A simply connected surface of general type with \(p_g = 0 \) and \(K^2 = 4 \)

HEESANG PARK
JONGIL PARK
DONGSOO SHIN

As a continuation of the recent results of Y Lee and the second author [5] and the authors [6], we construct a simply connected minimal complex surface of general type with \(p_g = 0 \) and \(K^2 = 4 \) by using a rational blow-down surgery and \(\mathbb{Q} \)–Gorenstein smoothing theory.

14J29; 14J10, 14J17, 53D05

1 Introduction

A rational surface satisfies \(p_g = q = 0 \) and it has Kodaira dimension \(\kappa = -\infty \). Around 1894 Castelnuovo conjectured that a surface with \(p_g = q = 0 \) is rational. However the conjecture was soon shown to be false by the examples of Enriques. Castelnuovo also found another counterexample. Enriques’ example has Kodaira dimension 0 while Castelnuovo’s example has Kodaira dimension 1. Hence smooth surfaces of general type (ie Kodaira dimension 2) with \(p_g = q = 0 \) are very interesting from the point of view of the history of surfaces with \(p_g = q = 0 \).

Nowadays a large number of examples of surfaces of general type with \(p_g = q = 0 \) are known due to Godeaux, Campedelli and so on; cf Barth et al [3]. However it was only in 1983 that the first example of a simply connected surface of general type with \(p_g = 0 \) appeared, the so-called Barlow surface [2]. The Barlow surface has \(K^2 = 1 \). The second examples were discovered just recently. Motivated by a result of the second author [7], Y Lee and the second author [5] constructed a family of simply connected minimal complex surfaces of general type with \(p_g = 0 \) and \(K^2 = 1, 2 \) by using rational blow-down surgery and \(\mathbb{Q} \)–Gorenstein smoothing theory. After this construction, the authors [6] constructed a family of simply connected minimal complex surfaces of general type with \(p_g = 0 \) and \(K^2 = 3 \) by similar methods.

In this paper we extend the results of Lee and Park [5] and Park–Park–Shin [6] to the case of \(K^2 = 4 \). That is, we construct a new simply connected minimal surface of
general type with \(p_g = 0 \) and \(K^2 = 4 \) by using a rational blow-down surgery and \(\mathbb{Q} \)-Gorenstein smoothing theory. This is the first example of such complex surfaces.

The key ingredient of this paper is to find an elliptic surface \(Y \) equipped with a special \textit{bisection}, ie an irreducible curve on an elliptic surface whose intersection number with a fiber is 2. Blowing up \(Y \) several times appropriately, we get a rational surface \(Z \) which makes it possible to get such a complex surface. Once we have the right candidate \(Z \) with \(K^2 = 4 \), the remaining argument is similar to that of the \(K^2 = 1, 2, 3 \) cases appearing in Lee and Park \cite{5} and Park–Park–Shin \cite{6}. That is, by applying a rational blow-down surgery and \(\mathbb{Q} \)-Gorenstein smoothing theory developed in Lee and Park \cite{5} to \(Z \), we obtain a minimal complex surface of general type with \(p_g = 0 \) and \(K^2 = 4 \). Then we show that the surface is simply connected. Since almost all the proofs are parallel to the case of the main construction in Park–Park–Shin \cite[Section 3]{6}, we only explain how to construct such a minimal complex surface and we prove that the surface is simply connected. The main result of this paper is the following theorem.

Theorem 1.1 There exists a simply connected minimal complex surface of general type with \(p_g = 0 \) and \(K^2 = 4 \).

Remark Răsdeaconu and Șuvaina \cite{9} proved that the complex surfaces constructed in Lee and Park \cite{5} and Park–Park–Shin \cite{6} admit Kähler–Einstein metrics of negative scalar curvature. By applying their method to the complex surface constructed in this paper, one may prove that it also admits a Kähler–Einstein metric of negative scalar curvature; see Section 4.

2 Main construction

We start with a special elliptic fibration \(Y := \mathbb{P}^2 \# 9 \mathbb{P}^2 \) which is used in the main construction of this paper. Let \(L_1, L_2, L_3 \) and \(A \) be lines in \(\mathbb{P}^2 \) and let \(B \) be a smooth conic in \(\mathbb{P}^2 \) intersecting as in Figure 1(a). We consider a pencil of cubics \(\{ \lambda(L_1 + L_2 + L_3) + \mu(A + B) \mid [\lambda : \mu] \in \mathbb{P}^1 \} \) in \(\mathbb{P}^2 \) generated by two cubic curves \(L_1 + L_2 + L_3 \) and \(A + B \), which has 4 base points, say, \(p, q, r \) and \(s \). In order to obtain an elliptic fibration over \(\mathbb{P}^1 \) from the pencil, we blow up three times at \(p \) and \(r \), respectively, and twice at \(s \), including infinitely near base-points at each point. We perform one further blow-up at the base point \(q \). By blowing up nine times in total, we resolve all base points (including infinitely near base-points) of the pencil and we then get an elliptic fibration \(Y = \mathbb{P}^2 \# 9 \mathbb{P}^2 \) over \(\mathbb{P}^1 \) (Figure 2).

There are four sections of the elliptic fibration \(Y \) corresponding to the four base points \(p, q, r \) and \(s \). Among these sections we use only two sections corresponding to \(p \)
and q, say S_1 and S_2 respectively, for the main construction. Furthermore, the elliptic fibration Y has an I_8–singular fiber consisting of the proper transforms \tilde{L}_i of L_i ($i = 1, 2, 3$). Also Y has an I_2–singular fiber consisting of the proper transforms \tilde{A} and \tilde{B} of A and B, respectively. According to the list of Persson [8], we may assume that Y has only two more nodal singular fibers F_1 and F_2 by choosing generally the L_i’s, A and B (Figure 2). For example the pencil used in Park–Park–Shin [6] works:

\[(2-1) \{ \lambda(y - \sqrt{3}x)(y + \sqrt{3}x)(2y - 3z) + \mu x (x^2 + (y - 2z)^2 - z^2) \mid [\lambda : \mu] \in \mathbb{P}^1 \} .\]

This pencil has singular fibers at $[\lambda : \mu] = [1 : 0], [0 : 1], [2 : 3\sqrt{3}]$ and $[2 : -3\sqrt{3}]$. Furthermore, setting

\[F_1 = \{ 2(y - \sqrt{3}x)(y + \sqrt{3}x)(2y - 3z) + 3\sqrt{3}x(x^2 + (y - 2z)^2 - z^2) = 0 \},\]

\[F_2 = \{ 2(y - \sqrt{3}x)(y + \sqrt{3}x)(2y - 3z) - 3\sqrt{3}x(x^2 + (y - 2z)^2 - z^2) = 0 \},\]

one can easily check that F_1 and F_2 are nodal cubic curves with one node at $[\sqrt{3} : 0 : -1]$ and $[\sqrt{3} : 0 : 1]$, respectively.

Let M be the line in \mathbb{P}^2 passing through the point q and the node of the nodal cubic curve F_1. The node of F_1 does not lie on any L_i’s, A or B. Hence it satisfies that $M \neq L_1, M \neq A$ and $\tilde{M} \cdot \tilde{M} = 0$, where \tilde{M} is the proper transform of M in Y (Figure 1(b)). We may assume further that M does not pass through the node of the other nodal cubic curve F_2 by choosing generally the L_i’s, A and B. For example, the pencil in (2-1) works: We have $q = [0 : 3 : 2]$. Hence the line M passing through q and the node of F_1 is $\{s[0 : 3 : 2] + t[\sqrt{3} : 0 : -1] \mid [s : t] \in \mathbb{P}^1 \}$. It is obvious that the node $[\sqrt{3} : 0 : 1]$ does not lie on the line M. Since M meets every member in the pencil at three points, \tilde{M} is a bisection of the elliptic fibration $Y \to \mathbb{P}^1$. Furthermore, since $q \in M$, the section S_2 meets \tilde{M} at one point (Figure 2).
Next, by blowing up nine times on Y, we construct a rational surface Z which contains a special configuration of linear chains of \mathbb{P}^1's. At first we blow up twice at the marked point \odot on F_1. We then blow up seven times in total at the six marked points \bullet on each fiber and at the intersection point \bullet of \tilde{M} and S_2. We then get a rational surface $Z = Y \# 9\mathbb{P}^2$. We also denote by \tilde{F}_i ($i = 1, 2$) the proper transforms of F_i. Then there exists a linear chain of \mathbb{P}^1's in Z,

$$C_{252,145} = \frac{-2}{u_{13}} - \frac{-4}{u_{12}} - \frac{-6}{u_{11}} - \frac{-2}{u_{10}} - \frac{-6}{u_{9}} - \frac{-2}{u_{8}} - \frac{-4}{u_{7}} - \frac{-2}{u_{6}} - \frac{-2}{u_{5}} - \frac{-3}{u_{4}} - \frac{-2}{u_{3}} - \frac{-3}{u_{2}} - \frac{-3}{u_{1}},$$

which contains \tilde{A}, S_2, \tilde{F}_2, S_1, \tilde{F}_1, \tilde{M}, \tilde{L}_2, \tilde{L}_1 and \tilde{L}_3, where u_i represents an

embedded rational curve (Figure 3).
Finally, by applying \(\mathbb{Q} \)-Gorenstein smoothing theory to \(Z \) as in Lee and Park [5] and Park–Park–Shin [6], we construct a minimal complex surface with \(p_g = 0 \) and \(K^2 = 4 \). That is, we first contract the chain \(C_{252,145} \) of \(\mathbb{P}^1 \)'s from \(Z \) so that it produces a normal projective surface \(X \) with one permissible singular point. It then follows by a similar technique to one in Lee and Park [5] and Park–Park–Shin [6] that \(X \) has a \(\mathbb{Q} \)-Gorenstein smoothing. Let \(X_t \) be a general fiber of the \(\mathbb{Q} \)-Gorenstein smoothing of \(X \). Since \(X \) is a (singular) surface with \(p_g = 0 \) and \(K^2 = 4 \), by applying general results of complex surface theory and \(\mathbb{Q} \)-Gorenstein smoothing theory, one may conclude that a general fiber \(X_t \) is a complex surface of general type with \(p_g = 0 \) and \(K^2 = 4 \).

The minimality of \(X_t \) follows from the nefness of the canonical divisor \(K_X \) of \(X \). Let \(f: Z \to X \) be the contraction of the chain \(C_{252,145} \) of \(\mathbb{P}^1 \)'s from \(Z \) to the singular surface \(X \). By using a similar technique to one in Lee and Park [5] and Park–Park–Shin [6], it follows that the pullback \(f^* K_X \) of the canonical divisor \(K_X \) of \(X \) is effective and nef, hence \(K_X \) is also nef, which shows the minimality of \(X_t \).

It remains to prove that \(X_t \) is simply connected.

Proposition 2.1 \(X_t \) is simply connected.

Proof Let \(Z_{252} \) be a rational blow-down 4–manifold obtained from \(Z \) by replacing the configuration \(C_{252,145} \) with the corresponding rational ball \(B_{252,145} \). Since a general fiber \(X_t \) of a \(\mathbb{Q} \)-Gorenstein smoothing of \(X \) is diffeomorphic to the rational blow-down 4–manifold \(Z_{252} \), it suffices to show that \(Z_{252} \) is simply connected. We decompose the surface \(Z \) into \(Z = Z_0 \cup C_{252,145} \). Then we have \(Z_{252} = Z_0 \cup B_{252,145} \). Furthermore, since \(\pi_1(\partial B_{252,145}) \to \pi_1(B_{252,145}) \) is surjective, by van Kampen’s theorem, it suffices to show that \(\pi_1(Z_0) = 1 \).

Let \(\alpha_t \) be a normal circle of \(u_t \). First, note that \(Z \) and the configuration \(C_{252,145} \) are all simply connected. Hence, applying van Kampen’s theorem on \(Z \), we get

\[
1 = \pi_1(Z_0)/\langle N_{i_*}(\alpha_t) \rangle,
\]

where \(i_* \) is the induced homomorphism by the inclusion \(i: \partial C_{252,145} \to Z_0 \).

We write \(a \sim b \) if \(a \) and \(b \) are conjugate to each other in \(\pi_1(Z_0) \). From Figure 4, one can easily show that \(1 = i_*(\alpha_6) \sim i_*(\alpha_1)^{26} \), \(i_*(\alpha_1)^{26} = 1 \) and \(i_*(\alpha_1)^5 \sim i_*(\alpha_3) \sim i_*(\alpha_2) \sim i_*(\alpha_1)^{9574} \). Since \(9574 \equiv 6 \pmod{26} \), we have \(i_*(\alpha_1)^5 \sim i_*(\alpha_1)^6 \). Hence \(i_*(\alpha_1)^{5:13} \sim i_*(\alpha_1)^{26} = 1 \), which implies that \(i_*(\alpha_1)^{5:13} = 1 \). Since \(\alpha_1^{5:13} \) is also a generator of \(\pi_1(\partial C_{252,145}) \), we have \(i_*(\alpha_1) = 1 \). Therefore \(\pi_1(Z_0) = 1 \) by (2-2).
3 More examples

In this section we describe another rational surface Z which makes it possible to get a simply connected surface of general type with $p_g = 0$ and $K^2 = 4$.

Construction

Let C be a smooth cubic curve in \mathbb{P}^2 and p its inflection point. Let L_1 be a line passing through p which intersects C at two more different points q and r. Let L_2 be the tangent line to C at p and L_3 the tangent line to C at one of the intersection points of L_1 and C, say q. Let s be the other intersection point of L_3 and C (Figure 5(a)). We consider a pencil of cubics $\lambda(L_1 + L_2 + L_3) + \mu C \mid [\lambda : \mu] \in \mathbb{P}^1$ in \mathbb{P}^2 generated by two cubic curves $L_1 + L_2 + L_3$ and C. According to Persson [8], if we choose a general C, we may assume that the pencil of cubics contains four nodal singular curves. Let T be a line joining p and s and M a line through r and the node of a nodal singular member of the pencil of cubics. We may assume that M does not pass through the other nodes (Figure 5(b)).

In order to obtain an elliptic fibration over \mathbb{P}^1 from the pencil above, we blow up 9 times in total at the base points of the pencil of cubics including infinitely near base-points at each base point. We then get an elliptic fibration $Y = \mathbb{P}^2 \# 9\mathbb{P}^2$ over \mathbb{P}^1 (Figure 6). Note that the proper transform \tilde{T} of T is a section of Y and the proper transform \tilde{M} of M is a bisection of Y (Figure 6). Here the section S in Y is an exceptional curve induced by the blow-up at the point s.

We blow up 7 times at the marked points \bullet on Y and blow up two more times at the marked point \circ on Y. We finally obtain a rational surface $Z = Y \# 9\mathbb{P}^2$ which
A simply connected surface of general type with $p_g = 0$ and $K^2 = 4$ contains the following linear chain of \mathbb{P}^1's (Figure 7):

$$C_{183,38} = \frac{-5}{u_1} \frac{-6}{u_2} \frac{-2}{u_3} \frac{-6}{u_4} \frac{-2}{u_5} \frac{-4}{u_6} \frac{-2}{u_7} \frac{-2}{u_8} \frac{-3}{u_9} \frac{-2}{u_{10}} \frac{-2}{u_{11}} \frac{-2}{u_{12}} \frac{-2}{u_{13}} \frac{-2}{u_{14}} \frac{-2}{u_{15}} \frac{-2}{u_{16}} \frac{-2}{u_{17}}.$$

Finally, by applying \mathbb{Q}–Gorenstein smoothing theory to Z as in Lee and Park [5] and Park–Park–Shin [6], we are able to construct a minimal complex surface with $p_g = 0$ and $K^2 = 4$, say X_t, which is a general fiber of a \mathbb{Q}–Gorenstein smoothing of X.

Proposition 3.1 The complex surface X_t is simply connected.

Proof Let us decompose the surface $Z = Y \# 9 \mathbb{P}^2$ into $Z = Z_0 \cup C_{183,38}$. Then, as in the proof of Proposition 2.1, it is enough to show that $\pi_1(Z_0) = 1$.

Let E be an exceptional curve intersecting \tilde{F}_2 at two points. The intersection of a boundary of a tubular neighborhood of \tilde{F}_2 and E consists of two normal circles of $\tilde{F}_2,$
say α and β, which are contained in Z_0. We choose a point $x_0 \in \alpha$ as a base point for the homotopy group of Z_0. Let $x_1 \in \beta$ be any point.

Since \tilde{F}_2 and E intersect positively at each intersection point, α and β have the same orientation induced by the orientation of the exceptional curve E. Therefore, as circles on the punctured sphere $E \setminus C_{183,38}$, they are the boundaries of the cylinder $E \setminus C_{183,38}$ and, furthermore, they have the opposite orientation in the cylinder $E \setminus C_{183,38}$. Let i_* be the induced homomorphism by the inclusion $i: \partial C_{183,38} \to Z_0$. Then we have

\[(3-1) \quad [i_*(\alpha)] = [\lambda \cdot i_*(\beta)^{-1} \cdot \lambda^{-1}] \quad \text{in} \quad \pi_1(Z_0,x_0),\]

where λ is a path connecting x_0 and x_1 which lies on E.

On the other hand, since α and β are normal circles of \tilde{F}_2, we also have

\[(3-2) \quad [i_*(\alpha)] = [\mu \cdot i_*(\beta) \cdot \mu^{-1}] \quad \text{in} \quad \pi_1(Z_0,x_0)\]

where μ is a path connecting x_0 and x_1 which is contained in the boundary of a tubular neighborhood of \tilde{F}_2. Note that we may choose λ and μ so that they are homotopically equivalent. Therefore it follows by (3-1) and (3-2) that

\[(3-3) \quad [i_*(\alpha)^2] = 1 \quad \text{in} \quad \pi_1(Z_0,x_0).\]

It is not difficult to show that $i_*(\alpha)^2$ is conjugate to $i_*(\alpha)^{2552}$, where α_1 is a generator of $\pi_1(\partial Z_0 = L(183^2,-6953),x_0) = \mathbb{Z}_{1832}$. Since $2552 = 8 \cdot 11 \cdot 29$ is relatively prime to $183^2 = (3 \cdot 61)^2$, it implies that α^2 is also a generator of $\pi_1(\partial Z_0)$. By applying van Kampen’s theorem on Z, we get

\[1 = \pi_1(Z_0,x_0)/\langle N_{i_*(\alpha)^2} \rangle.\]

Therefore $\pi_1(Z_0,x_0) = 1$ by (3-3). \qed
Remark (1) One can find more examples of simply connected surfaces of general type with \(p_g = 0\) and \(K^2 = 4\) using different configurations. For example, using an elliptic fibration on \(E(1)\) with one \(I_7\)-singular fiber, one \(I_2\)-singular fiber and two nodal fibers, we can find the following linear chain of \(\mathbb{P}^1\)'s in \(E(1)\# 9\mathbb{P}^2\):

\[C_{252,145} = \frac{-2}{0} - \frac{-4}{-6} - \frac{-6}{0} - \frac{-6}{-2} - \frac{-2}{-4} - \frac{-4}{-2} - \frac{-2}{-3} - \frac{-3}{-2} - \frac{-2}{0}. \]

It is a very intriguing question whether all these configurations above produce the same deformation equivalent type of simply connected surfaces with \(p_g = 0\) and \(K^2 = 4\). We leave this problem for future research.

(2) It is also a natural question whether one can find an appropriate configuration in a rational surface which produces a surface of general type with \(p_g = 0\) and \(K^2 \geq 5\). Note that the basic scheme used in this paper as well as in Lee and Park [5] and Park–Park–Shin [6] is the following: We chose a delicate configuration in a certain rational surface \(Z\) so that its induced singular surface \(X\) obtained by contracting linear chains of curves in \(Z\) satisfies the cohomology condition \(H^2(T_X^0) = 0\), which guarantees automatically the existence of a \(\mathbb{Q}\)-Gorenstein smoothing of \(X\). In this respect, it seems impossible to find a configuration satisfying \(H^2(T_X^0) = 0\) for \(K^2 \geq 5\). But, without the hypothesis \(H^2(T_X^0) = 0\), there might still be a chance to find a configuration for \(K^2 \geq 5\). Of course, if such a configuration exists, it will be another problem to determine whether the induced singular surface \(X\) admits a \(\mathbb{Q}\)-Gorenstein smoothing or not.

4 Einstein metrics on \(\mathbb{C}\mathbb{P}^2 \# 5\mathbb{C}\mathbb{P}^2\)

In this section we show that the complex surface \(X_t\) constructed in the main construction admits a Kähler–Einstein metric of negative scalar curvature, which implies the following theorem.

Theorem 4.1 The topological 4–manifold \(\mathbb{C}\mathbb{P}^2 \# 5\mathbb{C}\mathbb{P}^2\) has a smooth structure which admits an Einstein metric with negative scalar curvature.

Recently Răsdeaconu and Șuvaina [9] proved the existence of a smooth structure on each of the topological 4–manifolds \(\mathbb{C}\mathbb{P}^2 \# k\mathbb{C}\mathbb{P}^2\), for \(k = 6, 7\), which has an Einstein metric of negative scalar curvature. By applying their method on the surface \(X_t\) constructed in Section 2, we can easily prove the existence of a Kähler–Einstein metric on \(X_t\) with negative scalar curvature. We explain it in detail in the rest of this section.
First, note that there is a criterion for the existence of a Kähler–Einstein metric on a compact complex 4–manifold with \(c_1(M) < 0 \), which was found independently by Aubin [1] and Yau [10]:

Theorem 4.2 (Aubin–Yau) A compact complex 4–manifold \((M, J) \) admits a compatible Kähler–Einstein metric with negative scalar curvature if and only if its canonical line bundle \(K_M \) is ample. When such a metric exists, it is unique, up to an overall multiplicative constant.

Proof of Theorem 4.1 Based on the idea Rașdeaconu and Şuvaina [9], we show that the surface \(X_t \) has an ample canonical bundle. Then it follows from Theorem 4.2 of Aubin–Yau that there exists a Kähler–Einstein metric on \(X_t \) of negative scalar curvature.

As we showed in the main construction, the pullback \(f^* K_X \) of the canonical divisor \(X \) onto the rational surface \(Z \) is effective and nef; hence \(K_X \) is also nef. Let \(E_1, \ldots, E_8 \) be the \((-1)\)-curves on the rational surface \(Z \) and set

\[
C_{252,145} = -\frac{2}{G_{13}} - \frac{4}{G_{12}} - \frac{6}{G_{11}} - \frac{2}{G_{10}} - \frac{6}{G_9} - \frac{2}{G_8} - \frac{4}{G_7} - \frac{2}{G_6} - \frac{2}{G_5} - \frac{3}{G_4} - \frac{2}{G_3} - \frac{3}{G_2} - \frac{3}{G_1}.
\]

Then one may write

\[
f^* K_X = \sum_{i=1}^{8} a_i E_i + \sum_{j=1}^{13} b_j G_j
\]

for some rational numbers \(a_i, b_j \geq 0 \).

We first show that \(K_X \) is ample. Suppose on the contrary that \(K_X \) is not ample. Since \(K_X \) is already nef and \(K_X^2 = 4 > 0 \), according to the Nakai–Moishezon criterion, there exists an irreducible curve \(C \subset X \) such that \((K_X \cdot C) = 0 \). Let \(\bar{C} \subset Z \) be the proper transform of \(C \). Then we have

\[
(K_X \cdot C) = (f^* K_X \cdot f^* C) = (f^* K_X \cdot \bar{C}) = \sum_{i=1}^{8} a_i (E_i \cdot \bar{C}) + \sum_{j=1}^{13} b_j (G_j \cdot \bar{C}) = 0.
\]

Since \(G_j \)'s are irreducible components of the exceptional divisors of \(f \), it is obvious that \((G_j \cdot \bar{C}) \geq 0 \) for \(j = 1, \ldots, 13 \) with equality if and only if \(C \) does not pass through the singular point of \(X \). Hence it follows that

\[
\sum_{i=1}^{8} a_i (E_i \cdot \bar{C}) \leq 0.
\]
A simply connected surface of general type with $p_g = 0$ and $K^2 = 4$

Then either $(E_{i_0} \cdot \widetilde{C}) < 0$ for some i_0, or $(E_i \cdot \widetilde{C}) = 0$ for all $i = 1, \ldots, 8$ and $(G_j \cdot \widetilde{C}) = 0$ for all $j = 1, \ldots, 13$. In the first case \widetilde{C} must coincide with E_{i_0}. However, by using a similar technique to one in Lee and Park [5] and Park–Park–Shin [6], one may show that $(f^* K_X \cdot E_i) > 0$ for all $i = 1, \ldots, 8$, which is a contradiction to our assumption $(K_X \cdot \widetilde{C}) = 0$. Therefore we have $(E_i \cdot \widetilde{C}) = 0$ for all $i = 1, \ldots, 8$ and $(G_j \cdot \widetilde{C}) = 0$ for all $j = 1, \ldots, 13$. On the other hand, note that the Poincaré duals of the irreducible components G_j and of the (-1)-curves E_i generate $H_2(Z, \mathbb{Q})$; hence \widetilde{C} must be numerically trivial on Z. Then, for any ample divisor H on X, we have

$$0 = (\widetilde{C} \cdot f^* H) = (f^* C \cdot f^* H) = (C \cdot H),$$

which is again a contradiction. Therefore K_X is ample.

Note that ampleness is an open property; cf Kollár and Mori [4]. So the canonical divisor K_{X_t} of a general fiber X_t of \mathbb{Q}–Gorenstein smoothing is automatically ample. Therefore, by Aubin and Yau’s criterion, X_t has a Kähler–Einstein metric of negative scalar curvature.

Acknowledgements The authors would like to thank Yongnam Lee for helpful communications during the course of this work. Jongil Park was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-341-C00004) and he also holds a joint appointment in the Research Institute of Mathematics, SNU. Dongsoo Shin was supported by Korea Research Foundation Grant funded by the Korean Government (KRF-2005-070-C00005).

References

Geometry & Topology, Volume 13 (2009)

[9] R Răsdeaconu, I Șuvaina, Smooth structures and Einstein metrics on $\mathbb{CP}^2 \# 5, 6, 7 \mathbb{CP}^2$ arXiv:0806.1424

HP, JP: Department of Mathematical Sciences, Seoul National University
San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-747, Korea

DS: Department of Mathematics, Pohang University of Science and Technology
San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, Korea

hspark@math.snu.ac.kr, jipark@math.snu.ac.kr, dongsoo.shin@postech.ac.kr

Proposed: Ron Stern
Seconded: Jim Bryan, Ron Fintushel
Received: 6 December 2008
Accepted: 10 February 2009