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A sharp compactness theorem for
genus-one pseudo-holomorphic maps

ALEKSEY ZINGER

For every compact almost Kahler manifold (X, w, J) and an integral second ho-
mology class A, we describe a natural closed subspace ﬁ?’k(X ,A;J) of the
moduli space M x (X, 4; J) of stable J—holomorphic genus-one maps such that
97?‘1), (X, 4; J) contains all stable maps with smooth domains. If (P”, w, Jo) is the
standard complex projective space, 97?‘1)’ (P, A4; Jo) is an irreducible component
of My x(P", A; Jo). We also show that if an almost complex structure J on P” is
sufficiently close to Jy, the structure of the space 97{‘1’, (P, A4; J) is similar to that
of 971(1), «(P", 4; Jo). This paper’s compactness and structure theorems lead to new
invariants for some symplectic manifolds, which are generalized to arbitrary symplec-
tic manifolds in a separate paper. Relatedly, the smaller moduli space 2)7?‘1): (XA T)
is useful for computing the genus-one Gromov—Witten invariants, which arise from

the larger moduli space 97?1,1{ (X, 4;J).

14D20; 53D99

1 Introduction

1.1 Background and motivation

Gromov—Witten invariants of symplectic manifolds have been a subject of much
research in the past decade, as they play a prominent role in both symplectic topology
and theoretical physics. In order to define GW—invariants of a compact symplectic
manifold (X, ), one fixes an almost complex structure J on X', which is compatible
with w or at least is tamed by w. For each class 4 in H,(X;Z) and a pair (g, k) of
nonnegative integers, let i)?tg,k (X, 4; J) be the moduli space of (equivalence classes
of) stable J —holomorphic maps from genus—g Riemann surfaces with k& marked points
in the homology class 4. The expected, or virtual, dimension of this moduli space is
given by

dimg 5 (X, A) = dim"™ M 4 (X, 4;T) = 2((c1(TX), A) + (n—3)(1 — g) + k),

if the real dimension of X is 2n. While in general Sﬁg,k (X, A; J) is not a smooth
manifold, or even a variety, Fukaya—Ono [4], Li-Tian [6], and in the algebraic case
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Behrend-Fantechi [1] show that Sﬁg,k (X, A; J) determines a rational homology class
of dimension dimg 4 (X, 4). In turn, this virtual fundamental class of M, 1 (X, 4; J)
is used to define GW—invariants of (X, w).

We denote by zmg,, (X, A; J) the subspace of Eﬁg,k (X, 4; J) consisting of the stable
maps [C, u] such that the domain C is a smooth Riemann surface. If (P”, w; Jy) is the
n—dimensional complex projective space with the standard Kahler structure and £ is
the homology class of a complex line in P”,

M ((P",d) =My (P, de; Jo)

is in fact a smooth orbifold of dimension dimg x (P", d{), at least for d > 2g —1. In
addition, from the point of view of algebraic geometry, 97?0,;{ (P", d) is an irreducible
algebraic orbivariety of dimension dimg 4 (P", d{)/2. From the point of view of sym-
plectic topology, 9710 (P", d) is a compact topological orbifold stratified by smooth
orbifolds of even dimensions and 9t° k(IP’” d) is the main stratum of zmo r(P".d).

In particular, 93?8’ (P d)isa dense open subset of DJTO,k (P, d).

If g > 1, none of these additional properties holds even for (P”, w, Jy). For example,
the moduli space 97?1 ¥ (P",d) has many irreducible components of various dimen-
sions. One of these components contains EIRO k(]P’” d); we denote this component
by i)ﬁo k(]P’” d). In other words, EUIO k(IP" d) is the closure of i)ﬁo k(]P’” d) in
S)JTI k (IP’” d). The remaining Components of My x(P",d) canbe descrlbed as follows.
If m is a positive integer, let zml’ (P, d) be the subset of sml,k (P", d) consisting of
the stable maps [C, u] such that C is an elliptic curve E with m rational components
attached directly to E, u|g is constant, and the restriction of u to each rational
component is nonconstant. Figure 1 shows the domain of an element of Dﬁf P d),
from the points of view of symplectic topology and of algebraic geometry. In the
first diagram, each shaded disc represents a sphere; the integer next to each rational
component C; indicates the degree of u|c; . In the second diagram, the components of
C are represented by curves, and the pair of integers next to each component C; shows
the genus of C; and the degree of u|c,. We denote by omr k(]P’” d) the closure of
Sﬁmk (P",d) in O, k(P d). The space Sﬁmk (P, d) has a number of irreducible
components. These components are indexed by the splittings of the degree d into m
positive integers and by the distributions of the k& marked points between the m + 1
components of the domain. However, all of these components are algebraic orbivarieties
of dimension, both expected and actual,

dimf' (P", d€) = dim M, (P, d) = 2(d(n + 1) + k +n—m)
=dim; x (P",d¥{) +2(n —m).
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In particular, 90t° k(IP’” d) is not dense in 9, x(P",d). From the point of view of
symplectic topology, M, x(P",d) is a union of compact topological orbifolds and is
stratified by smooth orbifolds of even dimensions. However, zml,k (P, d) contains
several main strata, and some of them are of dimension larger than dim, x (P", d().

d>
0.dy)

di 0. do)
d3

(1’0) (0’d3)

di+dy+ds=d, di,dy,d3 >0

Figure 1: The domain of an element of M3, (P", d)

The above example shows that 99 k(IP’” d) is a true compactification of the mod-
uh space E)LTI «P".d), while sml k(IP’ .d) is simply a compact space containing

k (P", d ) albelt one with a nice obstruction theory. One can view 9 k(P" d)asa
geometrlc genus compactification of 9719 k(P” d) and its subspace 919 k(P” d) as an
arithmetic-genus compactification. Slnce the beginning of the Gromov—Witten theory,
it has been believed, or at least considered feasible, that an analogue of mo k(IP’" d)
can be defined for every compact almost Kahler manifold (X, w, J), posmve genus g,
and nonzero homology class A € H,(X; Z). In this paper, we show that this is indeed
the case if g = 1.

We describe an analogue SDTO k(X A; J) of the subspace smo k(IP’" d) of M, k(P d)
for every compact almost Kahler manifold (X, w, J) and homology class A€ Hy(X;Z)
as the subset of elements of 9, k(X, A; J) that satisfy one of two conditions. By
Theorem 1.2, z):rto k(X A;J) is a closed subspace of 9t k(X,A;J) and thus is
compact. This compactlﬁcatlon of i)ﬁ (X, A4; J) satisfies the following desirable
properties:

(P1) Naturality with respect to embeddings: If (Y, w, J) is a compact submanifold of
(X,w, J), then

MY ( (V. A T) =DMY ( (X, A T) DDy g (V. A3 T) C DMy g (X, A3 ).

(P2)  Naturality with respect to forgetful maps: If k > 1, the preimage of the subspace
EJJT(I’ x—1 (X, 4; J) under the forgetful map

My 4 (X, A J) — My 1 (X, 4 J)
is MY, (X, 4; 7).
k
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(P3) Sharpness for regular (X, w, J): If J satisfies the regularity conditions of Defini-
tion 1.4, then E)JT(I) (X, A4; J) is the closure of zm‘l’ (XA T) in My 1 (X, A3 ).

By (P1) and (P2), 5)7? (X, 4;J), like m, k(X, A; J), is a natural compactification
of Dﬁo k(X A;J). By (P3) omo k(X A; J), in contrast to 9321 x (X, A; J), is a sharp
compactlﬁca‘uon of sml k(X A J ), subject to the naturality conditions (P1) and (P2).
The first two properties of EUIO k(X A; J) are immediate from Definition 1.1. The
last property is part of Corollary 1.5. It is well-known that the regularity conditions
of Definition 1.4 are satisfied by the standard complex structure Jo on P”, and thus
the definition of 2)3?0 k(IP’” d{; Jo) given in Section 1.2 agrees with the description of
Dﬁo k(]P’” d) given above

Theorem 2.3 describes, under the regularity conditions of Definition 1.1, a neighborhood
of every “interesting” stratum of 93?0 k(X A; J), ie a stratum consisting of genus-one
maps that are constant on the pr1nc1pal component. In addition to implying (P3),
Theorem 2.3 shows that 971(1)’ (X, A: J) carries a rational fundamental class. It is used
in Section 1.3 below to define new Gromov—Witten style intersection numbers via
pseudocycles whenever J is regular, mimicking the approach of McDuff-Salamon
[8, Chapter 5] and Ruan-Tian [9, Section 1] to the standard GW-invariants. As the
regularity requirements of Definition 1.1 are open conditions on the space of w—tame
almost complex structures J by Theorem 1.6, Theorem 2.3 also implies that the general
topological structure of 5)72(1)’ « (X, A; J) remains unchanged under small changes in J
near a regular Jj.

The results of this paper have already found a variety of applications:

(A1) 971(1) (X, A3 J) gives rise to new, reduced, genus-one GW—invariants of arbi-
trary symplectic manifolds (see Zinger [19]).

(A2) In contrast to the standard genus-one GW-invariants, the reduced invariants
of a complete intersection and the ambient space are related as geometrically
expected (see Li—Zinger [7] and Zinger [18]).

(A3) Theorem 2.3 is used in Vakil-Zinger [12] to construct a natural desingularization
of 971(1), (P",d) and thus a natural smooth compactification of the Hilbert
scheme of smooth genus-one curves in P for n > 3.

(A4) (A1)—(A3) are used by the author in [22] to finally confirm the 1993 Bershadsky—
Cecotti-Ooguri—Vafa mirror formula [2] for the genus-one GW-invariants of a
quintic threefold.

(AS) (A1)-(A3), along with Zinger [21], have made it possible to compute (standard)
genus-one GW—invariants of arbitrary complete intersections.
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If it is possible to define subspaces ﬁtg’k (X, A4;J) of Sﬁg,k (X, 4; J) analogous to
971(1), X (1\_’ ,A; J) for g > 2, their description is likely to be more complicated. The
space EITI(I), (X, 4;J) contains all stable maps [C, u] in 90y x (X, A; J) such that the
restriction of u to the principal component Cp is nonconstant or such that u|c, is
constant and the restrictions to the rational components satisfy a certain fairly simple
degeneracy condition; see Definition 1.1. Thus, in the genus-one case the elements in
97?1, (X, A; J) are split into two classes, according to their restriction to the principal
component. In the genus-two case, these classes would need to be split further. For
example, suppose the domain of an element [C, u] of 9712,;( (P™, d) consists of three
rational curves, C;, C,, and Cs, such that C; and C, share two nodes and C3 has a
node in common with C; and C,; see Figure 2. If u|¢, and u|c, are constant, [C, u]
lies in the closure of E)JTg’k (P",d) in 97?2,;( (P, d) if and only if the branches of the
curve u(C) = u(C3) corresponding to the two nodes of C3 form a generalized tacnode,
ie either one of them is a cusp or the two branches have the same tangent line; see
Zinger [15] for the n = 2 case.

Cs d

(0.d)

“tacnode”

(0.,0)

Figure 2: A condition on limits in genus two

The author would like to thank J Li for suggesting the problem of computing the
genus-one GW—invariants of a quintic threefold, which led to the present paper. The
author first learned of the arithmetic/geometric-genus compactification terminology in
the context of stable maps from G Tian a number of years ago.

1.2 Compactness theorem

In this subsection, we describe the subspace 97??’,( (X,4;J) of 97?1,;( (X, A4;J);itis
a closed subspace by Theorem 1.2. We specify what we mean by a regular almost
structure J in Definitions 1.3 and 1.4. If J is genus-one A-regular, the moduli space
971(1)’ X (X, A; J) has a regular structure, which is described by Theorem 2.3. Since the
rather detailed statement of this theorem is notationally involved, we postpone stating it
until after we introduce additional notation in Sections 2.1 and 2.2. In this subsection,
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we instead state Corollary 1.5, which describes the two most important consequences
of Theorem 2.3.

An element [C, u] of 97?1,;( (X, 4; J) is the equivalence class of a pair consisting of a
prestable genus-one complex curve C and a J—holomorphic map u: C —> X . The
prestable curve C is a union of the principal curve Cp, which is either a smooth torus
or a circle of spheres, and trees of rational bubble components, which together will be
denoted by Cp. Let

Dﬁi?i(X, A;J)= {[C,u] € Sﬁlyk(X, A; J) i ulcp is not constant} D E)ﬁ(l)’k(X, A J).

The space imi",i (X, A; J) will be a subset of the moduli space 97?(1), (X AT,

Every bubble component C; C Cp is a sphere and has a distinguished singular point,
which will be called the attaching node of C;. This is the node of C; that lies either
on Cp or on a bubble Cj, that lies between C; and Cp. For example, if C is as shown
in Figure 3, the attaching node of Cy, is the node Cj, shares with the torus. Since C;
is a sphere, we can represent every element of 97?1’;{ (X, A4;J) by apair (C,u) such
that the attaching node of every bubble component C; C Cp is the south pole, or the
point co = (0,0, —1), of SZ C R3. Let exo = (1,0, 0) be a nonzero tangent vector to
S? at the south pole. Then the vector

Di(C,u) = d{ulci}{ooeoo € Tu|c,- (00) X

describes the differential of the J—holomorphic map u|c, at the attaching node. While
this element of 7}, e (00) X depends on the choice of a representative for an element
of My x (X, A:J), the linear subspace C-D;(C,u) of Ty, (00)X is determined by
the equivalence class [C,u]. If u|c; is not constant, the branch of the rational J—
holomorphic curve u(C;) C X corresponding to the attaching node of C; has a cusp
if and only if D;(C,u) = 0. If D;(C,u) # 0, C-D;(C,u) is the line tangent to the
branch of u(C;) C X corresponding to the attaching node of C;.

Suppose [C, u] € 2)711,;C (X, A;J) —932{1011 (X.A;J),ie u|c, is constant. In such a case,
we will call the bubble sphere C; CCp ﬁrst-level (C, u)—effective if u|c, is not constant,
but u|c, is constant for every bubble component C;, C Cp that lies between C; and Cp.
We denote by x(C, u) the set of first-level (C, u)—effective bubbles; see Figure 3. In
this figure, as in Figures 1 and 2, we show the domain C of the stable map (C, ) and
shade the components of the domain on which the map u is not constant. Note that u
maps the attaching nodes of all elements of x(C, u) to the same point in X .

Finally, let
Hy(X:Z)* = Hy(X:Z)—{0},  ZT =7Z" u{o}.
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x(C.u)={hy, ha. hs}

“tacnode”

Figure 3: An illustration of Definition 1.1

Definition 1.1 If (X, w, J) is acompact almost Kahler manifold, 4 € H,(X;Z)*, and
k € Z*, the main component of the space My k (X, A; J) is the subset sm‘; (XA T)
consisting of the elements [C, u] of M, (X, 4; J) such that

(a) ulcp is not constant, or

(b) u|cp is constant and dimc Spanc j){Di(C,u) :i € x(C,u)} < [x(C,u)|.

We call a triple (X, w, J) an almost Kahler manifold if o is a symplectic form on X
and J is an almost complex structure on X, which is tamed by w, ie

o, Jv)>0 VveTX —X.

Definition 1.1 actually involves only the almost complex structure J, but one typically
considers the moduli spaces Eﬁg,k (X, A; J) only for w—tamed almost complex struc-
tures J, for some symplectic form w; otherwise, Sﬁg,k (X, 4; J) may not be compact.
An element

[C.u) € My (X, A: J) — M} (X, Az )

belongs to 97(‘1) (X, A; J) if and only if the branches of u(C) corresponding to the
attaching nodes of the first-level effective bubbles of [C, u] form a generalized tacnode.
In the case of Figure 3, this means that either

(a) forsome i € {hy,h4,hs}, the branch of u|c; at the attaching node of C; has a
cusp, or

(b) forall i € {hy,h4,hs}, the branch of u|c; at the attaching node of C; is smooth,
but the dimension of the span of the three lines tangent to these branches is less
than three.

This condition is automatically satisfied if 2|x(C, u)| > dimg X .
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Theorem 1.2 If (X, w) is a compact symplectic manifold, J = (J¢)¢[o,1] is a cl-
continuous family of @ —tamed almost complex structures on X, A € H,(X;7Z)*, and
k € Z*, then the moduli space

MY (X, Az = ([ I (X, A Tp)
t€[0,1]

is compact.

If (X, J) is an algebraic variety, the claim of Theorem 1.2, with J; = J constant, is
an immediate consequence of well-known results in algebraic geometry. In the case
(X, J) is a complex algebraic surface, Lemma 2.4.1 of Vakil [11] can be used to extend
the statement of Theorem 1.2 to all genera.

If J; = J is constant and genus-one A-regular in the sense of Definition 1.4 below,
Theorem 1.2 follows immediately from the first statement of Theorem 2.3. If J; is
genus-one A-regular for all 7, but not necessarily constant, Theorem 1.2 follows from
the Gromov Compactness Theorem and Corollary 4.6. In Section 5, we combine the
main ingredients of the proof of Theorem 2.3 with the local setting of [6] to obtain
Theorem 1.2 with J; = J constant for an arbitrary almost Kahler manifold. The proof
for a general family J is similar and is described in detail, in an even more general
case, in Zinger [19, Section 5].

If u: C — X is a smooth map from a Riemann surface and A € H,(X;Z), we write
Uu=<pA if us[Cl=A4 or (w,usC]) <{w,A).
Definition 1.3 Suppose (X, w, J) is a compact almost Kahler manifold and A4 €

H,(X;Z). The almost complex structure J is genus-zero A—regular if for every
J —holomorphic map u: P! — X such that u <, 4,

(a) the linearization Dy , of the F] J—operator at u is surjective;

(b) forall z e P!, the map @ZJ’u: ker Dy, — Ty X, sz,u(f) = &(z), is onto.
Definition 1.4 Suppose (X, w, J) is a compact almost Kahler manifold and A4 €
H,(X;Z). The almost complex structure J is genus-one A—regular if

(a) J is genus-zero A-regular;

(b) for every nonconstant J—holomorphic map u: P! — X such that u <, A4,
(b-i) forall ze P! and v € T,P! — {0}, the map

’}DZJ”I;: ker@iu — Ty X . @31;(5) = V&,

is onto;

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2435

(b-ii) forall z€ P! and z/ € P! —{z}, the map
’DZJ’fu: ker®5 , — Ty X, @f,zu &) =£&().
18 onto;

(c) for every smooth genus-one Riemann surface ¥ and every nonconstant J—
holomorphic map u: ¥ —> X such that u <, A, the linearization D , of the
d y—operator at u is surjective.

In (b-i) of Definition 1.4, V,& denotes the covariant derivative of £ along v, with respect
to a connection V in TX . Since £(z) = 0, the value of V,£& is in fact independent of
the choice of V. If J is an integrable complex structure, the surjectivity statements
of (a) and (b) in Definition 1.3 and of (c) in Definition 1.4 can be written as

H'PLu*TX)={0}, H'(PLu*TX®0pi(-1))={0}, H'(Z;u*TX)={0},

respectively. In the integrable case, the two surjectivity statements of (b) in Definition
1.4 are equivalent and can be written as

H'(Phu*TX ® Op1(-2)) = {0}.

It is well-known that the standard complex structure Jo on P” is genus-one d{-regular
for every d € Z; see [13, Corollaries 6.3,6.5], for example.

If J is a genus-zero A-regular almost complex structure on X', the structure of the mod-
uli space 97(0,;( (X, A; J) is regular for every k € Z7 . In other words, 97?0’/( (X,4;J)
is stratified by smooth oriented orbifolds of even dimensions and the neighborhood
of each stratum has the expected form. One of the results of this paper is that if J is
genus-one A-regular, the structure of the moduli space 10 k(X A; J) is regular for
every k € Z1; see Theorem 2.3 and Section 4.1. In partlcular we have:

Corollary 1.5 (of Theorem 2.3) Suppose (X,w, J) is a compact almost Kahler
manifold, A € Hy(X; Z)* and k € Z* . If J is genus-one A-regular, then the closure
ofimo (X, A J) in sml (X, A ) is sm (X, A3 J). Furthermore, sm X AT
has the general topological structure of a umdlmenszonal algebraic 0rb1vanety and thus
carries a rational fundamental class.

The first statement of Corollary 1.5 follows from the first claim of Theorem 2.3, along
with standard gluing arguments such as in McDuff—Salamon [8, Chapter 5]; see also

TEach point of 99 1.k (X, A; J) has a neighborhood which is a quotient of an affine algebraic variety
of complex dlmensmn dlml 1 (X, A)/2 by a finite group.
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Section 4.1. The middle statement of Corollary 1.5 summarizes Theorem 2.3, while
the last one is obtained at the end of Section 2.3.

We will also show that the genus-zero and genus-one regularity properties are well-
behaved under small perturbations:

Theorem 1.6 Suppose (X,w, J) is a compact almost Kahler manifold and A €
Hy(X;Z)*. If g = 0,1 and the almost complex structure J is genus—g A-regular,
then there exists § y (A) € R™ with the property that if J is an almost complex structure
on X such that ||J Jllct =85(A), then J is genus—g A-regular. Furthermore, if
J is genus-one A-regular, k € Z*, and J = (J1)tefo,1] 1s a continuous family of
almost complex structures on X such that Jo = J and ||J; — J||c1 < 6;5(A) for all
t €0, 1], then the moduli space 9719 k(X A; J) has the general topological structure
of a unidimensional algebraic orb1var1ety with boundary? and

0 (X, A3 J) = IMY | (X, 45 J1) =Y (X, 4; Jo).

The norms ||J — J |1 and || J; — J||c1 are computed using a fixed connection in
the vector bundle 7X , eg the Levi-Civita connection of the metric on X determined
by (w, J). The regularity claims of Theorem 1.6 follow from the compactness of the
moduli spaces Eﬁg,k (X, 4; J) and Corollaries 3.2, 3.6, 3.7, 4.2 and 4.5. The final
claim of Theorem 1.6 follows from a family version of Theorem 2.3. It can in fact be
used to show that under the assumptions of Theorem 1.6

MY 1 (X, A J) ~ [0, 1] x MY (X, A: Jo).
The conclusion, as stated, can be obtained with weaker regularity assumptions on J .

The key ingredients in the proofs of Theorems 1.6 and 2.3 are the gluing constructions
of Zinger [16], adapted to the present situation, and the power series expansions of
Theorem 2.8 and Section 4.1 in Zinger [13], applied via a technical result of Floer,
Hofer and Salamon [3]. The power series of [13] give estimates on the behavior of
derivatives of holomorphic maps under gluing and on the obstructions to smoothing
holomorphic maps from singular domains. A technical result of [3] shows that locally
a J—holomorphic map is very close to a holomorphic one. Ionel [5] essentially shows
that the above obstructions do not vanish on the complement of Mo k(IP’” d) in
93?1 x(P", d); this is the main portion of Theorem 1.2 for (X, J) = (]P’” Jo) and
thus for all algebraic varieties. This theorem can be viewed as describing limits in
97?1,;{ (X, 4;J); in comparison, Theorem 2.3 can be viewed as describing limiting
behavior.

2Each point of 909 1.k (X, A4; J) has a neighborhood which is a quotient of a fibration over (0, 1) or
[0, 1) of affine algebralc varieties of complex dimension dim; 4 (X, 4)/2 by a finite group.
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1.3 Some geometric implications

Theorem 1.2 implies that under certain assumptions on A and J the number of genus-
one degree— A J—holomorphic curves that pass through a collection of cycles in X of
the appropriate total codimension is finite. Furthermore, each such curve is isolated
to first order, as explained below. Throughout this subsection, we assume that the
dimension of X is 2n > 4.

A simple J-holomorphic map into X is a J-holomorphic map u: ¥ — X such that
u is one-to-one outside of finitely many points of X and the irreducible components of
Y. on which u is constant. A genus—g degree— A J —holomorphic curve C is the image
u(X) of an element [, u] of Sﬁg,k (X, A4; J) such that u is simple and the total genus
of the components on which u is not constant is g. Let Mg (X, 4; J) be the space of
all genus—g degree— A J—holomorphic curves in X. The expected dimension of this
space is dimg (X, 4).

A J-holomorphic curve C C X will be called regular if the operator Dy , is surjective
for a (or equivalently, every) stable-map parametrization u: ¥ —> C of C as above.
We will call a regular curve C C X essentially embedded if C is an irreducible curve
that has no singularities if # > 3 and its only singularities are simple nodes if n = 2. In
other words, if u: ¥ — C is a parametrization of C with k = 0, then X is a smooth
Riemann surface of genus g. Furthermore, if # > 3, u is an embedding. If n = 2, then

dimc Spang {Imdu|z:zeu_1(q)} = }u_l(q)| Vg e X.
In particular, # is an immersion.

Let o = (i1,..., ;) be a k—tuple of cycles in X of total (real) codimension
dimg o (X, A) + 2k, ie

I=k
codim p = " codim p; = dimg,o(X, A) + 2k = dimg 4 (X, A).
=1

We denote by Mg (X, 4; J, i) the set of genus—g degree-A J—holomorphic curves
that pass through every cycle 1, ..., iU, ie,
Mg(X, 4;J,n) ={C e Mg(X,A:J):CNpy # @ VI €[k]},

where k1= {1.....k}.

We will call an element C of Mg (X, 4;J, ) isolated to first order if for every
parametrization
u:x—CCcX
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of C, where X is a curve with k& marked points yq, ..., yx such that u(y;) € u; for
all / € [k],

{E eker Dy E(y1) € Ty +1mduly, Vi €k]} CT(Z:Imdu) C T (Z;u*TX).

If Mg(X, A4;J) is a smooth manifold with the expected tangent bundle and the
constraints fiq, ..., (g are in general position, then Mg (X, 4; J, n) is a discreet set
consisting of elements isolated to first order. Below we describe some circumstances
under which this set is also finite.

We recall that A € Hy(X; Z) is called spherical if
A= f:[S? € Hy(X:Z)

for some smoothmap f: S2— X . A symplectic manifold (X, w) is weakly monotone
if for every spherical homology class A such that w(A4) > 0, either

(c1(TX),A)=0 or (c1(TX),A) <2—n,

where 2n = dim X, as before. In particular, all symplectic manifolds of (real) dimen-
sions 2, 4, and 6 are weakly monotone. So are all complex projective spaces, which
are in fact monotone; see McDuff—Salamon [8, Chapter 5] for a definition.

Finally, if (X, w) is a symplectic manifold, we denote by 7 (X, w) the space of all
almost complex structures on X tamed by , endowed with the C!—topology.

Proposition 1.7 Suppose (X,w,J) is a compact almost Kahler manifold, A €
Hy(X;Z)*, g = 0,1, and J is genus—g A-regular. If u is a k—tuple of cycles
in X of total codimension dimg ;. (X, A) in general position, then Mg (X, A; J, j1) is
a finite set and every element in Mg (X, A; J, ) is irreducible, regular, and isolated to
first order.

Proposition 1.8 If (X, w) is a compact weakly monotone symplectic manifold and
A € Hy(X;Z)*, there exists a dense open subset Jreo(X, w; A) of J (X, w) with the
following properties. If J € Jreo(X,w; A), g = 0,1, and pu is a k—tuple of cycles
in X of total codimension dimg ; (X, A) in general position, then every element in
Mg (X, A; J, ) is essentially embedded and isolated to first order. If in addition
(cl(TX), A) # 0, then Mg(X, A;J, 1) is a finite set and its signed cardinality is
independent of the choice of J € Jreo(X, w; A).

Most of the genus-zero statements of these two propositions are well-known; see

McDuff-Salamon [8, Chapters 5-7], for example. The signed cardinality of the
set Mo(X, A;J, n) is the corresponding Gromov—Witten invariant, GW x (4; 1),
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of (X,w). The remaining statements are obtained from minor extensions of some

results in [8], along with Theorem 1.2 in the genus-one case. For each / € [k], let
eVl:ﬁtg’k(X,A;J)—)X’ [Z7y177yk?u]—>u(yl)’

be the evaluation map for the /—th marked point.

Suppose (X, w, J) and A are as in the statement of Proposition 1.7 and J is genus-one
A-regular. By (c) of Definition 1.4, the moduli space 93?‘1)’ (X, A;J) is a smooth
orbifold with the expected tangent bundle. Thus, if p is a tuple of constraints as in the
g =1 case of Proposition 1.7, then

MY (X, A, ) = {b € MY (X, A; ) revi(b) € g Vi € [k]}

is a zero-dimensional oriented submanifold. If {b,} is a sequence of distinct elements
in E)JI(I” (X, A J, ), by Theorem 1.2 a subsequence of {b,} must converge to an
element

beMY (X, A:J, ) ={b e M) L (X, A4:J) sevy(b) € py VI € [k}
C My k(X 4; ).

Since all elements of i)ﬁ(l)’ X (X, A4; J, n) are isolated,
b eM) (X, A;J, ) — MY L (X, A; ).
On the other hand, by the regularity assumptions of Definition 1.4,
OMY | (X, A:J) =M (X, A:T)— 9N (X, A: )

is a union of strata of dimensions smaller than dim; (X, A). Thus, if u is a tuple of
cycles of total codimension dim; x (X, A) in general position, then

It follows that MY , (X, A; J, 1) is a finite set, and so is its subset M (X, A; J, 11).

We next move to Proposition 1.8. For any B € H,(X; Z)*, almost complex structure J
on X,and g € Z™, let

M (X, B:J) C MY, (X, B J),
si 0

M (X, B: )C ML (X, B ),

MW (X, B ) C Mg (X, B; J)

Geometry € Topology, Volume 13 (2009)



2440 Aleksey Zinger

denote the subspaces of simple maps. By [8, Chapter 3], for a generic choice of J,
Dy, is surjective for every element [X, u] of SﬁSImp(X , A; J). Thus, as before,

Mi(X, AT, p) ~ S”“P(X AT ) =M (X, A: M)msm“mp()( A J)

is a zero-dimensional oriented manifold, if p is as in Proposition 1.8. On the other
hand, by the same argument as in [8, Chapter 6], the evaluation map

eVi41 X EViia: Dﬁil?{iz()(, A;J)— X x X

is transverse to the diagonal, for a generic choice of J. Let

L1 — MY, (X, A1 T)

be the universal tangent line bundle for the last marked point, ie

Litiliza = T T VIS ule MTP (X, 4 J).

By a small modification of the proof of Lemma 6.1.2 in [8], the bundle section

duly,, j‘“;ﬂrl(x AJ)— L ®evi  TX,  [Z,u] — duly,,.
is transverse to the zero set, for a generic choice of J. The key part of this modification
is to view the relevant first-order equation as an elliptic operator acting on the space of
smooth sections of the vector bundle nOp1(1) over S 2 The last two transversality
properties imply that for a generic element [X, u] of 90T “mp (X, 4; J) its image u(X)
is essentially embedded. This concludes the proof of the ﬁrst statement of Proposition
1.8.

By [8, Chapters 3 ,6], for a generic choice of J, D J.u 1s surjective for every element
[2, u] of EITZ blmp (X, B; J). In particular, EITI blmp (X, B; J) is a finite union of smooth
orbifolds of the expected dimension. Thus 1f W 1is a tuple of constraints as in the
statement of Proposition 1.8,

{b e M (X, A T) revi(b) € g VI €[k} — M0 (X, A: ) =
Furthermore, if (c{(TX), A) # 0, every element of
My, (X, A; T, 1) = {b € My 1 (X, 4;J) revy(b) € g V1 € [k]}

is simple. This can be seen by considering the dimension of the image of the multiply
covered elements of 9711’;{ (X, 4; J) under the evaluation map evy X --- X evg. This
is done by passing to moduli spaces of maps consisting of simple elements; see
[8, Chapter 5]. The argument requires two separate dimension counts for multiply
covered maps: one for the elements in i)ﬁl k(X A; J) and the other for those in its
complement in sml (X, 4;J). In addition to the assumption {¢1(TX), A) # 0, the
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weakly monotone condition on (X, w) enters directly into both dimension computations.
Finally, by the same modification of the proof of Lemma 6.1.2 in [8] as described
above, but applied to tuples of genus-zero maps instead of genus-one maps,

MR (X, A )0 (T (X A3 ) - (X, A: )

is a finite union of smooth orbifolds of dimensions less than dim; ; (X, 4). We
conclude that

Mi(X, A T ) ~ (X AT, ) = T (X, AT )

is a compact zero-dimensional manifold. By a cobordism argument as in [8, Chapter 7],
the signed cardinality of M (X, 4; J, i) is independent of a generic choice of J.

The signed cardinality GW?’ «(A: ) of the set M x (X, A; J, ) is an integer-valued
invariant of the symplectic manifold (X, w). The difference between this invariant for
an arbitrary symplectic manifold (when the invariant may not be an integer) and the
standard genus-one GW-invariant is described by [19, Proposition 3.1] and explicitly
given by [21, Theorems 1A,1B].

2 Preliminaries

2.1 Notation: Genus-zero maps

We now describe our notation for bubble maps from genus-zero Riemann surfaces, for
the spaces of such bubble maps that form the standard stratifications of the moduli
spaces of stable maps, and for important vector bundles over them. In general, the
moduli spaces of stable maps can stratified by the dual graph. However, in the present
situation, it is more convenient to make use of linearly ordered sets:

Definition 2.1 (1) A finite nonempty partially ordered set [ is a linearly ordered
set if for all i{,i5,h € I such that i{,i, < h, either i1 <iy or i, <ijy.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element,
ie there exists 0 € I such that 0 <i foralli € I.

We use rooted trees to stratify the moduli space ﬁo,{o}u M (X, 4; J) of genus-zero
stable holomorphic maps with marked points indexed by the set {0} LI M, where M is
a finite set.

If I is a linearly ordered set, let T be the subset of the nonminimal elements of . For
every h € I, denote by t; € I the largest element of I which is smaller than #, ie
Lh:max{i el:i <h}.
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We identify C with S — {oo} via the stereographic projection mapping the origin in
C to the north pole, or the point (0,0, 1), in S2. A genus-zero X —valued bubble map
with M —marked points is a tuple

b=(MI;x,(j.y),u),
where [ is a rooted tree, and
Q-1 x: I—C=8%-{o0}, j: M —1I, y: M —C, u: [ — C®(S% X)

are maps such that u;(0c0) = u,, (x;) forall i € I. We associate such a tuple with
Riemann surface

(2-2) Tp = (|_| zb,i)/N, where $p; = {i} x S2, (h,00) ~ (1, x) Yhe I,
iel
with marked points
)= Gy €Tpj,  and  yo(b) = (0,00) € T, 5

and with the continuous map up: ¥ —> X, given by up|s, ; = u; forall i € I. The
general structure of bubble maps is described by tuples 7 = (M, I; j, A), where

Ai ={upls, ,},[S?]  Viel

We call such tuples bubble types. Denote by U7 (X ; J) the subset of ﬁto,{o}u mX,A4;J)
consisting of stable maps [C, u] such that

[C’ I/t] = [(va (63 OO), (jl’ yl)lGM); ub]»

for some bubble map b of type 7 as above, where 0 is the minimal element of I ; see
Zinger [16, Section 2] for details. For / € {0} LU M , let

evi: Ur(X;J)— X
be the evaluation map corresponding to the marked point y;.

We denote the bundle of gluing parameters, or of smoothings at the nodes, over
Ur(X;J) by FT. This orbi-bundle has the form

FT = (@ Lpo® Lhﬁl)/Aut(T),

hel

for certain line orbi-bundles Lj ¢ and Ly ;. These line bundles? are the line bundles
associated to certain S —principal bundles. More precisely, there exists a subspace

3also known as the universal tangent line bundles at the node, but this is not essential here

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2443

Z/lg) ) (X; J) of the space H7(X;J) of J—holomorphic maps into X of type 7, not
of equivalence classes of such maps, such that

Ur(X;J) = U (X )/ Au(T)o(S 1!

The line bundles Ly ¢ and Ly ; arise from this quotient; see Section 2.5 in [16]. In
particular,

FT = FT ) Aw(T)o(SH! . where FT =1 (x:J)x T —u®(x: ).

We denote by 72 and FT? the subsets of F7 and F7 , respectively, consisting
of the elements with all components nonzero.

The subset Z/{éo ) (X; J) of Hr(X; J) is described by the conditions (B1) and (B2) in
Section 2.5 of [16]. It is the preimage of the point (0, 1/2)7 in (C x R) under the
continuous map

Wy = (Vr)ier: HT(X;J) — (C xR)!

defined in the proof of Proposition 3.3 in [16]. The statements of the conditions (B1) and
(B2) and the definition of the map W7 require a choice of a J —compatible metric gy .

It can be assumed that
2
/P ldulg, =1

for every nonconstant J —holomorphic maps u: P! — X . Such a metric gy will be
fixed once and for all. If the almost complex structure J is genus-zero A—regular, where
A= Zi <7 Ai, the space H7(X; J) is a smooth manifold of the expected dimension;
see Chapter 3 in [8]. In such a case, the map W7 is smooth and transversal to every
point (0, 7;);ey such that |r; — %| < % for all i € I; see the proof of Proposition 3.3
in [16]. Let
(2-3) xX(T)={iel:A; #0; Ay =0Vh<i},
U (X:7) = W7 ({(0.ri)ier € (CxR)' :
ri=%ViEI—X(T), rie(%,%) Viex(’T)},

FT =ﬁ§0)(X; J)yx ! —>Z;Iv§0)(X; J).
As before, we denote by FT? the subset of FT consisting of the elements with all
components nonzero.
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2.2 Notation: Genus-one maps

We next set up analogous notation for maps from genus-one Riemann surfaces. In this
case, we also need to specify the structure of the principal component. Thus, we index
the strata of the moduli space 911 as (X, A; J) by enhanced linearly ordered sets:

Definition 2.2 An enhanced linearly ordered set is a pair (I, R), where I is a linearly
ordered set, 8 is a subset of Iy x Iy, and [ is the subset of minimal elements of 7,
such that if |Iy| > 1,

R ={(i1.02). (i2.03). ..., (in—1. i), (in. 01)}

for some bijection i: {1,...,n} — Iy.

An enhanced linearly ordered set can be represented by an oriented connected graph.
In Figure 4, the dots denote the elements of 7. The arrows outside the loop, if there are
any, specify the partial ordering of the linearly ordered set /. In fact, every directed
edge outside of the loop connects a nonminimal element & of I with ¢j. Inside of the
loop, there is a directed edge from i; to i, if and only if (iy,i,) € R.

Y

Figure 4: Some enhanced linearly ordered sets

The subset R of Iy x Iy will be used to describe the structure of the principal curve of
the domain of stable maps in a stratum of the moduli space 97?1 M(X A T). IfR=02,
and thus |Iy| = 1, the corresponding principal curve Xy is a smooth torus, with some
complex structure. If R = &, the principal components form a circle of spheres:

Eg:(l_l{i}sz)/w, where (i1, 00) ~ (i,0) if (i1,i) € R.
iely
A genus-one X —valued bubble map with M —marked points is a tuple
b=(M,I,%:S,x,(j,y).u),

where S is a smooth Riemann surface of genus one if & = & and the circle of spheres
3x otherwise. The objects x, j, y, u, and (Xp, up) are as in (2-1) and (2-2), except
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the sphere X 5.0 Ais replaced by the genus-one curve X ¢ = S. Furthermore, if R =4,
and thus Io = {0} is a single-element set, ugz € C*°(S; X) and y; € S if j; =0. In
the genus-one case, the general structure of bubble maps is encoded by the tuples of the
form 7 = (M, I,R; j, A). Similarly to the genus-zero case, we denote by U7 (X; J)
the subset of 97?1, Mm (X, A; J) consisting of stable maps [C, u] such that

[C:ul = [(Zp, U1 YD 1em): up ],
for some bubble map b of type 7 as above.
If 7T=(M,I,R;j,A) is abubble type as above, let
) L=thel:yel), Mo={eM:jelp),
To= (Mo U1y, Io.N; jla, Utlr,, Algy).
where [ is the subset of minimal elements of /. For each & € I, we put
(2-5) Ip={icl:h<i}, Mp={eM:jicly}, Thy=(MpIp: jlm,. Al1,)-
We have a natural isomorphism

2-6) Ur(X: )~ ({(bo. bner,) € Un (X: 1) x [ [tz (X: ) :
hel,

evo(by) = evy, (bo) Vh € 11}) / Aut*(T),
where the group Aut*(7) is defined by
Aut™(7T) = Aut(7)/{g e Auw(T): g-h=h Vhe I}

This decomposition is illustrated in Figure 5. In this figure, we represent an entire
stratum of bubble maps by the domain of the stable maps in that stratum. The right-hand
side of Figure 5 represents the subset of the cartesian product of the three spaces of
bubble maps, corresponding to the three drawings, on which the appropriate evaluation
maps agree pairwise, as indicated by the dotted lines and defined in (2-6).

Let 77 —> U7 (X; J) be the bundle of gluing parameters, or of smoothings at the
nodes. This orbi-bundle has the form

FT = ( @Lh,o@)Lm @@Lh,oébLh,l)/Aut(T),

(h,i)er hel

for certain line orbi-bundles L ¢ and Lj ;. Similarly to the genus-zero case,

(2-7) Ur(X:J) = UL (X: )] Aut(T)o(SM),
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N
hz /’11 /’13 h4
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hs
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Figure 5: An example of the decomposition (2-6)

where

2-8) UL (X5J) = {(bo (bu)ner,) €U (X: ) x [ JUS (X;.J) :
hEIl
evo(by) =ev,, (bg) Yh e 11}

and L{% ) (X;J) is the subspace of the moduli space of holomorphic maps from
genus-zero curves as in Section 2.1. The line bundles Ly o and Ly ; arise from
the quotient (2-7). More precisely,

FT = FT ) Au(T)o«(SH! . where FT = AT @ FoT & FiT —> U (X)),

FRT=QFHT. FT=uPx;5)xcl,
hely

and F; »n T and FaT are the pullbacks by the projection map
wp: UL (X3 T) —> Ugy (X J)

of the universal tangent line L7 at the 4—th marked point and of the bundle 77 of
gluing parameters. In other words, if 7, —> Uz, (X; J) is the semiuniversal family,
ie the fiber at by € Uz, (X J) is the Riemann surface X5, = Xp) n, L7 is the
vertical tangent space at the point x5 (bg) of Zp, .

Remark 1 The above description is slightly inaccurate. In order to insure the existence
of the space il7,, with the fibers as described, we need to replace the space Uz, (X; J)
by a finite cover, analogous to the one used in [10]. However, correcting this inaccuracy
would complicate the notation used even further, but would have no effect on the
analysis, and thus we ignore it.

Remark 2 The rank of the bundle F7 is |R|, the number of nodes in the domain
of every element of Uz, (X;J). If X # @, FT( can be written as the quotient of
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the trivial bundle of rank |X|, over a space Z/{%: ) (X:J), by an Aut(Zp)oc(S')®-action
in a manner similar to the previous subsection and to Section 2 of [16]. With the
above identifications, the singular points of every rational component ¥; of Xy are the
points 0 and oo in S?. Thus, the equivalence class of the restriction of a stable map in
Uz, (X; J) to X;, with its nodes, has a C*—family of representatives. This family is
cut down to an S!—family by restricting to the subset defined by the condition (B2) of
Section 2.5 in [16]. This is the preimage of 1/2 under the last, real-valued, component
of the function W7 ;» defined in (2) of the proof of Proposition 3.3 in [16].

If 7T=(M,I,N;j,A) is abubble type such that 4; = 0 for all minimal elements i
of I,ie

Ur(X;J) c 97?1,M(X,A; J)—QJI{I?]}\/[(X,A; J), where A= ZA,-,

iel
it is again useful to define a thickening of the set Z/lg) ) (X; J). Thus, we put
2-9) U (X5 ) = {(bo, bu)ner,) €U (X: ) x [ [UW (X:.7) :

hEI]
evo(by) = evy, (bo) Vh € I, }.

where the space ﬁ%:) (X; J) is as in Section 2.1. Let

FT =RT & RT & FT — Uy (X: ).
where

AT =7pFTo. Fol =D AT . AT =apLaTo. AT =L (x: Nyxc11,
hel;

and 7p: Z;?(? ) (X;J) — Uz, (X; J) is the projection map. As before, we denote by
FT? the subset of F7 consisting of the elements with all components nonzero.

Suppose T = (M, I,R; j, A) is a bubble type as in the previous paragraph. Since
every holomorphic map in the zero homology class is constant, the decomposition (2-6)
is equivalent to

Ur(X; T) ~ (uTO (pt) x Uz (X J)) / Aut*(T)

(2-10) B
< (Mo xUr(X: ) [ Aut"(T),
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where kg = |My| + |11], ./\711,1(0 is the moduli space of genus-one curves with kg
marked points, and

Uq——(X; J) = {(bh)hell € HUE(X; J) : eVO(bhl) = eVO(bhz) Vhl,hz S 11}.
heIl

Similarly, (2-9) is equivalent to
@2-11) U (X2 T) ~ Uz (p) < UL (X3 T) € My ey <UD (X2 ),

where
@12) dP(x:J)

= {(bh)hezl e [T (X7 : evo(ba,) = evolba,) Yhi hs € 11}.
hEI]
We denote by
wp Ur(X:J) — Mg,/ Aut™(T),  7p: U (X J) — My
evp: Ur(X;J), U (0)(X;J)—>X

the projections onto the first component in the decompositions (2- 10) and (2-11) and
the map sending each element [C, u] of Uy (X;J), or (C,u) of UT (X J), to the
image of the principal component Cp of C, ie the point u(Cp) in X .

Let E — /\711,;(0 denote the Hodge line bundle, ie the line bundle of holomorphic
differentials. For each i € x(7), we define the bundle map

Dyi: FayT — 7pE* @evyp TX, where h(i)=min{hel h<i}el,
over ﬁg))(X; J) by

{DJ,I(G)}(W) = foh(,-)(b)(‘ﬁ) J le € Tevp(b)X
if Y eFEE, T=(b7)e€FnpT, bellP(X;J),

and xp(;)(D) € Xp x is the node joining the bubble X4 5(;) of b to the principal com-
ponent X of Xp. For each v € 77T, we put

p(v) = (b, (pi(V))iex(T)) € @fh(i)T, where  p;(v) = l_[Uh € Fri)7,
iex(T) hel,h<i

if v=(b; s (v) bel®(X:J). (b.vy) € FT. (b.vp) € FyT it heTy.

ieI)
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These definitions are illustrated in Figure 6. While the restrictions of these bundle maps
Ug) ) (X;J)C Z/lg) ) (X; J) do not necessarily descend to the vector bundle 77 over
Ur(X;J), the map

Dr: FT — npE*@evp TX [ Aut"(T).  Dr(v)= Y _ Dyipi(v).
iex(7T)

is well-defined.

Finally, if 7 is any bubble type, for genus-zero or genus-one maps, and K is a subset
of Ur(X; J), we denote by K © and KO the preimages of K under the quotient
projection maps

U X J)—ur(X:J) and  ULD(X:T)— Ur(X: ),

respectively. All vector orbi-bundles we encounter will be assumed to be normed. Some
will come with natural norms; for others, we choose a norm, sometimes implicitly,
once and for all. If wz: § —> X is a normed vector bundle and 6: X — R is any
function, possibly constant, let

Fs={veF: vl <d(mzv))}.
If Q2 is any subset of §, we take Q5 = Q2 N Fs.

2.3 Boundary structure theorem

In this subsection, we formulate Theorem 2.3, which states that an element
— 0
b e My 4 (X, A: J)— M (X, A:.T)

lies in the stable-map closure of the space 93?0 p (X, 4;J ) of genus-one J —holomorphic
maps from smooth domains if and only 1f b lies in MO k(X A; J), provided the
almost complex structure J is sufficiently regular. In add1t10n Theorem 2.3 describes
a neighborhood of every stratum of

MY (X, A:T) — M (X, A1 T)

in DJTOk(X A;J). If k € Zt, we denote by [k] the set {1,...,k}.

Theorem 2.3 Suppose (X,w, J) is a compact almost Kahler manifold and A €
H,(X;Z)*. If the regularity conditions (a) and (b-i) of Definition 1.4 are satisfied
and T = ([k],1,R; j, A) is a bubble type such that ) ;.;A; = A and A; =0 for all
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minimal elements i of I, then the intersection of the closure of E)ﬁ(l)’ (X, A J) in
My x (X, A; J) with U7 (X; J) is the set
Ur;1 (X3 J) = {[bl € Ur (X J) : dime Spanc, jy{Dib :i € x(T)} < [x(T)}.
Furthermore, the space
F'7% ={[v]=[b,v]€ FT? : D1 (v) = 0}

is a smooth oriented suborbifold of 7T . Finally, there exist § € C(Ur(X;J);RT),
an open neighborhood Uz of U7 (X J) in X1 (X, A), and an orientation-preserving
diffeomorphism

¢: FIT7 — M) (X, 4:J) N U,
which extends to a homeomorphism
¢: F'Ts — M) (X, 4:J) N U,
where F17 is the closure of F'T9 in FT.
We now clarify the statement of Theorem 2.3 and illustrate it using Figure 6. As before,

the shaded discs represent the components of the domain on which every stable map [b]
in U7 (X; J) is nonconstant. A stable map

[C.u) € Uz (X ) C My (X, A5 J) =ML (X, 457

is in the stable-map closure of 917((1) (X, A; J) if and only if [C, u] satisfies condition (b)
of Definition 1.1.

. X(T):{h17h4vh5}v /)(U):(Uhl, Uh3Uhy, Uh3vh5)

FITP = {[b: vh,. iy, Vhys Uiy Vis]: Uhas Vg, Vs €C*;
vhl € Txhl EP_{O}s vh3 € Txh3 EP_{O},
Vi Dy iy b+ Vi3 Vhy D b+ Vayvns Db =0}

“tacnode”

Figure 6: An illustration of Theorem 2.3

Standard arguments show that the regularity condition (a) of Definition 1.4 implies
that the space L{7(9 ) (X; J) is a smooth manifold, while U7 (X; J) is a smooth orbifold;
see Chapter 3 in [8], for example. Thus, the total space of the bundle F7© is also a
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smooth orbifold. The second claim of Theorem 2.3 is immediate from the transversality
of the bundle map

Dr: FT? — npE*@evp TX [ Aut"(T).  Dr(v)= Y _ Dypi(v),
iex(7T)

to the zero set. In turn, this transversality property is an immediate consequence of the
regularity conditions (a) and (b-i) of Definition 1.4.

The middle claim of Theorem 2.3 is needed to make sense of the remaining statement.
This final claim, proved in Section 6, describes a normal neighborhood of U7;; (X J)
in Dﬁ? (X, A; J) and implies the first statement of Theorem 2.3.

Remark The regularity assumptions on J used in Theorem 2.3 do not guarantee that
the entire space im (X, 4;J) is smooth. However, the proof of Theorem 1.6 implies
that 9710 k(X A;J ) is smooth near each stratum Uz (X; J) of M9 k(X A; J). This
can be seen from the J = J case of Corollary 4.5 and standard Imphclt Function
Theorem arguments such as those in Chapter 3 of [8].

Proof of Corollary 1.5 It remains to construct a fundamental class for 97(0 XA T).
Theorem 2.3 gives a description of a neighborhood in mo k(X A; J) of every stratum

’k(X,A, J)NU7r(X; J) for a bubble type 7T = (M 1.X:; j,A) suchthat 4; =0
for all minimal elements i € /. If 7 is a bubble type such that A; # 0 for some
minimal element 7 € I, a neighborhood of

in 97?(1) (X, 4; J) is homeomorphic to a neighborhood of U7 (X; J) in the correspond-
ing bundle of gluing parameters F7 , as can be seen from Section 4.1 and the continuity
arguments of [16, Sections 3.9]. Since

OMY (X, A:J) = MY L (X, A: ) — 9] (X, 4: )

is a union of smooth orbifolds of (real) dimension at most 2({c{ (T X), A} + k) —2, it
follows that there exist arbitrary small neighborhoods U of 990t° k(X A; J) such that

H(U:Q)={0}  VIz2({c(TX),A) +k) -1

see [20, Section 2.2]. Since the moduli space sm‘l) k(X , A; J) is a smooth oriented
orbifold,

dimg MY (X, 4:J) =2((c1(TX), A) + k),
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and the complement of U in 971(1)’ (X, 4;J) is compact, 971(1)’ (X, 4;J) determines
a class

[0 4 (X A )] € Hae, (7, dy+k) () 4 (X, 43 1), U3 Q)
~ Hy((ey (1), 4)+10) (T 1 (X, 4 1): Q).

as claimed. The isomorphism between the two homology groups is induced by inclusion.

3 A genus-zero gluing procedure

3.1 The genus-zero regularity properties

In this subsection, we prove the g = 0 case of the first claim of Theorem 1.6. It
follows from Corollary 3.2 and the compactness of the moduli space 9710,1 (X, 4;J).
Corollary 3.2 is obtained by a rather straightforward argument via the analytic part
of [6]. Throughout this subsection, we assume that J is a genus-zero A-regular almost
complex structure on X .

In order to prove Theorem 1.6, we need to describe smooth maps u: P! — X, with
one or two marked points, that lie close to each stratum U7 (X; J) of My 1 (X, 4:J)
and of

Mo (X, A; J) ~ Mo sy (X, 4; J).
We denote by Xo,as (X, A) the space of equivalence classes of all smooth maps into X'
from genus-zero Riemann surfaces with marked points indexed by the set {0} LI M in

the homology class A and by %g (X, A) the subset of Xo ar(X, A) consisting of
the maps with smooth domains, ie P! in this case.

Let 7 = (M,I;j,A) be a bubble type such that ) ;.;4; = A, ie Ur(X;J) is a
stratum of the moduli space 97?0,{0}“ M (X, A; J). We will proceed as in Sections 3.3
and 3.6 of [16]. Sections 2.1 and 2.3 in [13] describe a special case of the same
construction in circumstances very similar to the present situation.

For each sufficiently small element v = (b, v) of FT2, where b = (Xp,up) is an
element of a;o ) (X J), let
qu: Xy — Xp

be the basic gluing map constructed in Section 2.2 of [16]. In this case, X, is the
projective line P! with |M | + 1 marked points. Let

b(U) = (EU7 uv), Where Uy = Up qu,

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2453

be the approximately holomorphic map corresponding to v. The primary marked point
yo(v) of =, is the point co of X, ~ S2.

Let V/ be the J-linear connection induced by the Levi-Civita connection of the
metric gy . Since the linearization Dy j of the dy—operator at b is surjective by
Definition 1.3, if v € F7 9 is sufficiently small, the linearization

Dyy: T(v) = LY (Sy;uf TX) — IO (03 J) = LP(Sy; AT T* S, @ u} TX)

of the 9y —operator at b(v), defined via the connection V7, is also surjective. In
particular, we can obtain a decomposition

(3-1 Fv)=T-(v)®TI'+(v)
such that the linear operator Dy ,,: I'y (v) — I'%!(v; J) is an isomorphism, while

I_(v)={to0qy:§€T_(b) =ker Dy}

For the purposes of this subsection, the space 'y (v) can be taken to be the L?—
orthogonal complement of I"_(v), but for use in later subsections it is more convenient
to take

(3-2) Ty()={{eT(v):£(0,00) =0;
(¢, £)v,2 = 0 V& € T_(v) such that £ (0, 00) = 0},

where (6, 00) is the primary marked point, ie the south pole of the sphere X, ~ S2.
This choice of I';(v) is permissible by Definition 1.3. The L2—inner product on I'(v)
used in (3-2) is defined via the metric gy on X and the metric g, on X, induced by
the pregluing construction. The Banach spaces I'(v) and I'%!(v; J) carry the norms
|llv,p,1 and | ||v, p, respectively, which are also defined by the pregluing construction.
Throughout this paper, p denotes a real number greater than two. The norms || - ||, 5,1
and || - ||v,p are equivalent to the ones used in [6]. In particular, the norms of Dy ,,
and of the inverse of its restriction to I'y (v) have fiberwise uniform upper bounds,
ie dependent only on [b] € Uz (X ; J), and not on v € C*!. We denote by

wy—: F'(v) — TI'—(v) and vt T'(v) — Ty (v)

the projection maps corresponding to the decomposition (3-1). The relevant facts
concerning the objects described in this paragraph are summarized in Lemma 3.1:

Lemma 3.1 Let (X,w, J) be a compact almost Kahler manifold and A € H,(X ;7).
If J is a genus-zero A-regular almost complex structure and 7 = (M, I;j, A) isa
bubble type such that A =";c; A;, there exist §, C € C(U7(X; J); R™) and an open
neighborhood Ut of Ur(X; J) in Xo p (X, A) with the following properties:
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(1) Forall v = (b, v)ej-:’fg,

l77v;-&llv,p1 = COE v, p1 VEe'(v),
D70 llv,p < CONOIYPEll,p.1 VEel'-(v),
COY Elv,p1 NPy wéllv,p = COElv,p,1 VE ey (v);

(2) For every [5] € %8 pm (X, A)NUr, there exist v € fo and ¢ € 'y (v) such
that [|{]|v,p,1 < 8(b) and [expp(y,)¢] = [b].

The first two bounds in (1) follow immediately from the definition of the spaces I'_(v).
The third estimate can be deduced from the facts that

(3-3) [I€llv.p,1 £ COYI1DvEllv.p+lEllv.p). [Ellco < CB)Ellv,p1 V& €T (v),
lim T_(v) =T-(b) if b= (Spup) €U (X: J):

see Section 3.5 in [16]. In (2) of Lemma 3.1, epr(v)§ denotes the stable map that has
the same domain and marked points as the map b(v), but the map into X is exp, ¢,
where exp is the exponential map of the connection V7 . The final claim of Lemma
3.1 also follows from the above properties of I'_(v), along with the uniformly smooth
dependence of the spaces '_(v) on v; see Section 4 of [16]. In fact, for each [5] in
Urn .’%Ig’ (X, A), the corresponding pair (v, {) is unique, up to the action of the

group Aut(7)o(S1)T.

Corollary 3.2 If (X,w,J), A, and T are as in Lemma 3.1 and M = &, for every
precompact open subset K of Uz (X;J), there exist §g,Cx € R™ and an open
neighborhood Ug C Ut of K in Xy (X, A) with the following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.

(2) If J is an almost complex structure on X such that ||J~— Jllcr < 8k and
[E] e Ug N %8’1(1\’, A), there exists a smooth map u: P! — X such that
[b] =[P, %] and, for a choice of linearization of d5 at u, the operators Dj,ﬁ
and ’D‘;fjﬁ are surjective.

Remark If the map u is J —holomorphic, ie F] 7 vanishes at #, there is only one
linearization of 0 at u, though there are different ways of writing it explicitly. In the
proof of this corollary, whether or not u is a J—holomorphic map, D Ji denotes the
linearization of d5 at & with respect to the connection V7 ; see [8, Chapter 3].
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Proof (1) By (2) of Lemma 3.1, it is sufficient to check the surjectivity claims for
every smooth map # = exp,, ¢, where v = (b,v) € f’]:si ‘K(0> and [|C|ly,p,1 <dk . If

£eT (i) = LY (Zy; 0" TX),
we define §e I'(v) by
E) =T () VzeP!

where Il¢(,) is the parallel transport along the geodesic ¢ —> exp, (,)!§(z) with
respect to V7 . By (3-3),

G4) D108l <15 g8 llv.p + Cr (1T = Tller + 1 llv.p) [E ]v.p.1
=107 zllv.p + Cx (17 = Tlict + ¢ lv.p.1) 1€ ]lv.p.1

V & e T(@).
Thus, by (1) of Lemma 3.1,
17vs+Ellvp1 < Cr (1T =T ller + 1Elv,p1 ) 1E v, p1
(3-5) s il ~ ¢ v ) Il p Véeker Dy,
— ”é”v,p,l = CK”]TU;—S”v,p,l ’

if §x is sufficiently small. By (3-5) and (a) of Definition 1.3,
dim ker D]-ﬁ <dimI'_(v) =ind Dy =ind Df’ﬁ.
In particular, the operator Dy - is surjective.

(2) The surjectivity of the map CD‘}OE is proved similarly. Let

Ty T_(U) — T_(v) = {£ € T_(v) : £(00) = 0} ~ ker OF

Joup>

Foa: To(v) — Ty(U) = {E € T_(V) : (£, v =0 VE e T_(v)}

be the L2—orthogonal projections onto I'_(v) andiits orthogonal complement in I'_(v).
Then,

(3-6) I€lv.p1 = CrlE@)] ¥ EeTi(),
since the analogous bound holds for the map

@fbl ker DJ,u — Tu(oo)X»
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by Definition 1.3. Combining (3-3)—(3-6), we obtain

17 v:4 70i—Ellv, po1
< C|mv;-£(00)| < Ck (1E(00)| + |my: 4+ E(00)])
< CR () + (1T = Tllct + 1¢llv.p.)ENv.p1) V& ker Dj 5
= Ellv,pa = Cx 1 Fo=mui-Ellu,p1 V§ekerDF.

if §x is sufficiently small. Thus,
. o0 . = . oo o0
(3-7) dim ker’Dfﬁ <dimI_(v) = ind®", =ind ’ij,

and the operator @35’~ is surjective.
u

3.2 Some power-series expansions

In Section 2.5 of [13] we describe the behavior of all derivatives of rational Jy—
holomorphic maps into P” near each stratum U7 (P"; Jy) by making use of special
properties of the standard complex structure Jo on P”. In this subsection, we obtain
analogous estimates for modified derivatives of J—holomorphic maps into X for an
arbitrary genus-zero A-regular almost complex structure J ; see Lemma 3.5. We use
these estimates a number of times in the rest of the paper.

If b= (%, ub) is as element of U(O)(X J) as in the previous subsection, the tangent
bundle TbZ/lT (X J) of LIT (X J) at b consists of the pairs (w, ), where £ €
kerDyp and w € CT encode the change in u; and in the position of the nodes
on X, respectively, that satisfy a certain balancing condition; see Section 2.5 in [16].
We denote by T; bu,([" )(X J) the subspace of the tuples (0, &) of TbZ/{T)(X J). In
particular,

Tl (X J)CT_(b) = {(51,);,61 e@rker Dy, 64(00) = &, (x4(b)) Vi € f},
hel

where upp = upls, ,. It i € x(T), where x(7) is as in (2-3), the image of the
projection map

{Enner € T (X J): £(0,00) = 0} —> {¢ e ker Dy, £(0,00) = 0},
"i: = (Eh)he] — $|Eb,i = éi’

has real codimension two. Its complement corresponds to the infinitesimal translations
in C C Xp ;. Thus, if J satisfies the regularity conditions (a) and (b-1) of Definition 1.4
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and 0 is the minimal element of I, for all i € x(7') the map

Dy T-(0) = {E € Tyl (X1 J): £(0.00) =0} — Ty X. Dy i) =V _&:.
is surjective.

Lemma 3.3 If (X,w,J), A, and 7 are as in Lemma 3.1, for every precompact

open subset K of Ur(X; J), there exist §g ,ex, Cx € R™ and an open neighborhood
Uk C Ut of K in Xo p (X, A) with the following properties:

(1) Requirements (1) and (2) of Corollary 3.2 are satisfied.
(2) If J is an almost complex structure on X such that || J— Jllcr <6k,

(2a) forall v = (b,v) € ﬁ’?K ’E(O) , the equation

5fexp”U§ =0, el (), [8llv,pa1 <€k,

has a unique solution {7 . ;
(2b) the map

5]": ﬁ?K|IE(O) — mg,{o}uM(X7 Av ‘7) N UK ’ v—> [epr(v) é—f,v] ’

is smooth; _
(2c) forallv = (b,v) € .7-"7' g evo(p5(v)) =evo(h);
(2d) forall v = (b,v)eFT? 5 | Fo

(3_8) ‘|§.7v||v,p 1’ ”VT;;,U ” v,p,1 — CK(”J J”C'l + |U|1/p)

where VT§ Fv denotes the differential of the bundle map v — (5 Fu
along r_ (b) with respect to a connection in the bundle T'((-,v)) over
a(x;J).

Remark Let ¢: f_( -)— L’{véo ) (X; J) be a smooth map such that
do|p,0): T-(b) — Tyldy (X:J)
is the inclusion map for all b € U (0) (X;J) and

Se) =5 and evo(p(c)) =evo(h) Vel (X:J), c eT_(b).

~ % % S
Let Q: Jrf,i(‘)F((-,v)) = nf‘i(')F(E(.,v),u(.’v)TX) — I'((-,v))
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be a lift of ¢ to a vector-bundle homomorphism that restricts to the identity over
L{g) )(X ; J). For example, we can take ¢ to be given by

106:9}(2) = Tegy@EE) Y20 = Zpe)w)
if cel_(b) and ¢(c) = (Tp.exp,, {(2)),

where Il¢ (g, ) ())& (2) is the parallel transport of £(z) along the geodesic
Ve [0.1]— X, Tt —exp,, ) T8(q0,0)(2))-

We can then define VT§J~,(_,U): f_(-) — I'((-,v)) by

{5 —0C5 vy
T 1 J,(p(ts),v) J,(b,v)
{Vg Cf,-}|(b,v) = th_r)no /

e I'((b,v))

for X e T_ (b). Finally, a choice of metric on ﬁg) ) (X J) determines ||[V7¢ Follv.p.1-

Claim (2a) of Lemma 3.3 and the first bound in (2d) follow immediately from (1)
of Lemma 3.1 and (3-3) via a quadratic expansion of the F] j—operator at uy and the
Contraction Principle; see [16, Section 3.6]. Claim (2c) is a consequence of (3-2). The
smoothness of the map (E 7 follows from the smooth dependence of solutions of the
equation in (2a) on the parameters. The second bound in (2d) is obtained from the
uniform behavior of these parameters; see [16, Section 3.4].

Ifbe ﬁ$ ) (X; J) is as before, the domain Xj of b has the form
(3-9) I, = (l_l{i} X SZ)/ ~, where  (h,00) ~ (i, xu(b)) Yh e T,
iel

and x;,(b) € S? —{oo}. The basic gluing map ¢g,: ¥, —> X} used in this paper is a
homeomorphism outside of at most |/| circles in X, and is holomorphic outside of
the annuli

I‘Tih = ‘];1 (Azt,h(|Uh|)),
with he T , where

Ay () = A5 () = {(h.2) e {h} x §% : |z| = 67122},
A;,h(fs) = {(Lh,z) € {up} X S2- |z —xp(b)| < 251/2},

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2459

for any § € R, For each / € I, A nY A vk is the thin neck of ¥, corresponding
to smoothing the node of ¥ Jommg the spheres Xpy, and Xp . If 6 € R, let

0" Ay () = {(h,z) € {hy x S?: |z] = §71/2/2},
230 = (20 U Uzsa)u Uy,
iex(T) h=i iex(7T)
AL =g, (A5, 0) C =y, 07 A, ,(0) = g5, (97 4, ,,(8)).
96) =45 (256)).

In the case of Figure 7, £2(§) consists of the two nonshaded components, with the
node joining them turned into a thin neck, the three thin necks corresponding to the
nodes attaching the bubbles /1, /4, and /5, and small annuli extending from each of
these three necks into the interior of the corresponding bubble, provided |v| < §. If

v = (b,v), with v € C*! | the complement of %9 (8) is the union of |x(7)| disks that
support nearly all of the map u, = up oqy.

Lemma 34 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact
open subset K of Ur(X; J), there exist §g,ex, Cx € R and an open neighborhood
Uk C Ut of K in X9 ap (X, A) with the following properties:

(1) Requirements (1) and (2) of Corollary 3.2 are satisfied.

(2) If J is an almost complex structure on X such that ||.J — J |c1 <0k, there exist
a smooth map

5}3 ﬁ'?K“?(O) — mg’{o}uM(X, A; f) NUg
such that the requirements (2a)—(2d) of Lemma 3.3 are satisfied. Furthermore,
for every b € K©® and v = (b,v) € ﬁ'?{(km) , there exist
@), € L?(29(8k); End(evy TX)), ¥ € Holy (2 8k );evy TX),
®5 ., € L?(29(8k); End(evy TX)), 9, €Holy (20 (8k):evg TX),
such that

(2a) the maps b —> (®p, Up) and v —> (P 5 . V5 ) are smooth;
(2b) forallb e KO,

XPeyo(p) (P6(D)Dp(2)) =up(z) ¥z € XP(Sk),

1
Oplroy=1d  and  [Pp-1d[, . Vi@ —1d), ,, =5

2
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(2c) forallv = (b,v) € ﬁ?K ‘12(0) ,

XPeyo(p) (P7 o ()05, (2) =Tu(z) ¥z €2 (8k),
VT (@5, = Pp0q0)|, ,, = Cx(IT = Tllcr +v'7),

”q)f,v —Ppoqy Hv,p,l’

if ity = exp,, {5,

In the statement of this lemma, Hol 1(22(8 k):evy TX) and Holy (=9 Sk); eve TX)
denote the spaces of holomorphic maps from Eg (8x) and 22 (8 ) into the complex vec-
tor space (Tey,(») X, J). In brief, the substance of Lemma 3.4 is that a J—holomorphic
map can be well approximated by a holomorphic map on a neighborhood of the primary
marked point, or any other point, of the domain. Due to Lemma 3.3, Lemma 3.4 is
essentially a parametrized version of Theorem 2.2 in [3], and only a couple of additional
ingredients are needed. The crucial fact used in [3] is that the operator

E: LP(S?* Endc(C")) — L?(S* A% T*S? ® Endc (C")) ® Endc (C"),
2(0) = (30, 6(0)),

is an isomorphism. The map E is still an isomorphism if S? is replaced by a tree of
spheres ¥ and 0 by any point on X. Furthermore, if y is a smooth point of ¥ for all
sufficiently small smoothings v of the nodes, the operators

Ev: LT (Zy;Endc(C")) — LP(Zy: A% T*E, ® Endc (C")) ® Endc (C"),
Ev(0) = (30, 0(y)),

are also isomorphisms. In addition, for some C € R and for all sufficiently small
smoothings v,

(3-10) c™! ||Ev®||v,p = ”@”v,p,l = C”EU®”U,p VOe Lf(EviEndC(Cn))-

If all components of v are nonzero, %, is topologically a sphere, but should instead
be viewed as a tree of spheres joined by thin necks. As before, we denote by || - ||, 5,1
and || - ||y,p the norms induced by the pregluing construction above. In particular,
(3-10) can be viewed as a special case of (1) of Lemma 3.1. We need to use the norms
I Ilv,p,1 and |-, p. since these are the norms used in Lemmas 3.1 and 3.3. Keeping
track of all norms in the proof of Theorem 2.2 in [3], we see that the maps &, ¥,
d T and 9 Fu satisfying (2b) and the first condition in (2c) exist, provided that §g
is sufficiently small. The last two estimates in (2c) are obtained by an argument similar
to Section 4.1 in [16].
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hs K(T)=1hy, ha, hs)

th(b) IO(U) = (Uh1 s UhzUhy, Uh3vh5)
Xps (V) = Xp5 (D) + viyxps (D)

Xp,y (b)

xp, (D)

(0, 00)

Dgl)gf(v) ja= D.(Il’) —|—D( )h Uh;Uh4+D‘(]1}15Uh3Uh5
Figure 7: An example of the estimates of Lemma 3.5

Before we can state Lemma 3.5, we need to introduce additional notation. For each
v =(b,v), where b el (0)(X J)and v € CI and i € x(7), let

p= [TueC. =Gy =3 (xo) [Tu) e c.

O<h<i O<i’<i O<h<i’

where x;(b) is as in (3-9); see Figure 7. If K and ¥, are as in Lemma 3.4, b =
(Zp.up) € KO, veC,iex(T),and r e Zt, we put

d’
ldr

Db = Dpi(wi)| €Ty X and DY) (b.v) = vy Db,

where $p ; = 9|5, ;, -7 is the scalar multiplication in (7°X, J), and w;_is the standard
holomorphic coordinate centered at the point co in Xp ; = S~. 2 IfveF 75 | g0y > we
similarly set

r

rldw’”

by = (Sv.iy).  DObpw)= by )| € Tayp) X
where w is the standard holomorphic coordinate centered at the point 0o in X, ~ S2.
The value of Dfr)b depends on the choice of ¥ in Lemma 3.4, which can be uniquely
prescribed by the choice of §x € RT. Alternatively, one can replace small positive
numbers §x dependent on compact subsets K of U7 (X;J) by a small function
8: Ur(X;J) — RT, which can be used to choose a holomorphic map

9p: Tp(8(5) — (Tevyt) X J)

for each J-holomorphic stable map b €l (0) (X; J). Of course, the definition of
Dﬁr)b 7(v) depends on even more choices, 1nclud1ng those involved in the gluing
constructlon of Lemma 3.3.
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Lemma 3.5 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact
open subset K of U (X J), there exist § g, ex,Cx € Rt and an open neighborhood
Uk C Ur of K in Xo p (X, A) with the following properties:

(1) Requirements (1) and (2) of Corollary 3.2 are satisfied.

(2) If J is an almost complex structure on X such that ||J Jler = SK, there exist
¢J, @y, and ¥y foreach b K© and d>~ and ¥ 5, foreach v 6.7-"78 | g
such that the requirements (2a)—(2d) of Lemma 3 3 and (2a)-(2c) of Lemma
3.4 are satisfied. Furthermore, for each k € Z" and i € y(T) there exists a
smooth map

(k), ng ‘K(O) —sevy TX,

such that
(2a) forallr € Z™T and v = (b,v) € ﬁ—?K|E(O)’

,
~ r—1 _ k k
Dby w) =3 (k— 1) > F DY)+ W)} f (1) € Tyt X
k=1 iex(7T)

(2b) forallk e Z%,i € x(T), and v = (b, v) e]-'T8 | g

€5 v IV e P10 < Crd 2 (1T = Tller + v]/7).

Proof (1) We apply, with some modifications, the argument for the analytic estimates
of Theorem 2.8 in [13] to holomorphic functions ¥, and 19 , instead of the functions
up and U, which are J—holomorphic and J holomorphlc in this case. We will use
coordinates z on S?2—{oo}~ C and w =z"! on §2—{0}. Since 19.7,1; is holomorphic
on 29 (k),

"7 a" ~ 1 _ dw
’D" b (U) _'a 29J,U(w)‘w=0_%fézg(al() ﬁj’v(w)wr-i-l
1 dw
G-11) = i Z ¢ _ W)
ie (7-) 0~ AU,(BK) w
i 2 b 0 @@hoa)+E, ()
ie (T) 0~ A;,(SK)

where Ef,v € C®(2%(8k); Toyo(b)X) is defined by

€XPevy (b) (EXPoyh 5y v (2) + {7 ) = Ty (2) = expy, ) {7, (2)-
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(2) In order to estimate each integral on the last line of (3-11), we expand z”~! around
x;(v), the center of the circle 0~ A ; (k). as a polynomial in Z; = z — x;(v):

1 z oqy,(z )zl dz
(3-12) 9§A_ W O 00 + 7, @)

= Z (l};:i)x{_k(v) a_A;l(K) ~ (Zl)(Qbﬁb qu(Zl)‘}';]U(Zz)) lei.

By construction, z; = ¢y (Z;) = ,ol._l(v)E,- near B_Z;i(SK), if z; is the standard
holomorphic coordinate on %, ; — {00} = {i} x (S? — {o0}) and |v| < 8k . Since
Up,i = Uplx,; 18 Jevy(p)—holomorphic,

95 ) )ﬁb(qv('z',-))"z'f“dz=p,’-‘(v)g§ DA
o e

v.i

dw;
— 4} (v)9§ gt
(3-13) w;
2mi 8
=—pf(v) T 9w ﬁb z(wl)|w —o
. ~(k
=—-2mi D(J}pi (v),

where w; =z~ 1 is the standard holomorphic coordinate on {i } x (S —{0}). Similarly,

(3-14) gﬁ @3 )Py (qu i) 1 b (qu Go) + 03 G5, )k 02
> (51()

= —2rie% )(U),Ol (v),

where
k) =1 (0 1)) — .
319 dhw =g (107, 00 1094
_ = dw;
+ be,lv(wiﬁj,v(wi))m-

The expansion in (2a) of the lemma follows immediately from (3-11)-(3-14). By defi-
nition, 9~ A; (dg) is a circle of radius 28}(/2 around the south pole in the sphere Xy ;.
Thus, part (2b) of the lemma follows from (3-15), along with (3-8) and the bounds
in (2b) and (2¢) of Lemma 3.4.
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3.3 The genus-one regularity properties (b-i) and (b-ii)

In this subsection, we show that if J is an almost complex structure on X that satisfies
the regularity conditions (a) and (b-i) of Definition 1.4, then so does every almost
complex structure J on X which is sufficiently close to J. This claim follows from
Corollary 3.6 and the compactness of the moduli space 97?0,1 (X, 4; J). We also show
that if J is an almost complex structure on X that satisfies the regularity conditions (a),
(b-1), and (b-ii) of Definition 1.4, then so does every nearby almost complex structure J
on X . This conclusion is immediate from Corollary 3.7 and the compactness of the
moduli space 97?0,2(1\’ LA J).

If 7 is a bubble type as in Corollary 3.2 with A5 = 0, where 6 is the minimal element
of I, the analogue of (3-6) does not hold for the map @ Y for any fixed nonzero
vector v tangent to P! at co. The reason is that ’}Dc}obv is the zero homomorphism on
ker ©3°b, since the map u is constant on the component )y b of the domain X4 of b
which contains the marked point co. In particular, D% need not be surjective for a
smooth map ##: P! — X which is arbitrary close to thé moduh space EITIO 1(X, 45 ).
Thus, a different approach is required to understand the behavior of the regularity

condition (b-i) of Definition 1.4 near U7 (X; J).

Claim (c) of Theorem 1.6 can alternatively be viewed as a statement concerning the
behavior of the first derivatives du|so of J—holomorphic maps. Lemma 3.5 describes
the behavior of modified first and higher-order derivatives of J —holomorphic maps
near a stratum U7 (X; J) with 7 as in the previous paragraph. We use the estimate for
the higher-order derivatives to describe the behavior of the regularity condition (b-ii)
of Definition 1.4 near U7 (X; J).

Corollary 3.6 Suppose (X,w,J), A#0,and T are as in Lemma 3.1 and M = &.
If the almost complex structure J satisfies the regularity conditions (a) and (b-i)
of Definition 1.4, for every precompact open subset K of Ur(X; J), there exist
8k,Cx € RT and an open neighborhood Uy C Ur of K in Xo,0(X, A) with the
following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.

(2) If J is an almost complex structure on X such that ||.7— Jllcr < 8k and
1 =~ 0 . T - o0 00,€00
[P ; u].e mo,{o}(X’ A; J) N Uk, the operators DJﬁ, Qf,ﬁ’ and Qf,ﬁ are
surjective.

Proof (1) By Corollary 3.2, it remains to show that the operator ’Df’ °° is surjective.
It 7 =(2,1;,A) with A5 # 0, the argument used twice in the proof of Corollary 3.2
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can be repeated once more to show that the operator D% is also surjective for any
smooth map u sufficiently close to K. Thus, we will assume that A5=0.

(2) Let g be any point in X . By (a) of Definition 1.4,
0 0
Uy (q:J) = (b e Uy (X: ) sevo(b) = g}

is a smooth submanifold of ﬁ7(9) (X;J). By Corollary 3.2, zmg {0}(X, A; f) is a
smooth orbifold, while
MY 10y(q: T) = {b €M 101 (X, A;T) s evo(b) = q}

is a smooth suborbifold of smg {0}(X A;J). By Lemma 3.3, every element of

mo {0}(61, J ) N Uk has a representative of the form (P!, ), where

i =expy, iy, v=0eFT |0

and §J~ v is as in (2a) of Lemma 3.3. By (2c) of Lemma 3.3,

(-16) 7 €XPuye) )87 p(1610) =0 € KT DT Cher D

d
dt
7 7700) (v 7Oy — T

VEeTpUu (X:JJ)NTpUy (q;J) =T—(b),

where ¢ is the map defined in the remark following Lemma 3.3. We will show that the

map

~ d
G-I T-() =T X,  &— XD )0y ST (0080 Hloo€oo } | 1—o-
is surjective. Along with (3-16), this claim implies Corollary 3.6.

(3) Let @y, ¥, @5, and #5  be asin Lemma 3.4. Since for all v’ = (b, v) €
.7-"’2'jo |K<‘”’ Four 1s an Lp—map on E ,(8x) C P!, while the Jevy(b) ~holomorphic
map 19] , vanishes at co € Eg,(SK)

d {expuu/ é‘f’v/}

€oo = d{(DJ v’ J v’}
= {qu,v/(OO)}(dﬁj,v’looeoo)'

Thus, by the r =1 case of (2a) of Lemma 3.5,

d {expuU/ é‘:f,v/ }

0000

= (@5 ,,(00)} DB (V)

= {7, Y_{D0) +P W)} pi).

iex(7)

(3-18)
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Replacing b’ with ¢(z£) in (3-18) and differentiating at = 0, we obtain

d
(3-19) dt {d{eXpuwus).v) gf,(w(té),v)HOOeOO} ‘ =0
= {V{ @7, (0} Y {D{"0) +¢3) W)} pi(v)
iex(7)

+ {<I>f’v(00)} Z {Vg(Dl(I)b) + Vge(fl)i(u)}p,-(v).
iex(T) ’

By (2b) and (2¢) of Lemma 3.4 and (2b) of Lemma 3.5,
-1
@7 (c0)—1d|.

D )] = Cx (17~ Tl + v]'/?).
(3-20) ’

Vi@z, o). [V eF, )] = Cx (1T = Tlicr + 1) &l p.1-
On the other hand, since ¥p(oc0) =0,

d d
VI (1) = @ (00) VI (dutgieyilooeoo) |, —g= 7 (ditpieeyilooeoo) g

(3-21) ¢ 3
=V Cls, ) =Dspif  VET_(b).
By (a) and (b-i) of Definition 1.4, the map
D1 puit T-(b) —> Toyytr X

is surjective for all i € x(7); see the paragraph preceding Lemma 3.3. Since p;(v) € C*
for all v = (b,v) € ]-'T?K |E<0) and i € x(7), it follows from (3-19)—(3-21) that the
map in (3-17) is also surjective, provided dg is sufficiently small.

Remark At the end of the argument above, we use the fact that x(7') # @. This is
the case if and only if 4 # 0.

Corollary 3.7 Suppose (X,w,J), A#0, and T are as in Lemma 3.1 and M = {1}.
If the almost complex structure J satisfies the regularity conditions (a), (b-i), and (b-ii)
of Definition 1.4, for every precompact open subset K of U7 (X;J), there exist
8k .Ckx € R and an open neighborhood Ux C Ut of K in Xo,{1y(X, A) with the
following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.
(2) If J is an almost complex structure on X such that || J— Jllc1 <08k and

[Pl,ylﬁ]Gfmg,{o,l}(X,A;j)ﬂUK,

the operators D5 ~, D% _, and D" are surjective.
P Ta ~ i i J
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Proof (1) By Corollary 3.2, it remains to show that the operator CD N

If

is surjective.

T=({1}1:/.4)
is a bubble type such that A; # 0 for some i < j;, the argument used in the proof
of Corollary 3.2 can be repeated once more to show that the operator %7 is also
surjective for any smooth map (yy, %), with two marked points, sufficiently ¢lose to K.
Thus, we will assume that 4; = 0 for all i < j;. In this case, evg(b) = evy(b) for
all b eUr(X;J), as there are no nonghost components between the marked points

(0,00) and y;. In the case of Figure 7, this means that j; € {6 hs3},ie yq lies on one
of the nonshaded bubbles.

(2) For any point g € X, let 1/77(—0) (g; J) and sm 0.40, 1}(q, J) be defined as in (2) of
the proof of Corollary 3.6. By Lemma 3.3, every element of smo {o. 1}(q J ) N Uk has
a representative of the form (P!, ¥}, #), where

i=expy C5,. Fi=n@= Y xi®)[[n+n [JwmeC,
6<i<j1 O<h<i 6<h§j1
U:(b,v) EFT?K‘I‘?(O)’

and {7 isasin (2a) of Lemma 3.3. We will show that the map

- d
(3-22) I_(b) — T, X, £— — T —{exDg $7 (oety.0) T =0

is surjective. Note that ¢ = u((p(tg),v)(ﬁ, o0). Along with (3-16), this claim implies
Corollary 3.7.

(3) Let @4, ¥y, ®5,,and ¥5  be as in Lemma 3.4. Since ¥y L isa Jevo(b)
holomorph1c map on 20 6k), Vanlshmg at oo, and y; € %9 (81() for all v/ =

o0
- 1 d’ — _
850 () = 2 7177 07w @umo 717 = § :D(”b W) 77"
(3-23)

r=1

o
~ — k k
=2 Y Gi—x@N DY) + 65N} W) € Ty X
k=1iex(T)

by (2a) of Lemma 3.5; see the proof of Lemma 4.2 in [17] for more details. For each
i € x(T), we denote by /(i) the largest element of / such that 2(i) <i and () < ji.
We set

yi(0), if ey = ji;

Xp:1 (b)) = xpiy (B and () = >
1 (b)) = xp@i) (D) UEACY {x;(bf), if 1 < j1 and 15 = 4 (i),
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If v/ = (b, v), we put

pin@) = ]  xa@)= > (mb’) th) e C,

h(i)<h=<i h(i)<i’'<i h()<h<i’
y1; (V) = Z xir(b") 1_[ vy + 1 1_[ v, € C.
th(i)y<t’'<Jj1 thiy<h<i’ thi)y<h=<ji

It is straightforward to see from the definitions that

(3-24) (11 (V) =xi (W) o1 (V) = (115 (W) = x5 (V) T i (V).
By (3-23) and (3-24),
D7 (7D = Y 01 @) =xia O DT +6 D (0} izt (0) € Ty 51) X
(3-25) iex(T)
6D @197 eD @) = Cx (1T = Tl + 1V17).
Finally, for all § € Told\” (X J),
Fip(tg).v) = 71 (b.v),
Fri@(t€) = 515 (). xi1(p(t8) = xi1(b) Vi € x(T).

The surjectivity of the map in (3-22) follows from (3-25) and (3-26), along with (2) of
Lemma 3.4, by the same argument as in (3) of the proof of Corollary 3.6.

(3-26)

Corollaries 3.6 and 3.7 complete the proof of the parts of Theorem 1.6 that concern
genus-zero stable maps. However, this is a convenient point to deduce a few more
conclusions from Lemma 3.5. We use Corollary 3.8 in the next three sections. Suppose

=(M,I;j,A) is any bubble type and v = (b,v) € FT is sufficiently small. With
notation as in the proof of Corollary 3.6 and

iy =exppy 7, L) =L{(Sy;a5TX),

we define the homomorphism

Ry, T-(b) — kerDF, CT(v:J)by Ry 5— L Xy 06T (ote)0) | =0

Denote the image of §~ by —(uv; J 7). Let
A7 56 = {(0,2) e {0} x S2:|z| = 6712 )2} c =,
0747 56) = {(0,2) € {0} x S 1 |z| =871/2/2) C =y,
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Corollary 3.8 If (X,w,J), A, and T are as in Lemma 3.1, for every precompact
open subset K of Uz (X J), there exist § g, g, Cx € Rt and an open neighborhood
Uk C Ur of K in Xy p (X, A) with the following properties:
(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.
(2) If J is an almost complex structure on X such that ||j —Jlc1 =<8k, there
exists §J~’U € 'y (v) foreach v = (b,v) € ﬁ?{( }E(O) such that
(2a) requirements (2a)—(2d) of Lemma 3.3 are satisfied;
(2b) forall v =(b,v) € FT5 | g and 8 <48, if ity = exp, 7

ldaivla= @, , < Cx8"? D |piw)]:
’ iex(T)

(2c) forall v = (b,v) € ﬁ?K ‘I?(‘)) and § <43k , if eXPey, () ﬁ,(z) =1Uy(z)
for z € A_6(5K)’ then
v,

|fo)l = Cxlwl Y |p@)]  Ywe AT (k).

iex(7T)
~ dw .
§ w2 YD)
=450 iex(T)
<Cx(IT=Jllcr + ]2 +8@=2/2) 3| pi(v)],

iex(7T)

where w is the standard holomorphic coordinate on the complement of
(0,0,1) in S?;
(2d) forall v = (b,v) € fT?K]E(O), geT_(b),and § € (0,48k),

IR5 Ellv.p1 = CkllEllb,p.1

dw .
‘ é—AU.a(S){Rf’”E}(w)W =271 ) pi(V)D s puik

iex(7)

<Cx(IT=Jllcr + 12 +8P22) 3 p; (V)| - [Ellv, p,1:
iex(T)

(2¢) forallv=(b,v) € FTj |gw,&€T-(viJ), and § <45,

Elw < Cilwl D [pi@)|-IElv,p1 Yw € 47 (),
iex(7) ’

1Véla- @y, = Cx8"? 3 [0i@)]- 1Elv,po1-
’ iex(T)

where w is as in (2c).
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The first part of the proof of Corollary 3.2 shows that

Cic'IEl5.p1 < IR (Ellvp1 < CkllEllsps ¥ E€T-(b).

In fact, Cx can be required to be arbitrary close to one in this case. By the proof
of (3-25),

Jow) = @5 ()95, (w)

(3-27) =@z, ) Y w{(Db)+eD )} piv) + (v, w)
iex(T) ’

for all w € A_6(6K)’ where
v,

leuw)| < Cxlwl® Y [piw)] and  [dwe(w, w)] < Cxlwl Y |piW)]-
iex(T) iex(7)

Both estimates in (2¢) are immediate from (3-27), (2b) and (2¢) of Lemma 3.4, and
Holder’s inequality, since

(DVb) - pi(v) = Dy ipi(V).

Differentiating (3-27) with respect to w and integrating, we obtain (2b). The first bound
in (2e) is obtained by differentiating (3-27) with respect to &, as in (3) of the proof
of Corollary 3.6. The second estimate in (2e) follows by differentiating the resulting
expression with respect to w and integrating. Finally, in the remaining statement of (2d),
each element &(w) of T3, )X is identified with its preimage in 7T¢y,)X under the
parallel transport along the geodesics. This estimate follows by differentiating (3-27)
with respect to £. Due to the first bound in (2e), the parallel transport and the geodesics
can be defined either with respect to the J—compatible connection V7 or with the
respect to the J —compatible connection

1 - -
vl =_(v/-Jv'])

2
in the bundle TX — X.

4 Genus-one gluing procedures

4.1 A one-step gluing construction

Our next goal is to show that the regularity condition (c) of Definition 1.4 is well-
behaved under small perturbations of the almost complex structure J. Corollaries 4.2
and 4.5, along with the compactness of the moduli space 2 (X, J; A), show that this
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is indeed the case. They conclude the proof of the g = 1 case of the first claim in
Theorem 1.6.

We denote by X as(X, A) the space of equivalence classes of all smooth maps into X'
from genus-one Riemann surfaces with marked points indexed by the set M in the
homology class A and by %(1)’ (X, A) the subset of X1 a7(X, 4) consisting of maps
with smooth domains, ie smooth tori in this case. Similarly to the previous section,
we need to describe smooth maps #: ¥ — X in X; o(X, A) that lie close to each
stratum U7 (X; J) of the moduli space 97?1, o(X,J; A). If Ur(X; J) is contained in
Dﬁ{l?;(X , A; J), the surjectivity of the operator D 7z can be shown by an argument
similar to the proof of Corollary 3.2. This case is handled in this subsection. We will
assume that J is an almost complex structure that satisfies the regularity conditions (a),
(b-ii), and (c) of Definition 1.4.

Let 7 = (M,1,R; j, A) be a bubble type such ) ;.;A; = A and A; # 0 for some
minimal element of /. We proceed similarly to Section 3.1. For each sufficiently small
element v = (b, v) of FT92, let

b(v) = (Zv, Jus Uu), where Uy = Up O Gy,

be the corresponding approximately holomorphic stable map. Since the stable map u,
is not constant on the principal component, the linearization D ; of the 97 —operator
at b is surjective by (a), (b-ii), and (c) of Definition 1.4. Thus, if v is sufficiently small,
the linearization

Dyy: T() = LY (Syiuf TX) — IO i J) = LP(Sy: Ay, T*S, @ ufTX),

of the 3 —operator at b(v) , defined via the connection V7, is also surjective. In
particular, we can obtain an orthogonal decomposition

Fw)=T-(v)&T'+()

such that the linear operator Dy ,: I'y (v) — I'%!(v; J) is an isomorphism, while
I'_(v) is close to I'_(b) = ker D ;. The relevant facts concerning the objects de-
scribed in this paragraph are summarized in Lemma 4.1 below.

Remark 1 The focus of the pregluing construction described in [16] is attaching
bubble trees of spheres to a fixed Riemann surface . The present situation is of course
different. However, the main ingredient in the pregluing construction is a smooth
family of nearly holomorphic maps ¢,: X, —> X, constructed using a metric on X.
All other objects that appear in the above paragraph are essentially determined by the
map ¢, and the homeomorphism type of X; plays little role. In the case R = &,
ie the principal component X x of the domain X, of every element b of 2/7;0 ) (X:J)
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is a smooth torus, we choose a family of Kahler metrics {gp,} on the fibers of the
semiuniversal bundle L7, — U7, (X; J); see Section 2.2 for notation. If v = (b, v)
is a small element of 72 and by = p(b), we construct the map q,: Xy —> Xp
as in Section 2.2 of [16], using the metric gp, on Xp x.

Remark 2 In the case R # &, ie the principal component X x of any bubble map
be g;o ) (X; J) is the circle of spheres Xy, we split the pregluing construction into
two steps. The first step will correspond to gluing at the nodes X of the principal curve
and the second to attaching the trees of spheres to the resulting elliptic curve. The
bundle of gluing parameters 77 o over Uz, (X; J) has the form

FTo= @DLan= D Luno®Lan
(h,i)er (h,i)er

for some line bundles L4 i).0. L(n,i);1 —> Uz (X J). In addition, there exist bun-
dle maps

d,ir0: Lniyo— Yz, and gt Ly — Y

over Uz, (X; J) such that for all by € Uz (X J)

P(h,iy:olbe: Lniriolby = bk Phinitlbe: Lin,instlbg — Zbg,i
are biholomorphisms that take (bg, 0) to the node (/,7) of Xp,. Let
07():L~17(,—>}"TO;5, where § € C® Uz (X; J);RT),

be a semiuniversal family of deformations of the elliptic curve Xy, along with the
marked points indexed by MLl I, where My and [, are the sets of marked points
lying on Xy and of first-level bubbles of the elements of Z;?;O ) (X; J), respectively; see
Section 2.2. In particular,

U, |

U () = Y-

A small neighborhood in QTO of the section Z, ; of o7, over Uz, (X; J) corresponding
to the node (4,i) of Xy can be identified with the set

U(h,i) = {(b(), v, X, y) Zb() S Z/{']I)(X, J), (bo, U) S fT(), (b(),x) € L(h,i);07
(bo. ») € L1z vl |x], [y] < 8(b); xy = vn iy

in such a way that o7, (bo, v; x, ¥) =(bo, v) and the fibers of o7, are identified holo-
morphically. For each (bg,v) € F7 .5, we set Xp, ) = 0}01 (bo,v). Let

(4-1) Fry: Ugy — Ugy = 07! Uz (X))
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be a smooth map such that 67, (2 p,,)) C Zp,, 075 |E<b0,v) is holomorphic outside of
the |R| open sets Uy,

(Bo. 0: pn.iy:0 (X)), if [x] = 2fvny| /2
(b0’0;¢(h,i);1(y)), if|y|Z2|v(h,,~)|1/2;

and o7, (bo, v; x5 (bo, v)) = (bo, 0; xp,(bg, 0)) for all h € MU, and for all (bg,v) €
FTo.s, where xj,(bg, v) is the marked point indexed by /1 on X4, ) and v ;) is the
L ,;—component of v. The last condition can be used to define the points x(bg, v) for
v # 0. Let g(p,,v);0 denote the restriction of o7, to Xp, ). We choose a Riemannian
metric on £ such that its restriction &(bo,v) to each fiber X ) of o7y is Kahler.
Along the way, we have made a number of choices. These choices will be fixed once
and for all. If v € j—r’j:, let

570(b07v§x»J’):{ if(bo’v;x’y)eU(hai)’

vr = (b, vy), if v = (b’ UR, vf)’ (b’ vN) c K/T’ (b’ Uf) c j:-;z'j* ® ﬁw;

see Section 2.2. If v is sufficiently small, we denote by X, the Riemann surface
obtained from X, by replacing the circle of spheres Xy with [Mg| L[| marked
points, which together we denote by by, by X, ) - Let

Guy: Zug — 2p

be the smooth map obtained by extending the map ¢z, ,);0 by identity to the rational
components of 3. We put

u® = (b(ur). (@5 V) )ef):

where b(ug) = (Sug. o), Uvg = Up O Guy.
-1 . )
and qsxvh _ dqvl*|xh(v;.<)vh € T, (vn) Z(bo,vx) ifhe {\1’
vy € C, ifhel—1I,.

Let (Xv, ju,gv) be the Riemann surface obtained by attaching the bubble trees of
spheres to the elliptic curve Xy, , using the gluing parameter v® and the metric Zun
on the principal component X, vy) Of Xvy, via the procedure described in Section 2
and Section 3.3 of [16]. We take the key basic gluing map ¢,: Xy — X to be simply
the composition Gyy © gy,x -

Lemma 4.1 Suppose (X, w, J) is a compact almost Kahler manifold, A € H,(X;7Z),
and J satisfies the regularity conditions (a), (b-ii), and (c) of Definition 1.4. It T =
(M, I,R;j,A) is abubble type such that A =) ;. ;A; and A; # 0 for some minimal
element i of I, there exist §, C € C(Ur(X;J);R™") and an open neighborhood Ur
of Ur(X; J) in X1 p (X, A) with the following properties:
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(1) Forall v = (b, v)ej-:’fg,

l7v;-&llv,p.1 = COE v, p1 VEeT(v),
1D 0Elv,p < CONVIYPEllv,p.1 VEe - (v),
CO)Ellv,p1 = N1Dswéllvp < CONENv,p1 VE € T1(v);

(2) Forevery [b] ex? M(X A) NUrg, there exist v = (b, v) € f’]:; and ¢ € 'y (v)
such that [|¢]|y,p.1 < 8(b) and [expp ¢l = [B].

This lemma is obtained by an argument analogous to that for Lemma 3.1. In particular,
the bijectivity arguments in Section 4 of [16], with minor modifications, apply in the
present situation.

Corollary 4.2 If (X,w,J), A, and T are as in Lemma 4.1 and M = &, for every
precompact open subset K of Uz (X:J), there exist §x,Cx € RT and an open
neighborhood Ug C Ut of K in X (X, A) with the following properties:

(1) Requirements (1) and (2) of Lemma 4.1 are satisfied.

(2) If J is an almost complex structure on X such that ||f Jllcr < 8k and
[b] eUg NXY g(X A), there exist a smooth Riemann surface ¥ and a smooth
map : ¥ —> X such that [b] [X, #] and a linearization Dy ofa at u is
surjective.

The proof is identical to that for Corollary 3.2.

4.2 A two-step gluing construction

We prove the analogue of Corollary 4.2 for bubble types 7 = (&, I, R;, A) such that
A; = 0 for all minimal elements i of I, ie

Ur(X:T) C My o(X, A1) - (X, 4: ),

in the next subsection. In this subsection, we modify the gluing construction of [16] in
two ways. First, we subdivide this construction into two steps. At the first stage, we use
Lemma 3.3 to smooth out all nodes of the domain of a stable map that lie away from the
principle component. At the second stage, we smooth out the remaining nodes, but at
this step it may not be possible to perturb each approximately holomorphic map into a
J —holomorphic map. The second modification is that the second-stage approximately
holomorphic maps are closer to being holomorphic than they would be if constructed
as in Sections 3.1 and 4.1 and in Section 3.3 of [16]. This modification is motivated

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2475

by the pregluing construction of Section 3 in [6]. The two adjustments allow us to
obtain estimates on the behavior of the operator D 5 - that are similar to the estimates

of Corollary 3.6 for the operator ’Dc}o;;‘”.

If 7=(M,I,R;j,A) is abubble type such that 4; =0 forall i € Iy, let I, C I,
for h € I, be as in Section 2.2. We put

Ap(T) =) A;.
iely
Let 7p: Z;?g) ) X;J)— g%) ) (X; J) be the projection corresponding to the decompo-
sition (2-11).

Ifv=(bv)e FT,let

vo = (b,vx.vo), v = (b,v1), vy = (Tn(b). viny) for h € I,

if v=(b.vx.v0.v1). b U (X:T). (b.vy) € FnT.
(b, vo) € FoT, v1 = (vimy) ey, €EP C™.
hGI[

The component v; of v consists of the smoothings of the nodes of X, that lie away
from the principal component. In the case of Figure 5, these are the attaching nodes of
the bubbles /5, h4, and /5. The bubble map b(v;) for vy € F; 77 is of bubble type

0, ifi € Iy;

T =M, I,UI N j. A, where  A; =
(M. IoU 11, B: /. 4) : {Ai(T), ifiel,.

Similarly to (2-11) and (2-12), we put

Hz(X:J) = UTO(Pt)X{(bh)hell e [[Hz,(x:):
4-2) hel

evo(b,) = evo(bp,) Vhi. hs € 11},

where Hﬁ, (X; J) is the space ‘lfj‘“ J —holomorphic maps from P! of type ’Z~}1 For
each hel;, 8§ €RT, and v e FT as above, let
A5, 4 = {(h2) € thy x S 12| 2 5712/2) € X,
074y, 4 0) = {(h.2) € hyx 82 [2] = 671122} € Sy,
Finally, if h € I and i € x(7) N Iy, we put
pi(v) = (b, Vy), where  ¥; = l_[ vy € C.
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In the case of Figure 5,
o, (V) = (b.1),  pp,(v) = (b,vp,) and  pps(V) = (b, vps).

Lemma 4.3 Suppose (X, w, J) is a compact almost Kahler manifold, A € Hy(X;Z),
and J is a genus-zero A-regular almost complex structure. If T = (M, I,R; j, A) is
a bubble type such that ) ;.;A; = A and A; = 0 for all minimal elements i of I, for
every precompact open subset K of Uz (X ; J), there exist g, Cx € R* and an open
neighborhood Uk of K in X1 pr(X, A) with the following property. If J is an almost
complex structure on X such that || J— J|lc1 < 8k, there exists a smooth map

~ —_— ~
¢j;13 f175K|K~(0) — Hz(X;J)
such that

(1) the image of Im 5]1 under the quotient map Hz (X .7) — Uz (X; f) is
Uz (X J)N Uk ;

() evp($7,(v1) = evp(b) forall v = (b,v1) € FiT§ | g
3) ifvi e ATy g h €, Fn@g. (1) = (P,ily, 1), and § < 48k ,

|dtv, nlag, @ y,., = Cx87? Y 1B
iex(T)NI,

The smooth map 5 7.1 18 defined by

Ta(@z., (V1) = (Pl’eXPuu{Mgf,u{h}) Vhel,

where vy, is as above and {7 y,,, is as in (2a) of Lemma 3.3. By (2c) of Lemma 3.3,
the value of the map 7, (5 7ol (vy1)) at the attaching node of the bubble /4 is the same
for all & € I, as needed, and (2) of Lemma 4.1 is satisfied. The bound in (3) is simply
a restatement of (2b) of Corollary 3.8, since

|5i (V)| = | pi (vgy)| Vhex(T)nl.
With notation as above, for each v = (b, v), let
é‘f,Ul el'(Zy;: uf,l TX)
be given by

~ z), ifzeX ,helyg;
(4-3) (7 G) = {ff’”*’”( | S

, otherwise.
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We write B B

P57 (V1) = by(v1) = (Zo,, tty,) € Hz (X1 J).
The domain X, of the stable map b 7(v1) consists of the principal component Xy, &,
which is either a smooth torus or a circle of spheres, and |/;| rational bubbles X, 5,
with & € I, attached directly to X, x. The J—-holomorphic map i, is constant on
Yoy ,n. Let

C(vy:J) = LY (Sy,: 15, TX).

We denote by I'_(vy; J ) C f(vl; J ) the kernel of the linearization D
d j—operator at b7(vy).

755 of the

Foreach h e I, £ € f_(ﬁh(b)), and Ee f‘(U{h}; .7) with g(h,oo) = 0, we define
Rpé € T_(b) and Ry, & € T'(vy:J) by

£(z), ifze Zp,:

0, otherwise;

E(z), ifzeZy

0, otherwise;

44  Rp(z) = { Ry () = {

see the paragraphs preceding Lemma 3.3 and Corollary 3.8 for notation. We put
(4-5) T_(b) = {Rpk :§ e T-(F(b)), he I} CT_(b),

T_(uisJ) = {Ru €& € T(upy: I, he i} CT—(vis ).
Let Ihévl’ I I'_(b) —> I'_(vy; J) be the homomorphism such that

R, 7ReE =Ry R, 75 VEeT_(@®). hel.

v1,J

where R v T f‘_(ﬁh (D)) — T'—(vgny: J ) is the homomorphism defined just before
Corollary 3.8.

Ifv=(bv) e FT} |z let

vy = (Ej(ul), UR, vo).

We denote by (X, j,) the smooth Riemann surface constructed as in Remark 2 of
Section 4.1 and by

— Xy, = El?j(m)’

the corresponding basic gluing map. We next construct another map

Qos2 = Guy ©du% - Zv = XG0 veav0)

Guo;2 = Quy.y O‘L,;& Yy —> 2y,

by defining the map

Qs Zv = )"
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By construction, (g ;(v;),vy) is @ smooth torus Xy, x with |1;] bubbles attached at
the points {x;(Ux)}rer, of Xyy,x. Foreach i € I, we identify a small neighborhood
Up(ux) of xp(vg) in Ty x with a neighborhood of xj(vyr) in Ty, (uy) Xy, & » biholo-
morphically and isometrically, with respect to the metric gy, on X, x of Remark 2
in Section 4.1. We assume that all of these neighborhoods are disjoint from each other
and from the |R| thin necks of Xy n. If z € Uj(uyr), we denote by z — xp(vx) the
corresponding element of T, (u) Zuyg,x and by |z —xp(vy)| its norm with respect to
the metric gy, . Let B: Rt — [0, 1] be a smooth cutoff function such that

ﬁ(r)={(1)’ =l d By £0ifre(.2).

, ifr>2;

For each € € R™, we define Be € C®(R;R) by Be(r) = B(r//€). If |z—xp(vr)| <
2,/8(b), we put

Gy = (1= P Clz D) (S o5 ) €C
9o, (D) = Xn(WR) + By (12 = xa (D (2 = X4 (V8)) € D5 0

where vo = (vp) ey, - By construction, the smooth Riemann surface X, is the main

component Z(Ej(ul),ux),x of ¥ B wn)” We define the map
Tus: Zv = TG00
(-5 @, D) €35y 117 =50/ B <1 he
Gyx(2) = qj;j;,,(z) € S5 wn) ) if 1<z = xp ()| /V/8k <2, hely;
z € E(g](vl),vx)’x, otherwise,

where gg: C — S? is the standard (antiholomorphic) stereographic projection taking
the origin in C to the south pole in S 2. Like the map qy,:2, Juy;2 Smooths out the
nodes of the principal component and stretches small neighborhoods of the points
xp(vg) around the |/| bubbles. Furthermore,

(4-6) 1dGvy;2] co < C ).

for some C € C® (U (X:J);RT), if the norm is taken with respect to the metrics g,
on Xy and gy, on Xy, , constructed via the basic gluing maps g, and ¢, , respectively;
see Section 3.3 in [16]. The map Gy,.» is a homeomorphism outside of |R| + |/;|
circles of ¥, and is biholomorphic outside of the |X| thin necks corresponding to the
nodes of the principal component of Xy and the |/;| annuli ﬂ; Y JZ; , With h e Iy,
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where
Ay =1z €Dy 1/2<|z—xp(un)l/Vok <1},
Ay ={re Sy 1< |z—xp(w)l/Vék <2}.
The key advantage of the map gy,.2 OVer ¢y, is that
(4-7) |42l cocay,) = CONal - ¥ helr:
this bound is immediate from the definition of the norms.
If ‘;j-l(vl) = (Zy,, Uy, ) as above, we take
bf(v) = (2, Ju.Uy), where Uy = Uy, O yy:2,

to be the approximately J —holomorphic map corresponding to the gluing parameter v
at the present, second, stage of the gluing construction. By (4-6) and (4-7),
lduyllv,p = CO)ditv, vy, p -

(4-8) 195uvllv,p < CB) Y |dit, a3, |
hEIl

p=2
Ul’p|vh| P ’

where A7 |, = C7u0;2(«2(;,h) C Xy, and [|“||lv,p and | |lv,,p are the norms corresponding
to the basic gluing maps g, and gy, ; see [16, Section 3.3]. The second bound follows
from the fact that the map iy, is_J —holomorphic on X, and is constant on the
principal component of X, ; thus, d 7uy, is supported on the annuli A, , with /1 € I;.

If v = (b, v), we denote by
T() =LY (Sy;ufTX) and TOl(u;J) = LP(Zy; A‘},IJ,UT*EU QuiTX)

the Banach completions of the corresponding spaces of smooth sections with respect to
the norms || - ||, 5,1 and || - ||v, », induced from the basic gluing map g,: X, — Xp,
as before, and the J—compatible metric

870 )= 5 (en( T) +ax (T 1)
on X . We put
T_(u; J) = {Ruy€ 1 £ € T_(vi; )} C T (v),
T_(v:J) = {Rupé 1€ € T_ (v N} CT_(v; ),
where Ry & = £0§y,:2- Let
R, 7= Ry,o iévlj; F_(b) — T_(v: J).
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With é‘j,vl as in (4-3), we set
() = {Roy Mg, | (Eoqu,) 1§ € T_(b)} C T(v).

We denote by I'y (v) the L?-orthogonal complement of I'_(v) in I'(v), as in Sec-
tions 3.1 and 4.1.

It remains to describe the obstruction bundle, ie a complement to the image of "4 (v)
under Dy ,,, or D v if J is sufficiently close to J. First, we describe the Fredholm sit-
uation along L{T (X J). The linearization D j of the 9y —operator along /. (0) (X J)
is not surjective. From the decomposition (2-11) and the regularity condltlons of
Definition 1.3, we see that the cokernel of Dy, for b € L{T (X J), can be identified
with the vector space

P2 b: ) ~ Bz ) @ Teop ) X

of (T4 p(p)X. J)—-harmonic antilinear differentials on the main component X x. In
other words, if ¥ € Hj x is a nonzero harmonic (0, 1)—form on Xp x,

Fg’l(b; J) — {YJ w‘ 1Y € TevP(b)X}'

If X # &, ie Xp y is a circle of spheres, the elements of I'%1(h; J) have simple poles
at the nodes of Xj x with the residues adding up to zero at each node. Let

FE’I(b§ j) ~ E;%p(b) Q7 Tevpb) X

be the vector space of (T, P(IJL),( T )—harmonic differentials on the main component

Ypanof Zp. Ifv=(b,v) € FT?K | #0)» With notation as above, let
% (v J) ~ ES, x ®F Tovp )X

be the space of (Tey,p) X, J )—harmomc differentials on the main component X x
of Sy R =@, T (ug: J) =T (b: ).

We now construct a homomorphism
Rﬁ: % (uy; J~) —T%(u; J~).

Foreach he I, and z € A;l 5 (40K ), we define

T (@) € TepiyX by expl, ) Tpiv(2) = i, (2), <rj.
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where exp is the exponential map for the connection v/ and ry is its injectivity
radius. If n € T%! (uy; J) we define Rvn eT%l(v; J) by

(RS} 2w
0, . it 35 |z Tﬁ(lvx) < 1| hel;:
] (vy) 1
= ﬁ“g;(p (4|Z xh(vg)|) Erolon, 2(2)77Z(w), if 1 7= /8§ 2= T: lvx <z hel;
nz(w), otherwise,

forall z€ Xy and w € T, X, where 17 denotes the parallel transport of the connection
V7. Let T%!(v; J) denote the image of I'%!(vy; J) under R¥.

If neT%(h;J) and 7 € T (uy: J), we put
Il= Y e ad 7= 3 L, 6w
hGIl he]l

where [1]x, ) is the norm of 7|y, ) Wwith respect to the metric g7 on X and the
Metric gz, (p) On Xp x. Similarly, |77|x B7w1)om) denotes the norm of 77|x B (1))
with respect to g 7 and the metric g(zp(p),v) ON
N # &, we can obtain an isomorphism

2 (b)) R DERGIS
Ryg: T2V (b: J) — % (un: J)
by requiring that
(4-9) {RugMxy () = v}, oo Mxa@) YN ETS (B3 T), hely
If R =@, we take Ry, to be the identity map. In either case, we denote by
Ry: T%1(b; f) — T (v; f)
the composition R§ o Ry . It is immediate from this construction that for every
q€l1,2),
(4-10) | Ronll,, < Callnl - ¥ neTb:])5

4 A harmonic (0, 1)—form on the circle of spheres b,x is determined by its value at any smooth point;
the same is the case for a harmonic (0, 1)—form on the smooth torus X, x. Thus, (4-9) with a fixed
h € I determines Ry . On the other hand, one can easily choose Gz, in (4-1) so that (4-9) can be
satisfied for all /2 € I at the same time.

3The L9-norm, with ¢ < 2, of a harmonic (0, 1)—form on % b,x 1s finite and is determined by the
value of the form at any smooth point.
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Finally, we denote by Dy, the linearization of 37 at by(v) defined via V7 and by
D~ the linearization of 8 at b7(v) defined via v, Let D* denote the formal
adjomt of Dy, defined w1th respect to the metrics g, on EU “and gy on X; see
Chapter 3 in [8] Forany h € I; and § € RT, we take

vx F @) ={zeTuuntlz—xp(un)| <262 C B
AL, ) =qy (A+ 2 ©8)).
A5 48) = ‘Iuo~z( () =4y (45,,(8) € Zu.
and 0" A, 4 (8) = gy, (97 A5, 4(5)).

where A;l’ 5(8) and B_AUI’ ;(8) are as in the paragraph preceding Lemma 4.3. If
Y1,Y, € Ty X for some g € X, we put

ViR

(Y1.Y2) 7 =g7(Y1.Y2) +ig7(Y1,JY;) € C.
Similarly, if 1,7, € T%!(v; .7), we put

{n1,m2) = (1 m2Nwa + i, Tna)wa € C,

where ((-, - )y, is the (real-valued) L?-inner product on I'%!(v; J) with respect to
the metric g7 on X'. Note that by Holder’s inequality and (4-10)

@10 | Ron)y| = Clnllin' v,y Y neT2 b 0), o €T (w3 ).

Lemmad44 If (X,w,J), A, and T are as in Lemma 4.3, for every precompact open
subset K of U (X; J), there exist §x, Cx € RT and an open neighborhood Uy of
K in Xy p(X, A) with the following property. If J is an almost complex structure on
X such that ||J — Jlcr =6k,

(1) the second-stage pregluing map, v —> b5(v), is defined on FT 8@ ‘ g

(2) for every [E] e x9 M(X A)N UK there exist v € }"T |K(0) and { € 1 (v)
such that |||y, p.1 < 8x and [epr S =10 bl;
(3) forall v = (b,v) € .7:75K|K(o) ;

197uvllv,p < Cklp), D7 &llv,p < Cv|P™2D/P|g||, p YE€T_(v; ),
and Cx 1Elvp1 = 1D7 & llv,p = Cxlléllv,pn VE € T4(v):

4) forallv=(b,v) € FT§ |gw.hel,and& eT_(v:J),

1078 llv.p = Cxlo@)IEllv.pt - 817+, 5 lo,pi < Cx V1210 [E]v,p.1:
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(5) forall v=(b,v) Eﬁ?Kliw)’ e f‘_(b), and n € T'%1(b; f),

IR, € lupt < UEsprs | Rz, sl < Clol2Inl Vi,
D7, Ry, 76 R +270 Y (D ity (05 WD) |

iex(7)
< Cx (IlT =Tl + [0]VP 4+ [u|P=D/P) o) - 0|1 llp. pa:

(6) forallv=(b,v)eFT?

5l go and n e TO(b: ),

‘((5qu, RUT])) +2mi Z(DJ,iIOi (U)9 Uxh(,-)(b))b
iex(7)

<Cx (|7 =Tl + [v]V? +v|@=2/P) | p(w)] - ||n]l;

(7) forall v=(b,v) Eﬁ'?Klf“’)’ g£eT(v),and neT% (b ]),

< Cx o2l Ellv,p.1-

|«Dj',v§’ Rymv,2

Remark In (6) above, (-, - ) denotes the combination of the inner-product defined
before Lemma 4.4 with a contraction. More precisely,

(D7 ;(b,v),nx)p = Yx()(Dib,Y) if n=y @Y eE*Qevp TX;

see the paragraph preceding Lemma 3.5.

The first statement of this lemma is essentially a restatement of Lemma 4.3, in the light
of the constructions following Lemma 4.3. In (2),

expl{f(v)é‘ = (Zv,jv,explfué‘), if bJ~(v) = (Zy, ju, Uy)-

The arguments of Section 4 in [16] can be modified, in a straightforward way, to
show that for every [5] € .’{(1)’ a (X, A) sufficiently close to Uz (X J), there exists
a pair (v, {) as in (2) of Lemma 4.4 and this pair is unique up to the action of the
group Aut(7)o<(S1)7, ie the present two-stage gluing construction retains the essential
bijectivity property of the one-stage gluing construction in [16]. The key point is that
the metrics g, on X, and the weights used to modify the standard Sobolev norms,
as in Section 3.3 of [16], are the same in the one-stage gluing construction and in the
present case, while the difference between the data appearing in the two constructions
is very small.
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The first bound in (3) of Lemma 4.4 is immediate from the second bound in (4-8)
and (2b) of Corollary 3.8, since

Guoz(Ap ) = Ay, € Ay (lval*/8k ).

The two bounds in (4) follow from (2e) of Corollary 3.8 in a similar way. The second
estimate in (3) is obtained by the same argument as the second bound in (4-8). The final
claim of (3) is a consequence of the analogous inequalities for Dy ,,; see Section 3.5
in [16]. The first inequality in (5) is clear from the first inequality in (2d) of Corollary
3.8. For the second one, it is enough to observe that the L?-norm of a one-form is
invariant under conformal changes of the metric on a two-dimensional domain, while
the larger radius of the annulus /T; 5(8) is lvp|'/2, with respect to the metric Sun
on Xy R-

For the remaining three estimates, we observe that for any / € I,

(4-12) D% Runlg, .z < Cilduylg, 2|l Vze A, 6k).

|vn| ~
(4-13) |D;,URU77|gU,wh = CK|duv|gu,whW”77” Vwy € Av,h(aK)»

(4-14) D% Rullg,wy, = Cr (1+ |duvlg, ) [vnlllnll Ywy € Ay, (48k)
_Al_;,h(éK)7

where z is a holomorphic coordinate on a neighborhood of xj(vy) in Xy, which
is unitary with respect to the metric g, on Xy, x, w, = v,/z, and |z| denotes
the norm in the standard metric on C. These estimates are obtained by a direct
computation from an explicit expression for D% T such as the one in Chapter 3 of [8],
and simple facts of Riemannian geometry, such as those in Section 2.1 of [14]. The
difference between (4-13) and (4-14) is due to the fact that the cutoff function used
in the construction of R, 7 is constant outside of the annuli /T; (40K) — /T; 20K),
with & € I1. An explicit computation of the contribution of this cutoff function on
Z; 5 (48k) — /TE »(8k) is given in Section 2.2 of [13]. From the definition of the map
Guy:2 and the metric gy, it is easy to see that

[vp ~r
gUsZ§4W VZEAU,h(éK)v

‘dqvoﬂ

(4-15) )
- A ~_

|AGupi2 g, 4 Yon =" € A, (455).

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2485

By (4-12), the first bound in (4-15), Holder’s inequality, and a change of variables, we
obtain

|05 Rl 3+, s lo1 = CxldTulz,at ) Loy, plonl P72 2l

< Ckloal®=DP " (B[]l
iex(T)NI

(4-16)

by (2b) of Corollary 3.8, since go; 2(A »(8k)) C A_ h(|vh|) Similarly, by (4-13),
(4-14), the second bound in (4-15), and Holder S mequahty,

o1 = Cic(L+ ity L, s [y, ) 1onl- 17l
=< Cxlval - lInll,

(-17) 125, Ronlz;,

by (2b) of Corollary 3.8. Since D; URUn is supported on the annuli A h(8 x) U
A+h(5K) with / € Iy, by (4-16) and (4-17),

(4-18) 1D%  Runllv, < C[v]P=/7 ||
The last inequality in Lemma 4.4 is immediate from (4-18), since p > 2.

We next prove the last estimate in (5) of Lemma 4.4. By the first inequalities in (2d)
and (2e) of Corollary 3.8, for all £ € '_(b),

|Uh|

(4_19) ‘Rv Js}z - | |

S @) NEleps ¥ ze AL, 6k

iex(T)NIy

By (4-12), the first bound in (4-15), (4-19), a change of variables, and Holder’s
inequality, we obtain

‘((Ru,js’ D},URU’?|Z;,1(5K)»U,2|

4-20) < Ci || ditv, L, qond v, p 10> 2l 1E1lb. p.1
<Cilual® " 1pi)I- [nlllIEllp, p,1 -
iex(T)NIy

by (2b) of Corollary 3.8. Since the map qo:2 is holomorphic outside of the annuli Ab 3
with & € I; and R, & vanishes on .Ab P

(D5, R, 7% Run), Z/ (Dy., Ru§, Ryn)dz dz.

iel;
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Since ./T; 5 C /Tj (0K ). by (4-20) and integration by parts,

‘«D R” 7t Rv’] +h§¢ §b vq0; 2(z)nxh(b)82> dz

< Ck 1" S 1ot @) I llEls, i

iex(7)

Thus, by a change of variables and the definition of R, 7,

dwh
e ‘ Prat Rl 56 &1 Ny (b)
(< v h%: 9~ A_ h(|vh\/51<)( vt Eb (wp) "N ) wh

< Cx vV o) 101 llp.p.1s

where wy = vy /z. The last estimate in (5) of Lemma 4.4 is immediate from (4-21)
and the second estimate in (2d) of Corollary 3.8.

It remains to prove part (6) of Lemma 4.4, Let Eb;v: A;l 5 (43K) — Teoyp () X be as

above. If h € I; and ze.Abh,

4-22) |m-L 007ty =07 (Chw 0Gues2),

Ehivquy;2(2) evp (b)
= CX|§b;v oqv0;2|z|d(§b;v qu0;2)|z§
see Section 2.3 of [14]. Thus, by integration by parts, if n =Y ® dz,

(4-23)

/~ (0 1w, Run), —55 _ {CbwGug2(2), Y}z
Apn -

‘Ab.h

< Cx [ o oTualeldGoso 0Tuni)], d 45 .

b.h
since Eb;U vanishes on X, x. Since

~ ~ dwh

b Eouluna)¥)az =~ (B (1), My sy (1))

A, 9= A4y, (lvnl?/8k) wy

where wy, is as in the two previous paragraphs,

(4-24) ‘ ¢_ - (Eb;quo;Z(ZL Y) dz +2mi Z (Dl,ipi (v), nxh(b))b
A g ielNx(T)

<Cx (17 = Jlcr + w7 + | P=272) 3" 1p )] - In]l.
ielNx(T)
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by the two estimates in (2c) of Corollary 3.8. On the other hand, by Holder’s inequality,
change of variables, (2b) and the first estimate in (2c) of Corollary 3.8,

[ oo Tunal:ld @ o) lzd= a2

b.h

(4-25) =Ck HEb;v “CO(qv();z(,Z;,h)) “|vn |(p_2)/p Hdﬁvl |c7uo;z(fT;_,,) Hvl,p

<Ck > lp),

iel,Nx(T)
since @'vo;z(ﬂ;h) C A;l h(|vh|2/5K). Since 5J~uv is supported on the annuli *Zl:h’
with & € I, the estimate (6) of Lemma 4.4 follows from (4-23)—(4-25).

4.3 Some geometric conclusions

We now use the two-step gluing construction of the previous subsection to conclude
the proof of Theorem 1.6.

Corollary 4.5 Suppose (X,w,J), A#0,and T areasin Lemma4.3and M = @. If
J satisfies the regularity conditions (a) and (b-i), for every precompact open subset K
of Ur(X;J), there exist §x,Cx € RT and an open neighborhood Ug of K in
X1,5(X, A) with the following properties:

(1) All requirements of Lemma 4.4 are satisfied.

(2) If J is an almost complex structure on X such that ||J Jllc1 < 8k and
[b] e MY @(X A; J) the linearization DJ B ofa at b is surjective.

Proof (1) We continue with the notation preceding Lemma 4.4. By Lemma 4.4, it
can be assumed that b = (X, jy, Uy ), Where

Ty =exp (7. v € FTE g E7y €TH @), 167l p1 =Bk
for some gK € (0,38k) to be chosen later. Since 5 =0,
(4-26) djuy+ Dy L5, + Nf’vgf’v =0,
where N Fu is a quadratic term. In particular, N 7. ,0 =0 and
@27 N7, E=N7 €y, = Cr(Ellv,p1 + 11 v, p1) 1€ =& llv,p,1,
if £, e T'(v) and ||€]y,p,1. ||§||v = <6k . By (4-26), (4-27) and (3) of Lemma 4.4,

(4-28) 47|

oot = Cxlo@)].

provided gK is sufficiently small.
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(2) Since uy is J ~holomorphic, all linearizations D 5 - of F] 7 are the same. We give
an explicit expression for D 7~ and show that the dimension of its kernel does not
exceed the index of Dy .. Forany & € ['(Xy; iy, TX), let

=T '
We put 5‘}{ = ng.u o ng-i-_flj ogf expu‘]U (§+ fj’v)

=T{  o(@5uv+ Dy, E+¢5,)+ N5 ,E+55,))
f ~ ~
= H@j,u °© (Df,vé + Nf,v(i: + é'.’Iv,u) _Nf,vgf,v)’
by (4-26). By (4-27), we can write
Nf,v(§+ é‘f,v) _Nf,ugf,v = Lf,vg+ Nf,vg’

where N Fv is a quadratic term, while the linear map L Fu I'v) — I'%(v; J )
satisfies

429 |L7 &, , = Ckll&7 ylvpalEllv,p1 = Cilp@)|-[Elv.p1 ¥ E€T),

by (4-28). We conclude that
_ 5 B -1
Dyz=1I¢; o (DJ,U + LJ,U) ° th.

Thus, it is sufficient to show that the dimension of the kernel of D FoT L Fu does
not exceed the index of D Fo

(3) Suppose £ € ker(Df’U + Lf,u)' Since the dimension of I'_(v; .7) is the same as
the dimension of I'_(v), by (3) of Lemma 4.4, we can write
E=(_ +&,,  where E_eT_(v:J), £y € T4 (v).
If gK is sufficiently small, by (3) of Lemma 4.4 and (4-29),
agy Vot = Cr(ID7 g + 1L 7,81
< Cxlv|PPle |y py Y E-+E4 eker(Dy, + Ly ,).

Thus, the projection map, § —> &_ is an injection on ker(Dy , + Ly ). We denote
its image by I'*(v; J). Furthermore, by (4) of Lemma 4.4 and (4-29),

@30 &+l 51 = Cx(ID7 o= llvp + 1L 7 yE-lv.p) = Crlp@)I- &= llv,p.1
Vé eT_(v;]), & +&y eker(Dy  +Ly,).

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2489

(4) We now use Lemma 4.4 to estimate the L2—inner product of
(D7, + Ly - +Es)

with an element R,n of I'%!(v; J ), whenever

f-elT_(ui)), &+ eTy(v), & +E&cker{Dy +Lj, b
By (4-11), (4-29) and (4-31),
430 (L7 b R = Cklp@)P Il 1 V& eT(i ).
By (4-31) and (7) of Lemma 4.4,
@33)  [(Dg &+ Run)| = Cxlv"2p@)]- InlllIE=llv,p1 ¥ & € T_(v; ).
For each h € I, by (4-29) and (5) of Lemma 4.4,

|<<LJ~,U‘§|Z;;,1(45K)’ Ryn)| < Cx H’7|Z;;h(43,() ”U,2”L.7,U€”U’P

(4-34) o
< CxvlZlp)|-Inllllv,p,s ¥ EeT(v).

Since the metric g, on the annulus /T;r 0k ) differs from the standard metric on the
annulus with radii 2+/0g and +/|uy| by a factor bounded above by four and below by
one-quarter,

IElco < CxllEllvpa VY EET(AL,Gk)ufTX);
see Section 3.1 in [14] and Section 3.3 in [16]. Thus,

H (Lf,vé)|gj:h(5k) Hv,p = CK||§.7,U||U’P’1 ”Slgj:h(&() ”U,p,l

=Ck Z i (V)] ||5|/Ij,h(5,() Hu,p,1 Vel (v),
iex(T)NIy '

(4-35)

since (4-27) is obtained from a pointwise bound; see Section 2.4 in [14]. By (4-29),
(4-35) and (4) of Lemma 4.4,

‘((Lf,vs_lgj:h(&()’ Rvﬁ))' = CK”n” ”E_l/ﬁ':h(r?[() ”v,p,l
(4-36) < Cx w17 Y o) - InllllE=llv,p.1

iex(T)NIy, _ _
Vé_el_(v;J).
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Since the intersection of the support of §_ € T_(v;J ) with the support of Ryn €
ro%(v; J) is contained in the |/ | annuli A h(45K)UA h(SK) by (4-34) and (4-36),

@-37) (L7 ,E- Run)| < CklvV?1p@)]- [11E-Tv.p.1
Vel b: ), e eT_(v; J).

Finally, by (4-32), (4-33), (4-37) and (5) of Lemma 4.4,

(4-38) |({D7 ,+Lj MR, 76 +E+), Run)+278 Y (D s b My 6)(Pi (V)
iex(7)

< Cx (I = Jller + 0|Y? 4 10| P=22) o) - [0 1Ellb.p.1
for all £ € T_(b) and &4 € '+ (v) such that R, 76 +&4 €ker(Dj ,+ L5 ).

(5) Let {n,} be a basis for I'%!(b; .7) = Ei“ﬁp (b)®fTevP(b)X’ orthonormal with re-
spect to the inner-product corresponding to the norm ||-||. We define the homomorphism

Dy: TEW; J) — T8 (B T) by DoE =) ({Dj,+ Ly }E+E), Runhr
r

if Er el (v), E+&4 € kef(Dj‘,v + Lf,u)'

Since the projection map ker(D7  + L5 ) — T'X(v; f) is an isomorphism by (3)

above, the map ©,, is well-defined. By definition, ®, = 0. On the other hand, by

(4-38),

(4-39) Dy R 7€ = —2ri Y (Db teaE@pi(v)  VEe Rv_’}Fi(v; J),
iex(7)

where ¢;(v): Rv_}Ff(U; J~) —> Teyp ()X is @ homomorphism such that

4-40)  |si()| = Cx (1T = Tllct + w2 + 0| P=2/P) Vo e FTZ | 1.
By (a) and (b-i) of Definition 1.4, the map
D bt T-(b) — Ty piy X

is surjective for all 7 € x(7'); see the paragraph preceding Lemma 3.3. Since p;(v) # 0
forall i € I1 and v € FT 2, it follows from (4-39) and (4-40) that if § is sufficiently
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small,
dim ker Dfﬁ = dimker(Df,v + Lf,u) =dimI'*(v; f) = dimker ®,,
<dimT_(v; J) —dim %! (»; J) = dimT_(b) —dim % (b; J)
=ind Dyp =ind Dy ,
as needed.

Corollary 4.5 concludes the proof of the genus-one regularity property of Theorem
1.6. Corollary 4.6 below and the Gromov compactness theorem imply that if J is a
genus-zero A-regular almost complex structure on X', J; is a sequence of almost
complex structures on X such that J, — J as r —> 00, and b, € S)JT(I)’M(X, A Jy),
then a subsequence of {b,} converges to an element of 97?(1” (X, A4 T).

Corollary 4.6 If (X,w,J), A# 0, and T are as in Lemma 4.3, for every precom-
pact open subset K of Ur(X;J) —Ur.1(X; J), there exist g € Rt and an open
neighborhood Uk of K in X1 p(X, A) such that

M) (X A )NUg =2
if J is an almost complex structure on X such that || J— Jllcr <ék.
Proof (1) Suppose [b] € Xm?’M(X, A;J)NUg . By Lemma 4.4, it can be assumed
that

b= (Sv. ju. i),

where Uy, = exp{ué‘iu, vE f%i‘K(O)’ é—f,v ey (v), ”Zj’,U”U,p’] < gK,
for some gK € (0,8) to be chosen later. Since 9 Uy =0,
(4-41) djuy + Dy L5, + Ny L5, =0.
By (4-27) and (3) of Lemma 4.4,
@442 N7 87 lu, = CklEz ol o = 1874 lup0 = Crlp@)],
provided gK is sufficiently small.
(2) If n e % (b: J), by (4-11), (4-42), and (7) of Lemma 4.4,
(D787 Rumll = Ck ol 2lo@)] 1]l

(4-43) )
(N7 o7 o Run)| < Cxlo@)? - Inll.

Geometry € Topology, Volume 13 (2009)



2492 Aleksey Zinger
By (4-41), (4-43), and (6) of Lemma 4.4, for all n € T'%1(b; f),

(4-44)

Z(DJ,I'/OI' (U)’ Uxh(,-)(b))b
iex(7)

< Cx (T =Tl + [0]V? 4+ [v|P=D/P) | p(w)] - In].

On the other hand, since the closure of K in U7 (X;J) —U7.1(X; J) is compact,

(4-45) > Cg' vl Vbe KO v=)icyr)

ZDJ,i(ba v;)

iex(7T)

for some Cg € R™, by definition of the set U1 (X; J) CU7r(X; J); see Theorem
2.3. Since T'%!(b; J) = E* ® ev} TX, (4-44) and (4-45) imply that

1T =Tt + [u]VP + |v|P=2/P > CFL,

as needed.

5 Completion of proof of Theorem 1.2

5.1 Summary and setup

In this section we sketch proofs of Propositions 5.1-5.3, based on the arguments of
Sections 3 and 4. Detailed proofs of generalizations of these propositions can be found
in [19, Section 5]. These three propositions are special cases of Theorem 1.2, but
together they imply Theorem 1.2 for an arbitrary compact almost Kahler manifold
(X,w,J), Jy = J constant, and 4 € H,(X;Z)*. They also show that a limiting curve
of a sequence of J-holomorphic curves in X of arithmetic genus of at least one must
have arithmetic genus of at least one as well, as is the case in algebraic geometry.

Suppose {b,} is a sequence of elements of 97?‘1) a (X, A5 J) such that
lim b, =b e My (X, 4;J).
r—>00

We need to show that b € 97?(1) am (X, 4; J). By Definition 1.1, it is sufficient to assume
that b is an element of U7 (X; J) for a bubble type

T = (M,LX; j, A)

such that 4; = 0 for all minimal elements i € 1.
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We can also assume that for some bubble type
T/ — (M, I/, x/;j/’Al)

by € Ur/(X:J) for all r. If A} = 0 for all minimal elements i € I’, the desired
conclusion follows from Proposition 5.1 below, as it implies that the second condition
in Definition 1.1 is closed with respect to the stable map topology. If A} # 0 for some
minimal element i € /" and X’ # &, ie the principal component of X is a circle of
spheres, Proposition 5.2 implies that b satisfies the second condition in Definition 1.1.
Finally, if X" = @ and A4} # 0 for the unique minimal element i of I’, the desired
conclusion follows from Proposition 5.3.

We note that the three propositions are applied with » and b, that are components of

the ones above.

Proposition 5.1 Let (X, w, J) be a compact almost Kahler manifold, A € H,(X;Z)*

and M be a finite set. If [b,] is a sequence of elements in Emg’{o}uM(X, A; J) such
that

lim [by] = [b] € U (X J) C Mo goyum (X A1),
then either
(a) dim Spanc_y{Dib:i € x(B)} < |x(B)]. or
() 22y Uy, C - Dghbyr  Spanic g (Dib i € x(b)}.

Proposition 5.2 Let (X, w, J) be a compact almost Kahler manifold, M1, ..., M,
be finite sets and

nelv, A, ..., Ay € Hy(X:Z)*.
If [bg ,] is a sequence of elements in zmg (0.13UM, (X, Ay; J) foreach k € [n] such that

evy(br,r) =evo(bry1,,) Yk eln—1], evi(bn,r) = evo(bi,r),

and [bk,/) = [br] € Urao (X2 J) C Mo g0, 13um;, (X, Ag: J) Yk €[n],

lim
r—>00

where each T® = ({1} 1 M. 1®); j & 4®)) is a bubble type such that A{ =0
foralli < jq, then

k=n
dimg Span(c jy {Diby i € x(br). k €[n]} < Y |x(be)l-
k=1
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Proposition 5.3 Suppose (X,w,J) is a compact almost Kahler manifold, A €
Hy(X;Z)*,and M is a finite set. If [b,] is a sequence of elements in Sﬁ(l)’M (X, A;J)
such that

lim [b,] = [b] €Uz (X5 J) C My ar(X, 43 )),

r—>00
where T = (M, I,R; j, A) is a bubble type such that A; = 0 for all minimal elements
i €I, then dimc Spanc j){Dib :i € x(b)} < |x(D)|.

We prove these three propositions in the next two subsections by combining the approach
of Sections 3 and 4 with some aspects of the local setting used in [6]. The latter makes
it possible to proceed with the genus-zero gluing construction of Section 3.1 and the
first step of the genus-one gluing construction of Section 4.2 near a given bubble map b
even if J is not genus-zero regular. The maps we encounter are not holomorphic on the
entire domain, but are holomorphic on the parts of the domain that appear in Lemma
3.4. This is sufficient for the purposes of the key power series expansion in Lemma 3.5.

5.2 Proofs of Propositions 5.1 and 5.2
Let (X,w,J), A, M, b,,
b=(M,I;x,(j,y),u), uiEub|Eb'i?
and 7 be as in the statement of Proposition 5.1. We put
IT={iel: A #0)}.
For each i € I'", choose a finite-dimensional linear subspace
oY (h:i) CT(Spy x X A‘}fjn;"T*zb,,- ®niTX)
such that
NGNS A(}’,;T*Zb,i QuiTX)={Dyu, £ &€l (Zp;:ufTX), &(c0) =0}
@ {{idxup ;¥ n:n e T (b))

and every element of ro.! (b;i) vanishes on a neighborhood of oo € X ; and the
nodes xp p € Xp; with 1, =i.If i € I —1I%, wedenote by I'%!(b;i) the zero vector
space. Let

aT(X; J)= {b, =(M,I;x',(j.y"),u’): b’ = bubble map of type 7 ;
3y, juj € lidxul* TN (bi) Vi e I},
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By the Implicit Function Theorem, Ur (X; J) is a smooth manifold near b. Let
FT =i (Xx;J)yxc!
be the bundle of smoothing parameters.

Since the sequence [b,] converges to [b], for all r sufficiently large there exist

b, eUr(X;J), vr =, v,)eFT? and & €l(vy)=T(Zy,;ul, TX)
such that
(5-1) &(00)=0Vr, lim b, =b, lim [v,|=0, 1lim [& v, p1=0,
and b, = €XPp (v, ) &

The last equality holds for a representative b, for [b,].

Remark The existence of b, v,, and & as above can be shown by an argument
similar to the surjectivity argument in Section 4 of [16], with significant simplifications.
In fact, the only facts about the bubble maps b, we use below are that they are
constant on the degree-zero components and holomorphic on fixed neighborhoods of
the attaching nodes of the first-level effective bubbles, ie on X9, (§) in the notation of
Section 3.3. Such bubble maps b; , along with v, and &,, can be constructed directly

from the maps b, ; see the beginning of Section 4.4 in [16].

By the same argument as in the proofs of Lemma 3.5 and Corollary 3.6, but now applied
to the sequence (vy, &) with sufficiently small dg,

= C(|Ur|1/p + 11§ ”vr,p,l) Z }Pi(vr)‘-

(5-2) ‘Dabr— Z (Dib}) pi(vr)
iex(T)

iex(7)

This estimate follows from (3-18) with 4’, v’ and {7 . replaced by b, vy, and &,

respectively. Recall that @5 (00) = id for J = J. Since b, —> b, (5-2) implies
that
(5-3)  |Dzbr— > (Dib)pi(vr)

iex(7)

<C(lvr P + & llopp) D |oilr)

iex(7)

El

where the difference is computed via a parallel transport of 7o, p) X t0 Teyy ) X
with respect to the J—linear connection \ By (5-1) and (5-3), b must satisfy one of
the two conditions in the statement of Proposition 5.1.
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The proof of Proposition 5.2 involves a similar extension of Lemma 3.5 and Corollary
3.7. By the assumption on the bubble types 7 ) made in Proposition 5.2, evq(bg) =
evy(by) for all k. Thus,

evi(bg) = evo(by) =evi(b))  Vk.leln].

Let ¢ denote the point evy(bhy). We identify a small neighborhood of ¢ in X with a
small neighborhood of ¢ in 7; X via the exponential map of the metric gx and the
tangent space to X at a point close to ¢ with 7, X' via the V7 —parallel transport.

For each pair (k,r), with r sufficiently large, let (b]/”, Uk,r»5k,r) be an analogue
of (b,,v,, &) for by ,. As before, the key point is that the bubble maps b;c,r are
constant on the degree-zero components and holomorphic on fixed neighborhoods of
the attaching nodes of the first-level effective bubbles. Let

Sker = eVO(b;C’r) €eTyX
and Ckr = ev1(bier) —evo(bi ) = evi (b.») —evo(by. ) € Ty X.

By the assumption on the maps by , made in the statement of Proposition 5.2,
Gor|  Vkel-1]
En,r

E

}gk,r + Ek,r _é_k—}-l,r} = C‘é_k,r} ’
é-n,r + En,r - gl,r} = C!Cn,r :

|
|

k=n
(5-4) - ‘El,r +"‘+En,r} =€ Z ‘Ek,r|v
k=1

for a sequence {¢,} converging to 0. On the other hand, by the proof of (3-25),

55 (Ter— Y. i) — X1 (b)) (Diby ) pist (Vi)

iex(T0)
< (v "? + 1€k llveyopt) Y |oiz1 (W)
iex(T(k))

see (3) of the proof of Corollary 3.7 for notation. By (5-4) and (5-5),

bl

k=n
YD Gilby,) = xia ()T (Diby ) it (V)

k=1iex(T®) e
<@ D |pines)

k=1iex(T0))

(5-6)

El

for a sequence {€,} converging to 0. Since D;b; , —> Diby as r — 00, (5-6)
implies the conclusion of Proposition 5.2.
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5.3 Proof of Proposition 5.3

Let (X,w,J), A, M, b,,
b=(M,I.8S,x,(j,y)u), ui = upls,;,

and 7 be as in the statement of Proposition 5.3. Let 75 and by, for & € I be as in
Section 2.2. For each 4 € I; and i € I}, choose a subspace

TN (byi) = TO (b3 i) CT(Sp x X3 AG L af TS @ 73 TX)
as in the previous subsection. If 4; = 0, denote by ro.! (b;1) the zero vector space.
We define U7 (X; J) as at the beginning of Section 5.2. Let
FT —Ur(X;J)
be the bundle of gluing parameters. For each b’ € ﬁT(X 3 J), let
FO' () CT(Zp x X; AG i TSy @ 73 TX)
be the subspace obtained by extending all elements of ro.! b'i) = ro.! (b;1) by zero
outside of the component X/ ; of Xp/.

The sequence [b,] converges to [b]. Thus, with notation as in Section 4.2, for all r
sufficiently large there exist

b, eaT(X; J), Ur = (b, vr) € j_:,fg’ Er;1 € T'(vr1),

and & €ely(vr) C F(ﬁvr;l Oaur;o;z), where ﬁvr;l = eXPuUr;l i1
such that
Erals, =0, 0rflu,; €4y, X T, ) TO1 (D)),
(5_7) r:
by = eXPﬁur;lc’%r.o:zg’;z vr,
lim b; =), lim |v,| =0,
(5-8) r—>00 r—>00

im &y pa =0, lm 1€l pa =0.

We note that just as in the first step of the gluing construction in Section 4.2, there is
no obstruction to smoothing the internal bubble nodes of the bubble map b). subject to
the second condition in (5-7), as long as b). is sufficiently close to b, . For defining the
spaces 'y (v,) at the second step of the gluing construction, we take

T_(b) = {£ € T(D'): Dypk € {idxup *TO1 (b))
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The proof of the existence of the elements v,, &,.1, and &,,, as above is similar to the
proof of the surjectivity property for the gluing map in Lemma 4.4, but simpler.

Since for each /2 € I; the map iy,., is holomorphic on Egr;h (§) C Ty, for § eRT
sufficiently small, the estimates of Corollary 3.8 apply to each map iy,., |Evr.1,h‘
Thus, we can define an obstruction bundle T'%!(v,) for the second stage of the gluing
construction in Section 4.2, with the estimates of Lemma 4.4 remaining valid. The
claim of Proposition 5.3 is then obtained by the same argument as Corollary 4.6, with
J, uy, and Cj,u replaced by J, #iy,.; © Gy, .2, and &3, respectively.

6 Proof of Theorem 2.3

6.1 A multistep gluing construction

The first part of the last claim of Theorem 2.3 can be proved by showing that a fine
version of the converse to the J = J case of Corollary 4.6 holds. More precisely,
using the two-step gluing construction of Section 4.2 and the Inverse Function Theorem
twice, we can construct an orientation-preserving diffeomorphism

¢: FIT7 — M ( (X, 4: )N Ut

Unfortunately, one of the families of the domain spaces involved in this construction
does not extend continuously over F!75 N p~1(0) for a general bubble type 7 as in
Theorem 2.3. As these domain spaces are needed to apply IFT over F!75 — F179,
the above map ¢ cannot extend continuously over F!7j, except for bubble types 7
such that either |x(7)| =1 or x(7) = I. In the first case, both families do extend
continuously over F!7 . In the second case, p(v) = v for all v € F7 and both
families extend continuously over F17 — {0}. On the other hand, as v —> 0 both
perturbations approach zero. This means that the corrections to be chosen in the domain
spaces approach zero as well and thus extend continuously over F! 7.

In this subsection, we describe a multistep variation of the two-step gluing construction
of Section 4.2. In the next subsection, we will use IFT multiple times to construct an
orientation-preserving diffeomorphism

¢: FI'TZ — M} (X, 4: )N Ur.

Some of the domain spaces involved will not extend continuously over ' 7. However,
whenever a domain space cannot be extended to a point v* € F!7;, the corresponding
perturbations will approach zero as a sequence of elements v, € F! ’Z;,g approaches v*.
For this reason, the above diffeomorphism ¢ extends to a continuous map

¢: F'Ts — MY (X, 4:J) N Ur.
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This map can shown to be a bijection by the same argument as in Section 4.1 of [16].

The multistep gluing construction described in this subsection is suitable for the purposes
of Section 4.3 and thus could have been described in Section 4.2 instead of the two-stage
gluing construction. However, describing the former in Section 4.3 would have further
obscured the proofs of Corollaries 4.5 and 4.6. As these two corollaries appear far
more central, than Theorem 2.3, to applications in the Gromov—Witten theory and
enumerative geometry, we have postponed describing the multistep gluing construction
until the present section.

If b = (Zp,up) is any genus-one bubble map such that uy|x,., is constant, let
22 C X be the maximum connected union of the irreducible components of 3 such
that Xp.p C 22 and “b|zg is constant. We put

Tp(b) = {§ € T (SpiuyTX) 1 &l 5o = 0}
and Tg'(b:]) = {n e T(Zp: Ay T* Sy @ uyTX) 5o =0}
We denote by
D%, Tg(b) — Ty (b:J)

the restriction of the linearization D p of the 97 —operator at b defined with respect
to the connection VX . Let

I_(b)=kerDyp, and  Tp_(b) =ker D¥,.
If b is J-holomorphic, let r_ (b) C I'p,—(b) be the subspace defined in Section 4.2;
see (4-4) and (4-5).

Suppose 7 = (M, I,R; j, A) is a bubble type as in Theorem 2.3, ie A; = 0 for all
i €1y, where Iy C I is the subset of minimal elements. We put

X°(T)={hel:4;=0Vi<h},
x (T)={hel:h<iforsomeie x(T)} C x°(T),
(T)=max{[thel:h<i}|:iex(D}=1.  Iiy=xTD).
Liny=1-x(T)—x (1)-1,
where Iy C [ is as in Section 2.2. For each s € {0} U[(7) — 1], let

s—1
Is = {i ex(MUx (7): }{h el:h <i}} :s}, I =14 U U (I,ﬂ)((T)).
t=0
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In the case of Figure 5,
(T)=2, To = {h1, hs}, Ty = {hg4. hs}, I) = {hs}.
In general, the set Z;7) could be empty, but the sets Z; with s < (7') never are.

If b is a bubble map of type 7 as in Section 2.2 and s € [(7 )], we put
Egs) = U Xpi U U U Xpi C Xp.
iexO(T)—x—(T) heIl;_ji<h
‘With notation as in Section 2.2, let
3T = P AT — UL (X1 0).
iex(7)

If se[(7)]and heZ* _, let

s—1°
xn(T)={i e x(T):h<i}, §iT =00 (x: J)y x (D,
If in addition v = (b, v) € F7 , let

pssn (V) = (b. (on;i (V)ieyy() €S4T.  where ppy () = [ Jow €C,
h<h'<i
ps) = (b, (psnWer ) €T = D &7
hel;_,

Note that p(v) € /S?; see Section 2.2.

As in Section 4.2, for each v = (b, v) € FT we put

vo = (b, vy, Vo).

Let vy = v. If s € [(T)], let

vs = (b, (vp)nez,) and Uis) = (0. (Vh)hez, 125)-

The component v(7y of v consists of smoothings at the nodes of X that do not lie
between the principal component Xj.x of X and the first-level effective bubbles and
do not lie on Xj.x. These nodes will be smoothed out at the first step of the gluing
construction, as specified by v(7y. At the next step, we will smooth out the nodes
indexed by the set Z(7)_1, according the tuple of gluing parameters v(7y_;. As in
Section 4.2, at the last step we will smooth out, if possible, the nodes that lie on the
principal component 2.5 of X, according to vg. This step will be obstructed.
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Suppose v = (b,v) € FT% is a sufficiently small element. We will inductively
construct approximately J—holomorphic bubble maps

bs(V) = (Suyyy. Uvs),  Ys=0,....(T),
J —holomorphic bubble maps
by(V) = (S flvs),  Vs=1,....(T),
and injective homomorphisms
Rus: T_(b)—T(Sy,iuf,TX)  and  Ryy T_(b)—T(Sy,,: i, TX),
such that the following properties are satisfied. First, for all s € [(7)],

0 0 _ (s) 0 _~ 0 _ 0\
Zb ) = Eb W) qUM(E ) and ”U,S(be(u))—“U,S(ng(u))—”b(zb):evP(b)’

where as before
Guiy' Zvgy — b
is the basic gluing map of Section 2.2 in [16]. Second, for all £ € T_(b)
RU,SE‘EO )’ ﬁv,sé}zg = const,

(6-1) . bs(v) .
Ry (2D () = Russ( 2 ) =ECED).

©2)  CO) ENp, pa < || Ro.sE] | Ry |

=CO)lEls,p,1-

U(sy, Ps 17 U(sy,p1 —

| Ds b Rusé Ly e 105 50y RusElLy

©-3) <C(b 1/p p—=2/p
<CO)(Jv]"? + v MENs, p1-

for some C € C(Ur(X;J);RT).
Remark Similarly to Sections 3 and 4, above and below | - ||y,,,,p,1 denotes the
weighted Lf —norms on the spaces

FB(va;“i,sTX) and FB(EU(»’ TX)

induced from the basic gluing map gy, as in Section 3.3 of [16]. Similarly, | - [|v,,.p
denotes the weighted L?”-norms on the spaces

TB(Duy: Ay T* Sy @ul TX) and  Tp(Sy,): Ay T* Sy, @5 TX).
We denote the corresponding completions by I'g(v(s)), FB(U 1) F (U(s); J) and

B(U J).
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For s € {0} U[(7)], let I'_(v(5)) be the image of Ry 5. Similarly, if s € [(T)], we
denote by

Tp,—(v) CTa(bs(v))  and  T_(v(), Tpi—(vis) C Ta(bs(v))

the image of I'p._(b) under Ry s, the image of Rv s, the image of I'p._(b) under
RU s» Tespectively; see (6-1). Let I'p, 1 (v()) and FB +(v(s)) be the L?—orthogonal
complements of I'p;—(v(s)) and FB,_(U (s)) in T'p(v(s)) and FB(U(S)). These spaces
will satisfy

©4) CO) M NEllvgypt <[ DrbwinE Ly p S CONE Ny pa1 ¥ & ETBit-(vis)),
65 CO M Eluy,pt =10 5o Eluyp S CONE N 1 ¥ E€ T (vie).
Furthermore,

(6-6) Uy,s = expy, Cu,s

So,slyyy pa = COIVIVP.

Finally, for § € C(U7(X;J);R™) sufficiently small, all maps

for some Cu,s € I'g;+(v(s)) such that

v —>bs(). bs (V). Lus. Rug. Rug
are smooth on F7 ? and extend continuously over F FT §-

‘We now describe the inductive construction referred to above. If v € j-:’f 9 is as above
and b = (Xp, up), we put
Uy (T) = Up O Quizy» Ry € =&o0qu, YEeT_(b).

The first bounds in (6-3) and (6-4) with s = (7) hold for the same reasons as the
corresponding estimates in Lemma 3.1. Since the operator Df p 18 surjective, by the
first bound in (6-3) the operator

D}y DBt (viry) — T (v J)

is an isomorphism. On the other hand, by the construction of the map ¢, (7) in
Section 2.2 in [16],

(6-7) [Exzrwesyl < C()v|V?.

WT),P —

Thus, by the Contraction Principle, if v is sufficiently small, there exists a unique small
element

(6-8) é‘v,(’T) € FB;+ (U(T)) such that 5] XPuy, (1) é‘v,(T) =0.
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Furthermore, by (6-7),
[0 gy 1 = CONVIVP.

We thus define E(ﬂ (v) by the first equation in (6-6).

If s € [(T) — 1], let
Qug;(T)+1—s- Ev(s) - 2U(s-i—l)

be the basic glulng map of Section 2.2 in [16] corresponding to the gluing parameter vy .
If bs+1 (v) and RU s+1 have been defined, we put

Uy,s = ﬁv,s-{-l OGug;(T)+1—s> Rysé = ﬁv,s-{-ls Oqug;(T)+1—s VEeT_(D).

The first bounds in (6-3) and (6-4) follow from the second estimates in (6-2) and (6-3)
and from (6-5), with s replaced by s + 1. On the other hand, by the inductive
construction and (6-6),

(6-9) Ly,s+1 = XPy,, ot

for some Ev,s+1 € FB(EU(S+1); ”3<s+1>TX)
such that [usttlluy 1y = COIVIYP
where Uyryy = Ub O Guigyy,y-

Thus, if § is sufficiently small, the estimate in (2b) of Corollary 3.8 implies

(6-10) |dity,st1la-

U(s+1) 11(8)HU1) EC'(b)al/p‘los,h(u)‘ Vh EI:,

where 2(8) = ({(h,z) € Zpp = {hy x S? 1|z = 671/2/2}).

v( +1)> qU(s+l>

It follows that

< C)|v|VP ]| psy1 ()| < CB) |V

(6-11) |9suvs], , =

Thus, similarly to the s = (7'} case above, if v is sufficiently small, there exists a
unique small element

(6-12) Sus € FB;+(U(S)) such that 51 €XPy, Cv,s =0.

Furthermore, by (6-11),
[¢v.s

We again define gs(v) by the first equation in (6-6).

w.pa = CO)[V?.
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If s € [(7)] and by (v) has been defined via (6-6), we put
Rys§ =T, RysE  VEET_(b),
where Il¢,  is the parallel transport along the geodesics
T —> eXpPy,  Tlu,s. T €[0,1].

The bounds on Ry & in (6-1)—(6-3) and the estimate (6-4), along with (6-6), imply
the bounds on Ry & in (6-1)—(6-3) and the estimate (6-5).

At the final step of this inductive construction, we put

Uy,0 = ljv,l 067u();(7)+1, RU,OS = ﬁv,lé oqv();(T)+1 VEe F—(b)}’
where Guoi(T)+1: Zv —> Dy,

is the modified basic gluing map constructed in Section 4.2 as ¢,;>. In order to
construct this map in this case, we need to replace §x € R™ with § € C®Ur(X; J),
which we view as a function on Lléo ) (X; J) via the quotient projection map

a0 x:n) —u(x:J).

The homomorphism Rj, o satisfies the required properties. Let I'y (v) C I'(v) be the
L?—orthogonal complement of T'_(v).

Foreach h e[ and § € RT, let
A, 8) = {(h.2) € oy, 1|z —xp ()] < 2817},
Ay 4(8) = {(h.2) € Ty = thy x S 1 |z| = 67122},
54 (8) = o — A5, 0) = U 45,9

Ly =h
A5 =q," (454 @®)) C o, 5,0 =4, (Z5,0)).
We define the homomorphism
Ry: T%V (b J) — % (v )

similarly to Section 4.2, but with two changes. First, we replace the number §g with
the function § € C® (U7 (X; J);R™). Second, we cut-off Rﬁn over the annuli

AT (48(b) — AT ;(5())

with i € x(7), instead of & € I ; see Section 2.2 in [13] for a version of this construction.
Let %! (v; J) be the image of Ry,. We note that due to (6-9), the estimates in (3) and
(6) of Lemma 4.4 remain valid. Of course, in this case J = J and Cg € R should
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be replaced by an Rt —valued continuous function on 27 (X ; J). We summarize the
key results of this construction below.

Lemma 6.1 Suppose (X, w, J) is a compact almost Kahler manifold, A € H,(X;7Z),
and J is a genus-zero A-regular almost complex structure. If T = (M, I,R; j, A)
is a bubble type such that ) ;. A;i = A and A; = 0 for all minimal elements i of I,
there exist §, C € C(U7(X; J);R™) and an open neighborhood U of U7(X; J) in
X1,m (X, A) such that

1) bs(v), Es(u), Ry s, and ﬁu,s as above are defined for all v € ﬁ'g;

(2) forevery [5] € %?’M(X, A)NUg , there exist v = (b, v) € ]?73 and §y 0 €' (v)
such that

l¢vollvpa <80)  and  [exppyyéuo] = [B)
Furthermore, such a pair (v, §y,0) is unique up to the Aut(T)O((Sl)IA—action;
(3) forall v=(b,v) eF72,
187uv0llv.p = CB)|p(v)
1210w llv.p = CON(WIYP + 0 P72 P) [Ellupr & €T-(v),
COY ENv,p1 = 1D 7o)€ llv,p = CO)Ellv,p,1 VE ey (v):

(4) forall v=(b,v) eﬁf, g£eT(v),and neT%(b; J),

’

2
(D sow)E Rumv.a| < CO) @) 111w, p.1:
(5) forallv=(b,v) e FTI7,s€[(T)], and h € T*

s—1
‘Dh/?s(u)— > Dyipni(v)
iexn(7)

(6) forallv=(b,v) € FT{ and ne T (b;J),

< CB)|v|"?|psp(v)]:

)((5Juv,05 Rv’?» + 27[1 Z(Dllol (U)v nxh(,')(b)>b)
iex(7)

< Cb)([v]'? + [v|P=2/P) | p(v)| - In].

(7) all maps
v —> bs(v), bs(v), Zv,s, Ry s, Rys

are smooth on FT ? and extend continuously over FT §-
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Due to (6-9), (5) is proved by the same argument as the r = 1 case of the expansion (2a)
in Lemma 3.5. Part (2) of Lemma 6.1 holds for the same reason as part (2) of Lemma
4.4. Regarding part (7) of Lemma 6.1, it is immediate from the inductive construction
that each of the maps

v —> bs(U), ZS(U), Ru,s, ﬁu,s

is smooth on 77 5@ and extends continuously over FT s, provided this is the case
for all the objects defined at the preceding steps of the construction. Under these
circumstances the map v — {5 is also smooth, by the smooth dependence of the
solutions of (6-8) and (6-12) on the parameters. It extends continuously over FT s by
the same argument as in Section 4.1 in [16].

The estimate in (4) of Lemma 6.1 is an improvement on (7) of Lemma 4.4 and is
proved by a similar argument. In this case, the support of D; » Rv1 1s contained in
the union of the annuli

AL, 6®), he x (DUX(T):; AL, (80), hex (T)Ux(T);
S5 (60). hex (T Ay, (45(0) — A5, (50)). he (D).
Similarly to the proof of (7) of Lemma 4.4,
(6-13) 1D}y Rutll,, , = Cxl|duvol,, Inlg,.

for every point z of any of the annuli of the first three types above. Thus, the esti-
mate (4-16) still applies to the annuli of the first type with s € I;. By definition of the
metric g,

Vzed,(5(0)),
(6-14) nlg,.. = CO)nl- Uy vk
gv. H hex (T)Ux(7);
Wel ,h’/<h
619 Dl <COII- [[ow 77 a0
r] gU,Z —_ r’ 1 h h E X_(T);
hWel,h<h
_ Y ze Ay, (48(b)),
-1 < . 1 , v,h
616 Inlg,.. <COml-foal™ [Tow " Y00 0,
hWel,h’<h

where wy, is the coordinate on Z; 5 (43(b)) defined similarly to w; in (2) of the proof
of Lemma 3.5. On the other hand, by (6-10) and the assumption (a) of Definition 1.4,

(6-17) H é—vss|ﬁ2v]i"}_i(0) H U(s)s P51 = C(b)|ps;h(v)} Vhe I:_la i>h;
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the above assumption implies that the operators D? by(v) defined in Section 6.3 below
Vs
are surjective. Note that by the inductive construction,

luslgs =0 VheIl . i<h

s—1°
Combining this observation with (6-17), we find that

|Z0.1 |§;h(0) vaspyl <CO)|psn(v)| Vhel,

where EU’I is as in (6-9). Thus,

op1 SCO)  []ow Yhex (Mux?) -1,

Kex— (DUx(T),
h'>h

(6-19) Hduvso|§:jh(5(b))uv,p,l <c®) [[w Yhex (@D.
' h ex(T)Ux(T),
hW>h

(6-18) Hduv,olgj_h(S(b)) ‘

620) [ duvolz- wsgylupn CO [T ow Yhex (DU
’ Wex (Dux(@),
>

Combining (6-13)—(6-16), (6-18)—(6-20), and Holder’s inequality, we find that the
L' —norm of D7 Ryn, with respect to the metric g, on each of the annuli above is

bounded by C(b)|p(v)|||n||. Finally, analogously to (4-14),

|Dj’URUn\gU,Z < C(b)(1 + |duy,o

gu,z)|n|gu.z
V ze A, ,(48(b)) — A, ,(8(h)). h e x(T).

Thus, by (6-16) and (6-20) the L!-norm of Dj'; v Rvm on such annuli is also bounded
by C(D)|p(W)llnl-

Remark The exponent 1/2 in (4) of Lemma 6.1 is due to the exponent (p —1)/p
in (4-16).

6.2 Construction of diffeomorphism

We continue with the notation of the previous subsection. For each v = (b, v) € FT a2
we define the homomorphism

71331_: ro%tw; ) —room: J) by ”321_77=Z(77, Runs)n, € TON(b: ),

r
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where {n,} is an orthonormal basis for I'%!(b; J) as in (5) of the proof of Corollary
4.5. We denote the kernel of nS;l_ by Fg_’l (v;J). By Lemma 6.1,

Uj = {[expp,v)¢]: v = (b,v) € FTg, L € T4 (V). L]l p1 < 8(b)}
C {lexpp, 8] v = (b,v) € FT5, £ € T4 (V). E]lvp1 <8(b)}

is an open neighborhood of U7 (X; J) in X1 ar(X, A). Thus, we need to solve the
equation

(6-21) dyexp,, & =0

ot (3 7tn,0 + Dy o) + Nuot) =0€ T (b J),
371ty,0 + Dy bow)l + Nuol =00 (v ),

where Ny, o is the quadratic term satisfying (4-27), for v = (b, v) € FT ? and ¢ €
'+ (v) such that ||{|ly,p,1 < 6(b). By the proof of (1) of Corollary 4.6, there exist
§,.C e C®(U7r(X;J);R™) such that § < § and every solution (v, ) of (6-21)
622) [l <8®). Wllupa <8B) = [Elupa <C®)-[p@)].

On the other hand, by (4) and (6) of Lemma 6.1 and (4-27),

(6-23) 721 bo(v,§) = 7L (351400 + Dy py()¢ + No,o8) = —2miD7 (V) +&(v. §),

where D7 is as defined in Section 2.2 and

©-24) e, O] =B (" + 10| PP 1Ll pit) - (10 + 1E v, p1)
if £eT W), [Ellvp1 < 8(D).

We will first solve the top equation in (6-21) for 5" = pg(v, ) and then use the
Contraction Principle to show that the resulting bottom equation has a unique solution
in ¢ for each v 6.7-"1’2?.

Foreach s € [(T)+ 1] and h € Iy, let

_ 1
Uy (X:J) = w7 ({(0» riiet, € (CxR)M iy = 2 Vi€ I —x(T),

1 s 1 Ky . )
i€ (5_ T+ 2 T+ 1)) vie X"(T)})’
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see the end of Section 2.1. We put
UP(X:T) = {(bo, (bwner,) €Uz (X: 1) x [ U (x: 7y :
hGIl

evo(by) = evy, (bo) Vh € 11} ci®(x:J);

see Section 2.2 for notation.

Foreach s € [(7)] and h € Z*

o1 let
Ts:h: Pﬁ’u¥+1)(X;J)—>U$+I)(X§ J) and Vs;hﬁpmwM‘T””(X;J)
be the natural projection map and the tautological line bundle. With
Vb = ”s*;h evp IT'X — Pﬁ\u¥+1>(X;J),
we define
O € F(Pﬁ‘u¥+l)(X;J)§ )/;:h ® Vi)

by s (b Wiexu) = D Dri(b.vi) € TepiyX if (b, W)iexu(m)) € Vs
iexn(T)

We denote by

2 BT = [] (PEHT . ) — ULV (X1 0)
heT™

s—1
the fiber product of the bundles IP’S;,’? over 1/17(f +1)(X ;J). Let

Vs=n;evp TX — P,T and Vs = @ﬁs*.hys;h,
herLr

s—1
where 7y PsT — IP’S’;,\’?' is the natural projection map. We denote by
as € T(PyT v @ V)

the section induced by the sections 7~rs*; p%s;n With s € ZX . Similarly, let

To: ]P’OT=IP’§’Z/'}M(TU(X;J)—>U(TI)(X; J)., Vo=mny(TpE*@evp TX) — PoT.
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Let yo —> Po7 be the tautological line bundle. We define ag € T'(Po7; v ® Vo) by

{a()(b’ (Ui)iex(b))}(bv W) =—2mi Z DJ,i (bv W)ch(,-)(b)vi) € Tevp(b)X

iex(T)
if (b, (Vi)iex®) € Yo. (b, V) € Ezp).-
Let pT-()= Yo -

beuS™V (x:7)

be the smooth map induced from the maps ¢ of the remark following Lemma 3.3 via
the decomposition (2-11). In particular,

Sewey = Sp and  evp (p(b;§)) =evp(b) Vb eUSV(x: ), T ).
Thus, the fibers of the vector bundles
FT, #pE*,  ehTX, 3T and §,7 forheTr |, se[(T)],
at b and at ¢(b, &) are canonically isomorphic. If & € f’_(b) is sufficiently small,
v=(bv)eFT{ and V' =(p(b.&).v)eFTY

are corresponding elements of the fibers of FT at b and at 0(b,§),let &y 0(§) €T (v)
be given by

expy, oGv,0(6) =uvo  and  fluyollco <ry.

We identify T'y (v) and F_OF’I(U; J) with T4 (v’) and Fi’l(v’; J) by composing the
Vv —parallel transports

'y (v) — I'(V) and F_?_’I(U;J)—>FO’1(U,; J)
along the geodesics corresponding to &y, o(£) with L2?—projection maps
Fr)—Ti@) and T8 T) — T )
corresponding to the metric g, = g,/ on Xy.
For each s € {0} U [(7)], the map ¢ induces a smooth map
@s: By = n:f_(')}ugf)(xﬂ) — P 7.
Similarly to the previous paragraph, the fibers of vector bundles

T[;ﬁ, ys and Vg
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at b and ©s (1;, &) are canonically isomorphic, if (b, §) € B; is sufficiently small. By
the regularity assumptions (a) and (b-i) of Definition 1.4, the differential

VTO[sI ®S —> ys* ® VS‘

of o, defined via the above isomorphisms, is surjective. Let (’5SL be the L%—orthogonal
complement of ker V7o in &. By the surjectivity of V7o, the Contraction Principle,
the precompactness of the fibers of

momg: PyT — USTV (X J) — Ur (X2 ),

there exists €, C € C(U7(X;J);R™) with the following property. If b € U7 (X; J)
and

K € F(Ps7|n*1(b); ]/s* ® Vs‘)

18 a smooth section such that

@),

IVTk(d)| <eb) Vbhe PsT | 14,

then for every b* e P the equation

T'ﬂ*‘(b)ﬁl/{éf)(X;J)

as(0s(B*,6)) +ic(ps (0%, 8) =as(b") € yF @ Vs,  E€ Gy

5er [E] < 2C(D)e(b).

has a unique solution &, (5*). Furthermore,

|£c(B*)] < 2C(b) max {||[x(D)],

(V7@ :b € BT |14}
see Section 3.6 in [16], for example.

We are now ready to return to the gluing construction of the previous subsection. For
every element v= (b, v) of F T?, let
~(0 _ —_—
1) =belP(X:J)  and  figr)41(v) = (iry41 (). v) € FT5.

Suppose s € [{7)] and for all ¢ € [(7)] such that ¢ > s and v € ﬁ?'u(’)(X‘J) as

above we have constructed T
) €dP (X D) and () = (e (v),v) € FT§

such that

(6-25) Dby (e (v)) = {arn®)} (prn(v)) YV heI;
i) = pra (9(b.vsr),v)  forsome &, € T_(b)

(6-26)
such that  |&u], V7 &us| < CO)IYP, ([pr(V)], Euy) € S iy o
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where [p;(v)] € P;7 denotes the image of p;(v) € ﬁ' 2 under the projection map
§:7° — P;T and VTSU,, is the covariant derivative of &, ; along the directions in
I'_(b) as before.

By (5) of Lemma 6.1, its proof and (6-26),

627)  Dibs(fls41(V) = {osn®) + 54 ()} (psn(v)) Y heTr,,
where &;.5 € Toy ()X satisfies
(6-28) lesn )] [V e )] = CB)V| VP,
The estimate (6-27) can be restated as

(Dabs (A1) ez = (s (05 ()]) +£5(0)] (05 (V).

where &5(v) € ¥ ® Vsl[p, ()] satisfies the analogue of (6-28). Thus, by the previous
paragraph, (6-27), and (6-28), there exists a unique small element &, ; € I'_(b) such
that

’

([/OS(U)]’ év,s) € 65_‘[%(”)]
and Dhgs (ﬁs+l ((p(b, Ev.s), v)) = {as;h(b)}(ps;h(v)) Vhe Is*_y

Furthermore, &, ¢ satisfies the first estimate in (6-26), with ¢ = s, for some C €
CUr(X;J);R™). The second estimate is obtained by differentiating (6-27). Thus,
we take

s (V) = st ((p(b, év,s)a v)’

Suppose we have defined us(v) for all s € [(7)]. By (6-23), (6-24), their proof,
and (6-26),

(6-29) 721 bo (i1 (v), §) = {eo(b) + £0(v, )} (p(v)),

where £ (v,§) € y5 ® Vol[pu)) satisfies

(6-30) [eo(w. ). VT eo(v.0)|
<CB)([v"? + PP 1Ly pa) - (1+ 1) 1E 7, w)pa1)

if e L'(j11(v)) and [|¢||z, (v),p,1 < 8(b). Thus, for every

’

v=0b.veF'T7 and  {ely(fi;(v))such that [z, w),p1 <2CB)|p(V)],

the equation

7% bo ([ (¢(b,€),v), ¢) = {ao(B)}(p(v)) =0
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has a unique small solution &, ¢({) € r_ (b) such that
(o)) £0,0)) € SF |10y
provided that
6-31)  CO)(Jv]'P +|v|P=D/P - C(B)p)])- (1 +2C (b)) < C(b)e(b).
Furthermore, this solution satisfies
6-32)  [E0(®] = CE(vIYP + 10| P7DP) - (14 1o ¢ Iz, w).p.1)-
We put
1o(v.9) = p1(e(b.&v,0(0).v)  and  Fo(v.§) = (1o(v, ), v).

Let p10(v) = po(v,0) and fig(v,0) = io(v, 0).
For every v = (b, v) in Fl1#2 sufficiently small, we define the map

Wi {£ € T (o)) : €70y, p1 < 2CB)p)[} — T (o(): /)
by Wy (§) = s uzow.0) + D bouow.tn + N pow.n)t
Let DIU: Iy (fo(v)) — F?F’l (Fo(v); J)
be the derivative of W,, at { = 0 and let N;fv§ € Fi’l(ﬁo(v); J) be given by

Wy (§) = Wo(0) + DF L+ N2
By the construction of ¥,,, (3) of Lemma 6.1, (4-27), and (6-32)
(6-33) 1% ()| ). p1 < 2C(B)[p(V)].
2C®) " 1¢l7ow.pt < IDF , ¢l Zow). p
<2CO)¢lzowy.p1 Y& ETH(fo(v)),
[V708 = N708 L gccwr.p
=2CB)(I¢lzow).p1 + 18 7o), p. )15 =& 7o), p1 Y& &' € Dom Wy,

provided that v is sufficiently small. Since the index of D:}' v 18 zero, if C e
CUr(X;J);RT) is sufficiently large and v € F! 7! is sufficiently small, by (6-33)—
(6-35) and the Contraction Principle, the equation

Uy (8) =0

has a unique solution &, 0 € 't (fto(v)).

(6-34)

(6-35)
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If§eC (U7 (X; J);RT) is sufficiently small, we define the map

(6-36) ¢: F'T7 — MY (X AsT) by $(v) = [ exPpy gty o) 0.0 ]-

By construction, the map ¢ is Aut(7)o<(S!)? —invariant and smooth, and thus descends
to a smooth map

¢ fng@ — MY (X, A:T).
By an argument analogous to that in Section 4.2 of [16], the map ¢ is an immersion
into }:‘1) (X, A4),if § is sufficiently small. By the proof of Corollary 4.6 and the

construction of the map ¢, the image of ¢ contains sm? m(X,4;J) N Ur for a
neighborhood U7 of U7 (X;J) in X1 ar(X, A). Thus, the map

¢: fITg@ — M) (X, 4:))NUr
is a diffeomorphism. It can be seen to be orientation-preserving by an argument similar

to that of Section 3.9 in [16].

6.3 Extension to homeomorphism

In the rest of this section, we show that the map ¢ extends continuously over F I’Tg.
This will be achieved by combining the approach of Sections 3.9 and 4.1 in [16] with
the conditions (6-25) and (6-29) on the corrections & (v) to the maps bg(v).

For every b EZ:Z;O)(X; J),se[(T)],and h L’

.1 let

S0 =S C Sy TPNb:id)={neTy (b:J): N5, —sn = 0},

h<i

Th(b) = {5 €Tp(®) &g, _sn =0}, Ti—(b) =Tu(b)NT-(b).
We note that by (a) of Definition 1.3, the operator
D Ty(b) — T (b1 )

induced by D is surjective. By the regularity assumptions (a) and (b-i) of Definition
1.4, the differential

vT‘)‘s;h 1Sy = 77:;}, U 1ﬂ:;h;—(b) - V;h ® Vs:n
~(0)
beld ; (X;J)
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of ay, h is surjective. We denote by @J- be the L2—orthogonal complement of
ker Vo Og.p in By If wy € P%h’ﬂb and w e PT|p, let

Tps(b:wp) = {& € T (b) : (wp. £) € &)
T_(b;w)={eT_(b): (w,&) € &7}
‘We note that

(6-37) Foiw)= @Tr-0iwp)  if w=whher:

-1
heT;_,

Ifv=(b,v)e FT and s and h are as above, let
0 ) ={heTy1:pm() =0} and 3h =gl (z}).

We note that Ef’, s 18 @ union of components of Xy, .

The multistep gluing construction of Section 6.1 extends continuously over FT - This
extension is formally described in exactly the same way as the construction itself; see
[16, Section 3.9] for a description of the continuous extension for a similar gluing
construction and [16, Section 4.1] for a proof of its continuity. Using the notation of
Section 6.1, we now make an observation regarding this extension. For each s € [{7)]
and h e I7_

1,
:o},

= 0}.

forall h € Z} | the operators

Fh(U(s)) = {g € FB(U(S)) Iélzu(s)_zg(s)

T iy ) = {ne Ty (vge): ) : LIS

with h e Z*

By the surjectivity of the operators D 1>

J,b>
D T ot .
J.bs(v)* h(U(s)) - h (U(s)s J)

induced by Dy p (v) are surjective, provided v is sufficiently small. Since ] JUy.s
vanishes on Ef’, ) for all /1 € Iso_l (v) and &y ¢ is the unique small solution of (6-12),
it follows that

(6-38) oslzy,

=0V hell (v).

We next ex extend the construction of perturbatlons EvsforveF T |M(s) (X:J in Section
6.2 to .7:75|u<s)(X ) Suppose s € [(7)] and for all ¢ € [(7)] such “that 7 > s and for

all elements v = (b v) in F ’2'5| we have constructed

pe) edP(X: ) and  fi(v) = (e(v).v) € FT g
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such that
(6-39) Dby (7 (v) = {ern®}(pn () Y heI,,
(6-40) pe() = prr1(e(b,€vr). v)

forsome &€ @D Th(b:[ps(v)) such that £, [V7 &y | < CB)[v|"/2.

0
heTr | —1°_, (v)

’

We note that Dhgl(ﬁt(v)) =0 forany h € I?_l (v) and ps(v) € 27;0)()(; J). Thus,
(6-39) is a nontrivial condition only for 7€ Z*  —Z° (v). In particular, if Z0_, (v) =
T7_,, for the inductive step in the construction of the previous subsection we simply
take &, s = 0. On the other hand, if I;)_l (v) #Z;_,, the inductive step is nearly the
same as the before. The only difference is that instead of working with the section

Oy = {as;h }‘heI;k_l

over Ps7", we work with the section {og;;} 7
-
the bundles

70 (v) OVer the fiber product of

1
<7 7 (s+1
{PghT}her_l—I?_l(u) — U7(—5 )(X; J).
We note that in this case the orthogonal complement of the kernel of
T
v {aS;h }hGZT—l _Z?—l ()

is given by (6-37) with Z7 | replaced by T, —ISO_I (v). In summary,

fvs€ P Th-(b:lpsn(v))
heT} | —1°_ (v)
is the unique small solution to the system of equations
s (9B Ev). wp) + e (9B, Evg) V) = g (bowy),  heIl | —I)  (v).
The final, s = 0, step splits into two cases as well. If p(v) = 0, then we take
Su0=0 and &0 =5§v,0(8v,0) =0.
Otherwise, the argument of the previous subsection still applies.

We will show that the above extension of the construction described in Section 6.2
is continuous at every step. First, note that by definition, for every s € [(7) — 1] and
h EIs*—l Nx=(7),

64D peh(V) = (s W), VU= (b WD)ez0p) € FT
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In this case, by the proof of Lemma 3.5,

(6-42) Dypbs(w) = Y vpDpher1()+ Y epi(v)ppsi(v)
ty=h iexp(7) —_—
Vu=(bv)eFT?,

where ¢j.;(v) € Ty, 5 X is given by the right-hand side of (3-15), with

k = 17 Cj’v = CU,Sa ﬁb = ﬁgs-i-l(v)’ ©b = ®J,v(s+l)’ qu,U = (I)J,U(s)s

and with §g replaced by a function § = §(b). Since 3~ A; (§(h)) C Ef’}m for all
i € xp(7), it follows that

i), V7 exs)] = CO(Gusslsp, Loy + 17 C0slsp, o)

U(s)

Vu=(bv)eFT?, heT: [ nx (T), i € xu(T).

Let &5, = &5.5(v) be the bundle map as in (6-27). Combining the last estimate with
(6-42), (6-41), and (6-25) with t = s + 1, we find that

(6-43) |eg:n(v)

v,p,1 + H VT§U95|E{1}(s) }

VT esin @) < CON[Svsl sy |

VYuv=(bv)e ﬁ?!w;ﬂ)()(;]), hel; .

v,p,l)

We note that if 7 € I} | — x™(7), (6-43) follows immediately from (6-25) with
t=s+1.

We next observe that by the proof of the estimate in (6) of Lemma 4.4,

(6-44) 7019 suy,0 = > (=270 Dyby (V) + &4 (V) + 5 (V)
he(x(DUx—(@NN1

for all v = (b,v) € FT SQ . The error term &j(v) is described by the left-hand side

of (4-22). This term and its V7 —derivative are bounded by the last expression in (4-25).

The other term is given by

~ a’wh)

bv
od, a(lonl2/66) W

5, (V) = vy (2m®,,51 () —

where gb;v: A;(l),h((S(b)) —> Tovpn) X, eXpevP(b)é_b;u = ﬁu,lv Hg—b;v“CO <rj;

see the proof of (6) of Lemma 4.4. Applying the approach of Lemma 3.3 and Cauchy’s
formula, we find that

~ ~ hx  dw
(6-45) En(v) = vy (Po,1 —id) Ty —

s

045, 1 (10nl2/5(6)) w;
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where @, 1 ‘w=0 =id,

6-46) @y —id oy p1 = CONdutvilag 66» |y, p = COVPW)],
(6-47) 90,1y, < CO)wal|r()],

by (2b) and the first estimate in (2c) of Corollary 3.8. By (6-45)—(6-47) and Holder’s
inequality

2
|8 (V)] SC(b)Ivhl\ﬁh(v)I/O |®y,1 (|val*/8(b), ) —id | db

2w plpl?/8(B)
=colmol [~ [ By, , drde
(6-48) o Jo

5 1) (p—1)/p
< C)|p)||Py,1 —id Hvl,p’l(/A_ (|v|1|1;?5|(b1)]) P )
,h\Vh

(1)

< CB)p)|Br )| - vl P27 < C(b) | p(v)|P~ P p(v).

Let g9 = g¢(v, {) be the bundle map as in (6-29). Combining the last estimate with
(6-42), (6-44), (6-25) with ¢t = 1, and (4) of Lemma 6.1 we find that

(6-49) |eo(v,0)], |VT g0 (v, 0)| < C(b)|p(v)| P~/ P
Yuv=(b,v)e ﬁ?’u}”(X;J)’ ¢ € T'(v) such that |||y, p,1 < 6(b)|,o(v)|.

The same holds for the derivatives of €o(v, ¢) and V7 gy (v, &) with respect to £.
Suppose s € [(7)] and for every ¢ € [(7)] such that ¢ > s the bundle map
ﬁ—ﬁﬁf—(')’ U—)S‘U,t,

and its V7 —derivative are continuous over L{g)(X ; J). We will show that this must
also be the case for + = 5. Since the maps

FTs—> U ;4 (V). U —> Cu.ss
Ueﬁ-lg

and .7-"7'5 —>j-:7/'5, U —> s4+1(V),

|u§f+”(X;J)
are continuous, so are the maps

f75|u§f+1>(X;J) — Ve ® Vsuhs v —> g5 (V),
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forall 7 € Z7 . Suppose v, = (by,v,) is a sequence of elements in ﬁ?‘u?(X;J)
such that

. _ )/ v. . o — (B o o
rgnoob,—b ceU (X J) and rgnoovr—v_(b,v)ef’fg.
Let
wp= lim [pon@)] €PET], Thely i w=pherr | €BT|,:
Eurs = (SL/,s;h)heI;'Ll = rgnoo Ev,s €T-(03w) = @ T (b3 wp).

heT™

s—1

We recall that

Ev.s = Gusmners, € T—(br:[psr)])) = P The (b [psn(vr)))

hel*

s—1

is the unique small solution to the system of equations

Us:h (@(bs Euy,5) [/Os;h (Ur)]) + €s:h (@(b» Eup,s) Ur) = Us;h (b, [/Os;h (Ur)])v he I;—l-

Thus, &, € r_("; w) is the unique small solution to the system of equations

an (0, &y ) wh) + e (0B, £y ), V) = @i (bowr),  heIy ).

Since esn(e(b. € ). V) =0  VYheI) (V)

by (6-43) and (6-38), é{},’s;h =0 forall s € IS_I (v’) and SL/’S = &y s, as needed.
We finally show that the map

(6-50) v —> bo(V) = (Bv: €XPpy (o (.0 0)) S0.0)

is continuous over F '2:3@ . First, the map

U e [Ellvpa <s)y— [ TS B:0), 0. — (.90,

ve FT 5.0(v)#£0 bells? (X ;J)
of (6-23) is continuous. Since so is the map v —> &, 1, the map

U {£eT+ @) 1Ellvpt < CONp@I} — v5 @ Vo, (v,5) —> £0(v. ),
Ueﬁ-g,p(v);éo

is also continuous. It then follows immediately from the construction that the maps

(.5) —&v0(f)  and  v—{yp
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are continuous over F 175 — p~1(0). On the other hand, suppose v, = (b, v,) is a
sequence of elements in F 1’]:;3 such that

. / ©) /v . . o =1 ’

lim b, =b"e€l;"(X:J), lim v,=v'=0,v)eF 75 and p(v')=0.
r—00 r—00
Let

w=lim [p(v,)] € PFT

poooand &= lim &y 0,0 € T w).
Since p(vy) —> 0, (6-49) implies that £, , | € r_ (b'; w) is the unique small solution of

ao(p(®'. &, ). w) =0=ao(b, w).
Thus, &/, , = 0 =&,/ ¢. Furthermore, by (6-22)

v’/,0

rgnoo gvr,O =0= év/,O-

It follows that the map (6-50) is continuous.
We have thus constructed a continuous map
¢: F'Ts — M) 3 (X, A; )N U7,

where U7 is a neighborhood of U7, (X; J) in X1 pr(X, A). By the same argument
as in Sections 4.2 and 4.5 of [17], this map is injective if § € C(U7(X; J);R™) and
surjective if U7 is sufficiently small. Since the space 972‘1)’ (X, A5 J) is Hausdorff and
@l (x:7) 1s the identity map, it follows that ¢ is a homeomorphism for § sufficiently
small.
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