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Polyhedral Kähler manifolds

DMITRI PANOV

In this article we introduce the notion of polyhedral Kähler manifolds, even di-
mensional polyhedral manifolds with unitary holonomy. We concentrate on the
4–dimensional case, prove that such manifolds are smooth complex surfaces and
classify the singularities of the metric. The singularities form a divisor and the
residues of the flat connection on the complement of the divisor give us a system
of cohomological equations. A parabolic version of the Kobayshi–Hitchin corre-
spondence of T Mochizuki permits us to characterize polyhedral Kähler metrics of
nonnegative curvature on CP 2 with singularities at complex line arrangements.

53C56; 32Q15, 53C55

1 Introduction and results

First, we recall the notion of a polyhedral metric and a polyhedral manifold and give
some basic facts about them. Consider a piecewise linear connected manifold M d

with a fixed simplicial decomposition. Let �d
i be the simplices of highest dimension

of this decomposition. Choose a flat metric on every �d
i in such a way that every two

simplices that have a common face are glued by an isometry. This gives a metric on
M d , which is called polyhedral, and M d is called a polyhedral manifold.

For every point x of a polyhedral manifold M d we canonically associate its tangent
cone, ie, a cone with polyhedral metric such that a neighborhood of its origin is isometric
to a neighborhood of x . At the nonsingular points of M d the tangent cone is the
Euclidean space Rd . A polyhedral metric has no singularities at faces of codimension 1,
but may have singularities at faces of codimension 2. The tangent cone of the points
in the interior of such faces is isometric to the direct product of a 2–cone and the flat
space Rd�2 . The angle of the 2–cone is called the conical angle at the face.

The singular locus of a polyhedral metric is naturally stratified. A point of M d is
called a metric singularity of codimension at least k if its tangent cone is not isometric
to the direct product of Rd�kC1 and a .k�1/–dimensional polyhedral cone. The set
of all metric singularities of codimension at least k is denoted by M d�k

s .
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The complement to the singular locus of the metric is connected and we can consider the
holonomy of the metric on it. This gives us a representation �1.M

d nM d�2
s /!SO.d/

(we will consider only orientable manifolds). For a generic choice of a polyhedral
metric this representation has an everywhere dense image in SO.d/.

In this work we study even dimensional polyhedral manifolds M 2n whose holonomy
group is contained in a subgroup of SO.2n/ conjugate to U.n/. On the complement
of the singularities of the metric these manifolds have a complex structure J parallel
with respect to the flat metric and compatible with it. In addition to the unitarity of
the holonomy we impose one condition. For any face F of codimension 2 consider a
simplex �2n that contains F in its border. The parallel complex structure J defined
in the interior of �2n naturally extends to the whole �2n and we say that F has a
holomorphic direction if F is a piece of a holomorphic hyperplane with respect to J .

Definition 1.1 A polyhedral manifold M 2n is called a polyhedral Kähler manifold
(or shortly a PK manifold) if the holonomy of its metric belongs to a subgroup of
SO.2n/ conjugate to U.n/ and every codimension 2 face with conical angle 2k� ,
k � 2 (k 2N ), has a holomorphic direction.

Remark 1.2 Codimension 2 faces with conical angle different form 2k� (k 2 N )
automatically have complex direction (cf Section 3) so we don’t need to impose this
condition on them. If we don’t impose the condition on the faces with conical angle
2k� , k � 2, we obtain Thurston’s .X;G/–cone-manifolds modeled on X DCn with
G the group of unitary isometries of Cn [19].

Remark 1.3 In this work simplicial decompositions are used only to define the class
of PK manifolds and play a secondary role. We will mostly think about PK manifolds
as spaces with a specific metric and will not distinguish manifolds that are isometric
but have different simplicial decompositions.

A 2–dimensional oriented polyhedral surface is automatically Kähler (since SO.2/D
U.1/) and complete classification of such structures is given by Troyanov [20] (we
recall this classification in Section 2). In the rest of this work we deal mostly with
4–dimensional polyhedral Kähler manifolds. In Section 2 several elementary examples
of such manifolds are given.

A polyhedral metric is called nonnegatively curved if the conical angle at every singular
face of codimension 2 is smaller than 2� . The original motivation for our study
of PK metrics is due to the following remark of Anton Petrunin. The holonomy of
a nonnegatively curved polyhedral CPn preserves a symplectic form (see a related
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discussion in Petrunin [17]). This is a partial case of a vanishing theorem proved by
Cheeger [2]. This means that a nonnegatively curved CPn is PK; we discuss this
subject in Section 2.

Known examples An explicit example of a nonnegatively curved polyhedral CP2

is provided by Kühnel’s 9 vertices triangulation [10]. This polyhedral CP2 can be
obtained as a finite isometric quotient of a flat complex 2–torus, and the holonomy
of the metric on CP2 is finite. In general for any n there exist a series of polyhedral
metrics on CPn that are obtained as quotients of complex tori; see Kaneko, Tokunaga
and Yoshida [9].

Couwenberg, Heckman and Looijenga [3] study geometric structures that are more
general than PK metrics. They obtain constant holomorphic curvature metrics on CPn ,
having as singular locus complex reflection hyperplane arrangements. Their approach is
different; in particular from the very beginning they start with a holomorphic manifold.
It should be possible to prove that in the case when curvature is zero their metrics
are PK.
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very indebted to Maxim for his insight, inspiration, guidance and help during my PhD;
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and encouragement of all these people this article would not be written. Finally I would
like to thank members of the geometry group at Imperial for the excellent environment.
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1.1 Local properties of PK metrics

A PK manifold has a natural complex structure defined outside the singular locus; it
is constant in the local flat coordinates. We will prove that for a 4–dimensional PK
manifold M 4 this complex structure can be extended to the whole manifold.

Definition 1.4 Let M 4 be a PK manifold. Holomorphic functions on M 4 are de-
fined as continuous functions on M 4 that are holomorphic on the complement to the
singularities M 4 nM 2

s .
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A holomorphic chart in M 4 is an open subset U with an injective map 'D .f;g/W U!
C2 with f and g holomorphic as above and such that '.M 2

s \ U / is an analytic
subset of '.U /�C2 .

The following theorem justifies this definition by proving that holomorphic functions
and holomorphic charts on M 4 define together a genuine complex structure on M 4 .

Theorem 1.5 Every point of a 4–dimensional PK manifold is contained in a holomor-
phic chart. Holomorphic charts form together a holomorphic atlas on M 4 and induce
on it a structure of a smooth complex surface. The singular set M 2

s is a complex curve
for the defined holomorphic structure.

Remark 1.6 We don’t consider any intermediate smooth structure on M 4 in order to
define a complex structure on it. At the same time, it is known that PL manifolds of
dimension up to 6 have a canonical smooth structure.

The main step in Theorem 1.5 is the construction of holomorphic charts for the singu-
larities of the PK metric. A neighborhood of every singularity embeds isometrically
into its tangent cone, and it is possible to introduce on the tangent cone the structure of
a single holomorphic chart. We call these cones polyhedral Kähler cones, and denote
by C 4

K
. All PK cones have a natural holomorphic Euler vector field e (cf Section 3.1)

that acts by dilatations of the metric, and this field is crucial for us.

Theorem 1.7 Let C 4
K

be a 4–dimensional polyhedral Kähler cone. There exists a
homeomorphism 'W C 4

K
!C2 holomorphic outside the singularities of the cone and

satisfying the following property: The Euler field e written in coordinates .z; w/ of
C2 is given by

1

˛
z
@

@z
C

1

ˇ
w
@

@w
;

where ˛ and ˇ are positive real numbers. The image of the singular locus of C 4
K

under
the map ' is given by a union of curves c1z˛ D c2w

ˇ .

The singularity is called irrational if ˛=ˇ 2 R nQ. In this case its tangent cone is
isometric to the direct product of two 2–cones C1 �C2 with conical angles 2�˛ and
2�ˇ .

The singularity is called rational of type .p; q; ˛/, p; q 2N if its Euler field is equal
to e D .p=˛/z.@=@z/C .q=˛/w.@=@w/ in coordinates .z; w/. Here p and q are
relatively prime, p � q and ˛ is a positive real number. Sometimes, when the choice
of ˛ is not important, we may also say that the singularity is of type .p; q/. Since e
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acts by dilatation of the metric, it preserves the singular locus of the metric. Thus, in
the neighborhood of x any irreducible component of the singular locus is a curve given
by one of the equations: czq D wp , c ¤ 0; z D 0; or w D 0. All these curves are flat
with respect to the induced PK metric. Each curve czq D wp has a conical point at
the origin with the same angle 2�˛ , the line z D 0 has conical angle .2�=p/˛ , and
the line w D 0 has conical angle .2�=q/˛ .

The next theorem gives a description of the set S.p; q; ˛/ of equivalence classes of
singularities of type .p; q; ˛/. There is a slight difference between the cases .1DpDq/,
.1 D p < q/, .1 < p < q/. The triple .p; q; ˛/ does not determine the singularity
uniquely, the singularities of a given type form an infinite-dimensional space.

Theorem 1.8 On a 2–sphere, consider the set of metrics (up to isometry) of curva-
ture 4, with area �˛=.pq/ and having an arbitrary number of conical points. Moreover
if p > 1 and q > 1 we mark two conical points, while if p D 1, q > 1 we mark one
conical point. This set of metrics on the sphere is in natural 1–to–1 correspondence
with the set S.p; q; ˛/.

Consider a .p; q; ˛/ singularity, let .2�ˇ1; : : : ; 2�ˇn/ be the conical angles of the PK
metric at the singular branches ckzq Dwp; .ck ¤ 0/. Let 2�ˇz be the angle at z D 0

and 2�ˇw the angle at w D 0.

Theorem 1.9 The following relation holds:

˛ D
pq

2

�X
k

.ˇk � 1/C
ˇz � 1

p
C
ˇw � 1

q

�
C

pC q

2
:

Theorems 1.5–1.9 are proven in Section 3.

1.2 Flat connection and topological relations

By Theorem 1.5 every 4–dimensional PK manifold is a complex surface and the
singular locus of the PK metric forms a complex curve on it. Further on will denote
the surface by S and the complex curve by � .

The PK metric on S defines a flat meromorphic connection on the tangent bundle of S

with first order poles at � . In Section 4 we study this connection, especially in the
neighborhood of singularities of complex codimension 2. We give a list of conditions
that imply that a connection on the tangent bundle to a surface is a connection of a PK
metric (Theorem 4.13). Using the residues of the connection we write down a system
of topological relations on the pair .S; �/. This is done in Section 5 .
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Let us fix some notation. Irreducible components of � will be denoted by �j . For
every component �j we denote by 2� ǰ the conical angle at �j , ie, the angle of a
2–cone orthogonal to any nonsingular point of �j . The singularities of � that are not
normal crossings are denoted by xi and their type is denoted by .pi ; qi ; ˛i/.

Definition 1.10 For any surface S a collection of divisors �j with positive weights ǰ

is called a weighted arrangements. In the case when there exists a PK metric on S with
singularities at �j of angles 2� ǰ we call .�j ; ǰ / the weighted arrangement of the
PK metric or the PK arrangement. Sometimes we will mean by weighted arrangement
the whole data .�j ; ǰ Ixi ;pi ; qi ; ˛i/.

Define two numbers related to the behavior of �j in the neighborhood of xi . Denote by
zdij the number of branches (local irreducible components) of �j at xi . Additionally
let dij be the number of branches, except counting branches z D 0 and w D 0 with
weights 1=p and 1=q . Denote by Bjk , j ¤ k , the number of intersections of curves
�j and �k that represent the normal crossing singularity of � and define Bjj by

Bjj D��j ��j C

X
i

piqi.dij /
2;

where �j ��j is the self-intersection number of �j .

Theorem 1.11 Any weighted arrangement .�j ; ǰ Ixi ;pi ; qi ; ˛i/ of a PK metric
satisfies the following relations:

8j
X

k

Bjk.ˇk � 1/D�2�.�j /�KS ��j �

X
i

.dij .pi C qi/� 2 zdij /;(1-1)

�c1.TS/DKS D

X
j

. ǰ � 1/Œ�j � 2H2.S;R/:(1-2)

Moreover, in the case when for every i pi D qi D 1 we have the following expression
for the second Chern class:

(1-3) c2.TS/D
X

i

.˛i � 1/2C
X
j¤k

1

2
Bjk. ǰ � 1/.ˇk � 1/:

Here KS is the canonical class of S and �.�j / is the Euler characteristic of the
normalization of �j .

These relations have the following nature. Relation (1-1) is a consequence of the
Gauss–Bonnet formula applied to the curve �j . For every �j the sum of the defects
of its conical points is equal to its Euler characteristic. Relations (1-2) and (1-3)
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express the Chern classes of TS in terms of the residues of the flat connection on TS

corresponding to the PK metric; see Ohtsuki [15].

Construction of weighted arrangements satisfying equations of Theorem 1.11 is a
problem of independent interest, leading to questions of the following type:

Problem Classify arrangements of 3n lines on CP2 such that every line intersect
other lines exactly at nC 1 points.

It is easy to see that such line arrangements with weights ǰ D .n � 1/=n satisfy
Equations (1-1), (1-2) and (1-3). This problem appeared previously in Hirzebruch [7]
and a list of two infinite series and several exceptional arrangements satisfying the
condition was given (all these arrangements are complex reflection arrangements).
Further questions of similar nature (about simplicial and limit PK arrangements with a
cusp) are formulated in Section 5.

1.3 Reconstruction of nonnegatively curved PK metrics from weighted
arrangements

One of the main results of this paper is the following theorem.

Theorem 1.12 Consider a weighted arrangements of lines .Lj ; ǰ / in CP2 satisfying
the following conditions:

(1-4)
X

j

. ǰ � 1/D�3; 0< ǰ < 1;
X

j

dij . ǰ � 1/ > �2:

Then the following inequality holds:

(1-5)
X

i

.˛i � 1/2�
X

j

1

2
.1� ǰ /

2Bjj �
3

2
� 0:

Moreover, if the equality holds then there exists a PK metric on CP2 with conical
angles 2� ǰ at Lj (ie, .Lj ; ǰ / is a PK arrangement.)

We prove this theorem in Section 7 after recalling (Section 6) the technique of parabolic
bundles. To every arrangement that satisfies condition of the theorem we associate a
parabolic structure on the pullback of the tangent bundle of CP2 to the blow up of
CP2 at the multiple points of the arrangement. We prove that constructed parabolic
bundle is stable and calculate its parabolic Chern characters. Inequality (1-5) is a conse-
quence of Bogomolov–Gieseker inequality [13] (see also [12]). The existence of a PK
metric in the case of equality follows form the parabolic version of Kobayashi–Hitchin
correspondence from [13] and additional statements about logarithmic connection the
we prove in Section 4.
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2 Examples of polyhedral Kähler manifolds

In this section we recall the classification of PK structures on complex curves in
Troyanov [20] and give several examples of polyhedral Kähler manifolds of higher
dimension.

2.1 Flat metrics on surfaces

Structures on a 2–dimensional polyhedral cone A 2–dimensional polyhedral cone
is a very simple object but already it supports the majority of geometric structures that
are essential for this work. Let us describe these structures. Consider a 2–cone C 2

with conical angle 2�˛ . Note first that the flat metric on C 2 n 0 defines a conformal
and hence a holomorphic structure on C 2 n 0. Moreover C 2 n 0 is biholomorphic to
C� , so we can chose a holomorphic coordinate z on it (defined up to a multiplicative
constant). This coordinate can be used to extend the complex structure from C 2 n 0 to
C 2 . We have a natural action of R� on C 2 by homotheties, corresponding vector field
can be complexified and we call it Euler field. This field is given in the coordinate z

by the formula .z=˛/.@=@z/, the imaginary part of the field acts by isometries of the
cone. The metric induces a flat meromorphic connection on the tangent bundle to the
cone and it is given by r D dC .˛�1/.dz=z/. The multivalued flat coordinate on the
cone, ie, a coordinate in which the connection on C 2 is trivial, is given by z˛ .

The next theorem classifies polyhedral metrics on surfaces.

Theorem 2.1 (Troyanov [20]) Consider a complex curve � of genus g with pairwise
distinct marked points x1; : : : ;xn . Let ˛1; : : : ; ˛n be real positive numbers such thatP
.˛i � 1/ D 2g � 2. Then there is a unique (up to a real multiplication constant)

complete flat metric on � with conical points of angles 2�˛i at xi whose conformal
structure on � n fx1; : : : ;xng is the same as of � itself.

For completeness we give here a proof of the theorem.

Lemma 2.2 For every real ˇ1; : : : ; ˇn such that
P

i ˇi D 0, there exists a unique
meromorphic 1–form � on � with simple poles with residues ˇ1; : : : ; ˇn at the points
x1; : : : ;xn , having purely imaginary periods (ie, for every closed path 
 2 � we haveR

 � 2 iR).

Proof By Dirichlet’s theorem there exists a unique (up to a constant) real harmonic
function f on � , satisfying the equation �f D

P
i ˇiıxi

. This function has logarith-
mic poles at x1; : : : ;xn . The 1–form � is then given by �.Eu/ D df .Eu/C idf .J Eu/,
where J defines the complex structure on T� .
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Proof of Theorem 2.1 Existence Let � be a holomorphic differential on � with
simple zeros y1; : : : ;y2g�2 . It defines a flat metric �˝x� on � with conical points of
angle 4� at the points yi . Denote by r the corresponding connection. Consider the
1–form � on � with purely imaginary periods that has residue �1 at any point yi and
residue . j̨ � 1/ at any point xj .

Let us prove that the connection rC� on � is unitary. Indeed, the holonomy of rC�
along a closed path 
 is given by the formula

hol
 .r C �/D hol
 .r/ exp
�
�

Z



�

�
D exp

�
�

Z



�

�
:

The first equality follows from the definition of holonomy and the second follows from
the fact that the holonomy of r is trivial. The connection r C � defines a unique (up
to a real multiplication constant) flat metric on � . In order to define it one should fix
the metric at any point of � different from xj and translate it by means of r C � to
other points of � . The metric constructed this way has singularities exactly at xj , and
the conical angles at xj are defined by the poles of �.

Uniqueness Suppose that we have two metrics g1 and g2 satisfying the conditions
of the theorem. Then the 1–form rg1

�rg2
should be holomorphic and it should have

purely imaginary periods (since both rg1
and rg2

are unitary), ie, it is identically
zero. Thus g1 and g2 coincide.

2.2 Polyhedral Kähler manifolds of higher dimension

Recall that a polyhedral manifold is called nonnegatively curved if the conical angles
at all faces of codimension 2 are at most 2� .

Proposition 2.3 Let M 2n be a nonnegatively curved manifold that has a second
cohomology class h 2H 2.M 2n/ such that hn is non zero in H 2n.M 2n/. Then the
holonomy of M 2n is contained in U.n/, ie, such a manifold is PK.

This proposition is a simple corollary of results of J Cheeger [2], which we will now
describe. We don’t need these results in full generality; instead, we give a version
sufficient for our considerations.

Let M n be a polyhedral manifold, and let M n�2
s be the subset of all its metric

singularities. Denote by H i
L2
.M n/ the space of L2 –harmonic forms on M n nM n�2

s

that are closed and coclosed.

Theorem A dim.H i
L2
.M n//D bi.M n/.

Theorem B Suppose that the manifold M n is nonnegatively curved. Then every
harmonic form h in H i.M n/ is parallel, ie, rhD 0.
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Remark 2.4 According to [2], Theorem B indicates that nonnegatively curved polyhe-
dral manifolds are analogs of smooth Riemannian manifolds with nonnegative curvature
operator (rather then smooth manifolds with nonnegative sectional curvature). In fact,
Petrunin [17] proved that analogues curvature inequality in the smooth case is even
stronger.

Let us deduce Proposition 2.3 from Theorems A and B. We need a simple fact from
linear algebra.

Lemma 2.5 Consider an Euclidean space V 2n with a nondegenerate 2–form w ,
wn ¤ 0. Denote by Sw the subgroup of SO.2n/ that preserves w . Then the group Sw
is contained in a subgroup of SO.2n/ conjugate to U.n/.

Proof Take orthonormal coordinates .xi ;yi/ in V 2n such that w D
P

i aidxi ^ dyi

(ai ¤ 0). It is easy to see that every element of SO.2n/ that preserves w preserves the
form w0 D

P
i dxi ^ dyi . The stabilizer of w0 in SO.2n/ is exactly U.n/.

Proof of Proposition 2.3 Let g be a nonnegatively curved polyhedral metric on M 2n .
By Theorem A there exists a harmonic 2–form w on M 2n such that

R
M wn ¤ 0. By

Theorem B w parallel in the flat metric. It has constant rank outside of the singularities,
and since

R
M wn ¤ 0, w should be nondegenerate. The holonomy of g preserves w ,

thus by Lemma 2.5 the holonomy is contained in a subgroup of SO.2n/ conjugate to
U.n/, ie, g is a polyhedral Kähler metric.

This proposition indicates that it should be difficult to construct an explicit simplicial
decomposition on CPn that defines a nonnegatively curved metric. All examples of
PK metrics on CPn that we know come from algebraic geometry, and produce a metric
without a chosen simplicial decomposition.

Examples of nonnegatively curved polyhedral CPn

Example 1 Choose any nonnegatively curved polyhedral metric on CP1 . Consider
the n–th symmetric power Symn.CP1/ of CP1 with induced polyhedral metric. We
have Symn.CP1/'CPn , and it is clear that the constructed polyhedral metric on CPn

is nonnegatively curved. This is the first nontrivial example of a higher-dimensional
PK manifold that I learned and it was proposed to me by M Gromov.

For nD 2 we obtain a PK metric on CP2 with singularities at a conic and several lines
tangent to it. The conical angle at the conic is equal to � and the sum of defects of the
conical angles at the lines is equal to �4� . The conic is the image of the diagonal of
CP1 �CP1 .
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Example 2 Let T 2 be a real 2–torus with a flat metric. Consider the .nC 1/–th
power of T 2 , T 2nC2 D .T 2/nC1 . Let T 2n be a subtorus of T 2nC2 given by the
equation

P
i xi D 0;x1; : : : ;xnC1 2 T 2 . Let SnC1 be the permutation group acting

on T 2nC2 .

Lemma 2.6 The quotient T 2n=SnC1 is a CPn with a nonnegatively curved polyhe-
dral metric.

Proof Let E be the unique elliptic curve with the same conformal structure as T 2 .
Let Ln be a complex line bundle over E with first Chern class nC1. Then T 2n=SnC1

can be identified with the space of zero divisors of sections of Ln .

For nD 2 we obtain a PK metric on CP2 singular along an elliptic curve of degree 6

with 9 cusps. This curve is projectively dual to a smooth cubic.

Remark 2.7 It follows from Theorem B that an orientable 4–dimensional manifold
admitting a nonnegatively curved polyhedral metric with irreducible holonomy is
homeomorphic to S4 or CP2 (recall that irreducible means no invariant subspaces).
Nonnegative polyhedral metrics on S2�S2 were studied by Orshanskiy [16] using the
theory of Alexandrov spaces. The results of that paper can be obtained in a different
way using complex geometry.

PK metrics via branched covering One can construct polyhedral Kähler metrics via
branched coverings. Let f W S2! S1 be a branched covering of a smooth complex
surface S1 by a smooth complex surface S2 . Suppose that S1 has a polyhedral Kähler
metric and f is ramified over a set of flat curves on S1 . Then the pullback of the
metric on S2 is a polyhedral Kähler metric.

Consider the map f W CP2!CP2 , f .x W y W z/D .xn W yn W zn/. This map is ramified
at the lines x D 0;y D 0; z D 0. The following two examples use this map to produce
new PK metrics.

Example 3 (7 lines) Consider a PK metric on CP2 with the singular locus given
by the lines x D 0;y D 0; z D 0 and a conic tangent to these lines (cf Example 1). The
conical angle at the conic is � and the conical angles at the lines are equal to 2�˛ ,
2�ˇ , 2�
 , ˛CˇC
 D 1. Consider the branched covering f .x Wy W z/D .x2 Wy2 W z2/.
Then the singular locus of the pullback metric is composed of 7 lines, 4 of which have
conical angle � and three of which have angles 4�˛ , 4�ˇ , 4�
 .
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Example 4 (A metric on a symmetric K3 surface) Consider a PK metric on CP2

with the singular locus given by the lines x D 0, y D 0, z D 0, xCy D z (all of them
having conical angle � ) and a conic tangent to these lines (Example 1). Consider the
pullback metric on CP2 under the map f .x W y W z/D .x6 W y6 W z6/. The preimage
of the line xC y D z is given by the equation x6C y6 D z6 . The double cover of
CP2 ramified over the curve x6Cy6 D z6 is a K3 surface. This construction gives a
polyhedral Kähler metric on it.

Example 5 (PK metrics on algebraic Kummer surfaces) Recall that a Kummer K3

surface is obtained from a complex 2–torus T 2 by the quotient with respect to the
involution I W x!�x and successive blow up of 16 fixed points. If we first blow up
the points on T 2 fixed by I , we get a surface that is a double cover of the Kummer
surface. So in order to get a PK metric on a Kummer surface it will be sufficient to
construct any I –invariant PK metric on T 2 blown up at 16 invariant points.

Let � be a genus 2 curve, � its hyperelliptic involution, and Jac2.�/ the Jacobian of
degree 2 line bundles on � . Let g be a flat metric with conical points on � , invariant
under � (we suppose that the conformal structure of g is that of � ). The metric g

induces a PK metric zg on the symmetric square Sym2.�/ of � .

Recall that Sym2.�/ is naturally isomorphic to the blow up of Jac2.�/ at the point
corresponding to the canonical class of � . Moreover the involution � on � induces
the involution I on the blown up of Jac2.�/. Consider the degree 16 cover of
Sym2.�/ corresponding to the subgroup .2Z/4 �H1.Sym2.�//. One can check that
the involution I lifts to this cover and it fixes 16 exceptional curves. Moreover, I

fixes the lift of zg . This finishes the construction.

Nonelementary examples All the examples of PK manifolds listed above are ob-
tained by relatively elementary constructions. One of the main goals of this paper is
to construct PK metrics on CP2 with singularities at lines arrangements, and some
examples of such arrangements are given in Section 5.3. To construct the corresponding
metric on CP2 we need to use deep results of T Mochizuki.

3 Singularities of 4–dimensional PK manifolds

Starting from this section we deal only with 4–dimensional PK manifolds. In the next
two subsections we will prove Theorems 1.5 and 1.7. Before doing this let us explain
why existence of holomorphic charts (Definition 1.4) on a polyhedral Kähler manifold
M 4 implies immediately that M 4 is a complex surface.
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Indeed, suppose that M 4 can be covered by holomorphic charts .U˛; '˛/. To prove
that .U˛; '˛/ is a holomorphic atlas on M 4 we need to show that for every ˛ and ˇ
the gluing map

'˛'
�1
ˇ W 'ˇ.U˛ \Uˇ/! '˛.U˛ \Uˇ/

is holomorphic. By Definition 1.4 the map '˛'�1
ˇ

is continuous on 'ˇ.U˛ \Uˇ/ and
holomorphic on the complement to an analytic subset. So by standard results it is
holomorphic on the whole domain 'ˇ.U˛ \Uˇ/.

The same argument gives us the following lemma.

Lemma 3.1 For i D 0; 1 suppose that every point of M 4 nM i
s has a holomorphic

chart. Then the space M 4 nM i
s has a well-defined holomorphic structure.

The proof of Theorem 1.5 will be done in 3 steps. First we show that every point in
M 2

s nM 1
s is contained in a holomorphic chart. Then we prove that singularities of pure

codimension 3 don’t exit, ie, M 1
s DM 0

s . And finally for singularities of codimension
4 the existence of a holomorphic chart is claimed by Theorem 1.7.

3.1 Complex structure in codimension 4 and the Euler field

Lemma 3.2 Every point x 2 M 2
s nM 1

s is contained in a holomorphic chart. In
particular the space M 4 nM 1

s has a well-defined holomorphic structure.

Proof It is sufficient to prove this lemma for tangent cones of points in M 2
s nM 1

s , ie
for PK manifolds that are direct products of a 2–cone C 2 and the Euclidean plane R2 .

By Definition 1.1 the complex structure on R2 � .C 2 n 0/ is constant with respect to
the flat connection of the metric and invariant with respect to the holonomy around
.R2; 0/. If the conical angle 2�ˇ of C 2 is not divisible by 2� then this holonomy
is nontrivial, it rotates the tangent planes of the horizontal fibers .� ;C 2 n 0/ by the
angle 2�fˇg. So these fibers are holomorphic with respect to the complex structure.
The fibers .R2;� / are orthogonal to .� ;C 2 n 0/ and so they are holomorphic, since
J preserves the metric. Thus the complex structure on M 4 DR2 � .C 2 n 0/ is given
by the product of the natural complex structures on R2 and C 2 n 0. Finally we note
that C 2 n 0 is biholomorphic to C� , so there is a coordinate z on C 2 holomorphic
on C 2 n 0 and continuous on C 2 . The coordinate z together with a holomorphic
coordinate w on R2 define the structure of a chart on R2 �C 2 . The existence of the
complex structure on M 4 nM 1

s follows now from Lemma 3.1. The case 2�ˇ D 2�k ,
k � 2 is similar, the holonomy is trivial this time but by Definition 1.1 the vertical fiber
R2 � 0 has a holomorphic direction.
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Remark 3.3 We proved that every 2–face of a 4 dimensional polyhedral Kähler
manifold that belongs to the singular locus has a holomorphic direction. We need to
impose the condition on the faces with conical angle 2k� , k � 2, in order to be able to
extend the complex structure on these faces. Indeed, for a degree k ramified cover of
C2 with a branching of order k over a totally real two-dimensional plane, the complex
structure on the cover can not be extended on the branching locus.

Definition 3.4 Let M 4 be a PK manifold and let U be the universal cover of
M 4 nM 2

s . The enveloping map E of M 4 is defined as a locally isometric map
EW U ! C2 . Equivalently this map can be seen as a multivalued map from M 4 to
C2 that is locally isometric outside of M 2

s and has infinite ramification at M 2
s . The

image of M 2
s under the map is called branching set B.E/ of E , it is composed of

linear holomorphic faces. Note that B.E/ is usually everywhere dense in C2 but in
the case when B.E/ is closed the restriction map EW E�1.C2 nB.E//!C2 nB.E/

is a covering map.

Proposition 3.5 Any PK cone C 4
K

that is a product of R with a 3–cone is isometric
to the product of C with a 2–cone. So 4–dimensional PK manifolds can not have
singularities of pure codimension 3.

Proof Suppose that C 4
K

is isometric to R�P3 . Denote by v the constant vector field
on C 4

K
tangent to the vertical lines .R;� /. This field is acting on R�.P3n0/ preserving

the complex structure defined by Lemma 3.2. Consider the field J.v/ obtained from v

by the complex rotation and let vC D vC iJ.v/ be the complexification of v . The
field vC is constant in the flat holomorphic coordinates on the complement to the
singularities. Moreover, since the singularities of C 4

K
are tangent to v and they are

holomorphic on R� .P3 n 0/, vC is also tangent to the singularities.

Consider now the enveloping map E of C 4
K

and let us show that its branching locus
is contained in a complex line through E.0/ (note that the image of the center 0 of
C 4

K
is well defined). Indeed, the singularities of C 4

K
are of the form R� ri , where ri

is a singular ray of P3 . The image of R� ri under E in C2 is a complex half-line
containing E.0/ at its boundary. At the same time it is clear that the field vC descends
to a constant filed E.vC/ on C2 , and so all half-lines of B.E/ are contained in the
line L through E.0/ tangent to E.vC/.

Since B.E/ � L, the map EW E�1.C2 nL/! C2 nL is a covering map. But the
set E�1.C2 nL/ is also a cover of the complement in C 4

K
to all half-planes R� r

tangent to vC (including all singular half-planes). We deduce that the last complement
is isometric to a product of a punctured 2–cone with C and the proposition follows.
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Let us sketch an alternative proof of this proposition where instead of studying the
enveloping map we work directly with the cone P3 . Consider the restriction of the
field J.v/ on 0�P3 D P3 . The field J.v/ is well defined on P3 n 0, it is preserved
by the holonomy of the metric and it is tangent to the singular rays of P3 . We will
show that P3 has at most 2 singular rays.

Let S2 be the unit sphere centered at the origin of P3 . Consider the following function
on S2 :

f W S2
! Œ�1; 1�; f .x/D cos.†.er .x/; I.v.x///:

We claim that the critical values of this function must be equal to 1 or �1. Indeed,
if x is a nonsingular point and er .x/ is not tangent to J.v.x//, then f has nonzero
differential at x . If x is singular (ie, x 2 ri ), then J.v.x// is tangent to ri , thus
f .x/D˙1. It follows from Morse theory that f must have exactly two critical points.
Thus the number of conical points on S2 is at most 2. A further analysis shows that
S2 is either the unit sphere or a sphere with 2 conical points admitting an isometric
S1 action preserving the points. This proves the proposition.

Example 3.6 Let S2 be a unit sphere and p and q be two points on it. Consider a
ramified degree n cover of S2 by a sphere zS2 with ramifications of order n at p and
q . Then the pullback metric to zS2 has 2 conical points of angles 2�n. Let P3 be a
cone over zS2 and consider the polyhedral cone R�P3 . The holonomy of the metric
on R�P3 is trivial for all choices of p and q , but the cone admits a PK structure only
if p and q are opposite points on S2 . Otherwise, the line R� 0 forms the singular
locus of codimension 3.

Definition 3.7 Let C 4
K

be a polyhedral Kähler cone. The group R� is acting on C 4
K

by dilatations (since C 4
K

is a cone). It is clear that this action preserves the holomorphic
structure on C 4

K
n 0 defined by Proposition 3.5. So the vector field er generating this

action can be complexified and the obtained holomorphic vector field is called Euler
vector field and denoted by e . The imaginary part of the field e is called the spherical
component es D J.er /. It is important that es is acting on C 4

K
by isometries.

Example 3.8 Consider the cone C 4
K

that is the direct product of two 2–cones with
conical angles 2�˛ and 2�ˇ . Choose holomorphic coordinates z and w on each
2–cone as in the beginning of Section 2.1. Then the Euler field is given by e D

.1=˛/z.@=@z/ C .1=ˇ/w.@=@w/. Let us decompose e as above in the radial and
spherical components e D er C ies . If .˛=ˇ/ 2Q, then all orbits of the field es are
closed, and the field es generates an action of S1 on C 4

K
. For .˛=ˇ/ irrational, the

closure of a generic orbit of es is a 2–torus.

Geometry & Topology, Volume 13 (2009)



2220 Dmitri Panov

3.2 Linear coordinates on PK cones

In this subsection we prove Theorem 1.7. In particular, we introduce a holomorphic
chart in a neighborhood of every singularity of codimension 4. So, this also finishes
the proof of Theorem 1.5.

Let C 4
K

be a 4–dimensional PK cone. We will consider the isometric action generated
by es on C 4

K
and will distinguish two cases.

(Irrational) There exists at least one nonclosed orbit.

(Rational) All orbits of the action are closed.

Proposition 3.9 If at least one of the orbit of the es action on C 4
K

is nonclosed then
C 4

K
is isometric to the product of two 2–cones.

Consider the group of isometries of C 4
K

preserving its origin. This is a compact Lie
group, and the field es generates its subgroup isomorphic to R1 (because at least one
orbit of the action on S3 is nonclosed). The closure of this subgroup in the group of
isometries is a compact connected Abelian group, ie, a torus of dimension at least two.
Thus we have a faithful action of T 2 on C 4

K
by isometries.

Let us show that the branching locus of the enveloping map E of C 4
K

is contained in
the union of two orthogonal lines in C2 . Indeed, T 2 is acting on C 4

K
and this action

induces an action of R2 on C2 equivariant with respect to E and fixing the point
E.0/ in C2 . This action factors through the standard action of T 2 on C2 and it leaves
invariant two orthogonal lines L1 and L2 through E.0/. The branching locus of E is
a union of lines trough E.0/ invariant under T 2 action. Thus the map

EW E�1.C2
nL1[L2/!C2

nL1[L2

is a covering map. It follows that C 4
K

is isometric to a product of two 2–cones.

Theorem 1.7 holds for PK cones isometric to the direct product of two 2–cones (see
the example above). So the first case of the theorem is proved. To treat the second case
we will study the action of es on the unit sphere S3 of C 4

K
(S3 it the set of points

lying at distance 1 from the origin). This action is isometric and we suppose this time
that all orbits are closed.

Lemma 3.10 Suppose that all orbits of the action of es on S3 are closed. Then
there exists ˛ > 0 such that all orbits except at most two have period 2�˛ , and the
exceptional orbits have periods 2�˛=p , 2�˛=q , where p and q are coprime numbers.
Moreover the action is conjugate to the action .z; w/! .ei�pz; ei�qw/, � 2R=2�Z
on the unit sphere in C2 , jzj2Cjwj2 D 1.
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Proof This lemma is standard and follows essentially form the fact that es is acting
on S3 by isometries, we will just indicate the proof. It is sufficient to show that the
action induces on S3 the structure of a Seifert fibration, in particular all orbits apart
from a finite number have period 2�˛ and the periods of all exceptional orbits divide
2�˛ . Then the lemma follows from the classification of Seifert fibrations on S3 .

Let o be an orbit of es on S3 , denote by 2�˛1 its length. Consider the flow on
S3 generated by es in time 2�˛1 . It is identical on o and induces a self-map on an
invariant slice transversal to o. This self-map of the slice is an isometry and it has
finite period n (otherwise there exist orbits of es that are not closed). It follows that the
flow generated by es in time 2n�˛1 induces the identity map on S3 thus the period
of every orbit divides 2n�˛1 . Since every orbit has a neighborhood where all other
orbits have period 2n�˛1 , the number of exceptional orbits is finite.

Now, we are ready to give the proof of Theorem 1.7 in the second case. Note first
that since the field es defines an S1 action on C 4

K
, the field e D er C ies defines a

holomorphic C� action on C 4
K
n 0.

Suppose first that all orbits of the action of S1 on S3 have the same length, ie, the
pair .p; q/ from Lemma 3.10 is .1; 1/. Then the quotient space .C 4

K
n 0/=C� is a

complex curve homeomorphic to S2 , hence it is CP1 . Thus C 4
K
n0 is isomorphic to a

holomorphic C� fibration over CP1 . This fibration can be completed in a unique way
to a line bundle by adding the zero section. The completed line bundle has first Chern
class �1, (indeed, the associate S1 bundle is homeomorphic to the Hopf fibration
of S3 ). We conclude that C 4

K
n 0 can be identified with C2 n 0 and the Euler field has

the form .1=˛/z.@=@z/C .1=˛/w.@=@w/.

Consider now the case 2�p<q . Let us reduce it to the case .p; q/D .1; 1/. According
to Lemma 3.10 there are two orbits of the action of S1 on S3 of lengths 2�.˛=p/ and
2�.˛=q/. Consider the corresponding orbits Op and Oq of the action of C� on C 4

K
.

It follows from Lemma 3.10 that the triple .C 4
K
;Op;Oq/ is homeomorphic to a triple

.C2;C1;C1/ composed of a complex plane and two transversal lines. Thus there exists
a unique ramified covering of the cone C 4

K
by another polyhedral Kähler cone eC 4

K
of

degree pq that has ramifications of orders p over Op and q over Oq . It is easy to see
that constructed cone eC 4

K
has type .1; 1/ and that there are holomorphic coordinates

.x;y/ on eC 4
K

such that the Euler field equals .1=˛/x.@=@x/C .1=˛/y.@=@y/. The
holomorphic coordinates on C 4

K
will then be z D xp; w D yq and the Euler field is

e D .p=˛/z.@=@z/C .q=˛/w.@=@w/.

Definition 3.11 The coordinates z and w constructed above are called linear coordi-
nates of a PK cone. A PK cone is called rational of type .p; q; ˛/ (p; q2N ) if its Euler
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field is equal to eD .p=˛/z.@=@z/C.q=˛/w.@=@w/ in the linear coordinates. The num-
ber ˛ is called the conical angle of the cone. A cone is called irrational of type .˛1; ˛2/,
.˛1=˛2/ 2R=Q, if its Euler field is equal to e D .1=˛1/z.@=@z/C .1=˛2/w.@=@w/.

Remark 3.12 For a rational polyhedral Kähler cone of type .p; q; ˛/, all the orbits
of the Euler field action are given by the equations .zp=wq/D const. These curves
are flat with respect to the PK metric and all of them (except the curves z D 0; w D 0)
have the same conical angle at 0 equal to 2�˛ .

The proof of the following corollary is contained the second part of the proof of
Theorem 1.7.

Corollary 3.13 For a polyhedral Kähler cone C1 of type .p; q; ˛/ there exists a
unique cone C2 of type .1; 1; ˛/ with a holomorphic map f W C2! C1 of degree pq

that is a local isometry outside the branching locus.

Finally, we describe all PK cones whose singular locus is a union of two lines in linear
coordinates.

Lemma 3.14 Let C 4
K

be a PK cone with linear coordinates .z; w/ and such that the
singular locus is the union of the lines z D 0 and w D 0. Then either C 4

K
is isometric

to the product of two 2–cones, or the metric on C 4
K

is the pullback of a constant metric
on C2 under the map C2!C2 , .z; w/! .zn; wm/.

Proof We can suppose that C 4
K

is a rational cone, irrational case is treated by Proposi-
tion 3.9. Using Corollary 3.13 we can assume that the cone is of type .1; 1/, ie, conical
angles at the lines z D 0 and w D 0 are both equal 2�˛ . Now, consider two cases.

(1) ˛ is not integer. Fix a nonsingular point x in C 4
K

and consider the holonomy of
the metric based at x . This holonomy is generated by two commuting operators Hz

and Hw corresponding to two pathes around lines zD 0 and wD 0 (both operators are
nontrivial, since ˛ is non integer). Then on C 4

K
n fzw D 0g we have two holomorphic

rank 1 subbundle of T C 4
K

invariant under parallel translation and orthogonal at every
point.

Consider the enveloping map EW C 4
K
!C2 . Invariant subbundles are mapped by E

to constant orthogonal subbundles of T C2 . It is clear that the ramification locus is
composed of two lines through E.0/, tangent to one of the constant fields. These lines
are orthogonal and so C 4

K
is a direct product of two 2–cones.

(2) ˛ is integer. Then it is clear that the enveloping map from C 4
K

is in fact not
multivalued but is a finite degree ramified covering of C2 with ramifications of degree
˛ at the lines z D 0, w D 0. Moreover, the images of both lines are lines in C2

containing E.0/, so we are in the second case described by the lemma.
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3.3 4R PK cones and 2R spheres with conical points (proofs of Theorems
1.8 and 1.9)

We start the proof of Theorem 1.8 and associate to every PK cone of type .1; 1; ˛/ a
metric on a sphere S2 , of curvature 4, having conical singularities.

Denote by S3 the unit sphere around the origin of the cone and by S2 the quotient
of S3 by the action of es . Locally, outside the singularities, the action of es on S3

is isometric to the action of the Euler field on the standard (nonsingular) unit sphere.
Therefore, locally, outside the singularities, the quotient metric on S2 is isometric to
the quotient of the standard (nonsingular) sphere by es . The last quotient obviously has
curvature 4. The singularities of the cone correspond to the conical points on S2 .

Lemma 3.15 Let � be a contractible domain on the standard sphere S2 of curvature 4

(without conical points). Then, for any positive l , there is a unique metric g of
curvature 1 on ��S1 with the following properties: All the fibers of the product are
geodesics of length l ; there is an action of S1 on ��S1 by isometries; the quotient
metric on � coincides with the original one.

Proof Let �W S3!S2 be the standard Hopf fibration. The universal cover of ��1.�/

is diffeomorphic to ��R, and R acts on it by parallel translations. The quotient of
��R by the subgroup lZ of R induces on ��S1 the metric we are looking for.

There is a natural connection r on the fibration ��R!�. Its horizontal distribution
is given by the planes orthogonal to the fibers. The following lemma is standard and
we omit the proof.

Lemma 3.16 The holonomy of the connection r along a closed curve 
 �� is equal
to the parallel translation by 2 area.
 /, where area.
 / is the algebraic area bounded
by 
 .

Now, let S2 be a sphere with a metric of curvature 4 with conical points. We will
associate to it a PK cone of type .1; 1/.

First, we reconstruct the sphere S3 of curvature 1 (with singularities) that fibers over
S2 . Cut S2 by geodesic segments with vertices at all the conical points, in order to
obtain a contractible polygon P . This polygon can be immersed into the standard
sphere of curvature 4 by the enveloping map. Consider the fibration over P from
Lemma 3.15 with length l D 2area.P /. The holonomy of the fibration along the border
of P is trivial (by Lemma 3.16 the circle S1 makes one full rotation). This means
that the original gluing of P , which gives S2 with conical points, can be lifted to a
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gluing of P � S1 . To construct such a gluing, we choose a horizontal section s of
P �S1 over the boundary of P and identify .x; s.x// with .y; s.y// whenever x and
y are identified by the gluing of P . Since the border circle turns once, we obtain the
sphere S3 .

Now, consider the space RC�S3 with the metric .dr/2C r.ds/2 , where r 2RC and
.ds/2 is the metric constructed on S3 . This space is a PK cone of type .1; 1/.

The general case The 2–sphere with conical and marked points associated to the PK
cone is given by the metric quotient of the unit sphere in the PK cone by the action of
the field es . The marked points correspond to the multiple orbits.

Let S2 be a sphere of curvature 4 with conical points two of which, x and y , are
marked. Let us construct for every 1 < p < q the corresponding .p; q/–cone. Take
first the .1; 1/–cone C associated to the sphere S2 constructed above. Denote by lx
and ly the preimages of x;y � C under the projection to S2 . Consider the ramified
covering of degree pq over C with the branchings of orders p over lx and of q over
ly . This is the .p; q/–cone we are looking for.

Proof of Theorem 1.9 Consider the case of PK cones of type .1; 1; ˛/. Let S2 be the
quotient sphere associated to the cone. It has n conical points of angles 2�ˇ1; : : : ; 2�ˇn

and its area is given by the Gauss–Bonnet formula:

area.S2/D
1

4

�
4� C

X
i

2�.ˇ� 1/

�
:

From Lemma 3.16 it follows 2�˛ D 2area.S2/. This proves the theorem for .1; 1; ˛/
singularities. Singularities of other types are treated in a same way using Corollary
3.13.

3.4 PK metrics on singular piecewise linear spaces

Definition 1.1 can be naturally extended to the following class of PL manifolds with
singularities. We call a 4–dimensional topological space with a simplicial decompo-
sition a PL–manifold up to codimension 2 if every 3–simplex is a border of exactly
two 4–simplices. A compatible choice of flat metric on the 4–simplices of such a
space defines a polyhedral metric on it. Obtained metric has singularities only in
codimension 2 and we can repeat Definition 1.1 saying that this metric is a PK metric
if its holonomy is contained in U.2/ and all singular 2–faces of conical angles 2�k

(k � 2) have holomorphic directions. A space with such a structure is called a singular
PK manifold.
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Most of the theorems of this section about (nonsingular) 4R dimensional PK manifolds
can be restated for singular 4R dimensional PK manifolds. In fact, these singular
manifolds are complex surfaces with isolated singularities. We will formulate the result
but will skip the proof.

Theorem 3.17 For a singular PK manifold of dimension 4R its complex structure
defined outside singularities can be extended to the whole singular manifold. Obtained
complex space is a complex surface with isolated singularities. In the neighborhood of
every isolated singularity there is a natural holomorphic field e D er C ies such that
the (real) field er acts by dilatation of the metric and the (real) field es generates an
action of S1 by isometries.

4 Polyhedral Kähler metrics via logarithmic connections

For every PK surface S the PK metric induces on T .S n sing/ a holomorphic, flat,
unitary, torsion free connection. This connection extends to a meromorphic connection
on TS with first order poles at the singular locus. In this section we will write explicit
formulas of PK connections in linear coordinates z; w on 2–dimensional PK cones.
We also give a condition for a unitary connection on the tangent bundle of a complex
surface that implies that the corresponding metric on S is PK.

4.1 Definitions and first results

Let M be a complex manifold and D be a normal crossing divisor. A meromorphic
1–form ! on M is called logarithmic with respect to D if it is holomorphic on M nD ,
and in a neighborhood of any point of D it can be represented as

! D

kX
iD1

fi
dzi

zi
C

nX
iDkC1

fidzi ;

where fi are holomorphic functions, zi are local coordinates, and D is given locally
by the equation

D D

k[
iD1

fzi D 0g:

The sheaf of logarithmic 1–forms is denoted by �1.logD/.

Let E be a holomorphic vector bundle over M . A meromorphic connection r on E

is called logarithmic (with respect to D ) if it can be written in local coordinates as

r D d CA;
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where A is a �1.logD/–valued section of End.E/.

For any irreducible component Di of D we denote by ResDi
.r/ the residue of r

with respect to Di , it is a holomorphic section of End.E/jDi
.

The following proposition is standard, the proof can be found in Section 4 of the article
of Malgrange in [1].

Proposition 4.1 Let r be a flat logarithmic connection on .M;Ek/ with poles at a
normal crossing divisor D . Suppose that all eigenvalues of ResD.r/ are contained in
�� 1; 0�.

For a point x 2 D chose local coordinates zi such that Di is given by
S

ifzi D 0g.
Then there exists a neighborhood U of x and holomorphic sections s1; : : : ; sk of Ek

giving a trivialisation of Ek over U and such that in this trivialisation r is given by

r D d C
X

i

Bi
dzi

zi
;

where Bi are constant matrix-valued functions.

Definition 4.2 For a complex manifold M and a meromorphic connection r on TM

its torsion is a meromorphic section of �2.M /˝TM . It is given by the following
formula:

T .u; v/Dru.v/�rv.u/� Œu; v�;

u; v 2 TM . A connection with zero torsion is called torsion-free.

Now, we will restrict our attention to connections on the tangent bundles of surfaces.
Let S be a surface with a weighted arrangement of curves .�j ; ǰ / and let x1; : : : ;xk

be the points of the arrangement of multiplicity at least 3.

Definition 4.3 We say that a meromorphic connection r on TS is partially adapted
to .�j ; ǰ / if r is logarithmic on Snfx1; : : : ;xkg, Res�j

r has eigenvalues . ǰ�1; 0/

at �j , and T�j Š ker.Res�j
r/.

Lemma 4.4 On every PK surface S the PK connection is partially adapted to the
weighted arrangement of S .

Proof The statement of the lemma clearly holds at smooth points of the singular locus
of S , because they can be embedded isometrically in the product of C with a 2–cone.
At the same time the connection on the 2–cone is logarithmic and has residue ˇ� 1

where 2�ˇ is the cone angle.
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From the description of double points of the singular locus (Lemma 3.14) it follows
that the connection is also logarithmic at these points. Indeed, the connection on the
direct product of two 2–cones is logarithmic, and for the second type of cones that are
branched covers of C2 one can change the metric without changing the connection to
make these cones also direct products.

Lemma 4.5 Let S be a complex surface with a weighted arrangement .�j ; ǰ /,
ǰ ¤ 1. Suppose that r is partially adapted, then its torsion is holomorphic.

Proof By Hartog’s theorem it is sufficient to show that the torsion of r is holomorphic
outside of the multiple points of the arrangement �j . So it is sufficient to consider the
case of a connection on C2 with a pole at the line z D 0. Chose locally the second
coordinate w in such a way that the residue of r is given by the formula

ReszD0r D

�
ˇ� 1 0

0 0

�
:

In this case the connection r can be written as

(4-1) r D d C
dz

z
ReszD0r CA;

where A is holomorphic. This proves the lemma.

Corollary 4.6 Suppose that �.�1
S
/ D 0, ie, there is no nontrivial holomorphic 1–

forms on S . Then the torsion of r is identically zero.

Proof The torsion of a meromorphic connection on the tangent bundle to a complex
manifold X is a section of �2

X
˝ TX . In the case when X is a two-dimensional

complex surface S the bundle �2
S
˝TS is two-dimensional and isomorphic to the

bundle of holomorphic 1–forms �1
S

. Thus on S any holomorphic section of �2
S
˝TS

is identically zero.

4.2 Formulas for connections on .1; 1/ cones

In the following proposition we describe the connection of a PK metric in a neighbor-
hood of a singular point of type .1; 1/.

Proposition 4.7 Consider a PK cone of type .1; 1; ˛/ with linear coordinates z; w .
For i D 1; : : : ; n let l1 D 0; : : : ; ln D 0 be the equations of the singular lines of the
cone. Let 2�ˇi be the conical angle at li D 0. Then the following holds:
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(1) The residue Resli
r of r at li is given by a constant matrix-valued function Ai

and the connection r is given by the following formula:

(4-2) r D d CAD d C

nX
iD1

Ai
dli

li
:

(2) The residues Ai satisfy the following equations:

(4-3) .a/
nX

iD1

Ai D .˛� 1/IdI .b/ tr.Ai/D ˇi � 1I .c/ fli D 0g D ker.Ai/:

Proof of Proposition 4.7(1) We prove first that the residue of r is constant at any li .
Indeed, the action of C� on the cone changes the PK metric by a scalar factor, thus
this action preserves the connection r . For any c 2C� we have

A.cz; cw/DA.z; w/;

ie, the residue Resli
.r/ is constant on li .

Consider now the following connection r 0 on C2 :

r
0
D d C

X
i

Resli
.r/ �

dli

li
:

We claim that r 0 Dr . Indeed, the matrix-valued 1–form r 0�r has no poles at the
lines li thus it is holomorphic on C2 . Moreover this 1–form is preserved by the C�

action, ie, it is identically zero.

Next lemma is essential for the proof of Proposition 4.7(2).

Lemma 4.8 For the Euler field e of the PK cone we have

ree D e:

Proof It is sufficient to check this identity for the flat C2 .

Proof of Proposition 4.7(2) Let us prove (4-3)(a). The Euler field e on the PK cone
is given by

e D
1

˛

�
z
@

@z
Cw

@

@w

�
:

We have

ree D de.e/C

nX
iD1

Ai.e/
dli

li
.e/D

1

˛
eC

nX
iD1

1

˛
Ai.e/D e:
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This means that
Pn

iD1 Ai.e/D .˛� 1/e , ie, AD .˛� 1/Id.

Statements (4-3)(b)–(c) are proven in Lemma 4.4.

Remark 4.9 For i D 1; : : : ; n let li be lines in C2 containing the origin and let ˇi

be complex numbers. Then the space of matrixes Ai satisfying (4-3) has dimension
.n� 3/. Next formula gives the unique connection for nD 3 with poles at the lines
z D 0, w D 0, zCw D 0:

r D d C

 
.ˇ1� 1/dz

z
C
ˇ2Cˇ3�ˇ1�1

2
dzCdw

zCw
ˇ2Cˇ3�ˇ1�1

2
.dzCdw

zCw
�

dw
w
/

ˇ1Cˇ3�ˇ2�1
2

.�dz
z
C

dzCdw
zCw

/ ˇ1Cˇ3�ˇ2�1
2

dzCdw
zCw

C .ˇ2� 1/dw
w

!
:

Proposition 4.10 Any connection r on C2 given by formula (4-2) with the matrices
Ai satisfying (4-3) is flat, torsion-free and thus it defines a singular affine structure
on C2 .

Proof Since dAD 0 the curvature of r is given by

dACA^ADA^A:

We need to prove that A^AD 0. Writing

Ai D

�
ai bi

ci di

�
;

then the equation A^AD 0 is equivalent to the following system:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

X
i

ci
dli

li
^

X
i

bi
dli

li
D 0X

i

bi
dli

li
^

X
i

.ai � di/
dli

li
D 0X

i

ci
dli

li
^

X
i

.ai � di/
dli

li
D 0

For the first equation we haveX
i

ci
dli

li
^

X
i

bi
dli

li
D d log

�Y
i

l
ci

i

�
^ d log

�Y
i

l
bi

i

�
:

Function f1 D log.
Q

i l
ci

i / and f2 D log.
Q

i l
bi

i / are homogeneous of degree 0 on
C2 (since

P
ci D

P
bi D 0 by (4-3)(a)). It follows that df1^df2 D 0. The next two

equations are completely analogous.
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Now we show that A is torsion free. We have

T

�
@

@z
;
@

@w

�
D

nX
iD1

dli

li

�
@

@z

�
Ai

�
@

@w

�
�

dli

li

�
@

@w

�
Ai

�
@

@z

�

D

nX
iD1

1

li
Ai

�
@li

@z

@

@w
�
@li

@w

@

@z

�
D 0:

The last equality holds by (4-3)(c).

Connection on the blow-up

Lemma 4.11 Let r be a connection on C2 given by formula (4-2) with the matrices
Ai satisfying (4-3). Consider the blow-up of C2 at .0; 0/, take the pullback of the
tangent bundle of C2 to the blow-up, and consider on it the pullback of r . The obtained
connection is logarithmic and its residue at the exceptional curve is .˛� 1/Id.

Proof Let us introduce coordinates u; v on the blow-up u D .z=w/, v D w . The
exceptional line is given by vD 0. Let li D sizC tiwD siuvC tiv . Then the pullback
connection is given by

r D d C

nX
iD1

Aid.logli/D d C

nX
iD1

Ai

�
d.logv/C d.log.siuC ti//

�
D d C .˛� 1/Id � d.logv/C

nX
iD1

Ai � d.log.siuC ti//:

Here we use Equation (4-3)(a). This proves the lemma.

4.3 Unitary flat logarithmic torsion free connection 7! PK metric

In this subsection we consider only arrangements .S; �j / that satisfy the property that
�j are smooth and transversal. We give a sufficient criterion for such an arrangement
to be the singular locus of a PK metric in terms of an adapted connection. Singularities
of such an arrangement are normal crossings or singularities of type .1; 1/.

Definition 4.12 Let r be a connection partially adapted to .S; �j ; ǰ /. Suppose that
�j are smooth and intersect transversally. Consider the blow up � W zS!S at all points
xi of multiplicity at least 3. r is adapted to .�j ; ǰ / if the pullback connection ��r
on ��TS is logarithmic on zS and its residue at the exceptional curve over xi equalsP

j dij . ǰ � 1/Id.
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Theorem 4.13 Let .S; �j ; ǰ ;xi/ be a weighted arrangements of curves and r be an
adapted flat, unitary, torsion free connection on TS . Suppose that 0< ǰ < 1 and for
every xi ,

P
j dij . ǰ � 1/ > �2. Then the unitary metric on TS corresponding to r

is a PK metric.

Proof Note first that since r is unitary, flat, and torsion-free, the metric g corre-
sponding to r is flat on the complement to the curves �j . So to prove that g extends
to a PK metric on S it will be sufficient to show the following 3 properties of g .

(a) For any smooth point of � there is a neighborhood U with U n� isometric to
the direct product of a flat punctured 2–cone and a flat disc.

(b) For any double point of � there is a neighborhood U with U n� isometric to
the direct product of two flat punctured 2–cones.

(c) For any point of � of multiplicity greater than 2 a neighborhood of the point is
isometric to a 2C –dimensional PK cone.

The proofs of (a) and (b) are similar so we will prove only (b) and (c).

Proof of (b) Introduce coordinates z; w in a neighborhood of the double point such
that � is locally given by zwD 0. According to Proposition 4.1 there exist two sections
s1 and s2 such that the connection r is given by

r D d CB1

dz

z
CB2

dw

w
;

where B1 and B2 are constant and commuting. Making an additional linear change
in s1; s2 we can suppose that B1.s1/ D 0 and B2.s2/ D 0. It is clear then that the
subbundles of the tangent bundle generated by s1 and s2 are invariant under r and
moreover the vector field s1 is tangent to the line w D 0 and s2 is tangent to the line
zD 0. Since r is torsion free the integral curves of s1 and s2 are flat cones. So we can
deduce that locally the neighborhood of .0; 0/ is the direct product of two 2–cones.

Proof of (c) Let 0 be a point of � of multiplicity greater than 2. From (a) it follows
that the metric g extends continuously to any punctured curve �j n 0, thus we obtain
a polyhedral Kähler metric on U n 0. It is necessary to show further that g extends
to 0 and the resulting metric on U is a polyhedral Kähler metric. To show this it is
sufficient to construct the action of C� on U n 0 by dilatations, ie, R� must act by
dilatations of the metric and S1 must act by isometries.

Geometry & Topology, Volume 13 (2009)



2232 Dmitri Panov

Construction of the C� action on U n 0 Consider the holonomy representation of
the group �1.U n�;x/ in the group U.2;C/Ë C2 of unitary affine transformations
of C2 :

Holr W �1.U n�;x/! U.2;C/Ë C2:

The linear part of this representation is denoted by holr . Denote by c the generator
of the center of �1.U n�;x/ corresponding to an anti-clockwise path around 0 in a
complex line through 0. From condition (2) of Definition 4.12 it follows that

holr.c/D exp
�

2� i
X

j

. ǰ � 1/

�
Id:

We see that the affine transformation Holr.c/ is a complex rotation of C2 around
some point y on angle 2�

P
j . ǰ � 1/.

Since any element h of �1.U n �;x/ commutes with c , the affine transformation
Holr.h/ fixes the point y . It follows that the representation Holr.c/�1.U n �;x/

commutes with the affine action of C� on C2 , given by complex dilatations that fix y .
We deduce that the action of C� can be pulled back to the action of C� on U n 0.

Remark 4.14 The condition ǰ < 1 in this theorem can be replaced by the condition
ǰ … ZC but we don’t prove this here.

5 Topological relations on the singular locus

In this section we prove Theorem 1.11. We use a formula of Ohtsuki [15].

Theorem [15] Let S be a compact surface and E be a holomorphic vector bundle on
it. Let DD

S
j Dj be a normal crossings divisor on S and r a logarithmic connection

on E with poles at D . Denote by yk the double points of D and by Dk1
and Dk2

the
irreducible components of D containing yk . We also use the notation Rj D ResDj

.r/.
The following identities hold:

c1.E/D�
X

j

Tr.Rj /Dj ;(5-1)

c2.E/D
X

k

�
Det.Rk1CRk2/�Det.Rk1/�Det.Rk2/

�
.yk/(5-2)

C

X
j

Det.Rj /Dj �Dj :

Note that the value of the first summand is defined only at yk but the function Det.Rj /

is defined on the whole divisor Dj and is constant on it.
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5.1 Proof of Theorem 1.11, Equations (1-1) and (1-2)

Lemma 5.1 For any j ¤ k we have

(5-3) �j ��k D Bjk C

X
i

.piqi/.dij dik/:

Proof This formula expresses the intersection index of �j and �k as a sum of local
multiplicities of their intersections. By definition Bjk is the number of transversal
intersections of �j and �k . The local multiplicity of the intersection of �j and �k

at xi equals .piqi/.dij dik/. Indeed, the local multiplicity of the intersection of the
curves czq Dwp and zq Dwp at 0 equals pq if 1¤ c ¤ 0; the local multiplicities
of intersection of zq D wp with lines z D 0 and w D 0 are equal to p and q

correspondingly. Now everything follows from the definition of dij and dik .

Proof of Theorem 1.11, Equation (1-1)

The Gauss–Bonnet theorem for flat surfaces with conical singularities implies

2g.�j /� 2D
X
k¤j

Bjk.ˇk � 1/C
X

i

.dij˛i �
zdij /:

This formula expresses the Euler characteristics of �j as the sum of the defects of the
conical points of �j . The first sum contains the contribution of the normal crossings
of �j and the second sum contains the contribution of the singularities xi .

Now, using Theorem 1.9, we obtain the following expression for the right term of the
previous equation:X

k¤j

Bjk.ˇk � 1/C
X

i

�
dij

piqi

2

X
k

dik.ˇk � 1/C dij
pi C qi

2
� zdij

�
:

Using Lemma 5.1, this equalsX
k¤j

Bjk

ˇk � 1

2
C

X
k

�j ��k

ˇk � 1

2
��j ��j

ǰ � 1

2
C

C

X
i

piqi

2
.dij /

2. ǰ � 1/C
X

i

�
dij

pi C qi

2
� zdij

�
:

Using relation (1-2), this becomesX
k

Bjk

ˇk � 1

2
C

KS ��j

2
C

X
i

�
dij

pi C qi

2
� zdij

�
:

This proves Theorem 1.11, Equation (1-1).
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Proof of Theorem 1.11, Equation (1-2) Let S be a PK surface and .�j ; ǰ ;xi/ be
the corresponding weighted arrangement. By Lemma 4.4 the corresponding connec-
tion r on TS is logarithmic on S n

S
i xi . Furthermore r induces a flat connection

rK on KS logarithmic on S n
S

i xi , and with residue 1 � ǰ at �j . Consider a
resolution of singularities of � on S , pW S 0 ! S such that p�.�/ is a curve with
normal crossing singularities. It is not hard to show that the pullback connection p�rK

on the pullback line bundle p�KS is logarithmic on the whole S 0 . To prove the
statement of the theorem it is sufficient to show that

p�ŒKs ��
X

j

. ǰ � 1/p�Œ�j �D 0 2H2.S
0/:

Now notice that by (5-1) this homology class is expressed as a combination of homology
classes of exceptional divisors (since the residue of p�rK at p��j is .1� ǰ /). But
since at the same time this class is a pullback from S it must vanish.

5.2 Proof of Theorem 1.11, Equation (1-3)

Consider a PK surface S with the weighted arrangement .�j ; ǰ Ixi ; ˛i/ such that
all multiple points of the arrangement are either normal crossings or singularities of
type .1; 1/. Let Sb be the blow-up of S at the points xi and let � W Sb ! S be the
blow-down. Denote by Pi the exceptional curve over xi and denote by ��j the proper
transform of �j . Consider the pullback �r of the PK connection r to ��.TS/. By
Lemma 4.11 �r is logarithmic with poles at the divisor

S
i Pi

S
j
��j (further we call

this divisor by D ), and the residue of �r at Pi is equal to .˛i � 1/Id.

Proof of Theorem 1.11, Equation (1-3) According to (5-2) the number c2.�
�TS/

can be expressed as the sum of the contributions of the irreducible components of D

and the sum over their pairwise intersections. The first sum is the following:X
i

Det.ResPi
�r/Pi �Pi C

X
j

Det.Res��j

�r/��j �
��j D�

X
i

.˛i � 1/2:

Here we use Det.Res��j

�r/D 0.

The sum of the contributions of the double points on Pi is the following:

.˛i � 1/
X

j

dij . ǰ � 1/D 2.˛i � 1/2:
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Any intersection of ��j with ��k contributes . ǰ � 1/.ˇk � 1/ thus the sum over all
intersections of curves ��j is given byX

j>k

Bjk. ǰ � 1/.ˇk � 1/:

Finally, taking the sum of all contribution we obtain

c2.TS/D c2.�
�.TS//D

X
i

.˛i � 1/2C
X
j>k

Bjk. ǰ � 1/.ˇk � 1/:

5.3 Line arrangements in CP 2

In this subsection we consider weighted arrangements of lines on CP2 that satisfy
Equations (1-1)–(1-3). Let .L1; ˇ1I : : : ILn; ˇn/ be such an arrangement. Any singu-
larity of this arrangement is either a normal crossing or a .1; 1/–type singularity. So
Equations (1-1) and (1-2) simplify and take the form:X

k

Bjk.ˇk � 1/D�1;
X

k

.ˇk � 1/D�3:

Here by definition the number Bij .i ¤ j / is equal to 1 if the point of the intersection
of Li and Lj is a double point (ie, other lines of the arrangement don’t contain it)
and Bij D 0 otherwise. The number .Bjj C 1/ is equal to the number of points of
multiplicity at least 3 on the line Lj .

Symmetric case Consider the most symmetric case when all angles ǰ are equal.
Then we have

ǰ � 1D�
3

n
;

X
k

Bjk D
n

3
:

The number
P

k Bjk C 1 is equal to the number of all intersections of Lj with other
lines. Thus we obtain the following condition:

The arrangement contains 3m lines and any line intersects the other lines exactly at
mC 1 points (mD n=3).

One can show that such arrangements satisfy as well Equation (1-3). These arrange-
ments were considered first by Hirzebruch in [7] and we recall several examples (all
arrangements apart from the first one are PK).

(1) (3 lines) A generic configuration of 3 lines on CP2 .

(2) (6 lines) The configuration of 6 lines x�y D 0, x˙ z D 0, y˙ z D 0 z D 0.
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(3) (3.mC1/ lines, m> 1) Consider the ramified covering of CP2 by itself given
by .x W y W z/! .xm W ym W zm/. The preimage of the configuration of 6 lines is
an arrangement of 3.mC 1/ lines and any line has mC 2 intersections with the
other lines.

(4) (Hesse arrangement) Consider a nonsingular cubic in CP2 . It has 9 points of
inflections. There exist 12 lines in CP2 that intersect the cubic exactly at the
points of inflections.

Criterion There exists one geometric condition that often permits to decide quickly
that a given line arrangement is not PK.

Proposition 5.2 Every PK arrangement .Lj ; ǰ / in CP2 satisfy the following cri-
terium. For every Lj there exists a point in CP2 that belongs to all lines Lk such that
Lk \Lj is a double point of the arrangement.

Proof Consider the subbundle of T CP2jLj
of directions orthogonal to Lj with

respect to PK metric (these directions are eigenvectors of the residue map ResLjr ).
This subbundle is holomorphic outside of the multiple points of the arrangement and it
extends holomorphically on the whole line Lj . Indeed, at double points the PK metric
is a direct product of two 1–cones, and at every point of multiplicity more than 2 the
eigenvectors of ResLjr are constant in the local linear coordinates (Proposition 4.7).
The defined subbundle of T CP2jLj

is transversal to Lj and so it has degree 1. It
follows that there exists a point yj in CP2 such that this subbundle of T CP2jLj

is
given by directions tangent to the lines through yj . This proves the proposition.

5.4 Limit PK arrangements with a cusp

Definition 5.3 An arrangement of lines on RP2 is called simplicial if it subdivides
RP2 in triangles.

Simplicial arrangements often occur as solutions to some extreme (combinatorial)
problems (see Grünbaum [6]) and so it is not very surprising that some of simplicial
arrangements are PK (PK arrangements give an extremum for the Bogomolov–Gieseker
Inequality (1-5) in Theorem 1.12). For the moment 3 infinite families of simplicial
plane arrangements and 91 sporadic examples are know; 90 sporadic examples are
listed by Grünbaum in [5] and one additional in [6]. It will be interesting to find out
what sporadic arrangements are PK, the criterium from Proposition 5.2 rules out some
of them.
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For three infinite series of arrangements from [5] there exists a system of weights such
that all equalities of Theorem 1.11 and Theorem 1.12 are satisfied. The first series is a
union of a pencil of n lines and a line that does not belong to the pencil. For this series
the weight of the line should be 0 and the weights of the lines from the pencil can be
arbitrary (but we impose of course

P
j . ǰ � 1/D�3). Second series is called R2k

and consists of the lines formed by extending the sides of a regular k –gon together
with an additional k lines formed be the axes of symmetry of the k –gon. We associate
to the axes weight .k � 1/=k and to the sides weight .2k � 1/=.2k/ (the choice of
wights is unique for k > 3). The third series R4kC1 is the union of R4k with the line
at infinity of weight 1. We see that for the point of the highest multiplicity of these
arrangements the inequality

P
j dij . ǰ � 1/ > �2 does not hold strictly but instead of

this the equality holds. So these arrangements are not PK. We conjecture instead that
there is a different geometric structure related to these arrangements.

Definition 5.4 A weighted arrangement .Lj ; ǰ / in CP2 is called a limit PK ar-
rangement with a cusp if it satisfies all conditions of Theorem 1.12 apart from one
inequality. We impose that there is a multiple point x of the arrangement called the
cusp such that

P
j jx2Lj

. ǰ � 1/D�2.

Arrangements R2k satisfy this definition, R4kC1 and a pencil of lines plus a line
formally don’t satisfy (because the first arrangement has a line of weight 1 and the
second has a line of weight 0). But the following should hold for all 3 series.

Conjecture 5.5 For every limit PK arrangement with a cusp there exists a flat torsion-
free connection on CP2 with holonomy in the upper triangular subgroup of SL.2;C/
and with the poles of residues .0; ǰ � 1/ at the lines Lj . This connection should
preserve the sub–line bundle of T CP2 tangent to the pencil of lines through the cusp
of the arrangement.

For a pencil of lines plus a line the connection on CP2 should be given by a formula
from Proposition 4.10. Here CP2 is the completion of C2 , the line at infinity belongs
to the arrangement and has weight ˇ D 0.

If Conjecture 5.5 holds it should be possible to deduce that limit PK arrangements
with a cusp satisfy the following restrictive properties.

Conjectural properties For every multiple point y of the arrangement the line Œx;y�
belongs to the arrangement (here x is the cusp). If mult.y/� 3 then sum of the defects
of the lines Lj that contain y but don’t contain x equals the defect of the line Œx;y�.
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It will be very interesting to classify all weighted arrangements that satisfy the two
conjectural properties (they hold for R2k and R4kC1 ). This will help to classify
nonrigid PK arrangements for which the admissible collection of weights ǰ have
moduli. Of course the weights ǰ belong to a certain open polyhedron and the weights
corresponding to limit PK arrangements can appear on the boundary of the polyhedron.

6 Parabolic bundles and Kobayashi–Hitchin correspondence

The goal of this section is to recall the notion of parabolic bundles and to formulate in a
handy way several results from Mochizuki [13] that we use in the proof of Theorem 1.12.
In particular we formulate the parabolic version of Kobayashi–Hitchin correspondence
from [13]. A systematic and thorough treatment of parabolic bundles can be found in
Iyer and Simpson [8]. Parabolic Chern character is also defined in [8] (but we will not
use it here). We adopt partially the notation of these articles.

We will discuss only parabolic bundles on complex surfaces. A good reference for
usual two-dimensional bundles on surfaces is Friedman [4].

Definition 6.1 Let X be a complex surface and D be a simple normal crossing divisor
with the irreducible decomposition D D

S
i2S Di . A parabolic bundle E� on X

is given by a bundle E with a collection of increasing filtrations by subsheaves F i
a ,

indexed by i 2 S , a 2�0; 1� and satisfying the following properties:

(1) Every subsheaf F i
a is locally free.

(2) E.�Di/� F i
a.S/ for any a 2�0; 1�.

(3) The sets fa j F i
a.E/=F

i
<a.E/¤ 0g are finite for any i in S .

Remark 6.2 A parabolic bundle E� on a complex surface X with a simple normal
crossing divisor D induces natural filtrations on the restrictions EjDi

by their vector
subbundles. These filtrations are indexed by a 2 �0; 1� and defined by the formula:

F i
a=E.�D/�EjDi

:

Parabolic structure can be reconstructed from these filtrations (see Iyer and Simpson [8]).

Definition 6.3 The parabolic first Chern class of a parabolic bundle E� is given by
the following formula:

(6-1) par-ch1.E�/D ch1.E/�
X

i

X
ai

ai � rankDi
.F i

ai
=F i

<ai
/ � ŒDi �:
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Let L be an ample line bundle on S . Then the parabolic degree of E� with respect to
L is given by

(6-2) pardegL.E�/D

Z
S

par-ch1.E�/ � c1.L/:

The parabolic second Chern characteristic number Let .S;D/ be a complex sur-
face with a normal crossing divisor D D

Sn
iD1 Di . Let E� be a parabolic vector

bundle. We will recall now the formula for the parabolic second character of E� given
by Mochizuki in [13]. His formula works in much larger generality but we need only
the case of surfaces.

The parabolic second Chern character of E� is given as a sum of c2.E/, the contribu-
tions of the divisors Di , and the points of their intersections Di \Dj .

To define the contributions of the points in Di \Dj , for every ai ; aj 2�0; 1�, consider
the skyscraper sheaf GrF

.ai ;aj /
:

F i
ai
\Fj

aj
=..F i

ai
\F

j
<aj

/C .F i
<ai
\Fj

aj
//:

This sheaf is supported at the points in Di \Dj , and it is nontrivial only for finite set
of .ai ; aj /. Consider the sum

�.i; j /D
X

p2Di\Dj Iai ;aj

ai � aj � rankp.GrF
.ai ;aj /

/; .�.i; j /D �.j ; i//:

Definition 6.4 The second parabolic Chern character of the parabolic bundle E� is
given by the formula

par-ch2.E�/D ch2.E/�
X
iIai

ai � c1.F
i
ai
=F i

<ai
/

C

X
iIai

1

2
a2

i rankDi
.F i

ai
=F i

<ai
/ � ŒDi �Di �C

1

2

X
i¤j

�.i; j /:

Stable bundles and Bogomolov–Gieseker inequality Here again we consider a sur-
face S with a parabolic bundle E� . For any subsheaf V of E the filtration on E

induces a structure of a parabolic sheaf on V . Recall that a subsheaf V of E is called
saturated is the quotient E=V is torsion-free.

Definition 6.5 Let L be an ample bundle on S . The bundle E� is called �L –stable
(or slope stable) if for every saturated subsheaf V of E ,

pardegL V� < pardegL E�:
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Remark 6.6 When E is a rank 2 bundle in order to check its stability it is sufficient
to consider only saturated locally free rank one subsheaves of E . Following [4] we
call such subsheaves of E sub–line bundles.

The following inequality (called Bogomolov–Gieseker inequality) is proven in [13] and
was also proven in different terms in [12].

Theorem 6.7 Let E� be a �L –stable parabolic bundle on the surface S . Then
following inequality holds:

(6-3) par-ch2.E�/�
1

2
par-ch2

1.E�/� 0:

Definition 6.8 Let .X;D;E�/ be a complex surface with a simple normal crossing
divisor D with a parabolic bundle E� , and let r be a unitary flat logarithmic connection
on E with poles at D . We say that r is compatible with E� if the following conditions
hold.

(1) For every i and a 2�0; 1� the subbundle F i
a=E.�Di/ of EjDi

is preserved by
the residue map ResDi

.r/.

(2) The eigenvalue of ResDi
.r/ on the bundle F i

a=F
i
<a equals �a (recall that this

bundle is nontrivial only for finite number of values of a).

(3) The connection induced by r on F i
a.X nDi/ extends to a logarithmic connection

on F i
a.X /.

Finally we can formulate the version of parabolic Kobayashi–Hitchin correspondence
that we use later.

Theorem 6.9 Let .X;D;E�/ be a complex projective surface with a simple normal
crossing divisor D and a parabolic bundle E� . Suppose that E� is �L –stable (with L

ample), has zero parabolic degree, and has zero second parabolic Chern number. Then
there exists a flat unitary logarithmic connection on E compatible with E� .

This statement can be deduced from Mochizuki [13; 14] (see also Li [12]). We explain
this very briefly skipping all details. In [13] Mochizuki works with parabolic Higgs
bundles and proves Kobayashi–Hitchin correspondence for stable Higgs bundles with
vanishing first and second Chern characters. The case that we are interested in is the
particular case when the Higgs field is zero. So by [13] there exists a unitary flat metric
on E.X nD/ adapted to the parabolic structure. It follows further from [14] that the flat
unitary connection corresponding to the flat metric constructed on E.X nD/ extends
to a logarithmic connection on E and moreover this connection is compatible with the
parabolic structure E� .
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7 Theorem of existence

In this section we prove Theorem 1.12.

7.1 A description of the proof

Let .Lj ; ǰ / be a weighted arrangement of lines in CP2 . Recall that by xi we denote
the multiple points of the arrangement of multiplicity at least 3; dij D 1 if xi belongs
to Lj and dij D 0 otherwise. Suppose that .Lj ; ǰ / satisfies the three conditions of
Theorem 1.12.

To prove Theorem 1.12 we make the blow up � W S !CP2 of CP2 at the points xi

and consider on S the pull back E of the tangent bundle E D ��T CP2 . Using the
weights ǰ we define a parabolic structure on E . We get a parabolic bundle E� with
zero parabolic first Chern class and prove that E� is stable for a certain polarisation.
Inequality (1-5) is just the Bogomolov–Gieseker inequality (Theorem 6.7).

In the case when the second parabolic Chern class of E� equals 0 using Theorem
6.9 we prove that there exists a logarithmic flat unitary connection on T CP2 and
combining this with results of Section 4 we conclude the proof of Theorem 1.12.

7.2 The parabolic bundle on the blown up CP 2

Let .Lj ; ǰ / be an arrangement of lines in CP2 , satisfying the inequalities (1-4). In
this subsection we construct the parabolic structure on a 2–bundle on the blowup of
CP2 and we calculate its parabolic Chern character. Let us fix some notation.

Notation Denote by S the blow up of CP2 at the points x1; : : : ;xk of multiplicity
at least 3 and let � W S !CP2 be the corresponding projection map.

Denote by E the pullback bundle ��T CP2 .

For j 2 f1; : : : ; ng denote by Dj the proper transform of Lj .

For j 2 fnC 1; : : : ; nC kg denote by Dj the exceptional line Pj�n :

Dj D Pj�n; �.Pj�n/D xj�n:

The parabolic structure on the bundle .S;E/ For any j 2f1; : : : ; ng the restriction
of E to Dj contains a distinguished rank 1 subbundle — the pullback ��TLj of the
tangent bundle of Lj . Denote by Ej the subsheaf of E , generated by the sections that
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are contained in ��TLj , being restricted to Dj . This subsheaf fits into the following
exact sequence:

0!Ej !E!EjDj
=��TLj ! 0:

Now, for 1� j � n we put

Fj
a DEj for 0< a< 1� ǰ ; Fj

a DE for 1� ǰ � a� 1;

and for 0< i � k

FnCi
a DE.�DnCi/ for 0< a< 1�˛i ; FnCi

a DE for 1�˛i � a� 1:

Here, 1�˛i D
1
2

P
j dij .1� ǰ /.

Proposition 7.1 The first and second parabolic Chern characters of .E�/ are given by
the following formulas:

par-ch1.E�/D ch1.E/�

nX
jD1

.1� ǰ /Dj � 2

kX
iD1

.1�˛i/DnCi ;(7-1)

par-ch2.E�/D
3

2
�

nX
jD1

.1� ǰ /�

nX
jD1

1

2
.1� ǰ /

2Bjj C

kX
iD1

.1�˛i/
2:(7-2)

Proof The calculation of par-ch1.E�/ is a straight-forward application of Definition
6.3. For j 2 f1; : : : ; ng the quotient sheaf F

j
a =F

j
<a has rank 1 for a D 1� ǰ and

is trivial otherwise. For j 2 fnC 1; : : : ; nC kg the sheaf F
j
a =F

j
<a has rank 2 for

aD 1� j̨ and is trivial otherwise.

In order to calculate par-ch2.E�/ we need the following lemma.

Lemma 7.2 (1) For 1� j1 < j2 � n we have �.j1; j2/D 0.

(2) For 1< i1 < i2 � k we have �.nC i1; nC i2/D 0.

(3) For 1� j � n, 1� i � k we have �.j ; nC i/D dij .1� ǰ /.1� j̨ /.

Proof (1) The sheaf GrF
.aj1

;aj2
/ can be nontrivial only when aj1

D 1 � ǰ1
and

aj2
D 1� ǰ2

. But in this case by construction the sheaf is equal to E=.Ej1
CEj2

/.
At the same time Ej1

CEj2
DE .

(2) GrF
.anCi1

;anCi2
/ is trivial because DnCi1

\DnCi2
D¿.

(3) The sheaf GrF
.aj ;anCi /

is nontrivial only when aj D 1� ǰ , anCi D 1�˛i . In this
case it is equal to E=.E.�DnCi/[Ej /. It is supported at the points Dj \DnCi and
has rank 1 at each point.
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Calculation of par-ch2.E�/ According to Definition 6.4 we have

par-ch2.E�/D
3

2
�

nX
jD1

.1� ǰ /�

nX
jD1

1

2
.1� ǰ /

2Bjj

�

kX
iD1

.1�˛i/
2
C

k;nX
iD1;jD1

dij .1� ǰ /.1�˛i/:

Here we use the following facts:

(1) For j 2 .1; : : : ; n/ we have c1.E=Ej /D 1, ŒDj �Dj �D�Bjj .

(2) For i 2 .1; : : : ; k/ we have EjDnCi is trivial, ŒDnCi �DnCi �D�1.

Finally, by Theorem 1.9 (use p D q D 1) the last term is equal to 2
Pk

iD1.1� ˛i/
2 .

This concludes the proof.

7.3 Theorem on stability and additional lemmas

In this subsection we prove that the parabolic bundle E� constructed above is stable
with respect to an appropriate polarisation on S . Take N 2 ZC ,

N >max
�

k

mini ˛i
;

2k

minj ;k. ǰ Cˇk/
;

3k

1�maxj ǰ

�
;

and define the following line bundle:

LN DOS

�
�

kX
iD1

Pi

�
˝p�O.N /:

Note, that LN is ample since N > k .

Theorem 7.3 The parabolic bundle .E�;S/ is �LN
–stable.

Let us first give a plan of the proof. The parabolic degree of E� is zero, so we need to
show that the parabolic degree of any saturated sub–line bundle V of E is negative.
Every line bundle on S is of the form OS .

P
i diPi/˝�

�O.d/. For sub–line bundles
of E we have d � 1 and the constant N is chosen in such a way that the degree
of V � E can be positive only for d � 0. Since the parabolic weights are in Œ0; 1�,
pardeg V� � deg V , so we only need to consider line subbundles of E with d D 1; 0.
In the case d D 1 the pushdown ��V is contained in a sub–line bundle of T CP2

generated by sections tangent to a pencil of lines. We prove that pardeg.V�/ is negative
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comparing the degree of V with the parabolic contribution, coming from the behavior
of the pencil of lines with respect to the line arrangement on CP2 .

Let us introduce some notation. For a point x in CP2 denote by Lx the sub–line
bundle of T CP2 generated by the sections tangent to the pencil of lines containing x .
For a section v of T CP2 with isolated zeros denote by Lv the sub–line bundle of
T CP2 generated by v . The following lemma is standard, we omit the proof.

Lemma 7.4 Sub–line bundles of T CP2 have degree at most 1. Every saturated
sub–line bundle of T CP2 of degree 1 equals Lx for some x . Every saturated sub–line
bundle of T CP2 of degree 0 equals Lv for some v .

Lemma 7.5 Let L D OS .
Pk

iD1 diPi/˝ �
�.O.d// be a saturated sub–line bundle

of E . Then d � 1. Suppose d D 1 or d D 0.

(1) If d D 1 then ��.V /�Lx for some x 2CP2 .

(2) If d D 0 then ��.V /�Lv for some vector filed v with isolated zeros.

(3) ��.V / coincides with Lx or Lv outside of the set fx1; : : : ;xkg.

Proof Consider .��V /__ , this is a saturated sub–line bundle of T CP2 . Its degree
equals to d , so d � 1. In the case d D 1 by the previous lemma .��V /__ is Lx for
some x , and if d D 0 it is Lv for some v . The sheaf ��V is a subsheaf of .��V /__

and it differs from it only at points xi for which di < 0.

Lemma 7.6 Let V DOS .
Pk

iD1 diPi/˝�
�.O.d// be a sub–line bundle of E . Then

for any i we have di � 2� d . In particular we have an upper bound on degree of V :

(7-3) degLN
.V /D c1.V / � c1.LN /� .2� d/kCNd:

Proof Let us prove that for any i it holds di � 2� d . For any line P in CP2 we
have T CP2

jP
' O.1/˚O.2/. Take a line P that contains a point xi and doesn’t

contain any point xj for j ¤ i . Let P 0 be the proper transform of P . Then again
EjP 0 'O.1/˚O.2/. Since HomOS.V;E/¤ 0, there is a line P through xi for which
HomOP0 .VjP 0 ;EjP 0/¤ 0. At the same time, by definition of V

VjP 0 DO.d��H C diPi/jP 0 DO.d C di/:

It follows that
.d C di/� 2:

Now we conclude the proof:

degLN

�
OS

�X
i

diPi C d��H

��
D

X
i

di CNd � .2� d/kCNd:
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Lemma 7.7 Let .Lj ; ǰ / be a weighted line arrangement satisfying the conditions
(1-4) of Theorem 1.12.

(1) For any point x in CP2 the following inequality holds:

(7-4)
X

j jx…Lj

.1� ǰ / > 1C
2k

N
:

(2) A holomorphic vector field v with isolated zeros can be tangent to at most 3

lines of the arrangement.

Proof (1) It is clear that the sum attains its minimum for a point that is a multiple
point of the arrangement. Since

P
j .1� ǰ /D 3, for a double point of the arrangement

the sum in (7-4) is at least 1Cminj ;k. ǰ Cˇk/. For a point xi of multiplicity more
than 2 we have:X

j jx…Lj

.1� ǰ /D 3�
X

j

dij .1� ǰ /D 3� 2.1�˛i/� 1C 2 min
i
.˛i/:

(2) This is standard, the field v has 3 zeros and it is tangent only to the lines that join
these zeros.

7.4 Proof of stability

Proof of Theorem 7.3 By Lemma 7.5 and Lemma 7.6 any sub–line bundle V of
E is of the form OS .

Pk
iD1 diPi/˝ �

�.O.d// with d � 1, and degLN
.V / < 0 if

d < 0. Since in our situation the parabolic weights are contained in �0; 1�, we have an
inequality pardegLN

.V�/� degLN
.V /. So it is necessary only to consider the cases

when d D 1 and d D 0.

To calculate the parabolic first Chern class par-ch1.V�/ we need to find for every
j 2 f1; : : : ; nC kg and a 2 �0; 1� the rank of the following quotient sheaf supported
on Dj :

.V \Fj
aj
/=.V \F

j
<aj

/:

Consider the case d D 1. Then according to Lemma 7.5 there exists x 2 CP2 such
that ��.V /�Lx .

In the case j 2 f1; : : : ; ng there are two possibilities.

If x 2 Lj then V � F
j
aj

for all 0 < aj � 1 so the corresponding quotient sheaf is
always trivial. If x …Lj then the quotient sheaf is nontrivial for aj D 1� ǰ and has
rank one (this follows from Lemma 7.5).
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In the case j 2 fnC 1; : : : ; nC kg the quotient sheaf is nontrivial for aj D 1� j̨�n

and has rank 1. This gives us the formula

par-ch1.V�/D ch1.V /�
X

j jx…Lj

.1� ǰ /Dj �

nX
iD1

.1�˛i/DnCi :

We have the following sequence of inequalities

pardegLN
.V�/D degLN

.V /� c1.LN / �

� X
j jx…Lj

.1� ǰ /Dj C

nX
iD1

.1�˛i/DnCi

�
:

using Inequality (7-3) and the equality 2.1�˛i/DDnCi �
P

j .1� ǰ /Dj . This is less
than or equal to

N C k �N
X

j jx…Lj

.1� ǰ /C
X

i

2.1�˛i/�
X

i

.1�˛i/:

using 0< ˛i < 1 and Inequality (7-4). Finally, this is less than

N C 2k �N

�
1C

2k

N

�
D 0:

The case d D 0 is analogous. By Lemma 7.5 there exists a vector-field v with isolated
zeros such that ��.V /�Lv . The arrangement contains more than 3 lines so there is
at least one line that is not tangent to v . Making the same calculation as in the case
d D 1 and using N > 3k=.1�maxj ǰ / we get

pardegLN
.V�/� 2k �N.1�max

j
. ǰ //C

X
i

.1�˛i/ < 0:

Example 7.8 Consider the arrangement of 6 lines that pass through 4 generic points
x1; : : : ;x4 . For every ˇ 2�0; 1Œ we can associate the weight ˇ to the lines x1xi and
1�ˇ to the lines xixj , i; j > 1. We get a stable parabolic bundle on CP2 blown up
at x1; : : : ;x4 . When ˇ tends to 0 the parabolic degree of the sheaf corresponding to
Lx1

tends to zero and as a result for ˇ D 0 we don’t get a PK metric on CP2 .

7.5 Proof of Theorem 1.12 and an application of the Bogomolov–Gieseker
inequality

Proof of Theorem 1.12 Let us sum up what we have done. We started with a weighted
arrangement .Lj ; ǰ / that satisfies the conditions of Theorem 1.12. We introduced a
structure of parabolic bundle E� on the pullback E of the tangent bundle T CP2 to the
blow up of CP2 . We proved that E� is stable (Theorem 7.3) and has zero first parabolic
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Chern class (Proposition 7.1). So inequality (1-5) follows from the calculation of
second parabolic Chern number (Proposition 7.1) and Bogomolov–Gieseker inequality
(Theorem 6.7). This proves the first part of the theorem.

If the equality is attained in (1-5) then the second parabolic Chern number of E�
vanishes, so we can use parabolic Kobayashi–Hitchin correspondence (Theorem 6.9).
Namely, there exists a unitary flat logarithmic connection on E compatible with the
parabolic structure of E� . By Corollary 4.6 the constructed connection is torsion-free.
Finally, using Theorem 4.13 we conclude that the corresponding flat connection on
T CP2 defines a PK metric.

Let us give one corollary of Theorem 1.12. For a multiple point xi of a line arrangement
L1; : : : ;LN denote by �i the number of lines through xi .

Corollary 7.9 Suppose that the multiplicity of every point of the arrangement
.L1; : : : ;LN / is less than 2N=3. Then the following inequality holds:

(7-5)
X

i

�i �
N 2

3
CN:

In the case of equality N is divisible by 3, every line intersects other lines in N=3C 1

points, and there is a PK metric on CP2 with conical angles 2�.N � 3/=N at the
lines Lj .

Note that for a generic arrangement the total multiplicity is N.N � 1/ while for the
most degenerate arrangement it is N .

Proof We have the following equalities:

N 2
D

�X
j

Lj

�2

DN C
X
j¤k

Lj �Lk DN C
X

i

�i.�i � 1/;

X
i

�2
i DN 2

�N C
X

i

�i :(7-6)

Associate to each Lj weight ǰ D .N � 3/=N , then the arrangement satisfies the
conditions of Theorem 1.12. Since all weights are equal we can treat double points of
the arrangements as points of type .1; 1/ and we get the following equalities:

1�˛i D
3�i

2N
; 1� ǰ D

3

N
;

X
j

Bjj D

X
i

�i �N:
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Applying the Bogomolov–Gieseker inequality to the corresponding stable parabolic
bundle E� and using (7-6) we get

0� par-ch2.E�/D

P
i 9�2

i

4N 2
�

9
P

i �i � 9N

2N 2
�

3

2

D
9
P

i �
2
i � 18

P
i �i C 18N � 6N 2

4N 2
D

3N 2C 9N � 9
P

i �i

4N 2
:

Inequality (7-5) was proven previously by Langer [11] using different methods. We
finish with the following lemma.

Lemma 7.10 For line arrangements satisfying condition of Theorem 1.12 the system
of equations (1-1) from Theorem 1.11 (ie,

P
k Bjk.ˇk � 1/C 1D 0) can be obtained

by differentiating the Bogomolov–Gieseker inequality.

Proof Let .Lj ; ǰ / be an arrangement satisfying conditions of Theorem 1.12. For a
small deformation ˇ0j of ǰ the deformed parabolic bundle E0� (defined in the same
way as E� but using the weights ˇ0j instead ǰ ) is stable and satisfies the Bogomolov–
Gieseker inequality. The inequality is quadratic in ǰ and it attains its maxima (zero)
for the initial data. So its derivatives in all directions vanish. This produces a system
of linear equations on ǰ . We will show that this system is equivalent to the system of
equations (1-1) from Theorem 1.11. Consider the derivative

@

@ ǰ
par-ch2.E�/�

@

@ ǰ

1

2
par-ch2

1.E�/:

Let us restrict this expression to the plane
P

j . ǰ � 1/D�3. Then par-ch1.E�/D 0,
and so the second term vanishes. par-ch2.E�/ is given by Equation (7-2), and using
.1�˛i/D

1
2

P
k dik.1�ˇk/ we get

0D
@

@ ǰ
.par-ch2.E�//D 1C .1� ǰ /Bjj �

X
i

dij .1�˛i/:

Expanding .1�˛i/, and using the definitions of Bjj and dij we rewrite the last term
to obtain

1C .1� ǰ /Bjj �
1

2

�
.Bjj C 1/.1� ǰ /C

X
k;ijdij dikD1

.1�ˇk/

�
:

Now using
P

j . ǰ � 1/D�3, this equals

1

2

�
2C .1� ǰ /Bjj �

�
3C

X
k¤j

.ˇk � 1/

�
C

X
k;ijdij dikD1

.1�ˇk/

�
:
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Finally using the definition of Bjk , this is

1

2

�
� 1C

X
k

.1�ˇk/Bjk

�
:

8 Further results, questions and directions

In a subsequent paper we will use Theorem 1.12 to construct several infinite families
of aspherical complex surfaces. Some of these families of surfaces admit a metric of
type CAT.0/. In particular some smooth compact quotients of the complex ball admit
a PK metric of type CAT.0/, this answers a question of Gromov and Davis.

For every PK surface its PK metric induces a positive .1; 1/ current on it, so it should
not be difficult to prove that every PK surface is a Kähler surface (in principle, one
should be able to smoothen a bit the PK metric to get a smooth Kähler metric on the
surface). It should be possible to show that nonalgebraic K3 surfaces don’t admit a PK
metric, but we don’t know any obstruction for the existence of PK metrics on algebraic
surfaces. At the same time the set of examples of PK surfaces that we have is rather
limited.

We hope that Theorem 1.5 extends to higher dimensions. Namely, that for a polyhe-
dral Kähler manifold of any dimension the complex structure on the complement
of the metric singularities extends to a complex analytic structure on the whole
manifold. In particular the metric singularities should not have odd (real) codimen-
sion and all singularities of even codimension should have holomorphic directions.
Note that in higher dimensions we can obtain complex manifolds with singularities
even if we start with a topological polyhedral Kähler manifold (ie, the link of every
point is a topological sphere). Indeed, by Brieskorn the link of the hypersurfaces
z2

1
C z2

2
C z2

3
C z3

4
C z6k�1

5
D 0, 1 � k � 28 in C5 is S7 with one of 28 smooth

structures. At the same time these hypersurfaces have a PK metric, induced by an
obvious degree 24.6k � 1/ ramified cover of the hyperplane

P
i zi D 0.

The notion of polyhedral Kähler manifolds can be generalised in several directions.
A polyhedral affine structure on a manifold is a choice of a simplicial decomposition
and an affine structure on the complement of codimension 2 faces that restricts to the
standard affine structure on the interior of every face of the top dimension. We say
that a manifold M 2n is polyhedral complex affine if the holonomy is contained in
GL.n;C/, and singular faces of codimension 2 at which the holonomy is trivial have
holomorphic directions (cf Definition 1.1). For complex dimension 2 we expect to get
a theory similar to the one developed in this article. It should be possible to classify
the singularities of complex codimension 2 but the list will be longer.
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If the holonomy of a polyhedral affine manifold is contained in the symplectic group
SP.2n/ we call the manifold polyhedral nearly symplectic. It is not hard to see that
every symplectic manifold admits a polyhedral nearly symplectic structure. But the
converse should be wrong already for 4–manifolds, so we adjust the definition.

Definition 8.1 Let M 4 be a polyhedral nearly symplectic manifold and let M 4
1
."/ be

a neighborhood of the union of all edges. The PL symplectic structure on M 4 nM 4
1
."/

can be smoothen along the faces of codimension 2 to a genuine symplectic form w . Let
c1 be the first Chern class of an almost complex structure tamed by w on M 4

1
."/. We

call M 4 polyhedral symplectic if for every surface S contained in M 4
1
.2"/ nM 4

1
."/

we have c1 �S D 0.

It is not hard to prove that every symplectic 4–manifold admits a polyhedral symplectic
structure. More importantly, we conjecture that every polyhedral symplectic 4–manifold
admits a symplectic smoothing.

Another interesting direction to generalise PK manifolds is to consider complex mani-
folds with Kähler metric of constant holomorphic curvature and conical singularities at
holomorphic geodesic divisors. In the case of negative curvature these manifolds will
be generalisations of complex hyperbolic orbifolds, ie quotients of the complex ball
Bn by a lattice of SU.n; 1/. These manifolds presumably are the same as Thurston
.CH n;SU.n; 1//–cone manifolds [19]. In the case of surfaces it is sufficient to ask
that singularities of the metric form a complex curve, at points that are not multiple
there is a local isometric action of the group SU.1; 1/�S1 , and at the multiple points
there is an holomorphic isometric action of R1 . It should be possible to generalise
Theorem 1.12 to this setting using parabolic Kobayashi–Hitchin correspondence for
parabolic Higgs bundles [13], and using ideas from [18]. It would be interesting to
reprove (or even generalise) results of [3] using this approach.

Finally we hope to prove the following conjecture.

Conjecture 8.2 For every arrangement satisfying conditions of Theorem 1.12 its
complement is of the type K.�; 1/.

The converse to this conjecture is wrong because Proposition 5.2 permits us to check
that some simplicial arrangements are not PK. At the same time by a theorem of
Deligne all (complexified) simplicial arrangement have a complement of the type
K.�; 1/.
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