Volume 13, issue 3 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Gromov–Witten theory of $\mathcal{A}_{n}$–resolutions

Davesh Maulik

Geometry & Topology 13 (2009) 1729–1773
Bibliography
1 M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425 MR2117633
2 K Behrend, B Fantechi
3 J Bryan, T Graber, The crepant resolution conjecture arXiv:math.AG/0610129
4 J Bryan, S Katz, N C Leung, Multiple covers and the integrality conjecture for rational curves in Calabi–Yau threefolds, J. Algebraic Geom. 10 (2001) 549 MR1832332
5 J Bryan, N C Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 MR1750955
6 J Bryan, R Pandharipande, The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101 MR2350052
7 W Chen, Y Ruan, Orbifold Gromov-Witten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 MR1950941
8 C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173 MR1728879
9 A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551, 645 MR1901075
10 I P Goulden, D M Jackson, R Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005) 43 MR2183250
11 T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 MR1666787
12 I Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 MR1386846
13 J Li, C C M Liu, K Liu, J Zhou, A mathematical theory of the topological vertex arXiv:math.AG/0408426
14 C C M Liu, K Liu, J Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149 MR2257399
15 M Manetti, Lie description of higher obstructions to deforming submanifolds arXiv:math.AG/0507287
16 D Maulik, A Oblomkov, Donaldson–Thomas theory of $\mathcal{A}_n\times \mathbf{P}^1$, in preparation
17 D Maulik, A Oblomkov, Quantum cohomology of Hilbert scheme of points on $\mathcal{A}_n$–resolutions, in preparation
18 D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric threefolds, in preparation
19 D Maulik, R Pandharipande, Gromov–Witten theory and Noether–Lefschetz theory arXiv:arXiv:0705.1653
20 D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887 MR2248516
21 H Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series 18, Amer. Math. Soc. (1999) MR1711344
22 A Okounkov, R Pandharipande, The local Donaldson–Thomas theory for curves arXiv:math.AG/0512573
23 A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane arXiv:math.AG/0411210
24 A Okounkov, R Pandharipande, The equivariant Gromov–Witten theory of $\mathbf{P}^1$, Ann. of Math. $(2)$ 163 (2006) 561 MR2199226
25 A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. $(2)$ 163 (2006) 517 MR2199225
26 Z Ran, Semiregularity, obstructions and deformations of Hodge classes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 28 (1999) 809 MR1760539