Volume 13, issue 3 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Fixing the functoriality of Khovanov homology

David Clark, Scott Morrison and Kevin Walker

Geometry & Topology 13 (2009) 1499–1582
Abstract

We describe a modification of Khovanov homology [Duke Math. J. 101 (2000) 359-426], in the spirit of Bar-Natan [Geom. Topol. 9 (2005) 1443-1499], which makes the theory properly functorial with respect to link cobordisms.

This requires introducing "disorientations" in the category of smoothings and abstract cobordisms between them used in Bar-Natan’s definition. Disorientations have "seams" separating oppositely oriented regions, coming with a preferred normal direction. The seams satisfy certain relations (just as the underlying cobordisms satisfy relations such as the neck cutting relation).

We construct explicit chain maps for the various Reidemeister moves, then prove that the compositions of chain maps associated to each side of each of Carter, Reiger and Saito’s movie moves [J. Knot Theory Ramifications 2 (1993) 251-284; Adv. Math. 127 (1997) 1-51] always agree. These calculations are greatly simplified by following arguments due to Bar-Natan and Khovanov, which ensure that the two compositions must agree, up to a sign. We set up this argument in our context by proving a result about duality in Khovanov homology, generalising previous results about mirror images of knots to a "local" result about tangles. Along the way, we reproduce Jacobsson’s sign table [Algebr. Geom. Topol. 4 (2004) 1211-1251] for the original "unoriented theory", with a few disagreements.

Keywords
Khovanov homology, functoriality, link cobordism
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57M27, 57Q45
References
Publication
Received: 22 January 2008
Revised: 7 February 2009
Accepted: 28 October 2008
Published: 3 March 2009
Proposed: Vaughan Jones
Seconded: Mike Freedman, Joan Birman
Authors
David Clark
Department of Mathematics
Randolph-Macon College
Ashland, VA 23005
USA
http://faculty.rmc.edu/davidclark
Scott Morrison
Microsoft Station Q
University of California
Santa Barbara 93106-6105
USA
http://tqft.net/
Kevin Walker
Microsoft Station Q
University of California
Santa Barbara 93106-6105
USA
http://canyon23.net/math/