the planar

graphs dual to the graphs Yi ;Zi ; see Figure 2.

�Z1
�Z2

�Y1
yY2

Figure 2: The graphs �Yi , �Zi dual to the graphs in Figure 1

Tutte remarks about (1-2): “This equation can be taken as the basic one in the theory of
golden chromials” [24]. This statement has a precise meaning in our algebraic context:
P .4/ is a generator of the unique proper ideal of the Temperley–Lieb category related
to the chromatic polynomial at QD �C 1. Note that Tutte’s discovery of this relation
(for this specific value of Q) predates that of Jones and Wenzl by fifteen years!

We show that Tutte’s identity (1-2) has an analog for any value of Q obeying

(1-4) QD 2C 2 cos
�

2�j

nC 1

�
for j and n positive integers obeying j < n. The requirement of integer n arises
from the structure of the Temperley–Lieb category: these are the only values for which
the Temperley–Lieb category has a nontrivial proper ideal (given by the trace radical).
When j D 1, these values of Q are the Beraha numbers BnC1 , discussed in more
detail below. Tutte conjectured in [24] that there is such a relation, similar to (1-2)
at �C 1 D B5 , for each Beraha number, and we give a recursive formula for these
relations based on the formula for the Jones–Wenzl projectors P .n/ . In fact, based on
the relation between the chromatic algebra and the SO.3/ BMW algebra [6], it seems
reasonable to conjecture that these are all linear relations which preserve the chromatic
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polynomial at a given value of Q (and in particular there are no such relations at Q

not equal to one of special values (1-4)).

We use similar ideas to give also a direct algebraic proof of the golden identity (1-1).
This proof (given in Section 3) is motivated by the argument using level-rank duality,
discussed above, but it is given entirely in the context of the chromatic algebra. It is
based on a map ‰W C�C2 �! .C�C1=R/˝ .C�C1=R/, where R denotes the trace
radical. We show that the existence of this map is implied by the relation (1-2), and
then (1-1) follows from applying the algebra traces to the homomorphism ‰ . The
golden identity has an interesting application in physics in quantum loop models of
“Fibonacci anyons”, where it implies that these loop models should yield topological
quantum field theories in the continuum limit (see Fendley [5], Fidkowski et al [8] and
Walker [26] for more details).

We conclude this general discussion of Tutte’s results by noting his estimate:

(1-5) j�T .�C 1/j � �5�k ;

where T is a planar triangulation and k is the number of its vertices. The origin
of Beraha’s definition of the numbers Bn is his observation [2] that the zeros of the
chromatic polynomial of large planar triangulations seem to accumulate near them.
Tutte’s estimate (1-5) gives a hint about this phenomenon for B5 . Efforts have been
made (see Kauffman and Saleur [14] and Saleur [20]) to explain Beraha’s observation
using quantum groups. We hope that our approach will shed new light on this question.

The paper is organized as follows. Section 2 introduces the chromatic algebra CQ
n ,

reviews the standard material on the Temperley–Lieb algebra TLd
n , and describes the

algebra homomorphism CQ
n �! TL

p
Q

2n . It then shows that Tutte’s relation (1-2) is
the pullback of the Jones–Wenzl projector P .4/ 2 TL� . With this relation at hand,
Section 3 gives a direct algebraic proof of Tutte’s golden identity (1-1) in the chromatic
algebra setting. Section 4 discusses the level-rank duality of SO.N / BMW algebras,
and shows that the golden identity (1-1) is its consequence. In the final Section 5, we
show that for any Q obeying (1-4), the chromatic polynomial obeys a generalization of
(1-2). We give a recursive formula for this sequence of chromatic relations. This paper
is largely self-contained, but we refer the reader interested in the chromatic algebra,
the SO.3/ Birman–Murakami–Wenzl algebra and the relations between the chromatic
polynomial, link invariants and TQFTs, to our companion paper [6].

2 The chromatic algebra and the Temperley–Lieb algebra

The definition of the algebraic structure of the chromatic algebra CQ
n – the product

structure, the trace, the inner product – is motivated by that of the Temperley–Lieb
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algebra. In this section we set up the general framework for relating the chromatic
polynomial to the Temperley–Lieb algebra, and we show that the relation (1-2) corre-
sponds to a Jones–Wenzl projector. We start by defining the chromatic algebra [16; 6],
and then review standard material on Temperley–Lieb algebra (the reader is referred to
Kauffman and Lins [13] for more details). We then define an algebra homomorphism
CQ

n �! TLd
2n , where Q D d2 , which respects these structures. In particular, the

pullback under this homomorphism of the trace radical in TLd
2n (the ideal consisting

of elements whose inner product with all other elements in the algebra is trivial) is in
the trace radical of CQ

2n
, which corresponds to local relations on graphs which preserve

the chromatic polynomial of the duals, for a given value of Q. In fact, the relevant
algebraic structure here is the chromatic, respectively Temperley–Lieb, category.

2.1 The chromatic algebra

The chromatic polynomial �
�
.Q/ of a graph � , for Q2ZC , is the number of colorings

of the vertices of � with the colors 1; : : : ;Q where no two adjacent vertices have the
same color. A basic property of the chromatic polynomial is the contraction-deletion
rule: given any edge e of � which is not a loop,

(2-1) ��.Q/D ��ne.Q/���=e.Q/

where �ne is the graph obtained from � by deleting e , and �=e is obtained from � by
contracting e . If � contains a loop then �

�
� 0; if � has no edges and V vertices, then

�
�
.Q/DQV . These properties enable one to define �

�
.Q/ for any, not necessarily

integer, values of Q.

R

G
yG

Figure 3: A basis element G of the algebra F2 and the dual graph yG (drawn dashed)

Consider the free algebra Fn over CŒQ� whose elements are formal linear combinations
of the isotopy classes of planar trivalent graphs in a rectangle R (Figure 3). The
intersection of each such graph with the boundary of R consists of precisely 2n points:
n points at the top and the bottom each, and the isotopy, defining equivalent graphs, is
required to preserve the boundary. Note that the vertices of the graphs in the interior
of G are trivalent, in particular they do not have ends (1–valent vertices) other than
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those on the boundary of R. It is convenient to allow 2–valent vertices as well, so
there may be loops disjoint from the rest of the graph. The multiplication in Fn is
given by vertical stacking, and the inclusion of algebras Fn � FnC1 is defined on the
graphs generating Fn as the addition of a vertical strand on the right. Given G 2 Fn ,
the vertices of its dual graph yG correspond to the complementary regions RXG , and
two vertices are joined by an edge in yG if and only if the corresponding regions share
an edge, as illustrated in Figure 3.

Definition 2.1 The chromatic algebra in degree n, Cn , is the algebra over CŒQ�
which is defined as the quotient of the free algebra Fn by the ideal In generated by
the relations shown in Figure 4. In addition, the value of a trivial simple closed curve
is set to be Q� 1. When the parameter Q is specialized to a complex number, the
resulting algebra over C is denoted CQ

n . Set C D
S

n Cn .

C D C D 0:

;

Figure 4: Relations in the trivalent presentation of the chromatic algebra

The first relation in Figure 4 is sometimes known as the “H–I relation”, while the
second is requiring that “tadpoles” vanish. A few words may be helpful in explaining
the relations defining the chromatic algebra. If there is a simple closed curve bounding
a disk in a rectangular picture, disjoint from the rest of the graph, it may be erased
while the element represented in Cn is multiplied by Q� 1. The ideal corresponding
to the relation on the left in Figure 4 is generated by linear combinations of graphs in
Fn which are identical outside a disk in the rectangle, and which differ according to
this relation in the disk, Figure 5. This may be naturally expressed in the language of
planar algebras (see also Section 5).

Remark In this definition we used just the trivalent graphs, and this is sufficient for
the purposes of this section, in particular for the proofs of Tutte’s identities (1-1), (1-2).
The definition of the chromatic algebra using all planar graphs (isomorphic to the
trivalent one considered here), is given in Section 5.

Definition 2.2 The trace, tr�W CQ �!C is defined on the additive generators (graphs)
G by connecting the endpoints of G by disjoint arcs in the complement of the rectangle
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Figure 5: An element in the ideal I3 . The shaded disk contains the relation
on the left in Figure 4.

R in the plane (denote the result by xG ) and evaluating

tr�.G/ D Q�1
��bxG.Q/:

Figure 6 shows the trace of an example. The factor Q�1 provides a normalization of

tr D D D .Q� 1/2.Q� 2/ .

Figure 6: An example of the evaluation of the trace

the trace which turns out to be convenient from the point of view of the relation with
the Temperley–Lieb algebra (see below). One checks that the trace is well-defined
by considering the chromatic polynomial of the dual graphs. Specifically, the second
relation in Figure 4 holds since the dual graph has a loop. The first relation holds since
(in the notation in Figure 1), the deletion-contraction rule for the chromatic polynomial
implies

(2-2) �Z1
.Q/C�Y1

.Q/D �Z2
.Q/C�Y2

.Q/:

Finally, the relation replacing a trivial simple closed curve by a factor .Q� 1/ corre-
sponds to the effect on the chromatic polynomial of the dual graph of erasing a 1–valent
vertex and of the adjacent edge.
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2.2 The Temperley–Lieb algebra

The Temperley–Lieb algebra in degree n, TLn , is an algebra over CŒd � generated by
1;E1; : : : ;En�1 with the relations [21]

(2-3) E2
i DEi ; EiEi˙1Ei D

1

d2
Ei ; EiEj DEj Ei for ji � j j> 1:

Define TLD
S

n TLn . The indeterminate d may be set to equal a specific complex
number, and when necessary, we will include this in the notation, TLd

n .

It is convenient to represent the elements of TLn pictorially: in this setting, an element
of TLn is a linear combination of 1�dimensional submanifolds in a rectangle R. Each
submanifold meets both the top and the bottom of the rectangle in exactly n points.
The multiplication then corresponds to vertical stacking of rectangles. The generators
of TL3 are illustrated in Figure 7.

1D E1 D
1
d

E2 D
1
d

Figure 7: Generators of TL3

The rectangular pictures are considered equivalent if they are isotopic relative to the
boundary. Another equivalence arises from the relation E2

i DEi : the element in TL
corresponding to a picture in R with a circle (a simple closed curve) is equivalent to
the element with the circle deleted and multiplied by d . Isotopy together with this
relation are sometimes referred to as d –isotopy [9].

The trace trd W TLd
n �!C is defined on the additive generators (rectangular pictures)

by connecting the top and bottom endpoints by disjoint arcs in the complement of R in
the plane (the result is a disjoint collection of circles in the plane), and then evaluating
d# circles . The Hermitian product on TLn is defined by ha; bi D tr.a xb/, where the
involution xb is defined by conjugating the complex coefficients, and on an additive
generator b (a picture in R) is defined as the reflection in a horizontal line.

2.3 A map from the chromatic algebra to the Temperley–Lieb algebra

Definition 2.3 Define a homomorphism ˆW Fn �! TLd
2n on the multiplicative gener-

ators (trivalent graphs in a rectangle) of the free algebra Fn by replacing each edge
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with the linear combination ˆ. j /DH� 1
d
1 , and resolving each vertex as shown in

Figure 8. Moreover, for a graph G , ˆ.G/ contains a factor dV .G/=2 , where V .G/ is
the number of vertices of G .

ˆ
D �

1
d

ˆ
d1=2 �

Figure 8: Definition of the homomorphism ˆW CQ
n �! TL

p
Q

2n

Remarks (1) The reader may have noticed that ˆ replaces each edge with the
second Jones–Wenzl projector P2 , well-known in the study of the Temperley–Lieb
algebra [27]. They are idempotents: P2 ıP2 D P2 , and this identity (used below) may
be easily checked directly; see Figure 9.

D �
1
d

�
1
d

C
1

d2 D

Figure 9: P2 ıP2 D P2

(2) Various authors have considered versions of the map ˆ in the knot-theoretic and
TQFT contexts; see Yamada [29], Jaeger [10], Kauffman and Lins [13], Fidkowski et
al [8], Walker [26] and Fendley [5]. In [7], the first author and Read used this to give
a map of the SO.3/ BMW algebra to the Temperley–Lieb algebra, probably the first
instance where this map is considered as an algebra homomorphism.

Lemma 2.4 ˆ induces a well-defined homomorphism of algebras CQ
n �! TLd

2n ,
where QD d2 .

Proof To prove this lemma, one needs to check that the relations in CQ
n , Figure 4,

hold in the Temperley–Lieb algebra. It follows from the definition of ˆ (Figure 8) that
the relation in Figure 10 holds. Similarly, one checks the other two defining relations
of the chromatic algebra.

The following lemma implies that the homomorphism ˆ preserves the trace of the
chromatic, respectively Temperley–Lieb, algebras (see also Theorem 1 in [8]).

Geometry & Topology, Volume 13 (2009)



Tutte chromatic identities from the Temperley–Lieb algebra 719

d � C D d � D d � C

Figure 10

Lemma 2.5 Let G be a trivalent planar graph. Then

(2-4) Q�1 �Q. yG/ D ˆ.G/:

Here QD d2 and, abusing the notation, we denote by ˆ.G/ the evaluation d# applied
to the linear combination of simple closed curves obtained by applying ˆ as shown in
Figure 8. Therefore, the following diagram commutes:

(2-5) CQ
n

tr�

��

ˆ // TLd
2n

trd

��
C

D // C

For example, for the theta-graph G in Figure 11, one checks that

Q�1�Q. yG/ D .Q� 1/.Q� 2/ D d4
� 3d2

C 2 D ˆ.G/:

G

yG

d �ˆ.G/ D

Figure 11

Proof of Lemma 2.5 We use the state sum formula for the chromatic polynomial (cf
Bollobás [4]):

�Q. yG/ D
X

s�E. yG/

.�1/jsjQk.s/:

Here k.s/ is the number of connected components of the graph yGs whose vertex set is
V . yG/ and the edge set is s .
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720 Paul Fendley and Vyacheslav Krushkal

First assume that G is a connected graph. Recall that ˆ.G/ is obtained from G by
replacing each edge j by the linear combination .H�1=d 1/, and resolving each vertex
as shown in Figure 8. Then ˆ.G/ is (the evaluation of) a linear combination of simple
closed curves. This linear combination can be represented as a sum parametrized by the
subsets of the set of the edges of the dual graph yG , s�E. yG/. For each such subset, the
corresponding term is obtained by replacing each edge j of G not intersecting s with
H, and each edge intersecting s with 1. Moreover, this collection of simple closed
curves is the boundary of a regular neighborhood of the graph yGs (this is checked
inductively, starting with the case s D∅, and looking at the effect of adding one edge
at a time). Therefore their number equals the number of connected components of the
graph yGs , plus the rank of the first homology of yGs , denoted n.S/. Then

ˆ.G/ D dV .G/=2
X

s�E. yG/

.�1/jsj
1

d jsj
dk.s/Cn.s/:

We claim that the corresponding terms in the expansions of Q�1 �Q. yG/, ˆ.G/ are

d � C C

C
1
d

C C �
1

d2

Figure 12: The expansions of Q�1 �Q. yG/ , ˆ.G/ where G is the theta graph
in Figure 11. The edges of yG in each term which are in the given subset s

are drawn solid, other edges are dashed.

equal. (See Figure 12 for the expansions of Q�1 �Q. yG/, ˆ.G/ in the example G D

the theta graph shown in Figure 11.) Since G is a trivalent graph and we assumed G

is connected, its dual yG is a triangulation (each face of yG has three edges), so that
2V . yG/D F. yG/C 4D V .G/C 4. Therefore

ˆ.G/ D
X

s�E. yG/

.�1/jsj dV . yG/�2Ck.s/Cn.s/�jsj:
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The exponent simplifies because k.s/� n.s/Cjsj D V . yG/. This is obviously true for
s D∅, and inductively an addition of one edge to s either decreases k.s/ by 1, or it
increases n.s/ by 1, so k.s/� n.s/Cjsj remains equal to V . yG/. Because QD d2 ,

Q�1 �Q. yG/ D
X

s�E. yG/

.�1/jsj d2k.s/�2
Dˆ.G/:

This concludes the proof of Lemma 2.5 for a connected graph G .

Now let G be a trivalent, not necessarily connected, planar graph. To be specific,
first suppose G has two connected components, G D G1 tG2 . It follows from the
definition of ˆ that ˆ.G/Dˆ.G1/ �ˆ.G2/. Also note that yG is obtained from yG1 ,
yG2 by identifying a single vertex. It is a basic property of the chromatic polynomial
that in this situation

� yG.Q/DQ�1� yG1
.Q/ �� yG2

.Q/:

Since the equality (2-4) holds for connected graphs G1 , G2 , it also holds for G . This
argument gives an inductive proof of (2-4) for trivalent graphs with an arbitrary number
of connected components.

The trace radical of an algebra A is the ideal consisting of the elements a of A

such that tr.ab/D 0 for all b 2A. The local relations on graphs which preserve the
chromatic polynomial of the dual, for a given value of Q, correspond to the elements
of the trace radical of AD CQ

n (see Section 5). It follows from Lemma 2.5 that the
pullback by ˆ of the trace radical in TLd is in the trace radical of Cd2

.

When d D � , the trace radical of the Temperley–Lieb algebra is generated by the
Jones–Wenzl projector P .4/ displayed in Figure 13. It is straightforward to check that
ˆ maps the element (1-3) to P .4/ . We have therefore established Tutte’s relation (1-2)
as a consequence of Lemma 2.5 and of the properties of the Jones–Wenzl projector. In
Section 5 we derive a recursive formula for the identities of the chromatic polynomial
at Q obeying (1-4), which yields the identity (1-2) as a special case.

3 Tutte’s golden identity for the chromatic polynomial

In this section we give a proof of Tutte’s golden identity in the algebraic setting,
established in the previous section. (Section 4 below presents an alternative proof using
level-rank duality of the BMW algebras.)

Theorem 1 For a planar triangulation yG ,

(3-1) � yG.�C 2/D .�C 2/ �3 V . yG/�10 .� yG.�C 1//2

where V . yG/ is the number of vertices of yG .
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P .4/D �
d

d2�2
C

1

d2�2

C
�d2C1

d3�2d
�

1

d3�2d

C
d2

d4�3d2C2
�

d

d4�3d2C2
C

1

d4�3d2C2

Figure 13: The Jones–Wenzl projector P .4/ which generates the trace radical
of TL� . P .4/ is defined for all values of d , and to get an element of TL�

one sets d D � in the formula above. The homomorphism ˆW C�C1 �! TL�

maps the relation (1-3): �Z1 C
�Z2 D ��3 Œ �Y1 C

�Y2 � , dual to Tutte’s identity
(1-2), to the relation P .4/ D 0 .

For the subsequent proof, it is convenient to reexpress this identity in terms of the
graph G dual to yG . Since yG is a triangulation, G is a connected trivalent graph. Using
the Euler characteristic, one observes that the number of faces F. yG/ D 2V . yG/� 4.
Since V .G/D F. yG/, the golden identity may be rewritten as

(3-2) � yG.�C 2/D
�C 2

�4
�3V .G/=2 .� yG.�C 1//2:

Proof of Theorem 1 Consider the vector space FT over C spanned by all connected
planar trivalent graphs. (There are no relations imposed among these graphs, so this
is an infinite dimensional vector space.) Define a map ‰W FT �! FT ˝FT on the
generators by

(3-3) ‰.G/D �3V =2 .G˝G/;

where V is the number of vertices of a trivalent graph G . (See Figure 14 illustrating
the cases V D 1; 2.) Here � denotes the golden ratio.

Consider the map �QW FT �!C defined by taking the quotient of FT by the ideal
generated by the relations in the trivalent presentation of the chromatic algebra, as given
in Definition 2.1 and in Figure 4. This quotient is 1�dimensional because the graphs
in FT have no ends; applying the relations allows any such graph to be reduced to a
number. Namely, this projection map �Q applied to a graph is the quantum evaluation,
or equivalently it is equal to Q�1 times the chromatic polynomial of the dual graph.
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ˆ
�3=2�

ˆ
�3�

Figure 14: The map ‰W FT �! FT ˝FT . The different kinds of lines
representing the graphs (gray, solid and dashed) correspond to the three
different copies of FT .

Tutte’s identity follows from the following statement:

Lemma 3.1 The following diagram commutes:

FT

‰
��

��C2 // C

D

��
FT ˝FT

.��C1/
˝2

// C

Proof The strategy is to check that the image under ‰ of the three relations in FT

given in Definition 2.1 and Figure 4 at Q D �C 2, hold as a consequence of the
relations in FT ˝FT at QD �C1. Showing this means that .1=.�C2// �

yG
.�C2/

for any G in FT can be evaluated instead in FT ˝FT , and is equal to�
.�C 1/�1 �

yG
.�C 1/

�2
D

1

�4

�
�
yG
.�C 1/

�2
:

Checking two of the three relations is easy. The value for G D circle at �C2 is �C1.
The corresponding value of ‰.G/DG˝G is �2 D �C 1. Likewise, tadpoles vanish
for any value of Q, so the image of the relation on the right in Figure 4 under ‰ clearly
holds in FT ˝FT .

To derive the H-I relation, consider its image under ‰ , shown in Figure 15. Even

�3 � C D �3 � C

Figure 15: The image under ‰ of the H–I relation, defining the chromatic
algebra (Figure 4)

though the image of FT under �Q is 1�dimensional for any value of Q, we have
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seen that at QD �C 1 there is an additional relation (1-2) obeyed by the chromatic
polynomial. (We will show in the next section that such additional relations exist for
any Q satisfying (1-4).) This relation, established in the previous section, is not a
consequence of the deletion-contraction rule, but is still consistent with the projection
map ��C1 . One checks using the first relation in Figure 4 that (1-3) is equivalent to
each of the following two relations (in other words, both of these relations are consistent
with the projection ��C1 ):

� D C .1��/

� D C .1��/

;

Figure 16: Relations in C�C1
2 , equivalent to Tutte’s relation (1-2)

Apply the relation on the left in Figure 16 to the expression in the left hand side in
Figure 15, in both copies of FT at �C 1, and use the identities involving the golden
ratio

�C 1D �2; � � 1D ��1

to get the relation in Figure 17.

�3 � C D � � � � C� �

Figure 17

The fact that the expression on the right is invariant under the 90 degree rotation
establishes the relation in Figure 15. This concludes the proof of Lemma 3.1 and of
Theorem 1.

Remarks (1) The proof of the theorem above could also have been given directly
in the context of algebras and their traces. The proof of Lemma 3.1 above shows the
existence of a map C�C2 �! .C�C1=R/˝ .C�C1=R/, where R denotes the trace
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radical. One may consider then a diagram involving the Temperley–Lieb algebras,
analogous to (2-5), and Theorem 1 follows from applying the trace to these algebras.

(2) The map ‰ , considered in the proof of the Theorem 1, has a simple definition
(3-3) only in the context of trivalent graphs. The chromatic algebra may be defined in
terms of all, not just trivalent, graphs (see the next section), however the extension of
‰ to vertices of higher valence is substantially more involved.

4 Level-rank duality

In the previous section we gave an algebraic proof of Tutte’s identity (1-1) using the
chromatic algebra, without making reference to the Birman–Murakami–Wenzl algebra.
In this section we explain how an essential ingredient for a conceptual understanding of
this identity is the level-rank duality of the SO.N / topological quantum field theories
and of the BMW algebras. The golden identity (1-1) is a consequence of the duality
between the SO.3/4 and SO.4/3 algebras. This viewpoint explains why such an
identity relates the chromatic polynomial �.Q/ at the values QD �C 1; �C 2, and
why one does not expect a generalization for other values of Q.

We will work with SO.N / Birman–Murakami–Wenzl algebras which underlie the
construction of the (doubled) SO.N / TQFTs (see for example Freedman [9] for a
related discussion concerning the TL algebra and the SU.2/ theories and Fendley and
Krushkal [6, Section 3.1] in the case of BMW.3/). Note that the chromatic algebra
and the SO.3/ BMW algebra are closely related [6].

The SO.N / BMW algebra BMW.N /n is the algebra of framed tangles on n strands
in D2 � Œ0; 1� modulo regular isotopy and the SO.N / Kauffman skein relations in
Figure 18 [3; 18].

� D .q� q�1/ �
,

D q1�N

,
D qN�1

Figure 18

By a tangle we mean a collection of curves (some of them perhaps closed) embedded
in D2 � Œ0; 1�, with precisely 2n endpoints, n in D2 � f0g and D2 � f1g each, at the
prescribed marked points in the disk. The tangles are framed, ie they are given with
a trivialization of their normal bundle. (This is necessary since the last two relations
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in Figure 18 are not invariant under the first Reidemeister move.) As with TL, the
multiplication is given by vertical stacking, and we set BMW.N /D

S
n BMW.N /n .

The trace, trK W BMW.N /n �! C , is defined on the generators (framed tangles)
by connecting the top and bottom endpoints by standard arcs in the complement of
D2 � Œ0; 1� in 3–space, sweeping from top to bottom, and computing the SO.N /

Kauffman polynomial (given by the skein relations above) of the resulting link. The
skein relations imply that deleting a circle has the effect of multiplying the element of
BMW.N / by

(4-1) dN D 1C
qN�1� q�.N�1/

q� q�1
:

In fact, it follows from the first relation in Figure 18 that the subalgebra of BMW.N /

generated by ei D 1� .Bi �B�1
i /=.q� q�1/ is TL algebra TLdN .

A planar version of the SO.N / BMW algebra, generated by 4–valent planar graphs,
is found by using

(4-2) .G/ D q.H/� .//C q�1.1/ D q�1.H/� .0/:C q.1/

When N D 3, the relations in this planar version reduce to the chromatic algebra
relations [7; 6].

When q is a root of unity, the BMW algebra has a variety of special properties. A key
property for us occurs when the “level” k , defined via

q D ei�=.kCN�2/;

is an integer. The algebra BMW.N / for k integer (which we label by BMW.N; k/)
is related to SO.N / Chern–Simons topological field theory at level k and the Wess-
Zumino-Witten conformal field theory with symmetry algebra given by the Kac–Moody
algebra SO.N /k [28; 25]. Note that with this definition of k , we have qN�1 D

�q�.k�1/ . It is then easy to check if a braid B obeys the relations in BMW.N; k/,
then �B�1 obeys BMW.k;N /.

We use this special property to define an algebra homomorphism  W BMW.N; k/ �!

BMW.k;N /, which sends an additive generator (a framed tangle in D2 � Œ0; 1�) to a
tangle with each crossing reversed, and multiplied by .�1/# crossings .
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Lemma 4.1 The map  defined above is an isomorphism, and moreover it preserves
the trace:

(4-3)
BMW.N; k/

tr
��

 // BMW.k;N /

tr
��

C
D // C

Recall that the traces of the two algebras are the SO.N /, respectively SO.k/, Kauffman
polynomials evaluated at qD ei�=.kCN�2/ . The proof of the lemma is checked directly
from definitions:  is well-defined with respect to the relations in Figure 18 and the
last two Reidemeister moves, and  has the obvious inverse. The diagram above
commutes since computing the trace (the Kauffman polynomial) involves the relations
in Figure 18. Note that the weight of a circle dN from (4-1) written in terms of k does
not change if N and k are interchanged. This isomorphism is an algebra analogue of
level-rank duality (for SO.N / TQFTs).

The golden identity (1-1) comes from studying the very special case of the duality
between SO.3/4 and SO.4/3 theories, where q D exp.i�=5/, and then exploiting a
known but possibly underappreciated fact about the SO.4/ BMW algebra: it can be
decomposed into the product of two TL algebras. This decomposition generalizes
the isomorphism between the Lie algebras SO.4/ and SU.2/ � SU.2/, where the
fundamental four-dimensional representation of SO.4/ decomposes into the product of
two spin-1/2 representations of SU.2/. The homomorphism ‰ used in the previous
section is the chromatic analogue of the composite isomorphism from SO.3/4 to
SO.3/3=2˝SO.3/3=2 .

To make this precise, consider the “skein” presentation, TLskein , of the Temperley–
Lieb algebra, given by framed tangles in D2 � Œ0; 1� modulo regular isotopy and
the skein relations defining the Kauffman bracket (see Section 2 in [6]). The map
BMW.4/

q
n! TLd

n ˝TLd
n takes each generator g , gDB;B�1 or e to the product of

the corresponding elements in TLskein , g 7! g˝g . The parameters q and d in these
algebras are related by d D�q�q�1 as before; note that the weight d4 D .qCq�1/2

of a circle in BMW.4/ from (4-1) is indeed the square of the weight of a circle in
TLd . This map is well-defined: the Reidemeister moves and the BMW relations
in Figure 18 hold in TL˝TL as a consequence of the Reidemeister moves and the
Kauffman bracket skein relations. The same argument shows that this map preserves
the trace. In the planar formulation, the crossing defined by (4-2) is expressed as a
linear combination in TL˝TL, as displayed in Figure 19. We denote one of the TL
copies with a dashed line to emphasize that these copies are independent.
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+=

Figure 19: The crossing in BMW.4/ mapped to TL˝TL

The final ingredient in this proof of Tutte’s identity (1-1) is the isomorphism between
BMW.3; 3=2/=R and TL, where R denotes the trace radical. Using the relation
between the SO.3/ BMW algebra and the Temperley–Lieb algebra [6], one observes
that the relation in Figure 20 is in the trace radical of the (planar presentation of)
BMW.3; 3=2/. (In fact, this relation is equivalent to Tutte’s relation (1-2).) Using this
relation, BMW.3; 3=2/=R is mapped to TL by resolving all 4–valent vertices. The
inverse map, TL �! BMW.3; 3=2/, is given by mapping the generators ei of TL to
the same generators of the BMW algebra.

� D C

Figure 20

The golden identity follows from the duality between BMW.3; 4/ and BMW.4; 3/,
and then mapping the latter into a product of two copies of BMW.3; 3=2/=R. The
map from BMW.4/q to TLd

˝TLd above exists for any value of q , and at the special
value q D exp.i�=5/ we showed above that this map lifts to a homomorphism

BMW.4; 3/ �! .BMW.3; 3=2/=R/˝ .BMW.3; 3=2/=R/:

The trace of the SO.3/ BMW algebra is given (up to a normalization) by the chromatic
polynomial; see Theorem 6.3 and Corollary 6.5 in [6]. Tutte’s identity then follows
by applying the trace to the algebras above: the trace of BMW.4; 3/Š BMW.3; 4/ is
given by the chromatic polynomial evaluated at QD �C 2, while the product of the
traces on the right corresponds to .�.�C 1//2 .

The fact that the golden identity relates a chromatic polynomial squared to the chromatic
polynomial at another value is very special to these values of Q. Generalizations using
level-rank duality SO.N /4 ! SO.4/N for other values of N do not involve the
chromatic polynomial. Generalizations using SO.N /3! SO.3/N at other N give a
linear relation between the chromatic polynomial and the Markov trace for the SO.N /3
BMW algebra, very unlike the golden identity.
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5 Tutte’s relations and Beraha numbers

In this section we establish relations for the chromatic polynomial evaluated at any
value of

(5-1) QD 2C 2 cos
�

2�j

nC 1

�
;

for any positive integers obeying j < n. Each such relation is independent of (but
consistent with) the contraction-deletion relation, and Lemmas 5.3 and 5.5 give a
recursive formula for them. Our result generalizes Tutte’s identity (1-2) to this set
of Q; note that the values (5-1) are dense in the interval Œ0; 4� in the real line. When
j D 1, these are the Beraha numbers, which strong numerical evidence suggests are
the accumulation points of the zeros of �.Q/ for planar triangulations. Tutte had
conjectured such a relation would exist for all Beraha numbers, and found examples
in several cases [24]. Our results follow from the observation that the chromatic
polynomial relations for a given value of Q correspond to elements of the trace radical
of the chromatic algebra CQ . To derive these relations, it is convenient to define the
chromatic algebra in terms of all planar graphs, not just the trivalent ones used above.

5.1 A presentation of the chromatic algebra via the contraction-deletion
rule

Consider the set Gn of the isotopy classes of planar graphs G embedded in the rec-
tangle R with n endpoints at the top and n endpoints at the bottom of the rectangle.
(The intersection of G with the boundary of R consists precisely of these 2n points
(Figure 3) and the isotopy of graphs is required to preserve the boundary.) It is con-
venient to divide the set of edges of G into outer edges, ie those edges that have an
endpoint on the boundary of R, and inner edges, whose vertices are in the interior
of R.

The relations in 2.1 defining the chromatic algebra apply to trivalent graphs. Instead of
generalizing them directly, we define the chromatic algebra here using the contraction-
deletion rule. It is shown in [6] that the two definitions Definition 2.1 and Definition
5.1) give isomorphic algebras. Analogously to the other definition, the idea is to view
the contraction-deletion rule (2-1) as a linear relation between the graphs G , G=e and
Gne . To make this precise, let Fn denote the free algebra over CŒQ� with free additive
generators given by the elements of Gn . The multiplication is given by vertical stacking.
Define F D

S
nFn . Consider the following set of local relations on the elements

of Gn . (Note that these relations only apply to inner edges which do not connect to the
top and the bottom of the rectangle.)
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D �e

G G=e Gne

Figure 21: Relation (1) in the chromatic algebra

(1) If e is an inner edge of a graph G which is not a loop, then G D G=e�Gne ,
as illustrated in Figure 21.

(2) If G contains an inner edge e which is a loop, then G D .Q� 1/ Gne , as in
Figure 22. (In particular, this relation applies if e is a loop not connected to the
rest of the graph.)

(3) If G contains a 1–valent vertex (in the interior of the rectangle) as in Figure 22,
then G D 0.

D 0:D .Q� 1/ �
;

Figure 22: Relations (2) and (3) in the chromatic algebra

Definition 5.1 The chromatic algebra in degree n, xCn , is an algebra over CŒQ� which
is defined as the quotient of the free algebra Fn by the ideal In generated by the
relations (1), (2) and (3). xCQ

n denotes the algebra over C when Q is specialized to a
complex number. Set xC D

S
n
xCn . Analogously to Section 2, the trace, tr�W xCQ �!C

is defined on the additive generators (graphs) G by connecting the endpoints of G by
arcs in the plane (denote the result by xG ) and evaluating

Q�1
��bxG.Q/:

One checks that the trace is well-defined with respect to the relations (1)–(3). For
example, the relation (1) corresponds to the contraction-deletion rule for the chromatic
polynomial of the dual graph: � yG D � yGnye�� yG=ye , where ye is the edge of yG dual to e .
The relation (2) corresponds to deleting a 1–valent vertex and the adjacent edge of the
dual graph, and the chromatic polynomial vanishes in case (3) since the dual graph has
a loop.
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Remark The trace may also be described in terms of the flow polynomial of xG . Both
the flow polynomial and the chromatic polynomial are one-variable specializations of
the two-variable Tutte polynomial [4].

Consider the algebra homomorphism x̂ W xCd2

n �! TLd
2n , analogous to the one given

in Section 2 for trivalent graphs shown in Figure 23. The factor in the definition of
x̂ corresponding to a k –valent vertex is d .k�2/=2 , for example it equals d for the
4–valent vertex in Figure 23. The overall factor for a graph G is the product of the
factors d .k.V /�2/=2 over all vertices V of G .

x̂

D �
1
d

x̂

d �

Figure 23: Definition of the homomorphism x̂ W xCQ
n �! TL

p
Q

2n

One checks that x̂ is well-defined. For example, for the defining relation (1) of the
chromatic algebra in Figure 21, one applies x̂ to both sides and expands the projector
at the edge e , as shown in Figure 23. The resulting relation holds due to the choices of
the powers of d corresponding to the valencies of the vertices. Similarly, one checks
the relations (2) and (3).

It is shown in [6, Section 4] that the inclusion ftrivalent graphsg� fall graphsg induces
an isomorphism of the algebras CQ

n , xCQ
n in Definitions 2.1 and 5.1. Therefore from

now on we will often use the same notation, CQ
n , for both. It follows that the version

of Lemma 2.5 holds for the algebra xCQ
n defined in Definition 5.1. Specifically, in the

notation of Lemma 2.5, for any planar graph G , Q�1 �Q. yG/ D x̂ .G/, and therefore
x̂ preserves the algebra traces:

(5-2)

xCQ
n

tr�

��

x̂
// TL
p

Q

2n

trd

��
C

D // C

This is true since any graph generator of xCQ
n in Definition 5.1 is equivalent to a

linear combination of trivalent graphs, using the contraction-deletion rule (1). The
commutativity of the diagram above then follows from Lemma 2.5 and the fact that x̂

and the traces tr� , trd of the two algebras are well-defined.
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5.2 Chromatic polynomial relations and the trace radical

It follows from (5-2) that the pullback of the trace radical in TL
p

Q
2n is in the trace

radical of CQ
n . (Recall that the trace radical in the algebra A, where AD CQ

n or TLd
n ,

is the ideal consisting of the elements a of A such that tr.ab/D 0 for all b 2A.)

Next observe that the local relations on graphs which preserve the chromatic polynomial
of the dual, for a given value of Q, correspond to the elements of the trace radical in CQ .
(By dualizing the relation, one gets relations which preserve the chromatic polynomial
of the graphs themselves, as opposed to that of their dual graphs; for example see
figures 1 and 2.) Indeed, suppose RD

P
i aiGi is a relation among graphs in a disk D ,

so each graph Gi has the same number of edges meeting the boundary of the disk.
Suppose first that this number is even, say equal to 2n. Divide the boundary circle
of the disk into two intervals, so that each of them contains precisely n endpoints of
the edges. Consider the disk D as a subset of the 2�sphere S2 . The fact that R is a
relation means that for any fixed graph G in the complement S2XD , with the same
2n points on the boundary, the linear combinationX

i

ai�2Gi [G

vanishes at Q. Since both the disk D and its complement S2XD are homeomorphic
to a rectangle, one may consider R as an element in CQ

n , and moreover it is in the
trace radical: tr.R �G/D 0, and the graphs G additively generate Cn .

Converting the disk D above into a rectangle, the subdivision of the 2n boundary
points into two subsets of n, and the fact that this number is even, may seem somewhat
artificial. This reflects the algebraic structure of the setting we are working in. The
discussion may be carried through in the context of the chromatic category, and further
planar algebra, where the algebraic structure is more flexible while the notion of
the trace radical is retained. For example, in the category the multiplication (vertical
stacking) is complemented by tensor multiplication (horizontal stacking). Describing
these structures in further detail would take us outside the scope of the present paper, so
instead we refer the interested reader to Freedman [9, Section 2] where the discussion
is given in the similar context of the Temperley–Lieb algebra. One observes that a
relation preserving the chromatic polynomial, in fact, corresponds to an element of
the ideal closure of the trace radical in the chromatic category, not just algebra. (The
importance of this distinction will become clear in the following subsections.) The
converse argument shows that an element of the trace radical may be viewed as a
relation among planar graphs, preserving the chromatic polynomial of the duals.
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5.3 The trace radical in TLd
2m

and relations in CQ
m

The structure of the trace radical in the Temperley–Lieb algebra is well-understood. In
particular, they occur for each special value of d defined by

(5-3) d D 2 cos
�
�j

nC 1

�
;

where j and n are positive integers obeying j <n. When j and nC1 are coprime, the
trace radical in TLd is generated by an element P .n/ called the Jones–Wenzl projector
[12; 27]. A theorem of Goodman and Wenzl (see the Appendix of Freedman [9]) shows
that for values of d other than (5-3), the Temperley–Lieb category does not have any
nontrivial proper ideals. We briefly review the basic properties of these projectors
below; see Kauffman and Lins [13] for more details and Freedman [9] for a discussion
of the trace radical in the context of the Temperley–Lieb category.

The Jones–Wenzl projector P
.r/
i acts in TLn for any value of d with n � r ; when

n> r we include the subscript to indicate that it is acting nontrivially on the strands
labeled i; i C 1; : : : ; i C r � 1. The first two Jones–Wenzl projectors are P .1/ D 1,
and P

.2/
i D 1�Ei . (We use the notation for the generators of the Temperley–Lieb

algebra introduced in Section 2.2.) A recursive formula (cf [13]) giving the rest is

(5-4) P .n/
D P

.n�1/
1

�
d �n�2

�n�1

P
.n�1/
1

En�1 P
.n�1/
1

;

where the number �n is simply the trace:

(5-5) �n D trd P .n/:

This recursion relation is illustrated in Figure 24. Taking the trace of the elements in

P .n/ D P .n�1/ �
�n�2
�n�1

P .n�1/

P .n�1/

Figure 24: A recursive formula for the Jones–Wenzl projectors in the
Temperley–Lieb algebra

the recursion relation yields �n D d�n�1��n�2 . Since �1 D d and �2 D d2� 1,

(5-6) �n D
sin
�
.nC 1/�

�
sin.�/
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where � is defined via d D 2 cos.�/.

Of course any element in the trace radical has its own trace equal to zero. From the
explicit formula (5-6) for �n , it follows that P .n/ can be in the trace radical only when
� D �j=.nC 1/, where j is a nonzero integer not a multiple of nC 1. In terms of d ,
these correspond to the values in .5-3/. Indeed, for these values of d , P .n/ generates
the trace radical, and moreover the theorem of Goodman–Wenzl guarantees that this is
the unique proper ideal in the category for coprime j and nC 1.

Remark A useful way of understanding the Jones–Wenzl projectors is to think of
each strand in the Temperley–Lieb algebra as carrying spin-1/2 of the quantum-group
algebra Uq.sl.2//, where d D qC q�1 . There exist spin–r=2 representations of this
algebra behaving similarly to those of ordinary su.2/, except for the fact at the special
values of d in (5-3) they are irreducible only for r < n. In the algebraic language, the
recursion relation describes taking a tensor product of representations, so that P .r/ is
the projector onto the largest possible value of spin r=2 possible for r strands. For
example, P

.2/
i projects the strands i , iC1 onto spin 1, while the orthogonal projector

Ei projects these two strands onto spin 0. The fact that the spin–n=2 representation at
a special value of d is reducible is the reason the corresponding projector P .n/ can be
set to zero. The strands in the chromatic algebra can be viewed as carrying spin 1. It is
logical to expect that a projector from m spin-1 strands onto spin m exists, and that it
generates a proper ideal. We will show that this is indeed so in the following.

Lemma 5.2 The Jones–Wenzl projector P .2m/ 2 TL2m is in the image of the chro-
matic algebra: P .2m/ 2ˆ.Cm/, so its pullback at the corresponding special value of Q

is in the trace radical of the chromatic algebra.

Proof Any element E of TLn obeying EjE D EEj D 0 for all j < n is said
to be “killed by turnbacks”. It follows that any such element obeys the equality
P
.2/
j EP

.2/
j D E . As is straightforward to check using the recursion relation, the Jones–

Wenzl projectors are killed by turnbacks, as illustrated in the left of Figure 25. Thus

P .2m/
D P

.2/
1

P
.2/
3
: : :P

.2/
2m�1

P .2m/P
.2/
1

P
.2/
3

: : :P
.2/
2m�1

:

So we can pair up the strands above and below the Jones–Wenzl projector, and replace
each pair with P

.2/
j , as illustrated on the right of Figure 25.

Consider the projector P .2m/ as a linear combination of curve diagrams in the rectangle.
Each pair of external strands of P .2m/ is replaced with P .2/ , so all external strands in
the Jones–Wenzl projector in TL2m correspond to lines in the chromatic algebra. Since
each diagram (additive generator of the Temperley–Lieb algebra) consists of disjoint
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P .2m/ P .2m/ P .2m/D 0; D

Figure 25

embedded curves, it follows from the definition of ˆ (Figure 23) that each individual
term in the expansion of P .2m/ , with external strands paired up and replaced with
P .2/ , is in the image of ˆ, see Figure 26 for an example. Thus the linear combination,
P .2m/ 2 TL2m , is indeed in the image of the chromatic algebra Cm .

D ˆ d�1 �

Figure 26

Applying the recursive formula for the Jones–Wenzl projector (Figure 24) twice and
using the technique in the proof of Lemma 5.2, one gets the formula for the preimage
of P .2m/ in the chromatic algebra:

Lemma 5.3 The pullback xP .2m/ of the Jones–Wenzl projector P .2m/ to Cm is given
by the recursive formula in Figure 27.

The base of this recursion is xP .2/ which is now just a single strand. As mentioned
above, the commutativity of diagram (5-2) implies that the pullback of the trace radical
in TL

p
Q

2m is in the trace radical of CQ
m . Therefore Lemma 5.3 establishes a chromatic

polynomial identity generalizing (1-2) for each value of Q obeying

QD 4 cos2

�
�j

2mC 1

�
D 2C 2 cos

�
2�j

2mC 1

�
with j < 2m. This generalized identity may be generated explicitly by using the
recursion relation for xP .2m/ in Figure 27. Specifically, the relation xP .2m/D0 preserves
the chromatic polynomial of the dual graphs, and replacing each graph in the relation
xP .2m/ D 0 by its dual gives a generalization of Tutte’s relation (1-2). For example,

using the recursive formula shows that (1-3) (checked directly in Section 2 by showing
ˆ maps it to P .4/ ) is equivalent in the chromatic algebra to setting xP .4/ D 0.
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xP .2m/ D xP .2m�2/ �
1
d
�
�2m�3
�2m�2

xP .2m�2/

xP .2m�2/

�
1
d
�

.�2m�3/
2

�2m�1�2m�2

xP .2m�2/

xP .2m�2/

xP .2m�2/

Figure 27: A recursive formula for the pullback xP .2m/ of the Jones–Wenzl
projector P .2m/ in the chromatic algebra

5.4 Other values of Q

We have used the Jones–Wenzl projectors labeled by even integers to find chromatic
identities for half the values of Q in (5-1). In this subsection, we show how to use the
projectors P .2m�1/ to find chromatic identities valid at Q in (5-1) for odd n.

We start by indicating a direct generalization of the argument above, starting with
the Jones–Wenzl projector P .2m�1/ 2 TL2m�1 and getting a relation in Cm at the
corresponding value of Q. The drawback of this approach is that it involves a choice
of including P .2m�1/ into TL2m . Further below we pass from algebraic to categorical
setting to get a unique chromatic relation corresponding to P .2m�1/ .

To find chromatic identities for even n, we paired up the lines in P .2m/ 2 TL2m

and showed that this projector could be pulled back to the chromatic algebra. Since
P .2m�1/ 2 TL2m�1 acts on odd number of lines, finding the generalization of Lemma
5.2 requires a little more work. The simplest way is to map P .2m�1/ to an element in
TL2m by adding a nonintersecting strand at the right; we label this as P

.2m�1/
1

2TL2m

(see Figure 28). P
.2m�1/
1

is killed by turnbacks Ej for j < 2m� 1, but to be able to
pair up all 2m lines, we need to define the element R.2m�1/ 2 TL2n as

(5-7)
R.2m�1/

� P
.2/
2m�1

P
.2m�1/
1

P
.2/
2m�1

D P
.2/
1

P
.2/
3
: : :P

.2/
2m�1

P
.2m�1/
1

P
.2/
1

P
.2/
3

: : :P
.2/
2m�1

:

Again see Figure 28. R is no longer a projector, but is killed by all turnbacks with
j � 2m�1. Therefore we can pair up the strands as before, and a rerun of the argument
proving the previous lemma shows that:
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P
.2m�1/
1

D P .2m�1/ R.2m�1/ D P .2m�1/

Figure 28

Lemma 5.4 The element R.2m�1/ 2 TL2m is in the image of the chromatic algebra:
R.2m�1/ 2 ˆ.Cm/, so its pullback at the corresponding value of Q is in the trace
radical of the chromatic algebra.

R.2m�1/ is in the ideal generated by P .2m�1/ , thus it is in the trace radical when
QD d2 obeys (5-1) for odd nD 2m� 1. A chromatic identity then follows by taking
the sum of the dual graphs of the pictures for the pullback ˆ�1.R.2m�1//.

This construction of an ideal in Cm at
p

Q D 2 cos.�=.2m// is not unique. Other
elements of Cm at this value of Q can be set to zero as well, although it is not clear to
us if any of these result in new chromatic identities, or simply rotations of each other.

In order to pull back P .2m�1/ to Cm , we needed to add an extra line so that we could
form m pairs on the bottom and m on the top. To pull back P .2m�1/ itself, and thus
to find a unique chromatic identity, we do not add an extra line, but instead pair up a
line from the top of P .2m�1/ with one from the bottom. The pullback of this object
no longer lives in the chromatic algebra, but rather the chromatic category, briefly
discussed at the end of Section 5.2. The three equivalence relations (including the
contraction-deletion rule) (1)–(3) at the beginning of Section 5.1 serve as defining
relations in this category as well. Finding this pullback results in a chromatic identity
involving the duals of graphs on a disk with 2m� 1 external strands in total. To be
more precise, we will consider graphs in a disk D with n fixed points on the boundary
of D , modulo the relations (1)–(3) in Section 5.1. Moreover, the marked points on the
boundary are numbered 1 through n. In the categorical language, these are morphisms:
elements of Hom.0; n/. Given two such graphs a, b , their inner product is computed
by reflecting b and gluing the two disks so the numbered points on the boundary are
matched. Then ha; bi is given by the evaluation of the resulting graph in the sphere
(equal to Q�1 times the chromatic polynomial of the dual graph). In this setting, the
trace radical is replaced by the ideal of negligible morphisms; see Freedman [9] for
more details. We extend the map ˆ to the chromatic category (with values in the
Temperley–Lieb category) in the obvious way: it is defined by replacing each line and
vertex by the doubled lines in TL, as illustrated in Figure 8 and Figure 23.
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We start by showing when the Jones–Wenzl projectors are killed by “end turnbacks”. An
end turnback on the right in TLn is the partial trace trnW TLn!TLn�1 , defined by con-
necting just the n–th strand on the bottom to the n–th strand on the top, Figure 29 (left).
Likewise, an end turnback on the left is the partial trace tr1 . From the recursion relation
pictured in Figure 24, we find

trn.P
.n//D

�
d �

�n�2

�n�1

�
P .n�1/

D
�n

�n�1

P .n�1/:

When d takes on the special values (5-3), �n D 0, so only at these values is P .n/

killed by the end turnback.

trn P .n/ D P .n/ P .2mC1/ D P .2mC1/

Figure 29: The identity on the right holds in the Temperley–Lieb category at
d D 2 cos.�j=.2mC 2// .

When P .n/ is killed by all turnbacks including the end one, it can be pulled back to the
chromatic category for any n, odd or even. The idea is the same as for the algebras. We
pair up the lines in the Temperley–Lieb category, and then replace each pair with a single
line in the chromatic category. Figure 29 (right) illustrates the odd case nD 2mC 1.
Note that while Lemma 5.2 is true for any value of Q, this categorical analogue for
nD 2mC1 holds only at the special value of QD 2C2 cos.2�j=.2mC2// (and the
corresponding value of the parameter d D

p
Q)!

Considering the recursive formula (Figure 24) for the Jones–Wenzl projector P .2mC1/ ,
one gets the following formula for its pullback:

Lemma 5.5 The pullback xP .2mC1/ of the Jones–Wenzl projector P .2mC1/ to the
chromatic category is given by the recursive formula in Figure 30.

Together with Lemma 5.3, this gives a recursive formula for the pullback xP .n/ of the
Jones–Wenzl projector P .n/ for all values of n. Considering the dual graphs for the
graphs in the relation xP .n/ D 0, one gets a chromatic polynomial relation for each
value of Q in (5-1).

To give an example, xP .3/ simply is a trivalent vertex. This indeed is in the trace radical
when QD 2, as is easy to see by reverting to the original definition of the chromatic
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xP .2mC1/ D �
�2m�1
�2m

xP .2m/

xP .2m/

Figure 30: A recursive formula for the pullback xP .2mC1/ of the Jones–Wenzl
projector P .2mC1/ in the chromatic category

polynomial: the dual graph of a trivalent vertex is a triangle, and any graph containing
a triangle cannot be colored with two colors.
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