Volume 13, issue 4 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Intersection homology and Poincaré duality on homotopically stratified spaces

Greg Friedman

Geometry & Topology 13 (2009) 2163–2204
Abstract

We show that intersection homology extends Poincaré duality to manifold homotopically stratified spaces (satisfying mild restrictions). These spaces were introduced by Quinn to provide “a setting for the study of purely topological stratified phenomena, particularly group actions on manifolds.” The main proof techniques involve blending the global algebraic machinery of sheaf theory with local homotopy computations. In particular, this includes showing that, on such spaces, the sheaf complex of singular intersection chains is quasi-isomorphic to the Deligne sheaf complex.

Keywords
intersection homology, Poincaré duality, homotopically stratified space
Mathematical Subject Classification 2000
Primary: 55N33, 57N80, 57P99
References
Publication
Received: 18 April 2007
Revised: 16 April 2009
Accepted: 24 April 2009
Published: 16 May 2009
Proposed: Steve Ferry
Seconded: Ralph Cohen, Tom Goodwillie
Authors
Greg Friedman
Department of Mathematics
Texas Christian University
Box 298900
Fort Worth, TX 76129
USA