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Rigidity and uniruling for Lagrangian submanifolds

PAUL BIRAN

OCTAV CORNEA

This paper explores the topology of monotone Lagrangian submanifolds L inside
a symplectic manifold M by exploiting the relationships between the quantum
homology of M and various quantum structures associated to the Lagrangian L .

53D12; 53D05

1 Introduction

The purpose of this paper is to explore the topology of monotone Lagrangian sub-
manifolds L inside a symplectic manifold M by exploiting the relationships between
the quantum homology of M and various quantum structures associated to the La-
grangian L. We show that the class of monotone Lagrangians satisfies a number of
structural rigidity properties which are particularly strong when the ambient symplectic
manifold contains enough genus-zero pseudo-holomorphic curves. Indeed, we will
see that (very often) if M is “highly” uniruled by curves of area A, then .M;L/ (or
just L) is uniruled by curves of area strictly smaller than A (see Section 1.1.2 for the
definition of the appropriate notions of uniruling).

1.1 Setting

All our symplectic manifolds will be implicitly assumed to be connected and tame
(see Audin, Lalonde and Polterovich [3]). The main examples of such manifolds are
closed symplectic manifolds, manifolds which are symplectically convex at infinity
as well as products of such. All the Lagrangian submanifolds will be assumed to be
connected and closed (ie compact, without boundary).

We start by emphasizing that our results apply to monotone Lagrangians. These are
characterized by the fact that the morphisms

!W �2.M;L/!R; �W �2.M;L/! Z;
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the first given by integration and the second by the Maslov index, are proportional with
a positive proportionality constant !D �� with �> 0. Moreover, we will include here
in the definition of the monotonicity the assumption that the minimal Maslov index

NL Dminf�.˛/ j ˛ 2 �2.M;L/; �.˛/ > 0g

of a homotopy class of strictly positive Maslov index is at least two, NL � 2. If L is
monotone, then M is also monotone and NL divides 2CM where CM is the minimal
Chern number of M

CM Dminfc1.˛/j˛ 2 �2.M /; c1.˛/ > 0g :

1.1.1 Size of Lagrangians Fix a Lagrangian submanifold L�M .

We say that a symplectic embedding of the closed, standard symplectic ball of radius r ,
eW .B2n.r/; !std/! .M; !/, is relative to L if

e�1.L/D B2n.r/\Rn :

These types of embeddings were first introduced and used by Barraud and Cornea
[4; 5].

Consider now a vector vp;q D .r1; : : : ; rpI �1; : : : ; �q/ 2 .RC/pCq . We will not allow
for both p and q to vanish. If just one does, say p D 0, we will use the notation
v0;q D .∅I �1; : : : ; �q/.

Definition 1.1.1 The mixed symplectic packing number, w.M;L W vp;q/, of type
vp;q D .r1; : : : ; rpI �1; : : : ; �q/ of .M;L/ is defined by

w.M;L W vp;q/D sup
�>0

� pX
iD1

�.� ri/
2
C

1

2

qX
jD1

�.��j /
2

�
where the supremum is taken over all � such that there are mutually disjoint symplectic
embeddings

fi W .B
2n.� ri/; !0/! .M nL/; 1� i � p; ej W .B

2n.��j /; !0/!M; 1� j � q

so that the ej ’s are embeddings relative to L.

The most widespread examples of such vectors vp;q have all their components equal
to 1. We also notice that w.M / WDw.M;∅ W .1I∅// is the well-known Gromov width
of M : the supremum of �r2 over all symplectic embeddings of B2n.r/ into M . A
similar notion has been introduced by Barraud and Cornea [4] (see also Cornea and
Lalonde [25]) to “measure” Lagrangians: the width of a Lagrangian, w.L/, is the

Geometry & Topology, Volume 13 (2009)



Rigidity and uniruling for Lagrangian submanifolds 2883

supremum of �r2 over all symplectic embeddings of B2n.r/ which are relative to L.
With our conventions, w.L/D 2w.M;L W .∅I 1//. Moreover, w.M nL/, the Gromov
width of the complement of L, is given by w.M;L W .1I∅//.

1.1.2 Uniruling The main technique used to prove width and packing estimates is
based on establishing uniruling results.

Definition 1.1.2 We say that .M;L/ is uniruled of type .p; q/ and order k (or shorter,
.M;L/ is .p; q/–uniruled of order k ) if for any p distinct points Pi 2M nL; 1� i�p ,
and any q distinct points, Qj 2 L; 1 � j � q , there exists a Baire second category
(generic) family of almost complex structures J with the property that for each
J 2J there exists a nonconstant J –holomorphic disk uW .D2; @D2/! .M;L/ so that
Pi 2 u.Int.D2// for all i , Qj 2 u.@D2/ for all j , and �.u/� k . In case L is void,
we take qD 0, and instead of a disk, u is required to be a nonconstant J –holomorphic
sphere so that Pi 2 u.S2/, for all i .

If .M;∅/ is .p; 0/–uniruled we will say that M is uniruled of type p . Thus the usual
notion of uniruling for a symplectic manifold – M is uniruled if through each point
of M passes a J –sphere in some fixed homotopy class in �2.M / – is equivalent in our
terminology with M being 1–uniruled. Similarly, in case .M;L/ is .0; q/–uniruled
we will say that L is q–uniruled. Additionally, if q D 1 we say that L is uniruled.

The relation with packing is given by the following fact:

Lemma 1.1.3 If the pair .M;L/ is .p; q/–uniruled of order k , then for any vector
vp;q D .r1; : : : rpI �1; : : : �q/ the mixed symplectic packing number w.M;L W vp;q/

satisfies
w.M;L W vp;q/� �k

where � is the monotonicity constant, �D !=�.

The proof of this is standard and is a small modification of an argument of Gromov [35].
It comes down to the following simple remark which also explains the 1=2 factor in
the definition of w.M;L W vp;q/. If a J –curve u with boundary on a Lagrangian goes
through the center of a standard symplectic ball or radius r embedded in M relative
to L so that J coincides with the standard almost complex structure inside the ball,
then we have �r2=2�

R
u�! . This is in contrast to the case when u has no boundary,

when the inequality is, as is well-known, �r2 �
R

u�! .

The simplest way to detect algebraically that M is p–uniruled is to find some class
˛ 2 �2.M / and r � 1 so that, for distinct points P1; : : : ;Pp , and a generic J , the
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evaluation at r distinct points on the J –spheres of class ˛ which pass through the
fixed points Pi ; 1� i � p , has a homologically nontrivial image in the product M�r .
This can be translated in terms of Gromov–Witten invariants: if there exist ˛ 2 �2.M /

and classes ai 2H�.M IZ2/; 1� i � r , so that

(1) GW.pt; : : : ; pt; a1; : : : ; ar I˛/ 6D 0

where the class of the point, pt 2 H0.M IZ2/, appears p times, then M is clearly
p–uniruled (we recall that the Gromov–Witten invariant GW.b1; : : : bsI˛/ counts –
in this paper with Z2 coefficients – the number of J –spheres in the homotopy class
˛ 2 �2.M / which each pass through generic cycles representing the homology classes
bi 2H�.M IZ2/).

Remark 1.1.4 In case pD 1 the condition in (1) gives the notion of “strong uniruled”
which appears in McDuff [39] (with the additional constraint that the degree of the
homology classes ai are even).

If we fix p � 2 and add the requirement that r D 1, then, by the splitting property of
Gromov–Witten invariants, the uniruling condition implies GW.pt; pt; aI˛0/ 6D 0 for
some choices of a2H�.M IZ2/ and ˛0 2�2.M /. Of course, this can be reinterpreted
in quantum homology as the relation Œpt��aD ŒM �e˛

0

C� � � where Œpt� 2H0.M IZ2/

represents the point, ŒM � 2 H2n.M;Z2/ is the fundamental class, and the Novikov
ring used is Z2Œ�2.M /�.

A stronger condition will play a key role in the following. Consider the quantum
homology of M with coefficients in � D Z2Œs

�1; s� with deg.s/ D �2CM (where
CM is the minimal Chern number). This is QH�.M /DH�.M IZ2/˝� .

Definition 1.1.5 With the notation above we say that M is point invertible if Œpt�
is invertible in QH.M /. This implies that there exists 0 ¤ a0 2 H�.M IZ2/, a1 2

H�.M IZ2/˝Z2Œs�, and k 2 N so that, if we put aD a0C a1s , then in QH�.M /

we have
Œpt�� aD ŒM �sk=2CM :

The natural number k above is uniquely defined and we specify it by saying that M is
point invertible of order k .

Of course, as indicated above, a point invertible manifold is 2–uniruled. The class of
point invertible manifolds includes, for example, CPn and the quadric Q2n �CPnC1 .
Moreover, in view of the product formula for Gromov–Witten invariants, this class is
closed with respect to products.
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In general, no such direct algebraic criteria can be found to test the existence of mixed
uniruling of the pair .M;L/ or even whether L itself is uniruled because relative
Gromov–Witten invariants are not well-defined in full generality.

1.2 Main results

Recall that by the work of Oh [42] if L � M is a monotone Lagrangian, which
we will assume from now on, then the Floer homology HF.L/ WD HF.L;L/ with
Z2 –coefficients is well-defined (the construction will be briefly recalled later in the
paper). Floer homology is easily seen to be isomorphic (in general not canonically)
to a quotient of a sub–vector space of H.LIZ2/˝ƒ. Here H.LIZ2/ is singular
homology and ƒDZ2Œt

�1; t � where the degree of t is jt j D �NL (see Section 3.2 (g)
for the precise definition). Thus, there are two extremal cases:

Definition 1.2.1 If HF.L/D0 we say that L is narrow; if there exists an isomorphism
HF.L/ŠH.LIZ2/˝ƒ, then we call L wide. Note that the latter isomorphism is
not required to be canonical in any sense.

Remarkably, all known monotone Lagrangians are either narrow or wide. We will
see that the dichotomy narrow–wide plays a key role in structuring the properties of
monotone Lagrangians. In particular, narrow Lagrangians tend to be small in the sense
that their width is bounded and non-narrow ones tend to be barriers in the sense of
Biran [7]: the width of their complement tends to be smaller than that of the ambient
manifold. Wide Lagrangians are even more rigid.

1.2.1 Geometric rigidity We start with one result concerning narrow Lagrangians
which also shows that the “narrow–wide” dichotomy holds in a variety of cases (related
results are due to Buhovsky [15]):

Theorem 1.2.2 Let Ln �M 2n be a monotone Lagrangian. Assume that its singu-
lar homology H�.LIZ2/ is generated as a ring (with the intersection product) by
H�n�l.LIZ2/.

(i) If NL > l , then L is either wide or narrow. Moreover, if NL > l C 1, then L is
wide.

(ii) In case L is narrow, then L is uniruled of order K with K D maxfl C 1;

nC 1�NLg if NL < l C 1, and K D l C 1 if NL D l C 1. Moreover, w.L/�
2K� where � is the monotonicity constant. In particular, the width of narrow
monotone Lagrangians L is “universally” bounded: w.L/ � 2.nC 1/�. In
case L is narrow and not a homology sphere the bound can be improved to
w.L/� 2n�.
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Note that the finiteness of w.L/ from point (ii) is not trivial since M is not assumed
to be compact nor of finite volume or width. Moreover, when L is not narrow, w.L/
might be infinite. For example, zero-sections in cotangent bundles (which are wide)
have infinite width. A class of Lagrangians for which Theorem 1.2.2 gives nontrivial
information is that of monotone Lagrangian tori. In this case H�.LIZ2/ is generated
by H�n�1.LIZ2/ hence we can take l D 1. As NL � 2> l we see that any monotone
Lagrangian torus is either narrow or wide. In case such a Lagrangian is narrow we
have w.L/� 4�.

To obtain any meaningful uniruling results for Lagrangians which are not narrow,
the same example of zero sections in cotangent bundles shows that some additional
conditions need to be imposed on the ambient manifold M .

Theorem 1.2.3 Let L be a monotone Lagrangian in a symplectic manifold M which
is point invertible of order k .

(i) If L is not narrow, then .M;L/ is uniruled of type .1; 0/ of order < k . In
particular,

w.M nL/� .k �NL/� :

(ii) If L is wide, then L is uniruled of order < k and we have

(2) w.L/C 2w.M nL/� 2k�:

We emphasize that the somewhat surprising part of the statement is that the uniruling
involving L is of order strictly lower than k whenever M is point invertible of order
precisely k (in particular, it might happen that M itself is uniruled of order precisely k ).

Remark 1.2.4 (a) There are a few additional immediate inequalities that are worth
mentioning: as M is uniruled we have w.M / � k� and so w.L/ � k�. Moreover,
as M is 2–uniruled, we have w.M;∅I .r1; r2I∅//� k�. Obviously, we always have
w.M;∅I .r1; r2I∅//� w.M;LI .r1I r2//.

(b) These general inequalities do not imply the inequality (2). Indeed, in contrast to
w.M;LI .r1I r2//, the two balls involved in estimating separately the width of L and
that of its complement are not required to be disjoint !

(c) A nontrivial consequence of point (i) of the Theorem is that if M is point invertible
of order k and L is non-narrow, then NL � k=2.

(d) Assuming the setting of the point (ii) of the Theorem we deduce from the fact that
L is uniruled of order < k , that w.L/� 2.k �NL/�. However, this inequality lacks
interest because 2.k �NL/� k (since k � 2NL ).
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1.2.2 Corollaries for Lagrangians in CPn We endow CPn with the standard
Kähler symplectic structure !FS normalized so that

R
CP1 !FS D 1. With this nor-

malization we have CPn nCPn�1 � Int B2n.1=
p
�/ hence w.CPn/D 1. Note also

that for every monotone Lagrangian L�CPn we have �D 1=.2nC 2/ and that CPn

is point invertible of order k D 2nC 2.

Corollary 1.2.5 Let L be a monotone Lagrangian in CPn .

(i) At least one of the following inequalities is satisfied:

(a) w.L/� n=.nC 1/.
(b) w.CPnnL/� n=.nC 1/: Moreover, if L is not narrow then possibility (b)

holds and in fact we have

w.CPn
nL/�

�
2n
NL

�
NL

2.nC 1/
:

(ii) If L is wide, then we have

w.L/C 2w.CPn
nL/� 2 :

In case L is not narrow, the inequality w.CPnnL/� n=.nC 1/ follows directly from
Theorem 1.2.3. If L is narrow, as L cannot be a homology sphere (see eg Biran and
Cieliebak [9]) we can take l D n�1 in Theorem 1.2.2 which then implies the inequality
at (i) (a) above. Point (ii) of the Corollary follows from point (ii) of Theorem 1.2.3.

Corollary 1.2.5 implies in particular that for any monotone Lagrangian in CPn we
have

(3) w.L/Cw.CPn
nL/� 1C

n

nC 1
D 2�

1

nC 1

or, in other words, any monotone Lagrangian in CPn is either a barrier (in the sense
of [7]) or its width is strictly smaller than that of the ambient manifold. For example,
RPn �CPn satisfies w.RPn/D 1 and w.CPnnRPn/D 1=2; for the Clifford torus

Tn
clif D fŒz0 W � � � W zn� 2CPn

j jz0j D � � � jznjg

we have w.Tn
clif/� 2=.nC 1/ (an explicit construction due to Buhovsky [16] shows

that we actually have an equality here) and w.CPnnTn
clif/ D n=.nC 1/ so that for

nD 2 both (a) and (b) are sharp. Both RPn and Tn
clif show that the inequality at (ii)

is sharp. We do not know if the inequality (3) is sharp.
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1.2.3 Spectral rigidity To summarize the results above, monotone non-narrow La-
grangians (at least) in appropriately uniruled symplectic manifolds are geometrically
rigid. Of course, by standard Floer intersection theory, monotone Lagrangians which
are not narrow, are also rigid in the sense that such a Lagrangian cannot be disjoined
from itself by Hamiltonian deformation. We now present a different type of rigidity.

Let eHam.M / be the universal cover of the Hamiltonian diffeomorphism group of a
symplectic manifold M . Recall that, by work of Oh [47] and Schwarz [49] we can
associate to any � 2 eHam.M / and any singular homology class ˛ 2H�.M IZ2/ a
spectral invariant, �.˛; �/ 2R : See Section 5.3 for the definition.

Here are two natural notions measuring the variation of an element � 2 eHam.M / on
a Lagrangian submanifold L�M .

Definition 1.2.6 The depth and, respectively, the height of � on L are

depthL.�/D sup
ŒH �D�

inf

2�.L/

Z
S1

H.
 .t/; t/ dt

heightL.�/D inf
ŒH �D�

sup

2�.L/

Z
S1

H.
 .t/; t/ dt ;

where �.L/ stands for the space of smooth loops 
 W S1!L, H W M �S1!R is a
normalized Hamiltonian, and the equality ŒH �D � means that the path of Hamiltonian
diffeomorphisms induced by H , �H

t , is in the (fixed ends) homotopy class � .

Theorem 1.2.7 Let L�M be a monotone non-narrow Lagrangian. Then for every
� 2 eHam.M /:

(i) We have �.ŒM �; �/� depthL.�/.

(ii) If M is point invertible of order k , then

�.Œpt�; �/� depthL.�/� k� :

We will actually prove a more general statement than the one contained in Theorem
1.2.7, however, even this already has a nontrivial consequence.

Corollary 1.2.8 Any two non-narrow monotone Lagrangians in CPn intersect.

Here is a quick proof of this Corollary. First, the theory of spectral invariants shows
that for any manifold M so that QH2n.M / D Z2ŒM � and any � 2 eHam.M / we
have �.Œpt�; ��1/D��.ŒM �; �/. This is the case for M DCPn and thus, as for CPn

we have k D 2nC 2, � D 1=.2nC 2/, by Theorem 1.2.7 (ii) we deduce for any � :
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�.ŒCPn�; �/D��.Œpt�; ��1/� �depthL.�
�1/C 1D heightL.�/C 1. Therefore, we

have the inequalities

(4) depthL.�/� �.ŒCPn�; �/� heightL.�/C 1 :

Assume now that L0 and L1 are two non-narrow Lagrangians in CPn and L0\L1D

∅. In this case, for any two constants C0;C12R we may find a normalized Hamiltonian
H which is constant equal to C0 on L0 and is constant and equal to C1 on L1 . We
pick C1 > C0C 1. Applying the first inequality in (4) to L1 and the second to L0 we
get

C1 � depthL1
.�/� �.ŒCPn�; �H /� heightL0

.�/C 1� C0C 1

which leads to a contradiction.

A more general intersection result based on a somewhat different argument is stated
later in the paper, in Section 2.4.

Remark 1.2.9 (a) We expect that, at least under possibly stronger assumptions, the
Z2 –Floer homology of the two Lagrangians involved (when defined) is not zero. We
have a different, more algebraic approach [11] to the result in Corollary 1.2.8 which
should be helpful in settling this issue. However, this approach goes beyond the scope
of this paper and so it will not be further discussed here (see also Remark 2.4.2).

(b) The argument for the proof given above to Corollary 1.2.8 has been first used by Al-
bers in [2] in order to detect Lagrangian intersections and by Entov and Polterovich [30];
Entov and Polterovich first noticed that this Corollary follows from an early version
of our theorem in [12] combined with the results in [30]. Using the terminology
of [30], Theorem 1.2.7 implies that a monotone non-narrow Lagrangian is heavy.
This is because ŒM � is an idempotent which satisfies �.ŒM �; �/ � depthL.�/ for
all � . Assume now, additionally, that M is point invertible of order k and moreover
that for any � 2 eHam.M /, �.Œpt�; ��1/ D ��.ŒM �; �/. In this case, we deduce
�.ŒM �; �/ D ��.Œpt�; ��1/ � �depthL.�

�1/C k� D heightL.�/C k� so that L is
even super-heavy.

1.2.4 Existence of narrow Lagrangians Clearly, a displaceable Lagrangian is nar-
row. For general symplectic manifolds this is the only criterion for the vanishing of
Floer homology that we are aware of. Unfortunately, except in very particular cases,
this is not very efficient as, for a given Lagrangian it is very hard to test the existence
of disjoining Hamiltonian diffeomorphisms. Because of this, till now there are very
few examples of monotone, narrow Lagrangians inside closed symplectic manifolds.
One very simple example is a contractible circle embedded in a surface of genus � 1.
However, even in CPn it is nontrivial to detect such examples. Corollary 1.2.8 yields
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as a byproduct many examples of such narrow monotone Lagrangians: if one monotone
Lagrangian which is not narrow is known, it suffices to produce another monotone
Lagrangian which is disjoint from it.

Example 1.2.10 There are narrow monotone Lagrangians in CPn , n� 2.

Such Lagrangians are obtained using the Lagrangian circle bundle construction from
Biran [8]. Namely, we take any monotone Lagrangian L0 � Q2n�2 in the quadric
hypersurface (eg a Lagrangian sphere) and then push it up to the normal circle bundle of
the complex quadric hypersurface Q2n�2 �CPn of appropriate radius such as to get a
monotone Lagrangian L�CPn which is an S1 –bundle over L0 . As we will see, this
produces a Lagrangian that does not intersect RPn , which in turn is wide. A detailed
construction of narrow Lagrangians in CPn along these lines is given in Section 6.4.

1.2.5 Methods of proof and homological calculations All our results are based on
exploiting the following machinery. It is well-known that counting pseudo-holomorphic
disks with Lagrangian boundary conditions (and appropriate incidence conditions)
does not lead, in general, to Gromov–Witten type invariants as these counts strongly
depend on the choices of auxiliary data involved (almost complex structures, cycles etc).
However, the moduli spaces of pseudo-holomorphic disks are sufficiently well structured
so that these counts appropriately understood can be used to define a chain complex –
which we call the pearl complex (this construction was initially proposed by Oh [44]
following an idea of Fukaya and is a particular case of the more recent cluster complex
of Cornea and Lalonde [24] called there linear clusters). The resulting homology
QH.L/ is an invariant which we call the quantum homology of L. The key bridge
between the properties of the ambient manifold and those of the Lagrangian is provided
by the fact that QH.L/ has the structure of an augmented two-sided algebra over the
quantum homology of the ambient manifold, QH.M /, and, with adequate coefficients,
is endowed with duality. At the same time, again with appropriate coefficients, QH.L/
is isomorphic to the Floer homology HF.L;L/ of the Lagrangian L with itself.
Moreover, many of the additional algebraic structures also have natural correspondents
in Floer theory. However, the models based on actual pseudo-holomorphic disks
rather than on Floer trajectories are much more efficient from the point of view of
applications: they provide a passage from geometry to algebra which is sufficiently
explicit so that, together with sometimes delicate algebraic arguments, they lead to the
structural theorems listed before. Actually, in this paper we will not make any essential
use of the fact that the Lagrangian quantum homology can be identified with the Floer
homology.

The deeper reason why the models based on pseudo-holomorphic disks are so efficient
has to do with the fact that they carry an intrinsic “positivity” which is algebraically
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useful and is inherited from the positivity of area (and Maslov index, in our monotone
case) of J –holomorphic curves. These methods also allow us to compute explicitly the
various structures involved in several interesting cases. In particular, for the Clifford
torus in Tclif �CPn , for Lagrangians, L�CPn with 2H1.LIZ/D 0, and for simply
connected Lagrangians in the quadric Q. The results of these calculations will be stated
in three Theorems in Section 2.3 once the algebraic structures involved are introduced.
However, these calculations imply a number of homological rigidity results as well as
some uniruling consequences which can be stated without further preparation and so
we review these just below.

The first such corollary deals with Lagrangian submanifolds L � CPn for which
every a 2H1.LIZ/ satisfies 2aD 0 (in short: “2H1.LIZ/D 0”). It extends some
earlier results obtained by other methods in Seidel [51] and Biran [8]. Before stating
the result let us recall the familiar example of RPn � CPn , n � 2, which satisfies
2H1.RPnIZ/D 0.

Corollary 1.2.11 Let L�CPn be a Lagrangian submanifold with 2H1.LIZ/D 0.
Then L is monotone with NL D nC 1 and the following holds:

(i) There exists a map �W L!RPn which induces an isomorphism of rings on Z2 –
homology: ��W H�.LIZ2/

Š
!H�.RPnIZ2/, the ring structures being defined

by the intersection product. In particular we have Hi.LIZ2/ D Z2 for every
0� i � n, and H�.LIZ2/ is generated as a ring by Hn�1.LIZ2/.

(ii) L is wide. Therefore, as NL D nC 1 and in view of point (i) just stated, we
have HFi.L;L/Š Z2 for every i 2 Z.

(iii) Denote by hD ŒCPn�1� 2H2n�2.CPnIZ2/ the generator. Then h\L ŒL� is the
generator of Hn�2.LIZ2/. Here \L stands for the intersection product between
elements of H�.CPnIZ2/ and H�.LIZ2/.

(iv) Denote by inc�W Hi.LIZ2/! Hi.CPnIZ2/ the homomorphism induced by
the inclusion L� CPn . Then inc� is an isomorphism for every 0 � i D even
� n.

(v) .CPn;L/ is .1; 0/–uniruled of order nC 1.

(vi) L is 2–uniruled of order nC 1. Moreover, given two distinct points x;y 2L,
for generic J there is an even but nonvanishing number of disks of Maslov index
nC 1 each of whose boundary passes through x and y .

(vii) For nD 2, .CP2;L/ is .1; 2/–uniruled of order 6.

Other than LDRPn we are not aware of any other Lagrangian L�CPn satisfying
2H1.LIZ/D 0. In view of Corollary 1.2.11 it is tempting to conjecture that the only
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Lagrangians L�CPn with 2H1.LIZ/D 0 are homeomorphic (or diffeomorphic) to
RPn , or more daringly symplectically isotopic to the standard embedding of RPn ,!

CPn . Note however that in CP3 there exists a Lagrangian submanifold L, not
diffeomorphic to RP3 , with Hi.LIZ2/ D Z2 for every i . This Lagrangian is a
quotient of RP3 by the dihedral group D3 . It has H1.LIZ/Š Z4 . This example is
due to Chiang [20].

Our second corollary is concerned with the Clifford torus,

Tn
clif D fŒz0 W � � � W zn� 2CPn

j jz0j D � � � D jznjg �CPn :

This torus is monotone and has minimal Maslov number NTn
clif
D2. As before, we endow

CPn with the standard symplectic structure !FS normalized so that
R

CP1!FSD 1.

Corollary 1.2.12 The Clifford torus Tn
clif � CPn is wide, .CPn;Tn

clif/ is .1; 0/–
uniruled of order 2n and Tn

clif is uniruled of order 2. For n D 2, .CP2;T2
clif/ is

.1; 1/–uniruled of order 4. In particular, w.CP2;T2
clif W .r; �//� 2=3.

Finally, we also indicate a result concerning Lagrangians in the smooth complex quadric
hypersurface Q2n�CPnC1 endowed with the symplectic structure induced from CPn .
The next corollary is concerned with Lagrangians L�Q2n with H1.LIZ/D 0. We
recall the familiar example of a Lagrangian sphere in Q2n which can be realized for
example as a real quadric.

Corollary 1.2.13 Let L�Q2n , n�2, be a Lagrangian submanifold with H1.LIZ/D
0. Then L is wide and .Q;L/ is .1; 1/–uniruled of order 2n. In particular, w.Q;L W
.r; �//� 1. If we assume in addition that nD dimC Q is even, then we also have:

(i) H�.LIZ2/ŠH�.S
nIZ2/.

(ii) L is 3–uniruled of order 2n (an so w.Q;L W .∅I �1; �2; �3//� 1).

1.3 Structure of the paper

The main results of the paper are stated in the introduction and in Section 2. Namely,
in the second section, after some algebraic preliminaries we review in Section 2.2 the
structure of Lagrangian quantum homology. This structure is needed to state in Section
2.3 three theorems containing explicit computations. Each one of the three corollaries
already described in Section 1.2.5 is a consequence of one of these theorems. Section 2
concludes – in Section 2.4 – with the statement of a Lagrangian intersection result
which is a strengthening of Corollary 1.2.8.
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In Section 3 and Section 4 we develop the tools necessary to prove the results stated in
the first two sections. More precisely, Section 3 contains the justification of the structure
of Lagrangian quantum homology. While we indicate the basic steps necessary to
establish this structure, certain technical details are omitted. These details are contained
in our preprint [12] and we have decided not to include them here because they are quite
tedious and long and relatively unsurprising for specialists. The fourth section contains
a number of auxiliary results which provide additional tools which are necessary to
prove the theorems of the paper.

The actual proofs of the results stated in Section 1 and Section 2 are contained in
Sections 5 and 6. Namely, the fifth section contains the proofs of the three main
structural Theorems stated in the introduction as well as that of the Lagrangian inter-
section result stated in Section 2.4 and the sixth section contains the proofs of the three
“computational” theorems stated in Section 2.3 and that of their corresponding three
Corollaries from Section 1.2.5. The construction of the example mentioned in Section
1.2.4 is also included here as well as a few other related examples.

Finally, in Section 7 we discuss some open problems derived from our work.
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2 Lagrangian quantum structures

In this section we introduce the algebraic structures and invariants essential for our
applications. We will then indicate the main ideas in the proof of the related statements
as well as a few technical aspects. Full details appear in [12].

2.1 Algebraic preliminaries

We fix here algebraic notation and conventions which will be used in the paper.

2.1.1 Graded modules and chain complexes Let R be a commutative graded ring,
ie R is a commutative ring with unity, R splits as RD

L
i2ZRi , for every i; j 2Z we

have Ri �Rj �RiCj and 12R0 . By a graded R–module we mean an R–module M

which is graded M D
L

i2Z Mi with each component Mi being an R0 –module and
moreover for every i; j 2 Z we have Ri �Mj �MiCj .

The chain complexes .C; d/ we will deal with will often be of the following type.
Their underlying space C D

L
i2Z Ci will be a graded R–module, and moreover the

differential d , when viewed as a map of the total space d W C! C , is R–linear. Since
it is not justified to call such complexes C “chain complexes over R” (as each Ci is
not an R–module) we have chosen to call them R–complexes. Note that .C; d/ is in
particular also a chain complex of R0 –modules in the usual sense. Note also that the
homology H.C; d/ is obviously a graded R–module.

Most of our chain complexes .C; d/ will be free R–complexes. By this we mean
that (the total space of) the R–complex C is a finite rank free module over R. In
other words C DG˝R where G is a graded finite dimensional Z2 –vector space and
the grading on C is induced from the grading of G and from the grading of R. The
differential d on C of course does not need to have the form d D dG ˝ 1. In fact
we can split d , in a unique way, as a (finite) sum of operators d D

P
l2Z ıl where

ıl W G�! G��1Cl ˝R�l . (Here G� is identified with G�˝ 1 � G�˝R0 and the
operators ıl are extended to C by linearity over R). In most of the complexes below
the operators ıl will actually be given as ıl D

P
j @l;j˝rl;j with @l;j W G�!G��1Cl

and rl;j 2R�l .

Finally, we say that the differential d of a free R–complex .C; d/ is positive if ıl D 0

for every l < 0. In that case we will call the operator ı0 the classical component of d .

2.1.2 Coefficient rings Denote by H D
2
.M;L/ � H2.M;LIZ/ the image of the

Hurewicz homomorphisms �2.M;L/�!H2.M;L/. Let H D
2
.M;L/C be the monoid

of all the elements u so that !.u/ � 0. Put ƒC D Z2ŒH
D
2
.M;L/C=�� with �
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the equivalence relation u � v if and only if �.u/ D �.v/ and similarly ƒ D

Z2ŒH
D
2
.M;L/=��. We grade these rings so that the degree of u equals ��.u/. In prac-

tice we will use the following natural identifications: ƒC Š Z2Œt �, ƒŠ Z2Œt
�1; t � in-

duced by H D
2
.M;L/3u! t�.u/=NL . The grading here is chosen so that deg tD�NL .

As mentioned in the introduction, the quantum homology of the ambient manifold
is naturally a module over the ring � D Z2Œs

�1; s� where the degree of s is �2CM .
There is an obvious embedding of rings � ,!ƒ which is defined by s! t .2CM /=NL .
The same embedding also identifies the ring �C DZ2Œs� with its image in ƒC . Using
this embedding we regard ƒ (respectively ƒC ) as a module over � (respectively,
over �C ) and we define the following obvious extensions of the quantum homology:

QH.M Iƒ/DH�.M IZ2/˝ƒDQH�.M /˝�ƒ; QH.M IƒC/DH�.M IZ2/˝ƒ
C:

We endow QH.M Iƒ/ and QH.M IƒC/ with the quantum intersection product �
(see McDuff and Salamon [40] for the definition). Notice that we work here with
quantum homology (not cohomology), hence the quantum product �W QHk.M Iƒ/˝

QHl.M Iƒ/!QHkCl�2n.M Iƒ/ has degree �2n. The unit is ŒM � 2QH2n.M Iƒ/,
thus of degree 2n.

While we will essentially stick with ƒ, ƒC in this paper, for certain applications
it can be useful to also use larger rings which distinguish explicitly the elements in
H D

2
.M;L/. This is done as follows. Let H S

2
.M;L/ �H2.M IZ/ be the image of

the Hurewicz homomorphism �2.M /! H2.M IZ/, and let H S
2
.M /C � H S

2
.M /

be the semigroup consisting of classes A with c1.A/ > 0. Similarly, denote by
H D

2
.M;L/C �H D

2
.M;L/ the semigroup of elements A with �.A/ > 0. Let z�C D

Z2ŒH
S
2
.M /C�[f1g be the unitary ring obtained by adjoining a unit to the nonunitary

group ring Z2ŒH
S
2
.M /C�. Similarly we put zƒC DZ2ŒH

D
2
.M;L/C�[f1g. We write

elements Q 2 z�C and P 2 zƒC as “polynomials” in the formal variables S and T :

Q.S/D a0C

X
c1.A/>0

aASA; P .T /D b0C

X
�.B/>0

bBT B; a0; aA; b0; bB 2Z2:

We endow these rings with the following grading:

deg SA
D�2c1.A/; deg T B

D��.B/:

Note that these rings are smaller than the rings y��0 D Z2ŒfA j c1.A/ � 0g� and
yƒ�0 D Z2ŒfB j �.B/� 0g�. For example, yƒ�0 and y��0 might have many nontrivial
elements in degree 0, whereas in z�C and zƒC the only such element is 1.

Let QH.M I z�C/DH.M IZ2/˝z�
C be the quantum homology of M with coefficients

in z�C endowed with the quantum product, which we still denote by � (note that now �

Geometry & Topology, Volume 13 (2009)



2896 Paul Biran and Octav Cornea

takes into account the actual classes of holomorphic spheres not only their Chern
numbers). We have a natural map H S

2
.M /C!H D

2
.M;L/C which induces on zƒC

a structure of a z�C–module. Put QH.M I zƒC/DQH.M I z�C/˝z�C
zƒC and endow it

with the quantum intersection product, still denoted �. Note that the quantum product
is well defined with this choice of coefficients, since by monotonicity Chern numbers of
pseudo-holomorphic spheres are nonnegative and the only possible pseudo-holomorphic
sphere with Chern number 0 is constant. We grade this ring with the obvious grading
coming from the two factors.

The most general rings of coefficients relevant for this paper are rings R that are graded
commutative zƒC–algebras. We will usually endow a graded commutative ring R with
the structure of zƒC–algebra by specifying a graded ring homomorphism qW zƒC!R.

Here are a few examples of such rings R which are useful in applications.

(1) Take RDƒD Z2Œt
�1; t �, and define q by q.T A/D t�.A/=NL .

(2) Take RDƒC D Z2Œt �, and define q as in (1).

(3) Take RD Z2ŒH
D
2
.M;L/� with the obvious zƒC–algebra structure. We denote

this ring by yƒ.

Given a graded commutative zƒC–algebra R we extend the coefficients of the quantum
homology of the ambient manifold by QH.M IR/D QH.M I zƒC/˝ zƒC R.

2.1.3 A useful filtration There is a natural decreasing filtration of ƒC and ƒ by
the degrees of t , ie

(5) FkƒD fP 2 Z2Œt; t
�1� j P .t/D ak tk

C akC1tkC1
C � � � g :

We will call this filtration the degree filtration. In a similar way we can define the
analogous filtrations on any graded zƒC–algebra R. This filtration induces an obvious
filtration on any free R–module.

2.2 Structure of Lagrangian quantum homology

Let f W L ! R be a Morse function on L and let � be a Riemannian metric on
L so that the pair .f; �/ is Morse–Smale. We grade the elements of Crit.f / by
jxj D indf .x/. Fix also a generic almost complex structure J compatible with ! . We
recall that as we work in the monotone case (which, with the conventions of this paper
includes NL � 2), the Floer homology HF�.LIR/D HF�.L;LIR/ is well defined
and invariant whenever R is a commutative Z2ŒH

D
2
.M;L/�–algebra (see Section

3.2 (g) for a rapid review of the construction).
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Theorem A Let R be a graded commutative zƒC–algebra (eg RD ƒ, ƒC , or yƒ).
For a generic choice of the triple .f; �;J / there exists a finite rank, free R–chain
complex

C.LIRIf; �;J /D .Z2hCrit.f /i˝R; dR/
with grading induced by Morse indices on the left factor and the grading of R on the
right. The differential dR of this complex is positive (see Section 2.1.1) and its classical
component coincides with the Morse-homology differential dMorse˝ 1 (see Section
2.1.1). Moreover, this complex has the following properties:

(i) The homology of this chain complex is a graded R–module and is independent
of the choices of .f; �;J /, up to canonical comparison isomorphisms. It will be
denoted by QH�.LIR/. There exists a canonical (degree preserving) augmenta-
tion �LW QH�.LIR/!R which is an R–module map. Moreover, for RDƒ
the augmentation �L is nontrivial whenever QH.LIƒ/¤ 0.

(ii) The homology QH.LIR/ has the structure of a two-sided algebra with a unity
over the quantum homology of M , QH.M IR/. More specifically, for every
i; j ; k 2 Z there exist R–bilinear maps

QHi.LIR/˝QHj .LIR/! QHiCj�n.LIR/; ˛˝ˇ 7! ˛ ıˇ;

QHk.M IR/˝QHj .LIR/! QHkCj�2n.LIR/; a˝˛ 7! a ~˛;

where n D dim L. The first map endows QH.LIR/ with the structure of a
ring with unity. This ring is in general not commutative. The second map
endows QH.LIR/ with the structure of a module over the quantum homology
ring QH.M IR/. Moreover, when viewing these two structures together, the
ring QH.LIR/ becomes a two-sided algebra over the ring QH.M IR/. (The
definition of a two-sided algebra is given below, after the statement of the
theorem.) The unity of QH.LIR/ has degree nD dim L and will be denoted
by ŒL�.

(iii) There exists a map

iLW QH�.LIR/! QH�.M IR/

which is a QH�.M IR/–module morphism and which is induced by a chain
map which is a deformation of the singular inclusion (viewed as a map between
Morse complexes). Moreover, this map is determined by the relation

(6) hPD.h/; iL.x/i D �L.h ~ x/

for x 2 QH.LIR/, h 2 H�.M /, with PD.�/ Poincaré duality and h�;�i
the R–linear extension of the Kronecker pairing (ie hPD.h/;

P
r zr T r i DP

r hPD.h/; zr iT
r ).
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(iv) The differential dR respects the degree filtration and all the structures above are
compatible with the resulting spectral sequences.

(v) The differential dR is in fact defined over zƒC in the sense that the relation
between C.LIRIf; �;J / and C.LIƒCIf; �;J / is that C.LIRIf; �;J / Š
C.LIƒCIf; �;J /˝ zƒCR and dR Š d

zƒC ˝ id. Moreover, any graded zƒC–
algebra homomorphism R!R0 (eg the inclusion ƒC!ƒ) induces in homol-
ogy a canonical morphism QH.LIR/! QH.LIR0/ :

(vi) If R is a commutative Z2ŒH
D
2
.M;L/�–algebra (eg RDƒ), then there exists

an isomorphism
QH�.LIR/! HF�.LIR/

which is canonical up to a shift in grading.

The existence of the morphism QH.LIR/! QH.LIR0/ at point (v) of the Theo-
rem is not a purely algebraic statement about extension of coefficients. Rather, it
means that the canonical extension of coefficients morphisms H�.C.LIRIf; �;J //!
H�.C.LIR0If; �;J // do not depend on .f; �;J / in the sense that they are compatible
with the canonical comparison isomorphisms relating the homologies associated to
any two triples .f0; �0;J0/ and .f1; �1;J1/. In view of point (v) we will denote from
now on the differential dR by d whenever the ring R is fixed and there is no risk of
confusion.

By a two-sided algebra A over a ring R we mean that A is a module over R, that A

is also a (possibly noncommutative) ring, and the two structures satisfy the following
compatibility conditions:

8 r 2R and a; b 2A we have r.ab/D .ra/b D a.rb/:

In other words, the first identity means that A, when considered as a left module
over R, is an algebra over R, and the second one means that A continues to be an
algebra over R when viewed as a right module over R, where the left and right module
operations are the same one.

Before going on any further we would like to point out that, the existence of a module
structure asserted by Theorem A has already some nontrivial consequences. For instance,
the fact that QH�.LIƒ/ is a module over QH�.M Iƒ/ implies that if a2QHk.M Iƒ/

is an invertible element of degree k , then the map a ~ .�/ gives rise to isomorphisms
QHi.LIƒ/! QHiCk�2n.LIƒ/ for every i 2 Z, or in other words, QH�.LIƒ/ is
.k � 2n/–periodic. In view of point (vi) of the theorem the same periodicity holds for
the Floer homology HF�.L/ too. Note that there is yet another obvious periodicity for
QH�.L/ that always holds (regardless of the module structure). Namely multiplying
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by t 2 ƒ always gives isomorphisms QH�.LIƒ/ Š QH��NL
.LIƒ/. This follows

immediately from the fact that QH.LIƒ/ is a graded ƒ–module and that t 2ƒ�NL

is invertible. The above two periodicities, when applied together, provide a powerful
tool in the computations of our invariants.

In most of the applications below we will take the ring of coefficients R to be either
ƒ or ƒC . Therefore we will sometimes drop the ring of coefficients from the notation
and use the following abbreviations:

C.LIf; �;J /D C.LIƒIf; �;J /; QH.L/D QH.LIƒ/ ;

CC.LIf; �;J /D C.LIƒCIf; �;J /; QCH.L/D QH.LIƒC/:

We will call the complex C.LIf; �;J / (respectively CC.LIf; �;J /) the (positive)
pearl complex associated to f; �;J and we will call the resulting homology the (posi-
tive) quantum homology of L. In the perspective of [24; 25] the complex C.LIf; �;J /
corresponds to the linear cluster complex.

Remark 2.2.1 (a) The complex C.LIf; �;J / was first suggested by Oh [44] (see
also Fukaya [32]) and, from a more recent perspective, it is a particular case of the
cluster complex as described by Cornea and Lalonde [24]. The module structure
over QCH.M / discussed at point (ii) is probably known by experts – at least in the
Floer homology setting – but has not been explicitly described yet in the literature.
The product at (ii) is a variant of the Donaldson product defined via holomorphic
triangles – it might not be widely known in this form. The map iL at point (iii) is
the analogue of a map first studied by Albers in [2] in the absence of bubbling. The
spectral sequence appearing at (iv) is a variant of the spectral sequence introduced
by Oh [43]. The compatibility of this spectral sequence with the product at point (ii)
has been first mentioned and used by Buhovsky [15] and independently by Fukaya,
Oh, Ohta and Ono [33]. The comparison map at (vi) is an extension of the Piunikin–
Salamon–Schwarz construction [48], it extends also the partial map constructed by
Albers in [1] and a more general such map was described independently in [24] in
the “cluster” context. We also remark that this comparison map (with coefficients
in ƒ) identifies all the algebraic structures described above with the corresponding
ones defined in terms of the Floer complex.

(b) The isomorphism QH.L/Š HF.L/ at point (vi) of Theorem A is an important
structural property of the Lagrangian quantum homology. However, we would like
to point out that this property of QH.L/ is in fact not used in any of the applications
presented in this paper. There is only one minor exception to this rule. Namely, our
definition of wide and narrow Lagrangians L goes via HF.L/. However we could
have defined these notions directly using QH.L/, and actually in the rest of the paper
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this will be the more relevant definition. The reason we have chosen to define wide
and narrow using Floer homology is two-fold. Firstly, Floer homology is already well
known in symplectic topology, and we wanted to base the notions of wide and narrow
on a familiar concept. Secondly, it is easier to produce examples of narrow Lagrangians
this way, simply by using the fact that if a Lagrangian L is Hamiltonianly displaceable
then HF.L/D 0.

We insist on separating between HF and QH because we do not view our Lagrangian
quantum homology as a Lagrangian intersections invariant. Moreover, the results in this
paper suggest that Lagrangian quantum homology has applications beyond Lagrangian
intersections and thus we believe that this homology should be developed and studied
in its own right.

2.3 Some computations

Here we present a few explicit computations of the various quantum structures men-
tioned in Theorem A performed on three examples: Lagrangians L � CPn with
2H1.LIZ/D 0 (eg LDRPn ), the Clifford torus T2

clif �CP2 and Lagrangians L in
the quadric with H1.LIZ/D 0 (eg spheres). The proofs of the three results listed here
are given in Section 6. More results in this direction can be found in [12].

We work here over the ring ƒ. We start with Lagrangians L � CPn that satisfy
2H1.LIZ/ D 0. Recall from Corollary 1.2.11 that QHi.L/ Š HFi.L/ Š Z2 for
every i 2 Z. Denote by ˛i 2 QHi.L/ the generator. Denote by h D ŒCPn�1� 2

H2n�2.CPnIZ2/ the class of a hyperplane. Recall also that in the quantum homology
QH.CPn/ we have

(7) h�j D

(
h\j ; 0� j � n;

ŒCPn�s; j D nC 1:

As we will see (and is stated in Corollary 1.2.11) NL D nC 1, thus the embedding
� ,! ƒ is given by s ! t2 . It follows that in QH.CPnIƒ/ the last relation of (7)
becomes h�.nC1/ D ŒCPn�t2 . Finally note that both h and Œpt� are invertible elements
in QH.CPn/.

Theorem 2.3.1 Let L�CPn be a Lagrangian with 2H1.LIZ2/D 0. Then:

(i) For every i; j 2 Z, ˛i ı j̨ D ˛iCj�n .

(ii) For every i 2 Z, h ~˛i D ˛i�2 .

Furthermore, denote by hj 2Hj .CPnIZ2/ the generator (so that h2n�2 D h, h2k D

h\.n�k/; 8 0� k � n, hodd D 0 etc.) then:
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(iii) For nD even we have:

iL.˛2k/D h2k ; 8 0� 2k � n;

iL.˛2kC1/D h2kCnC2t; 8 1� 2kC 1� n� 1:

(iv) For nD odd we have:

iL.˛2k/D h2k C h2kCnC1t; 8 0� 2k � n;

iL.˛2kC1/D 0; 8 k 2 Z:

The next result describes our computations for, mainly, the 2–dimensional Clifford
torus T2

clif �CP2 .

Theorem 2.3.2 The Clifford torus Tn
clif is wide for every n� 1. Let

w 2H2.T
2
clifIZ2/ ,! QH2.TclifIZ2/

be the fundamental class. There are generators a; b 2H1.T
2
clif;Z2/Š QH1.T

2
clif/, and

m 2QH0.T
2
clif/ which together with w generate QH.T2

clif/ as a ƒ–module and satisfy
the following relations:

(i) a ı b DmCwt , b ı aDm, a ı aD b ı b D wt , m ımDmt Cwt2 .

(ii) h ~ a D at , h ~ b D bt , h ~ w D wt , h ~ m D mt . Here h D ŒCP1� 2

H2.CP2IZ2/ is the class of a projective line.

(iii) iL.m/D Œpt�C ht C ŒCP2� t2 , iL.a/D iL.b/D iL.w/D 0.

We remark that, as the formulas in (i) indicate, the quantum product on QH.L/ is in
general noncommutative (even if we work over Z2 ).

Remark 2.3.3 (a) The fact that the Clifford torus is wide and point (i) of Theorem
2.3.2 have been obtained before by Cho in [21; 22] by a different approach. From the
perspective of [22] the Clifford torus is a special case of a torus which appears as a
fibre of the moment map defined on a toric variety. See also Cho [23] for related results
in this direction.

(b) Given that T2
clif is wide we have QH�.T2

clif/ŠH�.T2
clifIZ2/˝ƒ. Note however

that such an isomorphisms cannot be made canonical in all degrees (see also Section
6.2). Nevertheless there is a canonical embedding H2.T

2
clif/ ,! QH2.T

2
clif/ and the

isomorphism QH1.T
2
clif/ Š H1.T

2
clifIZ2/ is canonical. (See our papers [12; 13] for

more on this.)
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We now turn to the third example: Lagrangians in the quadric. Let L � Q2n be a
Lagrangian submanifold of the quadric (where dimR QD2n) that satisfies H1.LIZ/D
0. Such Lagrangians are monotone and the minimal Maslov number is NL D 2n.
Recall that by Corollary 1.2.13 L is wide hence QH�.L/Š .H.LIZ2/˝ƒ/� . As
deg t D �2n we have QH0.L/ Š H0.LIZ2/ and QHn.L/ Š Hn.LIZ2/. Denote
by ˛0 2 QH0.L/ and ˛n 2 QHn.L/ the respective generators. Finally, denote by
Œpt� 2H0.QIZ2/ the class of a point.

Theorem 2.3.4 Let L�Q be as above. Then:

(i) Œpt�~˛0 D�˛0t , Œpt�~˛n D�˛nt .

(ii) iL.˛0/D Œpt�� ŒQ� t , where ŒQ� 2H2n.QIZ2/ is the fundamental class.

(iii) If n is even then ˛0 ı˛0 D ˛nt .

Remark 2.3.5 The significance of the signs in the formulae above comes from the
fact that we expect our machinery to hold with coefficients in Z and, if so, these are
the signs that we obtain when taking into account orientations. As we shall see these
signs play a significant role in some applications – see Corollary� 7.0.2.

2.4 A criterion for Lagrangian intersections

We describe here a criterion for Lagrangian intersections which is somewhat more
general than Corollary 1.2.8 and which is stated in terms of the machinery described in
Theorem A.

Let L0;L1 �M be two monotone Lagrangian submanifolds. Let ƒ0 D Z2Œt
�1
0
; t0�,

ƒ1DZ2Œt
�1
1
; t1� be the associated rings, graded by deg t0D�NL0

and deg t1D�NL1
.

Recall from Section 2.1.2 that we also have the ring � D Z2Œs
�1; s�, deg s D�2CM ,

and that ƒ0 , ƒ1 are � –modules. Consider now the ring ƒ0;1 Dƒ0˝� ƒ1 with the
grading induced from both factors (it is easy to see that this grading is well defined).
Equivalently,

ƒ0;1 Š Z2Œt
�1
0 ; t�1

1 ; t0; t1�=ft
2CM =NL0
0 D t2CM =NL1

1 g:

Note that ƒ0;1 is a ƒ0 –algebra, a ƒ1 –algebra as well as � –algebra. Thus we have well
defined quantum homologies QH.L0Iƒ0;1/, QH.L1Iƒ0;1/ as well as QH.M Iƒ0;1/.

With the above notation we have two canonical maps. The first one is the quan-
tum inclusion iL0

W QH�.L0Iƒ0;1/ ! QH�.M Iƒ0;1/, mentioned at point (iii) of
Theorem A. The second map is jL1

W QH�.M Iƒ0;1/! QH��n.L1Iƒ0;1/, defined
by jL1

.a/D a ~ ŒL1�. Consider the composition

jL1
ı iL0
W QH�.L0Iƒ0;1/ �! QH��n.L1Iƒ0;1/:
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Theorem 2.4.1 If jL1
ı iL0

¤ 0, then L0\L1 ¤∅.

Remark 2.4.2 (a) We expect by [11] (also by [13]) that the condition jL1
ı iL0

¤ 0

implies the nonvanishing of the Floer homology HF.L0;L1/ (when defined and
possibly under some additional restrictions).

(b) The map jL1
has appeared before in a different setting in the work of Albers [2].

Here is a consequence of this theorem which provides a different proof of Corollary
1.2.8. To state it we fix some more notation. As discussed before, for any Lagrangian
submanifold the inclusion of the associated coefficient rings ƒC!ƒ induces a map
of pearl complexes (when defined) pW C.LIƒCIf; �;J /! C.LIƒIf; �;J / which
is canonical in homology. Denote by IQC.L/ the image of p�W QH.LIƒC/ !
QH.LIƒ/, the map induced in homology by p , and notice that IQC.L/ is a ƒC–
module so that it makes sense to say whether a class z 2 IQC.L/ is divisible by t in
IQC.L/: this means that there is some z0 2 IQC.L/ so that z D tz0 .

Corollary 2.4.3 Let L�M be a non-narrow monotone Lagrangian submanifold. Let
Œpt� 2 QH.M Iƒ/ be the class of the point. If the product Œpt�~ ŒL� is not divisible
by t2CM =NL in IQC.L/ then L must intersect any non-narrow monotone Lagrangian
in M .

Any non-narrow monotone Lagrangian L�CPn satisfies the condition in the statement
and so Corollary 2.4.3 implies Corollary 1.2.8. Indeed, put z D Œpt�~ ŒL� 2 IQC�n.L/.
Assume that z D t2CCPn=NLz0 for some z0 2 IQC.L/. We have 2CCPn D 2nC 2 and
jt2CCPn=NL j D �.2nC 2/. Therefore, jz0j D �nC 2nC 2 D nC 2. But for degree
reasons IQC

l
.L/ D 0 for every l > n and so z0 D 0. In particular z D 0. On the

other hand as Œpt� 2 QH.M Iƒ/ is invertible and ŒL� ¤ 0 we must have z ¤ 0. A
contradiction.

The proof of Corollary 2.4.3 is given in Section 5.4 after the proof of Theorem 2.4.1.

Remark 2.4.4 (a) By Theorem A, L is non-narrow if and only if ŒL�¤ 0 2QH.L/.
The reason is that ŒL� is the unity of QH.L/ when viewed as a ring. Moreover,
whenever M is point invertible and L is not narrow the product Œpt�~ ŒL� does not
vanish. Of course, the nondivisibility condition in the statement of Corollary 2.4.3 is
an additional strong restriction.

(b) The criterion in Corollary 2.4.3 does not apply to Lagrangians L in the quadric
which satisfy H1.LIZ/ D 0 so it does not lead to intersection results in this case.
However, later in the paper (in Corollary� 7.0.2) we will see that Theorem 2.4.1 can
also be applied to this setting but by working with integer coefficients, thus under the
assumption that our machinery continues to work when taking into account orientations.
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2.5 Simplification of notation

As mentioned before, whenever we use the rings ƒ and ƒC we will drop them from
the notation in the following way:

(8)
C.LIf; �;J /D C.LIƒIf; �;J /; QH.L/D QH.LIƒ/;

CC.LIf; �;J /D C.LIƒCIf; �;J /; QCH.L/D QH.LIƒC/:

Another simplification is the following. Theorem A involves three different algebraic
operations: the quantum intersection product �, the Lagrangian quantum product ı,
and the external module operation ~:

(9)

� WQHk.M IR/˝QHl.M IR/! QHkCl�2n.M IR/;
ı WQHi.LIR/˝QHj .LIR/! QHiCj�n.LIR/;

~ WQHk.M IR/˝QHj .LIR/! QHiCj�2n.LIR/:

As all these operations commute in the sense that QH.LIR/ is an algebra over
QH.M IR/ we will sometimes denote all these operations by �.

3 Sketch of proof for Theorem A

We will explain the ideas behind the proof but, as mentioned in the introduction, we
will not prove here this theorem in full. However, all the technical details which are
omitted here can be found in [12]. The reason for proceeding in this way is that, on
one hand, many of the actual technical verifications are not novel for specialists but
quite long so including them here does not seem judicious. On the other hand, it is
not possible to apply efficiently this theorem in the absence of a good understanding
of the underlying moduli spaces and thus it is important to give a sufficiently detailed
description of the construction of our machinery. We will also shortly review the main
ideas behind the proof of transversality as well as the basic argument needed to prove
the identities contained in the statement of the theorem.

3.1 The moduli spaces

It is useful to view our further constructions as a “quantum” version of standard
constructions in Morse theory. In particular, in Morse theory, the Morse differential is
modeled by a tree with one entry and one exit but no interior vertex. The same is true
for a Morse morphism which relates two Morse complexes. The intersection product is
modeled on trees with two entries and one exit. For the associativity of this product, are
required trees with three entries and one exit. The quantum version of this construction
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consists in allowing each edge in these simple trees to be subdivided by a finite number
of quantum contributions represented by pseudo-holomorphic disks or spheres. Such
contributions can also appear at the vertices of the trees. Obviously, a more precise
definition is required and we proceed to give one below.

A. Combinatorial preliminaries The trees needed here are of a reasonably simple
type because we only use some rather elementary algebraic structures. The vertices of
these trees will be of two types, corresponding to J –holomorphic disks (with boundary
on L) or J –holomorphic spheres, and the edges will correspond to flow lines of
Morse functions some defined on L and some on M . The entries and the exit will
correspond to critical points of these Morse functions. Here is a more precise description,
unavoidably quite tedious. Conditions (i)–(iii) below simply model the data: each
edge in the tree needs to carry a label (which geometrically corresponds to a particular
Morse function). Each interior vertex will correspond to some J –holomorphic sphere
or disk so that it needs to carry a label given by some homotopy class etc. A stability
restriction is needed and is added as condition (iv). In the compactifications of such
moduli spaces appear configurations where one (or more) edges are represented by
flow lines of zero length. The corresponding geometric objects also appear by disk (or
sphere) bubbling off. For our construction it is crucial that each configuration of this
type appears exactly twice: once by bubbling off and once by the degeneration of a
flow line. The purpose of condition (v) is to insure precisely this property. Point (vi)
describes how the flow lines arriving at a vertex represented by a J –holomorphic curve
are anchored to that curve.

Here are the precise details of the construction: We consider connected trees T with
oriented edges embedded in R� Œ0; 1��R2 with entries lying on the line R�f1g and
a single exit which is situated on the line R�f0g and so that the edges strictly decrease
the y–coordinate. Clearly, at each internal vertex there is precisely one “exiting” (or
departing) edge and at least one “entering” (or arriving) edge. There will be at most
three entries and one exit. We call such a tree, T , .M;L/–labeled if the following
additional structure is given:

� The entries and the exit have valence one (and they are the only vertices with
this property). The vertices of the tree – except for the entries and the exit – are
labeled by elements �2H D

2
.M;L/ or by elements �2H S

2
.M / with !.�/� 0,

!.�/ � 0. The first kind of vertex will be called of disk type and the second
will be called spherical. The set of vertices of T (including entries and the exit)
is denoted by v.T /, the set of the spherical vertices is denoted by vS .T / and
the set of disk type vertices is denoted by vD.T /. The set of interior vertices
will be denoted by vint.T /D vD.T /[ vS .T /. The class of an interior vertex v
will be denoted by Œv� 2H D

2
.M;L/ or 2H S

2
.M /.
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Let FL be a finite set of Morse functions defined on L and let FM be a finite set of
Morse functions defined on M . Put F D FL [FM . An .M;L/–labeled tree T is
called F -colored if it satisfies the following three properties:

� The set of edges of T is denoted by e.T / and is partitioned into two classes,
the edges of type L, eL.T /, and the edges of type M , eM .T /. Each edge e

of type L is colored by a Morse function fe 2 FL and each edge e of type
M is colored by a Morse function fe 2 FM . For v 2 v.T / we let nL.v/ be
the number of edges of type L which are incident to v and we let nM .v/ be
the number of those edges of type M . For an edge e we let e� 2 v.T / be the
(initial) vertex where e starts and we let eC be the end (or final) vertex of e . If a
vertex v 2 vS .T /, then nL.v/D 0. If v 2 vD.T /, then nL.v/� 1. If e 2 eL.T /
and e� (respectively eC ) is not an entry (respectively, not the exit), then e�
(respectively eC ) belongs to vD.T /.

� Each entry as well as the exit is labeled by a critical point of the Morse function
corresponding to the incident edge. In other words, for all edges e , if e� is an
entry, then this implies that e� is labeled by a critical point of the function fe

and similarly for the exit. Any two distinct entries correspond to critical points
of different Morse functions.

� At each vertex, distinct arriving edges are labeled by different Morse functions
(but the exiting edge might be labeled with the same function as one of the arriving
edges). If a vertex v 2 vD.T / has the property !.Œv�/D 0 and nL.v/� 2, then
nM .v/� 1. If a vertex v 2 vS .T / has the property !.Œv�/D 0, then nM .v/� 3.

The coloring of our trees will be usually described by means of an exit rule. Namely,
fix as before a collection F of Morse functions (some on L, some on M ). Notice
that, for a planar tree T , at each vertex v , the planarity of the tree induces an order
among the arriving edges (by the values of the x–coordinates of the intersections of
these edges with a horizontal line close to the vertex but above it).

� An exit rule ‚ associates to each ordered vector, .f1; : : : ; fs/ with fi 2F , and
symbol S which can be either L or M , a new function ‚.f1; : : : fsIS/ 2 F .
An F –colored tree T is called ‚–admissible if, for each vertex of T whose exit
edge is of type S and whose arriving edges are colored, in order, by .f1; : : : ; fs/,
the departing edge is colored by ‚.f1; : : : ; fsIS/ 2 FS .

Given an exit rule ‚ notice that, for any .M;L/–labeled tree T , if a coloring of the
entry edges is given, then there exists a unique F –coloring of T that is ‚–admissible.
Note also that, in order to color T in this way, we do not always need to know the
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value of ‚ on all possible configurations (since some of them might not appear in any
relevant trees).

We recall that the moduli spaces that we intend to construct consist of J –holomorphic
disks and spheres joined by Morse trajectories. To proceed from trees to these moduli
spaces we need an additional structure which describes how the flow lines are “anchored”
to the J –curves. The structure in question is as follows:
� A marked point selector for an F –colored tree T is given by an assignment Q

which associates to each vertex v 2 vS .T / a collection Qv of distinct points in
S2 which is in 1-1 correspondence with the incident edges and, similarly, Q

associates to a vertex v 2 vD.T / a collection Qv �D so that if an edge e is
of type M its corresponding marked point is in Int.D/ and if the edge e is of
type L the corresponding marked point is in @D . Moreover, for v 2 vD.T / the
order among the marked points in @D matches the order of the incident edges
of type L clockwise around the circle. If e is an arriving edge (at some internal
vertex) the respective marked point is denoted by qC.e/ and if the edge is the
exiting one, then the marked point is denoted by q�.e/.

We denote F –colored trees together with a marked point selector Q by .T ;Q/ and we
refer to the pair .T ;Q/ as an F –colored tree with marked points. The marked point
selectors that will be used here satisfy an additional property: they only depend on the
type of the edge e , the valence of the vertex v , on whether the edge e is an exit edge
or an entry one and, in this last case, on the planar order of the edge among the arriving
edges at the vertex v . In other words, we can view such a marked point selector as an
abstract rule which associates a certain marked point to each edge incident to a vertex
of any F –colored tree. In view of this, if Q and Q0 are marked point selectors we
can write QDQ0 if the two corresponding rules agree.

For a tree T we indicate its entries and the exit by a symbol like .x;y; z W w/ where
the first components – in this case, they are three – are the labels of the entries written
in the planar order and the last component indicates the label of the exit. We call this
data the symbol of the tree T . We denote the symbol of the F –colored tree T by
symb.T /. The class of the tree T , ŒT � 2H D

2
.M;L/ is defined to be the sum of the

classes of the interior vertices.

B. Construction of the moduli spaces Fix an F –colored tree with marked points
.T ;Q/. Fix also a pair � D .�M ; �L/ where �L is a Riemannian metric on L and
�M is a Riemannian metric on M . For every f 2F let 
 ft be the associated negative
gradient flows (with respect to the metric �L for the functions defined on L and with
respect to the metric �M for the functions defined on M ). Denote by .x1; : : : ;xl W y/

the symbol of T .
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For an !–compatible almost complex structure J and a class � 2H D
2
.M;L/ (or in

H S
2
.M /) let M.�;J / be the moduli space of parametrized J –disks (respectively

J –spheres) in the class �.

The pearl moduli space modeled on .T ;Q/ will be denoted by PT ;Q.J; �/ (or, if the
data involved is clear from the context, just PT ) and it is defined as follows. If T has no
interior vertex or, equivalently, it consists of precisely one edge e connecting the entry
(which is labeled by a critical point x D x1 of fe ) to the exit labeled by y 2 Crit.fe/,
then PT is the unparametrized moduli space of flow lines of 
 fe connecting x to y .

In case T contains an internal vertex, consider the product

….T /D
Y

v2vint.T /

M.Œv�;J /

and let ST ;Q consist of all fuvgv2vint.T / 2….T / subject to the constraints:

� For each internal edge e 2 e.T / there is t � 0 (called the length of e ) such that



fe

t .ue�.q�.e///D ueC.qC.e// :

� For an entry edge, e , let xi be the critical point labeling the vertex e� . We have

lim
t!�1



fe

t .ueC.qC.e///D xi :

� For the exit edge e we have

lim
t!1



fe

t .ue�.q�.e///D y :

Finally, define PT ;Q D ST ;Q=� where � is given by the action of the obvious
reparametrization groups which act on the M.Œv�;J /’s and preserve the marked points.
See Figure 1 for an example.

The moduli space PT ;Q has a virtual dimension which only depends on the structure
encoded in the definition of the colored trees with marked points. This virtual dimension
will be denoted by ı.T /. When transversality is achieved, it coincides with the
actual manifold dimension of PT ;Q . As we will see in the next section, under this
transversality assumption, the space PT ;Q is a manifold, in general noncompact, with
a boundary consisting of configurations where some edge of T has 0–length.

Assume that the symbol of T is .x1; : : : ;xk W y/ and that there are s entries among
the xi ’s which are critical points of functions in FM . Then the formula giving this
virtual dimension is

(10) ı.T /D
X

i

jxi j � jyjC�ŒT �C �.k/� .sC k � 1/n
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f1 f2

f1 f2

f3

f3

x y

z

�rf1

�rf1

�rf2

�rf2

�rf3

�rf3

Figure 1: A tree of symbol .x;y W z/ on the left and a pearly trajectory
corresponding to it on the right. See Section 3.2 (b) below for the choice of
the labeling of the edges.

where �.k/D�1 if k D 1, y 2L, and �.k/D 0 otherwise.

C. Equivalence of trees In the sequel two F –colored trees will be viewed as
equivalent if the underlying topological trees are isomorphic by a tree isomorphism
which preserves the order of the entering edges at each vertex and which also preserves
the labels and the coloring.

Remark 3.1.1 Most of our moduli spaces are constructed according to the recipe above.
In particular, they are all modeled on .M;L/–labeled trees. However, sometimes we
need to work with variants of the last part of the construction. For example, we might
use instead of Morse functions, Morse cobordisms; instead of a single almost complex
structure we might require a family of such structures. Moreover, sometimes, some
of the curves used in the construction satisfy a perturbed Cauchy–Riemann equation
or the domains of some of the “vertices” in our trees will not be spheres or disks but
rather, cylinders or strips etc. In all these cases we will describe explicitly the (generally
minor) modifications that are needed in the construction above.
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3.2 Definition of the algebraic structures

The formalism given above allows us to define all the particular moduli spaces needed
for our various operations and we will describe all these constructions below. In all
these cases, we indicate the relevant moduli spaces by following the scheme above. In
each case we will describe the various structures involved, namely, the class of Morse
functions F , the exit rule ‚ (we will give its values only over that part of its domain
which is relevant), the marked point selector Q as well as the symbol symb.T / of the
relevant trees. We will also indicate in each case the formula for the virtual dimension
of the respective moduli spaces.

The definitions of our operations and their properties depend on the transversality
results which will be reviewed in the next section. Moreover, the various relations that
need to be proved require to understand the compactification of these moduli spaces, a
description of their boundary and a gluing formula. This part will be discussed in the
last subsection.

We write the formulas below over zƒC – see Section 2.1.2. Given any zƒC–algebra R
given by a graded ring homomorphism qW zƒC!R, these formulas induce correspond-
ing ones over R by simply replacing the formal variables T A , A 2H D

2
.M;L/, by

their values q.T A/. As before, we fix a pair � D .�L; �M / of Riemannian metrics
on L and on M as well as an almost complex structure J compatible with ! .

(a) (The pearl complex and its differential) Here and in the points (b) and (c) below
all the internal vertices are of disk type and all internal edges are of type L so that we
omit from the notation of ‚ the symbol S as S DL in these three cases.

Consider a single Morse function f W L!R and put F D ff g. The pearl complex is

C.LIRIf; �L;J /D .Z2hCrit.f /i˝R; d/ :

The differential d is defined for generic choices of our data. To describe it, we consider
F –colored trees with marked points, .T ;Q/, with symbol .x W y/ with x;y 2Crit.f /
and so that the marked point selector associates to each e 2 e.T /, q�.e/DC1 2 @D

and qC.e/D�1 2 @D . See Figure 2. It is easy to see that the virtual dimension of the
associated moduli spaces is given by ı.T /D jxj � jyjC�ŒT �� 1.

We now put

(11) dx D
X

y;.T ;Q/

#2.PT ;Q/ y T ŒT �

where, y; .T ;Q/ go over all the trees .T ;Q/ as above and we only count elements in
PT ;Q when the associated virtual dimension is 0 (we will use the same convention in
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x y

f f f

x y

�rf �rf �rf
u1 ul

Figure 2: A tree of symbol .x W y/ at the top and a pearly trajectory corre-
sponding to it at the bottom

the other examples below). The relation d2 D 0 is based on the properties of the same
type of moduli spaces but with virtual dimension equal to 1. The necessary ingredients
for this verification and the outline of the proof will be indicated in Section 3.3 and
Section 3.4. Notice that if f has a single maximum, P , then, for degree reasons, P is
a cycle in the pearl complex C.LIRIf; �L;J / (the point here is that the differential is
defined over zƒC ).

We will omit L, J , � , R from the notation if they are clear from the context.

(b) (The quantum product) In this case F D ff1; f2; f3g with the three functions fi

all defined on L. The product is defined by:

(12) ıW C.f1/˝R C.f2/! C.f3/; x ıy D
X

z;.T ;Q/

.#2PT ;Q/ z T ŒT �

where the sum is taken over all the F –colored trees with marked points .T ;Q/
of symbol .x;y W z/ with x 2 Crit.f1/, y 2 Crit.f2/ and z 2 Crit.f3/ which are
‚–admissible with Q and ‚ as follows. First, the marking selector satisfies: if
eC is of valence at most 2 then qC.e/ D �1 2 @D ; if e� is of valence at most 3,
q�.e/DC12 @D ; if eC is of valence 3, and e is the j –th entering edge (in the planar
order) at the vertex eC (clearly, j 2 f1; 2g), then qC.e/ D e�2�j=3i 2 @D . In other
words, at a vertex of valence 3, the marked (or incidence) points are the roots of order
three of the unity. Finally, the exit rule is ‚.fi/D fi 8i 2 f1; 2; 3g, ‚.f1; f2/D f3 .
The virtual dimension in this case is ı.T /D jxjC jyj� jzj�nC�ŒT �. Schematically,
the trees used here and the associated configurations are depicted in Figure 1.

Similar moduli spaces but of virtual dimension 1 are used to show that the linear map
defined by (12) defines a chain morphism and thus descends to homology.

A useful remark here is that we can also use instead of the three functions f1 , f2 , f3

only two function f1 and f2 with the same exit rule as above except that for the vertex
of valence 3 we require ‚.f1; f2/D f2 . It is easy to see that this definition provides
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a product

(13) ıW C.f1/˝R C.f2/! C.f2/

which coincides in homology with the product given before (see also the invariance
properties described at point (e)). This is particularly useful in verifying the associativity
of the product as described at point (f) below as it allows one to work in that verification
with only three Morse functions. Another reason why this description of the product is
useful is that, assuming that f1 has a single maximum P , we see that if a moduli space
PT ;Q used to define (13) is of symbol .P;y W z/ and of dimension 0, then y D z and
PT ;Q consists of the unique Morse trajectory of f1 joining P to y . Thus P ıy D y

hence P is a unity at the chain level for the product defined in (13).

(c) (The module structure) We now have F D ff1; f2g with one Morse function
f1W M!R and one Morse function f2W L!R. Let CM.f1IR/DZ2hCrit.f1/i˝R
be the Morse complex of f1 tensored with the ring R (endowed with the Morse
differential d D dMorse˝ 1). The module action is defined by

(14) ~W CM.f1/˝R C.f2/! C.f2/; a ~ x D
X

y;.T ;Q/

.#2PT / y T ŒT �

where the sum is taken over all the F –colored trees .T ;Q/ of symbol .a;x W y/ with
a 2 Crit.f1/ and x;y 2 Crit.f2/ which are ‚–admissible for Q and ‚ defined as
follows: for all edges e of type L, qC.e/D�1 2 @D , q�.e/DC1 2 @D ; if e is an
edge of type M (there can in fact be at most one such edge), then qC.e/D 0 2 D ;
‚.f2/ D f2 , ‚.f1; f2/ D f2 . See Figure 3. The virtual dimension in this case is
ı D jajC jxj � jyj � 2nC�.ŒT �/.
The same type of moduli spaces but of virtual dimension 1 serve to prove that this
operation passes to homology. However, at this step a modification is needed and has
to do with the proof of transversality: we need that in these moduli spaces if a vertex v
is of valence three, then the corresponding curve uv is not pseudo-holomorphic but
rather it carries a small Hamiltonian perturbation of type

(15)

(
uW .D; @D/! .M;L/;

@suCJ.u/@tuD�XF .s; t;u/�J.u/XG.s; t;u/

with F;GW D �M ! R well chosen Hamiltonians and XF and XG the respective
Hamiltonian vector fields (see McDuff and Salamon [40] and Biran and Cornea [12]
for details). The reason why these perturbations are needed will be explained in the
next section and we refer to [12] for the full construction.

(d) (The inclusion iL ) In this case we use one Morse function f1W L ! R and
another Morse function f2 WM !R and F D ff1; f2g. The relevant F –colored trees
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a x

y

f1

f2

f2

f2

f2

a x

y

�rf1

�rf2

�rf2

�rf2

�rf2

Figure 3: A tree of symbol .a;x W y/ on the left and a pearly trajectory
corresponding to it on the right

with marked points have symbol .x W a/ with x 2 Crit.f1/, a 2 Crit.f2/. The marking
is chosen as follows: for all the edges e of type L, q�.e/DC1, qC.e/D�1; for the
edge e of type M , q�.e/D 0 2D (it is easy to see that the stability condition (iv) in
Section 3.1 together with the form of the symbol imply that there can only be a unique
edge of type M ). The exit rule is ‚.f1IL/D f1 , ‚.f1IM /D f2 (notice that, this
is the first place where the symbol S in the definition of the exit rule at point (v) in
Section 3.1 is of use; moreover, because the symbol is .x W a/, the only disk type vertex
with the exit edge of type M is the one just before the end of the tree). The virtual
dimension is in this case ı D jxj � jyjC�.ŒT �/ and the quantum inclusion is defined
by

iLW C.f1/! CM.f2IR/I iL.x/D
X

.#2PT ;Q/ a T ŒT � :

(e) (Invariance) Assume given two sets of data .f; �L;J / and .f 0; �0
L
;J 0/ so that

the pearl complexes C.LIRIf; �L;J / and C.LIRIf 0; �0
L
;J 0/ are defined. We now

need to construct a chain morphism

�F; z�L; zJ W C.LIf; �L;J /! C.LIf 0; �0L;J
0/

which induces a canonical isomorphism in homology (we omit the ring R from the
notation). This morphism is associated to: zJ D fJtg, a smooth one parametric family
of almost complex structures with J0 D J;J1 D J 0 , F W L � Œ0; 1� ! R, a Morse
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homotopy (see Biran and Cornea [12] as well as Cornea and Ranicki [26]) between
f and f 0 , z�L a metric on L � Œ0; 1� with z�jL�f0g D �L and z�jL�f1g D �0

L
. In

other words, we use here a slight modification of our standard construction by taking
F D fFg and using trees as at point (a), but with F replacing f , z�L replacing �L

and zJ instead of J . The symbol is .x W y/ with x 2 CritkC1.F /jL�f0g D Critk.f /
and y 2 Crits.F /jL�f1g D Crits.f 0/. In particular, both the marked point selector Q

and the exit rule are the same as at point (a). The points (a), (b), (c), in Section 3.1 B
are also modified as follows.

The set ST ;Q is now a subset of the product

….T ; zJ /D
Y

v2vint.T /; t2Œ0;1�

Mt .Œv�; zJ /

Mt .Œv�; zJ /D fuW .D; @D/! .M � ftg;L� ftg/ j x@Jt
.u/D 0g :where

The flow 

f
t is replaced by the negative gradient flow, 
F

t , of F with respect to
z�L (which is a flow on L� Œ0; 1� ) and points (a), (b), (c) now apply without further
modifications. In short, the curves which appear at the start (and respectively the end)
of the edge e are Jt –holomorphic where t is determined by the second coordinate of
the starting point (respectively, end) of the flow line of �r.F / which corresponds to e .
Notice that in our construction all intervening curves are genuinely Jt0

–holomorphic
for some t0 2 Œ0; 1� in contrast to the continuation method familiar in Floer theory.

The virtual dimension is ı D jxj � jyjC�ŒT �. The morphism is defined by

�F;z�L; zJ .x/D
X

.#2PT ;Q/ y T ŒT � :

An additional parameter is required to show that the morphism induced in homology is
canonical – by constructing a chain homotopy between any two morphisms as above
which is associated to a Morse homotopy of Morse homotopies. Perfectly similar
constructions provide chain homotopies which proves the invariance of the quantum
product and of the module structure.

(f) (The associativity type relations) The purpose here is to define the moduli spaces
needed to prove the associativity of the quantum product as well as the other relations
at point (ii) of Theorem A.

For the associativity of the quantum product we will use three functions fi W L!

R, i 2 f1; 2; 3g and the moduli spaces to be considered are modeled on trees T
of symbol .x1;x2;x3 W w/ with xi 2 Crit.fi/ and w 2 Crit.f3/; the exit rule is
‚.fk1

; : : : ; fki
/ D fmaxfk1;:::;ki g

. We will now define a particular family of marked
point selectors xQ D fQ�g consisting of one marked point selector Q� for each
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� 2 .0; 2�=3/. This Q� is as in the definition of the quantum product for all vertices
of valence 2 and 3 and in case one vertex v is of valence 4 then the first two edges
arriving at v (in the planar order) and the exit edge are attached at the roots of the
unity of order 3 –in the same way as for the vertices of valence 3. The third arriving
edge e satisfies q�;C.e/D ei� . The moduli spaces used to prove the associativity of
the quantum product are

PT ; xQ D
[

�2.0;2�=3/

PT ;Q�
� f�g :

The resulting virtual dimension of this moduli space is ı D jx1j C jx2j C jx3j � jwjC

�ŒT �C 1 (the C1 comes from the additional parameter � ).

Both 0– and 1–dimensional such moduli spaces are needed to verify associativity:
the 0–dimensional moduli spaces are used to define a chain homotopy �W C.f1/˝R
C.f2/˝R C.f3/! C.f3/ and the 1–dimensional moduli spaces are used to prove the
relation ..�ı�/ ı�/C .�ı .�ı�//D .d�C �d/.�˝�˝�/. More details appear
in [12].

To prove the relation .a�b/~xDa�.b~x/ with a; b2QH.M IR/ and x2QH.LIR/
we use two functions f1; f2W M !R and f3 WL!R. The moduli spaces in question
are modeled on trees T of symbol .a; b;x W y/ with a 2 Crit.f1/, b 2 Crit.f2/,
x;y 2 Crit.f3/. The exit rule is ‚.fk1

; : : : ; fks
/ D fmaxfk1;:::;ksg . Again we will

need to define a special family of marked point selectors, denoted in this case by
zQ D fQ�g for � 2 .�1; 0/. The marked point selector Q� is as at point (c) for all

vertices of valence 2 or 3. If a vertex is of valence 4 then the marked points are the
same as at point (c) for the edges of type L. At this vertex there are also two entering
edges of type M and the respective marked points are as follows: for the edge e1

colored with f1 , we put qC.e1/D 0 2D2 ; for the edge e2 , colored with f2 , we put
qC.e1/D � 2 .�1; 0/� Int.D2/. Finally the moduli spaces needed here are

PT ; zQ D
[

�2.�1;0/

PT ;Q�
� f�g :

We will again need moduli spaces of this sort and of dimensions 0 and 1. As at
point (c), to achieve transversality, some of the disks appearing in these moduli spaces
will need to be perturbed by using perturbations as described by Equation (15). More
precisely, in the moduli spaces of dimension 0, if a vertex is of valence 4, then its
corresponding curve is a perturbed J –disk. In the moduli spaces of dimension 1, the
disks of valence 3 as well as the disk of valence 4 (if present) need to be perturbed.
Again, for more details see our paper [12].
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(g) (Comparison with Floer homology) The version of Floer homology that we need
is defined in the presence of a generic Hamiltonian H W M � Œ0; 1�!R. Consider the
path space P0.L/Df
 2C1.Œ0; 1�;M / j 
 .0/2L ; 
 .1/2L ; Œ
 �D 12�2.M;L/g

and inside it the set of (contractible) orbits, or chords, OH �P0.L/ of the Hamiltonian
flow XH . Assuming H to be generic we have that OH is a finite set. Fix a generic
almost complex structure J .

There is a natural epimorphism pW �1.P0.L//!H D
2
.M;L/ and we take zP0.L/ to

be the regular, abelian cover associated to ker.p/ so that H D
2
.M;L/ acts as the group

of deck transformations for this covering. Consider all the lifts zx 2 zP0.L/ of the
orbits x 2 OH and let zOH be the set of these lifts. Fix a base point �0 in zP0.L/

and define the degree of each element zx by jzxj D �.zx; �0/ with � being here the
Viterbo–Maslov index. Let R be a commutative Z2ŒH

D
2
.M;L/�–algebra (eg RDƒ,

or ƒ0 or Z2ŒH
D
2
.M;L/� itself but not ƒC or zƒC ).

The Floer complex is the R–module

CF�.LIH;J /D Z2h
zOH i˝Z2ŒH

D
2
.M;L/�R :

The differential is given by d zx D
P

#M.zx; zy/zy where M.zx; zy/ is the moduli space
of solutions uW R� Œ0; 1�!M of Floer’s equation @u=@sCJ @u=@tCrH.u; t/D 0

which satisfy u.R�f0g/�L; u.R�f1g/�L and they lift in zP0.L/ to paths relating
zx and zy . Moreover, the sum is subject to the condition �.zx; zy/� 1D 0.

The comparison map from the pearl complex

�f;H W C.LIf; �L;J /! CF.LIH;J /

is defined by the PSS method (see Piunikin, Salamon and Schwarz [48] and, in the
Lagrangian case, Barraud and Cornea [4], Cornea and Lalonde [24] and Albers [1]) as
well as the map in the opposite direction

 H ;f W CF.LIH;J /! C.LIf; �L;J / :

In our language, the map �f;H is defined by counting elements in moduli spaces
modeled on trees of symbol .x W 
 / with x 2 Crit.f /, 
 2 zOH – thus notice a first
modification of the “pearl” construction, the exit of the tree is labeled in this case by
an orbit. There will be just one Morse function f W L!R and the exit rule as well as
the marked point selector are as at point (a) (in Section 3.2). However, the last vertex
in the tree, the exit, will no longer correspond to a critical point but rather to a solution
uW R� Œ0; 1�!M of the equation

(16) @u=@sCJ@u=@t Cˇ.s/rH.u; t/D 0
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so that ˇW R! Œ0; 1� is an appropriate increasing smooth function supported in the
interval Œ�1;C1/ and which is constant equal to 1 on Œ1;C1/. This solution u

has also to satisfy u.R� f0g/ � L, u.R� f1g/ � L, lims!1 u.s;�/ D 
 .�/ and
lims!�1 u.s;�/ D P 2 L so that condition (c) in Section 3.1 B which describes
the geometric relation associated to the exit edge e , is replaced by: “9 t > 0 so that

 fe

t .ue�.q�.e/// D P ”. The map  H ;f is given by using similar moduli spaces
but with the first vertex being a perturbed one (the perturbation will use the function
ˇ0 D 1�ˇ ) and starting from an element of zOH . Proving that these maps are chain
morphisms and that their compositions induce inverse maps in homology depends, in
the first instance, on using one-dimensional moduli spaces as above and, in the second,
on yet some other moduli spaces which will produce the needed chain homotopies. For
�f;H ı H ;f these moduli spaces are again modeled on trees with a single entry and
exit, as in the differential of the pearl complex, but both the exit and entry vertices are
of the perturbed type as in (16) (with a perturbation ˇ0 for the entry and ˇ for the exit).
In the case of  H ;f ı�f;H one of the internal vertices satisfies a perturbed equation
but a function ˇ00 with support in an interval of type Œ�r; r � is used instead of ˇ (see
again Albers [1] and Biran and Cornea [12] for details).

(h) (The augmentation) Fix a pearl complex C.LIRIf; �;J / where R is a zƒC

algebra (as in Section 2.1.2). Define

�LW C.LIRIf; �;J /!R

by �L.x/D 0 for all critical points x 2 Crit>0.f / and �L.x/D 1 for those critical
points x 2 Crit.f / with jxj D 0. Notice that a (local) minimum x0 cannot appear
in the differential dy D

P
az;AzT A of any critical point y except for A D 0 and

jyj D 1. Indeed, a moduli space PT modeled on a tree T of symbol .y W x0/ as at
the point (a) in this section is of dimension jyj � 1C�ŒT � and thus can only be of
dimension 0 if ŒT � D 0. Since for each critical point of index 1 there are precisely
two flow lines emanating from it, we deduce that �L ı d D 0 and so �L is a chain
map. The same type of argument, now applied to the comparison map constructed in
the invariance argument at point (e) shows that, in homology, �L commutes with the
canonical isomorphisms.

3.3 Transversality

As mentioned before we will not give here the full proof of transversality (we refer to
[12] for that). However, we will review the main ideas.

Given an F –colored tree with marked points .T ;Q/ as defined in Section 3.1 we
discuss the proof of the fact that, for generic J , the associated moduli space PT ;Q is a
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manifold of dimension equal to the virtual dimension ı.T /. The finite family F of
Morse functions defined on L or on M is fixed throughout the section and it contains
at most three functions defined on L and two defined on M . The only moduli spaces
to be treated are those appearing in Section 3.2.

In the argument, slightly more general such moduli spaces will also be needed. As
before, the numbers of entries will always be at most 3 and there will be a single exit.
However, we will not impose any particular restriction on the exit rule (in particular,
all possible exit rules will be allowed in the inductive argument below). Secondly, we
will need to prove the regularity of moduli spaces of type

PT ;Q D
[
s2U

PT ;Qs
� fsg

where QD fQsgs2U is a family of marked point selectors Qs so that at most two of
the marked points provided by Qs (and which are associated to vertices of valence at
least 3) are allowed to take the values in the set U . Here U D U1 �U2 where both
Ui �D are connected submanifolds without boundary of dimension at most 2. These
types of moduli spaces have already appeared in the discussion of associativity at the
point (f). in Section 3.2 and some additional ones will appear in the transversality
argument. More precisely, our allowed choices for these sets Ui are as follows. If
dim UiD0, then Ui coincides with one of the marked points appearing in the description
of the marked point selectors in Section 3.2 (in other words, Ui is one of the points
C1;�1; e2�i=3; e4� i=3; 0 2 D ); if dim Ui D 1, then Ui is one of the following two
choices .�1; 0/�D or feitg0�t�2�=3 � @D (both have been already used at point (f)
in Section 3.2); finally, if dim Ui D 2, then Ui D Int.D/. We will still refer to these
moduli spaces by PT ;Q and refer to them as F –colored moduli spaces with marked
points and, by a slight abuse of notation, Q will still be referred to as a marked point
selector. The virtual dimension of these moduli spaces is given by a formula similar
to (10) to which is added another term depending on the dimension of the sets Ui as
above and on the valence of the vertices to which these marked points are associated.
In view of this, we denote this virtual dimension by ı.T ;Q/.

Let P�T ;Q be the moduli spaces associated to F –colored trees with marked points
.T ;Q/ which satisfy the additional condition that all the J –holomorphic curves
uv corresponding to the internal vertexes v 2 v.T / have the property that they are
simple and that they are absolutely distinct. We recall that a curve uW † ! M is
simple if it is injective at almost all points z 2 Int.†/ in the sense that duz 6D 0 and
u�1.u.z//D fzg. The curves .uv/ are absolutely distinct if no single curve uv has its
image included in the union of the images of the others, Im.uv/ 6�[v02v.T /nfvgIm.uv0/.
By a straightforward adaptation of now standard techniques, as in [40] Chapter 3 in

Geometry & Topology, Volume 13 (2009)



Rigidity and uniruling for Lagrangian submanifolds 2919

particular Proposition 3.4.2, we obtain that P�T ;Q is a manifold of dimension ı.T ;Q/,
in general noncompact, with a boundary consisting of configurations so that some
edges in T are represented by gradient flow lines of 0–length (recall that we allow the
length of edges to be � 0). Notice that, in case some perturbed J –holomorphic curves
appear also in the elements of PT ;Q as at (c) in Section 3.2, there is no need to impose
any similar condition to them: a choice of generic perturbations insures the needed
transversality. To simplify the argument, we focus in the proof below on the case
where just a single almost complex structure appears in the definition of our moduli
spaces. However, if as for the invariance argument, point (e) in Section 3.2, we need to
deal with a family zJ D fJtgt2Œ0;1� of almost complex structures, then the “absolutely
distinct” condition only needs to be verified for the disks that are Jt –holomorphic for
each t at a time and by taking this remark into account the argument below adapts
easily to this setting.

The key point is to show that P�T ;QDPT ;Q as long as ı.T ;Q/�1. In turn, the proof of
this is by induction. To be more explicit, fix the symbol symb.T /D .x1;x2; : : : ;xl Wy/

of the tree T . Fix some k 2N . The combinatorial data used to define F –colored trees
with marked points .T ;Q/ so that �ŒT �� k is finite. Thus, up to isomorphism, there
are only finitely many such trees. Suppose, by induction, that for all F –colored trees
with marked points .T 0;Q0/ of symbol of length at most 4 and with �ŒT 0� < �ŒT �
and ı.T 0;Q0/� 1, we have

(17) P�T 0;Q0 D PT 0;Q0 :

To prove identity (17) for T it suffices to show that the following simplification step is
true:

(18) PT ;Q 6D P�T ;Q)

8̂<̂
:
9.T 0;Q0/ such that

symb.T 0/D symb.T /; �.ŒT 0�/ < �.ŒT �/;
ı.T 0;Q0/ < 0 ;PT 0;Q0 6D∅ :

Indeed, if ı.T 0;Q0/ < 0 , the identity (17) together with the regularity of the moduli
spaces consisting of simple, absolutely distinct curves implies that PT 0;Q0 D ∅ and
the conclusion follows by contradiction.

The key to prove (18) is a structural result concerning J –holomorphic disks which is
the disk counterpart of the multiply-covered $ almost everywhere injective dichotomy
valid in the case of J –holomorphic spheres. One such result is due to Lazzarini [37;
38] (an alternative one is due to Kwon and Oh [36]). Here are more details on this
point.
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Let uW .D; @D/ ! .M;L/ be a nonconstant J –holomorphic disk. Put C.u/ D
u�1.fdu D 0g/. Define a relation Ru on pairs of points z1; z2 2 Int D n C.u/ in
the following way:

z1Ruz2”

8̂̂̂̂
<̂
ˆ̂̂:
8 neighborhoods V1;V2 of z1; z2;

9 neighborhoods U1;U2 such that:

(i) z1 2 U1 � V1; z2 2 U2 � V2:

(ii) u.U1/D u.U2/:

Denote by SRu the closure of Ru in D �D . Note that SRu is reflexive and symmetric
but it may fail to be transitive (see Lazzarini [37] for more details on this). Define the
noninjectivity graph of u to be:

G.u/D fz 2D j 9 z0 2 @D such that zSRuz0g:

It is proved in [37; 38] that G.u/ is indeed a graph (with a finite number of branching
points) and its complement D n G.u/ has finitely many connected components. We
use the following theorem due to Lazzarini (see his paper [37] as well as [38]).

Theorem 3.3.1 (Decomposition of disks [37; 38]) Let uW .D; @D/! .M;L/ be a
nonconstant J –holomorphic disk. Then for every connected component D�D nG.u/,
there is a compact Riemann surface with boundary .SD; @SD/, a complex embedding
hDW .SD; @SD/! .D;G.u// whose interior verifies hD.Int SD/ D D, a simple J –
holomorphic disk vDW .D

0; @D0/ ! .M;L/, and a surjective map �DW SD ! D0 ,
holomorphic on Int SD and continuous on SD of well defined degree mD 2N , such
that the following holds: vD ı�D D u ı hD . Moreover, in H D

2
.M;LIZ/ we have

Œu�D
X
D

mDŒvD�;

where the sum is taken over all connected components D�D nG.u/.

The notion of a complex embedding just mentioned is taken from [37]. It is defined
as follows. Let .S; @S/ be a compact Riemann surface with boundary and G �D an
embedded graph (see Lazzarini [37; 38]). A complex embedding hW .S; @S/! .D;G/
is a holomorphic map with the properties that h.Int S/\G D∅ and h�1.h.z//D fzg

for every z 2 Int S . (Thus h need not be injective along @S .)

Two Lemmas, 3.3.2 and 3.3.3, to be stated a bit later, are easy consequences of
the theorem above and, as we will see, they reduce our problem to a sequence of
combinatorial verifications.
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Returning to the proof of (18) we proceed in two steps. First we discuss the argument
insuring that all J –curves involved are simple. The second step will show that they
can also be assumed to be absolutely distinct. We focus here on the case dim.L/� 3

and will comment on the case dim.L/� 2 at the end.

Thus, suppose that u 2 PT ;Q is so that uD .uv/v2vint.T / and for some internal vertex
v 2 v.T / the corresponding J –holomorphic curve uv is not simple.

In the trees used in this paper a sphere-type vertex does not carry more than three
incidence points. Therefore, in case uv is a J –sphere it can clearly be replaced by a
simple one u0v and the marked point selector is not modified. This means that we may
take in this case T 0 to be topologically the same tree as T except that the label of the
vertex v is now Œu0v � instead of Œuv �. Thus we may now suppose that uv is a J –disk.
To deal with this case we will make use of the following consequence of Theorem
3.3.1. We refer to [12] for the proof.

Lemma 3.3.2 Suppose nD dim L � 3. Then there exists a second category subset
Jreg�J .M; !/ such that for every J 2Jreg the following holds. For every nonconstant,
nonsimple J –holomorphic disk uW .D; @D/! .M;L/ there exists a J –holomorphic
disk u0W .D; @D/! .M;L/ with the following properties:

(1) u0.D/D u.D/ and u0.@D/D u.@D/.

(2) u0 is simple.

(3) !.Œu0�/ < !.Œu�/. In particular, if L is monotone we also have �.Œu0�/ < �.Œu�/.

We apply Lemma 3.3.2 to replace the J –disk uv by the simple disk u0v provided by the
Lemma. Thus, to prove (18), the relevant tree T 0 that we are looking for is identified
with T except that the vertex v will now be labeled by Œu0v �. A slightly delicate point
needs to be made concerning the marked point selector Q0 corresponding to T 0 . The
way this is constructed is the following: as u0v.D/D uv.D/, and u0v.@D/D uv.@D/,
the points uv.q˙.e// (where e is an incident edge at v ) can be lifted to the domain
of u0v and used as marked points there. Of course, this works only if all these points,
uv.q˙.e//, are distinct. If this is not the case some additional vertices need to be
included in the tree so that they correspond to constant disks or spheres which are
related to the vertex v by edges colored by functions in F and of 0–length.

We still need to verify that ı.T 0;Q0/< 0. Given that NL� 2 and so �.u0v/<�.uv/�1

this inequality is automatic if Q0DQ because in this case ı.T 0;Q0/� ı.T ;Q/�NL .
This is the case if v carries two or three marked points all on @D . The same is true
also if v carries two marked points, one on the boundary and one in the interior of D .
Suppose now that v carries two boundary marked points, �1 and C1, and the interior
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marked point 0 (as at point (c) in Section 3.2). In this case the marked point selector
for T 0 cannot be assumed to be the same as that for T : the internal marked point
for uv0 cannot be assumed anymore to be as assigned by Q but can be anywhere
inside D – in other words in this case Q0 D fQsgs2Int.D/ . In this situation we have
�ŒT 0� � �ŒT ��NL and it is easy to see that ı.T 0;Q0/ � ı.T ;Q/�NLC 1. Thus,
if ı.T ;Q/D 0 we still have ı.T 0;Q0/ < 0 so that (17) remains true for the moduli
spaces needed to define the module structure without the need to use any perturbations.
However, to prove the fact that the operation defined there is a chain morphism we need
to use moduli spaces as before but which satisfy ı.T ;Q/D 1. This is precisely why
we use perturbed J –holomorphic disks in this case: as mentioned before, the proof
of the transversality of the relevant evaluation maps requires only the nonperturbed
J –holomorphic curves to be simple and absolutely distinct. The same issue appears
for both the 0– and 1–dimensional moduli spaces used to prove the associativity of the
module action as in the second part of point (f) in Section 3.2 and this shows that the
perturbations indicated there are necessary. Full details for these arguments are found
in [12].

We now pass to the second step: showing that the J –curves fuvgv are absolutely
distinct. The main tool is the next result which can be deduced too from Theorem 3.3.1.

Lemma 3.3.3 Suppose nD dim L � 3. Then there exists a second category subset
Jreg � J .M; !/ such that for every J 2 Jreg the following holds. If u; wW .D; @D/!

.M;L/ are simple J –holomorphic disks such that u.D/\w.D/ is an infinite set, then
at least one of the following relations is valid:

� u.D/� w.D/ and u.@D/� w.@D/.

� w.D/� u.D/ and w.@D/� u.@D/.

This implies that if the J –curves in fuvgv2vint.T / are not absolutely distinct, then there
exist two vertices v0 and v1 both corresponding to J –holomorphic (unperturbed)
curves so that uv1

.D/ � uv0
.D/ and uv1

.@D/ � uv0
.@D/. The aim now is to show

that we can “simplify” both fuvgv and the tree by eliminating v1 (as well as possibly
other vertices and edges) and thus produce a new tree .T 0;Q0/ of lower Maslov number
and with ı.T 0;Q0/ < 0 as well as a new element fu0vgv2vint.T 0/ 2P.T 0;Q0/ thus arriving
at a contradiction.

There are three different cases to consider:

(i) v0 and v1 are independent, in the sense that they are on different branches of
the tree.
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(ii) v0 is above v1 in the tree, in the sense that by following the tree starting from
v0 we reach v1 .

(iii) v1 is above v0 in the tree.

In the first two cases we obtain the new tree T 0 by simply taking the branch in the
tree above v0 but containing v0 and pasting it in T with v0 in the place of v1 .
Thus in the tree T 0 the vertex v1 has disappeared and has been replaced with v0 .
To avoid confusion we denote this vertex in T 0 by yv1 . The corresponding pearly
element fu0vgv2vint.T 0/ will satisfy u0v D uv for every v¤ yv1 and u0

yv1
D uv0

. A similar
construction can be performed in the third case. Here is a more precise description of
this operation in each of the cases (i)–(iii).

In case (i) we first remove from T the branch Bv0
of the tree lying above v0 (and

including v0 ). Then we also remove from T the path going from v0 to the branch
point below v0 which is closest to v0 . Denote the remaining tree by T0 . We define
T 0 by gluing Bv0

to T0 identifying v0 with v1 . This new vertex will be now denoted
by yv1 . We label yv1 by the homology class of v0 and we define Q0 at yv1 using the
marked points of both v0 and v1 except of the exit marked point of v0 which becomes
irrelevant now and is hence dropped. See Figure 4 for an example.

x y z

v0 v1

w

T

x y z

yv1

w

T 0

Figure 4: Passing from T to T 0 – case (i)

In case (ii), if there is a branch point zv0;1 between v0 and v1 we define T 0 as follows.
We delete from T the branch Bv0

as in case (i) above. We also delete from T the
path between v0 and zv0;1 and denote the remaining tree by T0 . We define T 0 as in
case (i) by gluing Bv0

to T0 identifying v0 with v1 , calling the this new vertex yv1 .
As in case (i) above, we label yv1 by the homology class of v0 and define Q0 using the
marked points of both v0 and v1 , excluding the exit marked point of v0 . See Figure 5
for an example. To conclude case (ii) we need to describe T 0 in case there is no branch

Geometry & Topology, Volume 13 (2009)



2924 Paul Biran and Octav Cornea

x y z

e
v0

zv0;1

v1

w

T

x y z

e

zv0;1

yv1

w

T 0

Figure 5: Passing from T to T 0 – case (ii)

point between v0 and v1 . In that case, we just define T 0 by removing the path between
v0 and v1 and identifying v0 with v1 . This new vertex yv1 is labeled by the label of v0

and the marked points now are inherited from v0 and v1 except of the exiting marked
point of v0 and the corresponding entering marked point of v1 which are now dropped.

Suppose we are now in case (iii), ie v0 is lower than v1 in the tree. This case is dealt
with similarly to (ii). In this case, the tree T 0 is obtained as before but with the roles
of the vertices v0 and v1 reversed: the branch above v1 and containing v1 is grafted
to the tree in the place of v0 and the branch leaving from v1 and reaching the first
branch point separating v1 and v0 (or the portion in the tree between v1 and v0 if no
such branch point exists) is omitted. The new vertex (corresponding to v0 and v1 ) is
now called yv0 . Again the J –curves associated to the vertices of T 0 are the same as
the corresponding curves associated to the vertices of T except that uyv0

D uv0
.

There is yet another point at which care should be taken (in all cases (i)–(iii). It
may happen that some of the relevant marked points of v0 and of v1 coincide (again,
we disregard those marked points that are dropped as above), and in this case the
description given above for .T 0;Q0/ is incomplete. If such a coincidence of marked
points occurs we need to insert some additional vertices, corresponding to constant
J –curves, carrying distinguished marked points as well as connecting edges. This
modification is straightforward and we will not go into more detail about it.

It now easily follows that the resulting tree T 0 has a strictly lower Maslov index
than T . The dimension verification is also immediate except if v1 carries some internal
marked points. If there is a single such marked point and ı.T ;Q/ D 0, then we
take Q0 D fQsgs2Int D (because the internal marked point may now take any value
inside D ) and we still have, as in the reduction to simple disks, ı.T 0;Q0/ < 0. If v1
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carries two internal incidence points or if it carries one but ı.T ;Q/D 1, then, by the
particular choice of the moduli spaces in Section 3.2, v1 corresponds to a perturbed
J –holomorphic disk in contradiction to our starting assumption.

The case n� 2 is easily reduced to a number of combinatorial problems. The assump-
tions n � 2, NL � 2 and ı.T ;Q/ � 1 imply that the total number of J –curves is
relatively small (for example, there are at most two for the verifications involving the
pearl complex) so that combinatorial arguments apply in many of these cases. In fact,
it is not hard to use directly Theorem 3.3.1 to deal with trees T in which the total
Maslov index of the vertices represented by J –disks is at most 6 (even if there might be
additional vertices corresponding to perturbed disks). This covers all the verifications
involved with the pearl complex and its invariance, the product and its associativity and
invariance, the definition of the module structure and its invariance. This also works for
the proof of the relation .a�b/~xD a~ .b ~x/; a; b 2QH.M IR/; x 2QH.LIR/
for NL � 3. Finally, the remaining case can also be dealt with combinatorially.

3.4 Compactness and the final step

The transversality arguments in the previous section show that our moduli spaces are
manifolds. We will start here by describing the structure of the compactification of
these moduli spaces. For this, besides the transversality results described before, we
only need the Gromov compactness theorem (for disks see Frauenfelder [31]). We first
remark that given an F –colored tree with marked points .T ;Q/ and an associated
moduli space PT ;Q – constructed as described in Section 3.1 – there is a natural
Gromov type topology on PT as well as a natural compactification xPT .

In short, the elements of xPT nPT are modeled on the tree T and the only modification
with respect to our definition in Section 3.1 concerns the points (a), (b), (c), at the end
of that section. Specifically, the product ….T / is replaced by its compactification

x….T /D
Y

v2vint.T /

SM.Œv�;J / ;

where SM.Œv�;J / is the Gromov compactification of M.Œv�;J / so that, for each internal
vertex v , the associated geometric object uv 2 SM.Œv�;J /. The points (a), (b), (c), are
then replaced by the following variants:

� For each internal edge e 2 e.T /, the points ue�.q�.e// and ueC.qC.e// are
related by a possibly broken flow line (possibly of 0–length) of 
 fe .

� For an entry edge, e , let xi be the critical point labeling the vertex e� . The point
xi is related to the point ueC.qC.e// by a possibly broken flow line (possibly
of 0–length) of 
 fe .
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� For the exit edge e so that the vertex eC is labeled by the critical point y of fe ,
the point ue�.q�.e// is related to y by a possibly broken flow line (possibly of
0–length) of 
 fe .

A remark is needed concerning the marked point selectors. The various marked points
which correspond to the same vertex in the configurations described above are again
required to be distinct and are given in the same way as that described in Section 3.2.
In particular, each time two (or more) such incidence points “merge” a ghost curve
needs to be introduced.

From now on we will only focus on F –colored trees that are of virtual dimension
ı.T /� 1 and, in view of our transversality results, we may assume that (17) is satisfied
so that P�T D PT (the role of the marked point selector is less crucial in this part and
we will omit it from the notation). Under this hypothesis, the first key remark is that
each element xu 2 xPT nPT contains exactly one configuration among the three types
below:

� a flow line broken exactly once,

� a vertex vxu 2 v.T / corresponding to a cusp curve with precisely two components
(which can be ghosts),

� a flow line of length 0.

The reason for this is that if more than a single such configuration occurs we can extract
from xu an object u0 2 PT 0 with ı.T 0/ < 0 which is impossible because such a moduli
space of negative virtual dimension is regular and thus void.

The second important remark is that the condition NL � 2 insures that no “lateral”
bubbling is possible. More explicitly, this means that if the element xu satisfies condi-
tion (ii), then the incidence points associated to the vertex vu are distributed among the
two components of the cusp curve so that not all of them are in just one component.
This happens because, otherwise, the component which does not carry any of these
incidence points can be omitted thus giving rise to an object u0 which belongs to a
moduli space of virtual dimension lower by at least NL than ı.PT / which again is
not possible.

The last step is to use the description of the compactification given above to verify the
various relations required to establish the theorem (as described at the points (a)–(g)
and (i) in Section 3.2). The technical ingredient for this verification is gluing. Gluing
procedures have already appeared for example in [33] and for full details we refer again
to [12]. This gluing procedure insures that, when ı.T /D 1, each element xu which is
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modeled on the tree T and which satisfies exactly one of the properties (i), (ii), (iii)
above actually belongs to xPT nPT and appears as a boundary element of xPT .

Finally, the verification of the relations mentioned involves in an essential way the fact
that our algebraic operations are defined by using ‚–admissible trees. The role of the
exit rule ‚ (as described at point (v) in Section 3.1) is as follows: for a tree T with
ı.T /D 1, if xu 2 @ xPT satisfies (ii) above, then, due to the fact that “lateral” bubbling
is not possible, xu is also an element of @ xPT 0 where T 0 is the tree obtained from T
by replacing the vertex vxu by two vertices (corresponding to the two components of
the cusp curve associated to vxu ) related by an edge of length 0 whose type is uniquely
determined by the exit rule. Moreover, by gluing, each xu 2 @ xPT satisfying (iii) is an
element in the boundary of a moduli space modeled on a tree obtained from T by
replacing the two vertices related by the edge of 0–length by a single vertex. Denote by
@1. xPT / the parts of the boundary of xPT formed by the points satisfying (i). and fix the
symbol .x1;x2; : : :xl W y/ of T . When summing over all trees (of virtual dimension 1)
and of fixed symbol we see that the configurations of types (ii) and (iii) cancel (as we
will see below, due to the presence of perturbations in some of our moduli spaces, an
additional argument is sometimes needed at this point) and so we deduceX

symb.T 0/D.x1;:::xl Wy/

# @1. xPT 0/D 0 :

The relations that need to be justified are then obtained by identifying each element
xu 2 @1.PT / of type (i) with precisely one element of the product PT1

�PT2
where

T1 and T2 are the two trees obtained as follows: first, introduce in T an additional
vertex zv on the edge which corresponds to the broken flow line and then let T1 , T2 be
the two (sub)-trees which have in common only the vertex zv and whose union gives T .

Clearly, in what concerns the comparison with Floer homology – point (g) in Section
3.2 – the argument above needs to be modified slightly. The required modification
is however obvious and we will not discuss it further. However, a more substantial
addition to the argument is needed in the case of the perturbations of type (15) which
were introduced in the moduli spaces needed to verify that the module action is a
chain map and to check some of the related associativity – as at points (c) and (f) in
Section 3.2. This happens in precisely two cases. The first – concerning the fact that
the module operation is a chain map – has to do with the identification of an element
xu 2 @1.PT / with an element of the product PT1

�PT2
. The problem here is that, by

the definition of the relevant 1–dimensional spaces at the end of (c) in Section 3.2 we
see that such a xu can be viewed as product of two configurations modeled on two trees
T1 and T2 but one of these configurations contains a vertex of valence three which
corresponds to a perturbed curve. At the same time both PT1

and PT2
are moduli
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spaces of virtual dimension 0 and so, following the definition of the module action and
the pearl differential, they do not contain perturbed curves.

The second case concerns the verification of the associativity type relations involving
the module action and it arises if the initial curve leading by bubbling to an element
xu 2 @ xPT is in fact a perturbed curve (satisfying (15)), and carrying 4 marked points,
two of which are interior points and each of the two components of the resulting cusp
curve carries one interior point. The problem in this case is that just one of the resulting
cusp curves satisfies the perturbed equation and the other one is a usual J –holomorphic
curve (the definition of the marked point selector in this case implies that the lower
component in the tree is the perturbed one) and this configuration xu does not actually
appear as an object of type (iii). The reason is that in the relevant moduli spaces all the
vertices of valence three correspond to perturbed curves and thus, the configurations of
type (iii) in this case contain a cusp curve with both components being perturbed.

The solution to these two issues turns out to be simple: a further analysis of the moduli
spaces involved in both cases shows that if the relevant perturbations are small enough
– which can be obviously assumed – then the two types of configurations which are
compared in each case are in bijection. This is proved by a cobordism argument which
is possible because both the perturbed and the unperturbed configurations are regular –
see again our paper [12] for more details.

4 Additional tools

In this section we introduce a number of additional tools which will be useful for the
proof of the main theorems and in related computations.

4.1 Minimal pearls

As before, we assume here that L� .M; !/ is monotone. Suppose that for some almost
complex structure J and Morse function f W L!R the pearl complex CC.LIf; �L;J /

is defined. It is clear that if f is a perfect Morse function, in the sense that the differential
of its Morse complex is trivial, then the pearl complex is most efficient for computations.
Clearly, not all manifolds admit perfect Morse functions. However, we will see that,
algebraically, we can always reduce the pearl complex to such a minimal form (a similar
construction in the cluster set-up has been sketched in [24]).

It is crucial to work here over a “positive” coefficient ring. We will use in this section
ƒC D Z2Œt �. In the algebraic considerations below the fact hat deg.t/��2 plays an
important role.
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Let G be a finite dimensional graded Z2 –vector space and let DD .G˝ƒC; d/ be
a chain complex with a differential d which is ƒC–linear – in other words D is a
ƒC–chain complex. For an element x 2G let d.x/Dd0.x/Cd1.x/t with d0.x/2G .
In other words d0 is obtained from d.x/ by treating t as a polynomial variable and
putting t D 0. Clearly d0W G ! G , d2

0
D 0. Similarly, for a chain morphism �

we denote by �0 the d0 –chain morphism obtained by making t D 0. Let H be the
homology of the complex .G; d0/. We refer to this homology as d0 –homology in
contrast to d –homology which is denoted by H�.D/.

Proposition 4.1.1 With the notation above there exists a chain complex

Dmin D .H˝ƒC; ı/; with ı0 D 0

and chain maps �W D!Dmin ,  W Dmin!D so that: � ı D id, �0 and  0 induce
isomorphisms in d0 –homology and � and  induce isomorphisms in d –homology.
Moreover, the properties above characterize Dmin up to (a generally noncanonical)
isomorphism.

Concerning the uniqueness part of the statement see also Section 4.1.1.

Here is an important consequence of Proposition 4.1.1:

Corollary 4.1.2 There exists a complex CCmin.L/D .H�.LIZ2/˝ƒ
C; ı/, with ı0D0

and so that, for any .L; f; �;J / such that CC.LIf; �;J / is defined, there are chain
morphisms �W CC.LIf; �;J /! CCmin.L/ and  W CCmin.L/! CC.LIf; �;J / which
both induce isomorphisms in quantum homology as well as in Morse homology and
satisfy � ı  D id. The complex CCmin.L/ with these properties is unique up to (a
generally noncanonical) isomorphism.

We call the complex provided by this corollary the minimal pearl complex and the
maps � ,  the structure maps associated to CC.LIf; �;J / (or shorter, to f ). This
terminology originates in rational homotopy where a somewhat similar notion is central.
There is a slight abuse in this notation as, while any two complexes as provided by
the corollary are isomorphic this isomorphism is not canonical. Obviously, in case a
perfect Morse function exists on L any pearl complex associated to such a function is
already minimal. As mentioned before, in the arguments below it is essential that the
differential and morphisms are defined over ƒC (but the same constructions also work
over zƒC ; see Section 2.1.2 for the various Novikov rings available). In case we need
to work over ƒ we define Cmin.L/D CCmin.L/˝ƒC ƒ.
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Remark 4.1.3 (a) An important consequence of the existence of the chain morphisms
� and  is that all the algebraic structures described before (product, module structure
etc.) can be transported and computed on the minimal complex. For example, the
product is the composition

(19) CCmin.L/˝ C
C
min.L/

 1˝ 2
�����! CC.LIf1; �;J /˝ CC.LIf2; �;J /

�
! CC.LIf3; �;J /

�3
�! CCmin.L/

where  i ; �i are the structure maps given by Corollary 4.1.2 and which correspond to
the complexes associated to fi . There is a cycle in CCmin.L/ equal to �.P / where P

is the maximum of any Morse function f so that CC.LIf; �;J / is defined and so that
f has a single maximum;  ; � are the associated structure maps. By degree reasons in
dimension nD dim.L/ we have � D �0 and  D  0 and so this cycle is independent
of the choice of f and of that of the associated structure maps and it coincides with
ŒL�˝ 1 where ŒL� is the fundamental class of L. By a slight abuse of notation we
will continue to denote by ŒL� both the cycle �.P / as well as its quantum homology
class. In homology, the product defined by (19) has as unity the fundamental class ŒL�.
Moreover, with the simplified description of the quantum product given in (13) – where
f2 D f3 we obtain a product so that ŒL� is the unity at the chain level. It also follows
from the fact that �0;  0 induce isomorphisms in Morse homology that the “minimal”
product described above is a deformation of the intersection product.

(b) A consequence of point (a) is that HF.L/ Š QH.L/ D 0 if and only if there
is some x 2 CCmin.L/ D H.LIZ2/˝ƒ

C so that ıx D ŒL� tk . Indeed, suppose that
QH.L/D 0. Then, as for degree reasons ŒL� is a cycle in Cmin.L/, we obtain that it
has to be also a boundary. This means that there exists a 2 Cmin.L/ so that ıaD ŒL�.
Multiplying a by a large enough positive power k of t gives an element x D atk

which now lies in CCmin.L/ and such that ıx D ŒL� tk . Conversely, if ıx D ŒL�tk then
ŒL� is a boundary in Cmin.L/. On the other hand the cycle ŒL�2 Cmin.L/ represents the
unity for the product on H�.Cmin.L//Š QH�.L/ just mentioned at point (a) above.
Thus the unity is 0, hence QH.L/D 0.

(c) It is also useful to note that there is an isomorphism QH.L/ŠH.LIZ2/˝ƒ if
and only if the differential ı in Cmin.L/ is identically zero.

We now proceed to the proof of the Proposition and of its Corollary.

Proof of Proposition 4.1.1 We start with a useful algebraic property.
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Lemma 4.1.4 Let D0 D .G0˝ƒC; d 0/ and D00 D .G00˝ƒC; d 00/ be two ƒC–chain
complexes. If a chain morphism �W D0!D00 which is ƒC–linear is so that �0 induces
an isomorphism in d0 –homology, then � induces an isomorphism in d –homology.

Proof Recall that the filtration FkƒC D tkƒC induces a filtration, called the degree
filtration, on any free ƒC - module. The resulting spectral sequence induced on any
ƒC–chain complex is called the degree spectral sequence. Clearly, � respects the
degree filtration and thus it induces a morphism relating the degree spectral sequences
of D0 and D00 . We notice that E1.�/ is identified with the morphism induced by �0 in
d0 –homology. Therefore, this is an isomorphism. As we work over a field (specifically
Z2 ) this implies that H�.�/ is an isomorphism.

Remark 4.1.5 (a) Under the assumptions in Lemma 4.1.4, the same spectral sequence
argument also shows that the chain morphism

�˝ idƒW D0˝ƒC ƒ!D00˝ƒC ƒ

induces an isomorphism in homology.

(b) Let G0 , G00 be finite dimensional, graded Z2 –vector spaces. We claim that a
ƒC–linear morphism

�W G0˝ƒC!G00˝ƒC

is an isomorphism if and only if �0 is an isomorphism. Indeed, any such � can
be viewed as a morphism of chain complexes by assuming that the differentials in
the domain and target are trivial. We deduce from Lemma 4.1.4 that, if �0 is an
isomorphism, then � is an isomorphism. Conversely, if � is an isomorphism, then
t�W t.G0˝ƒC/! t.G00˝ƒC/ is an isomorphism. As �0 is identified with the quotient
morphism

G0˝ƒC

t.G0˝ƒC/
!

G00˝ƒC

t.G00˝ƒC/

induced by � , it follows that �0 is an isomorphism.

We now return to the proof of Proposition 4.1.1. Start by choosing a basis for the
complex .G; d0/ as follows: G D Z2hxi W i 2 Ii˚Z2hyj W j 2 J i˚Z2hy

0
j W j 2 J i

so that d0xi D 0, d0.yj / D 0, d0y0j D yj , 8j 2 J . For further use, we denote
BX D fxi W i 2 Ig, BY D fyj W j 2 J g, BY 0 D fy

0
j W j 2 J g.

Clearly, HŠ Z2hxii and we will identify further these two vector spaces and denote
DminDZ2hzxii˝ƒ

C where zxi ; i 2 I are of the same degree as the xi ’s (the differential
on Dmin remains to be defined). We will construct � and  and ı so that �0.xi/D zxi ,
�0.yj /D �0.y

0
j /D 0,  0.zxi/D xi and ı0D 0. If  0 and �0 satisfy these properties,
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then, they induce an isomorphism in d0 –homology and, by Lemma 4.1.4,  and �
induce isomorphisms in d –homology.

The construction is by induction. We fix the following notation: Dk DZ2hxi ; y0j ; yj W

jxi j � k; jy0j j � ki˝ƒC . Similarly, we put Dk
min D Z2hzxi W jxi j � ki˝ƒC . Notice

that there are some generators in Dk which are of degree k � 1, namely the yj ’s
of that degree. With this notation we also see that Dk is a subchain complex of D
(because dy0i D d1.y

0
i/t and so jd1.y

0
i/j � jy

0
i j C 1, the same type of relation holds

for xi and for yi we have dyi D y0iCd1.yi/t ). Assume that n is the maximal degree
of the generators in G . For the generators of Dn we let � be equal to �0 , we put
ıD 0 on Dn

min and we also let  D 0 on Dn
min . To see that �W Dn!Dn

min is a chain
morphism with these definitions it suffices to remark that if y 2BY , jyj D n�1 , then
y D d0y0 D dy0 and so dy D 0.

We now assume �; ı;  defined on Dn�sC1 , Dn�sC1
min so that �; are chain morphisms,

they induce isomorphisms in homology and � ı D id. We intend to extend these
maps to Dn�s , Dn�s

min . We first define � on the generators x 2 BX , y0 2 BY 0 which
are of degree n � s : �.x/ D zx , �.y0/ D 0. We let ı.zx/ D �n�sC1.dx/ (when
needed, we use the superscript .�/n�sC1 to indicate the maps previously constructed
by induction). Here it is important to note that, as d0xD 0, we have that dx 2Dn�sC1 .
We consider now the generators y 2BY \Dn�s which are of degree n� s�1 and we
put �.y/D �n�sC1.y�dy0/. This makes sense because y�dy0 2Dn�sC1 . We write
dy0 D yCy00 and we first see �.dy0/D 0D ı.�.y0// so that, to make sure that �n�s

is a chain morphism with these definitions, it remains to check that ı�.y/D �.dy/ for
all y 2BY of degree n�s�1. But ı�.y/D�ı�n�sC1.y00/ and as �n�sC1 is a chain
morphism, we have ı�n�sC1.y00/D �n�sC1d.y00/ which implies our identity because
dy00C dy D d2y0 D 0. Clearly, �n�s

0
induces an isomorphism in d0 –homology and

hence in d –homology too.

To conclude our induction step it remains to construct the map  on the generators
zx of degree n� s . We now consider the difference dx � n�sC1.ızx/ and we want
to show that there exists � 2 Dn�sC1 so that d� D dx �  n�sC1.ızx/ and � 2

ker.�n�sC1/. Assuming the existence of this � we will put  .zx/ D x � � and we
see that  is a chain map and � ı D id. To see that such a � exists remark that
wDdx� n�sC1.ızx/2Dn�sC1 and dwD�d. n�sC1.ızx//D� n�sC1.ııızx/D0

(because  n�sC1 is a chain map). Moreover, �.w/D �n�sC1.dx/� ızx D 0 because
�n�sC1 ı  n�sC1 D id. Therefore w is a cycle belonging to ker.�n�sC1/. But
�n�sC1 is a chain morphism which induces an isomorphism in homology and which
is surjective. Therefore H�.ker.�n�sC1//D 0. Thus there exists � 2 ker.�n�sC1/ so
that d� D w and this concludes the induction step.
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This construction concludes the first part of the statement and to finish the proof of the
proposition we only need to prove the uniqueness result. For this, suppose �0W D!D0
and  0W D0!D are chain morphisms so that �0 ı 0 D id with D0 D .H ˝ƒC; ı0/,
ı0

0
D0 and H some graded, Z2 –vector space and �0 ,  0 , �0

0
,  0

0
induce isomorphisms

in the respective homologies. We want to show that there exists a chain map cW Dmin!

D0 so that c is an isomorphism. To this end we define c.u/ D �0 ı  .u/, for all
u 2 Dmin . Now H�.�0/ and H�.�

0
0
/, H�. 0/, H�. 

0
0
/ are all isomorphisms (in

d0 –homology). So H.c0/ is an isomorphism but as ı0 D 0D ı0
0

we deduce that c0 is
an isomorphism. By Remark 4.1.5 (b), the map c is an isomorphism.

Proof of Corollary 4.1.2 Fix a triple f 0; �0;J 0 and assume that CC.LIf 0; �0;J 0/

is defined. Apply Proposition 4.1.1 to this complex. Denote by .CCmin; �;  / the resulting
minimal complex and the chain morphisms as in the statement of Proposition 4.1.1.
The only part of the statement which remains to be proved is that given a different set of
data .f 0; �0;J 0/ so that CC.LIf 0; �0;J 0/ is defined, there are appropriate morphisms
�0;  0 as in the statement. There are comparison morphisms: hW CC.LIf 0; �0;J 0/!
CC.LIf 0; �0;J 0/ as well as h0W CC.LIf 0; �0;J 0/ ! CC.LIf 0; �0;J 0/ so that,
by construction, both h and h0 are inverse in homology and both induce isomor-
phisms in Morse homology (and these two isomorphisms are also inverse). Define
�0W CC.LIf 0; �0;J 0/ ! CCmin ,  00W CCmin ! CC.LIf 0; �0;J 0/ by �0 D � ı h and
 00 D h0 ı . It is clear that �0 ,  00 , �0

0
and  00

0
induce isomorphisms in homology.

Moreover, as h0 and h0
0

are inverse in homology and ı0 D 0 in CCmin it follows that
�0

0
ı 00

0
D id. This means by Lemma 4.1.4 that v D �0 ı 00 is a chain isomorphism

so that v0 is the identity. We now put  0 D  00 ı v�1 and this satisfies all the needed
properties. The uniqueness of CCmin.L/ now follows from the uniqueness part in
Proposition 4.1.1.

4.1.1 Further remarks on minimal models While the minimal complex Dmin as-
sociated to ƒC–complex D is unique (up to isomorphism), this is not the case for the
structural maps � and  . For these maps we expect uniqueness in a weaker sense
such as uniqueness up to chain homotopy, however we will not pursue this direction
here. On the other hand, we will use minimal models in Section 5 quite frequently. In
fact, in Section 5 we will have to use the specific choice of the morphisms � ,  (as
well as �0 ,  0 ) that is constructed in the proof of Proposition 4.1.1. It seems plausible
that this can be avoided by axiomatizing more the theory of minimal models, but we
will not do this here since we view the minimal model as a purely computational tool.
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4.2 Geometric criterion for the vanishing of QH.L/

Let L� .M; !/ be a monotone Lagrangian submanifold. Remark 4.1.3 (b) provides a
criterion for the vanishing of QH.L/. We provide here a more geometric such criterion
which is useful when NL D 2 which we will assume in this section.

Let @W H2.M;LIZ/! H1.LIZ/ denote the boundary homomorphism and denote
by @Z2

W H2.M;LIZ/!H1.LIZ2/ the composition of @ with the reduction mod 2,
H1.LIZ/ ! H1.LIZ2/. Given A 2 H D

2
.M;L/ and J 2 J .M; !/ consider the

evaluation map

evA;J W .M.A;J /� @D/=G �!L; evA;J .u;p/D u.p/;

where G D Aut.D/Š PSL.2;R/ is the group of biholomorphisms of the disk.

For every J 2 J .M; !/ let E2.J / be the set of all classes A 2 H D
2
.M;L/ with

�.A/ D 2 for which there exist J –holomorphic disks with boundary on L in the
class A:

E2.J /D fA 2H D
2 .M;L/ j �.A/D 2; M.A;J /¤∅g:

E2 D

\
J2J .M;!/

E2.J /:Define:

Standard arguments show that:

(1) E2.J / is a finite set for every J .

(2) There exists a second category subset Jreg � J .M; !/ such that for every
J 2 Jreg , E2.J / D E2 . In other words, for generic J , E2.J / is independent
of J .

(3) For every J 2 J and every A 2 E2.J / the space M.A;J / is compact and all
disks u 2M.A;J / are simple.

(4) For J 2 Jreg and A 2 E2 , the space .M.A;J /� @D/=G is a compact smooth
manifold without boundary. Its dimension is nDdim L. In particular, for generic
x 2L, the number of J –holomorphic disks u 2M.A;J / with u.@D/ 3 x is
finite.

(5) For every A 2 E2 and J0;J1 2 Jreg the manifolds .M.A;J0/� @D/=G and
.M.A;J1/� @D/=G are cobordant via a compact cobordism. Moreover, the
evaluation maps evA;J0

, evA;J1
extend to this cobordism, hence degZ2

evA;J0
D

degZ2
evA;J1

. In other words degZ2
evA;J depends only on A 2 E2 .

(6) In fact, the set Jreg above can be taken to be the set of all J 2 J .M; !/ which
are regular for all classes A 2H D

2
.M;L/ in the sense that the linearization of

the x@J operator is surjective at every u 2M.A;J /.
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Let J 2 Jreg and let x 2 L be a generic point. Define a one dimensional Z2 –cycle
ıx.J / to be the sum of the boundaries of all J –holomorphic disks with �D 2 whose
boundaries pass through x . Of course, if a disk meets x along its boundary several
times we take its boundary in the sum with appropriate multiplicity. Thus the precise
definition is

(20) ıx.J /D
X

A2E2

X
.u;p/2ev�1

A;J
.x/

u.@D/:

By the preceding discussion the homology class D1 D Œıx.J /� 2H1.LIZ2/ is inde-
pendent of J and x . In fact

(21) D1 D

X
A2E2

.degZ2
evA;J /@Z2

A:

Proposition 4.2.1 Let L � .M; !/ be a monotone Lagrangian submanifold with
NL D 2. If D1 ¤ 0 then QH�.L/D 0.

Proof Choose a generic J 2 J .M; !/. Let f W L!R be a generic Morse function
with precisely one local maximum at a point x 2 L and fix a generic Riemannian
metric on L. Denote by .CM�.f /; @0/, .C�.f;J /; d/ the Morse and pearl complexes
associated to f , J and the chosen Riemannian metric. As discussed in Section 3.2 (b),
x is a cycle in the pearl complex of f and its quantum homology class is the unity.

For degree reasons the restriction of d to CMn�1.f / � Cn�1.f;J / is given by
d D @0C @1t , where @1W CMn�1.f /! CMn.f /D Z2x counts pearly trajectories
with holomorphic disks of Maslov index 2. Since x is a maximum of f , no �rf
trajectories can enter x (ie W s

x .f /D fxg). Therefore for every y 2 Critn�1.f / we
have

(22) @1y D #Z2

�
W u

y .f /\ ıx.J /
�
x:

Assume now that D1 ¤ 0. By Poincaré duality there exists an .n� 1/–dimensional
cycle C in L such that

#Z2
C \ ıx.J /¤ 0:

Let z 2 CMn�1.f / be a @0 –cycle representing ŒC � 2Hn�1.LIZ2/. Then

d.z/D @1.z/t D #Z2

�
W u

z .f /\ ıx.J /
�
xt D #Z2

�
C \ ıx.J /

�
xt D axt

for some nonzero scalar a. (Of course, a ¤ 0 is the same as a D 1 here, since we
work over Z2 . However we wrote ax to emphasize that the argument works over
every field.) It follows that Œx�D 0 2 QHn.L/. But, as Œx� is the unity of QH�.L/,
we deduce QH�.L/D 0.
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4.3 Action of the symplectomorphism group

We now describe a property of our machinery which is very useful in computations
when symmetry is present. In this section R is any of the rings described in Section
2.1.2.

Proposition 4.3.1 Let �W L!L be a diffeomorphism which is the restriction to L

of an ambient symplectic diffeomorphism x� of M . Let f; �;J be so that the pearl
complex C.LIRIf; �;J / is defined. There exists a chain map

z�W C.LIRIf; �;J /! C.LIRIf; �;J /

which respects the degree filtration, induces an isomorphism in homology, and so that
the morphism E1.z�/ induced by z� at the E1 level of the degree spectral sequence
coincides with H�.�/˝ idƒC (where H�.�/ is the isomorphism induced by � on
singular homology). The map x�! z� induces a representation

xhW Symp.M;L/! Aut.QH�.LIR//

where Aut.QH�.LIR// are the ring automorphisms of QH�.LIR/ preserving the
augmentation and Symp.M;L/ are the symplectomorphisms of M which keep L

invariant. The restriction of xh to Symp0.M / \ Symp.M;L/ takes values in the
automorphisms of QH.LIR/ as an algebra over QH.M IR/ (here Symp0.M / is the
component of the identity in Symp.M /).

Proof To ease notation, we omit the ring R in the writing of the pearl complexes
below.

Assume that �W L ! L is a diffeomorphism which is the restriction to L of the
symplectomorphism x� and f; �;J are such that the chain complex C.LIf; �;J / is
defined. Let f � D f ı��1 . There exists a basis preserving isomorphism

h� W C.LIf; �;J /! C.LIf � ; ��;J�/

induced by x!�.x/ for all x2Crit.f / where ��;J� are obtained by the pushforward
of �;J by means of � and the symplectomorphism x� . The isomorphism h� acts in
fact as an identification of the two complexes.

Next, there is also the standard comparison chain morphism, canonical up to chain
homotopy

cW C.LIf � ; ��;J�/! C.LIf; �;J / :
We now consider the composition z� D c ı h� . It is clear that this map induces an
isomorphism in homology and that it preserves the ring structure and the augmentation
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(as each of its factors does so). We now inspect the Morse theoretic analogue of these
morphisms – in the sense that we consider instead of the complexes C.LIf;�;�/ the
respective Morse complexes C.f;�/. It is easy to see that the Morse theoretic version
of z� induces in Morse homology precisely H�.�/. But this means that at the E1 stage
of the degree filtration the morphism induced by z� has the form H�.�/˝ idR .

We now denote k D xh.x�/ and we need to verify that for any two elements x�; x 2
Symp.M;L/ we have xh.x� ı x /D xh.�/ı xh. /. It is easy to see that this is implied by
the commutativity of the diagram

C.LIf 0/ h� //

c

��

C.LI .f 0/�/

c0

��
C.LIf /

h�
// C.L; f �/

for any two Morse function f and f 0 so that the respective complexes are defined. To
verify this commutativity, first we use some homotopy H , joining f to f 0 , to provide
the comparison morphism c and we then use the homotopy H ı��1 to define c0 .

Finally, recall that the module structure of QH.L/ over QH.M / is defined by using
an additional Morse function F W M !R. If we put F

x� D F ı x��1 we see easily that
the external operations defined by using f;F; �;J and f � ;F x� ; ��;J� are identified
one to the other via the application h� (extended in the obvious way to the critical
points of F ). There is a usual comparison map xc relating the Morse complex of F

x� to
that of F . Together with c the map xc identifies – in homology – the external product
associated to f � ;F x� ; ��;J� and the external product associated to f;F; �;J . At the
level of the quantum homology of M the composition xc ı h� induces H�.x�/˝ idR .
Therefore, if x� 2 Symp0.M /, it follows that this last map is the identity and proves
the claim.

Remark 4.3.2 It results from the proof above that for xh.�/ to be an algebra automor-
phism it is sufficient that x� induce the identity at the level of the singular homology
of M , eg when � is homotopic to the identity.

4.4 Duality

We start by fixing some algebraic notation and conventions. Let R be a commutative
zƒC algebra. Suppose that .C; @/ is a free R–chain complex. Thus C DG˝R with
G some graded Z2 –vector space. We let

Cˇ D homR.C;R/
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graded so that the degree of a morphism gW C!R is k if g takes Cl to RlCk for
all l .

Let C0 D homZ2
.G;Z2/˝R be graded such that if x is a basis element of G , then

its dual x� 2 C0 has degree jx�j D �jxj. There is an obvious degree preserving
isomorphism  W Cˇ! C0 defined by  .f /D

P
i f .gi/g

�
i where .gi/ is a basis of

G and .g�i / is the dual basis. We define the differential of Cˇ , @� , as the adjoint of @:

h@�f;xi D hf; @xi ; 8x 2 C; f 2 Cˇ :

Clearly, Cˇ continues to be a chain complex (and not a co-chain complex).

An additional algebraic notion will be useful: the co-chain complex C� associated
to C . To define it, for a graded Z2 –vector space V let V inv be the graded vector space
obtained by reversing the degree of the elements in V : if v 2 V inv , then its degree is
jvj D � degV .v/. Clearly, .V ˝W /inv D V inv˝W inv .

For the complex C as above we let C� D .Cˇ/inv D homZ2
.G;Z2/

inv ˝Rinv . The
complex C� is obviously a co-chain complex and its differential is a Rinv –module
map. The cohomology of C is then defined as H k.C/DH k.C�/. Obviously, there is
a canonical isomorphism: H�k.Cˇ/ŠH k.C�/.

A particular case of interest here is when C D C.LIRIf; �;J /. In this case we denote

QHk.LIR/DH k.C.LIRIf; �;J /�/ :

Notice that the chain morphisms �W C! Cˇ of degree �n are in 1–1 correspondence
with the chain morphisms of degree �n:

z�W C˝R C!R

via the formula z�.x ˝ y/ D �.x/.y/. Here the ring R on the right hand-side is
considered as a chain complex with trivial differential.

For n 2 Z and any chain complex C as before we let snC be its n–fold suspension.
This is a chain complex which coincides with C but it is graded so that the degree of x

in snC is nC the degree of x in C . A particular useful case where both duality and
suspension appear is in the following sequence of obvious isomorphisms: Hk.s

nCˇ/Š
Hk�n.Cˇ/ŠH n�k.C�/.

Proposition 4.4.1 Let n D dim.L/. There exists a degree preserving morphism of
chain complexes

�W C.LIRIf; �;J /! sn.C.LIRIf; �;J /ˇ/
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which is a morphism of R–modules and induces an isomorphism in homology. In par-
ticular, we have an isomorphism: �W QHk.LIR/!QHn�k.LIR/. The corresponding
(degree �n) bilinear map

H.z�W QH.LIR/˝R QH.LIR/!R

coincides with the product described at point (ii) of Theorem A composed with the
augmentation �L . When R D ƒ the pairing H.z�/ is nondegenerate. Moreover, for
any k 2 Z the induced pairing

H.z�/0W QHk.L/˝Z2
QHn�k.L/!ƒ0 D Z2

is nondegenerate.

Proof of Proposition 4.4.1 For any two pearl complexes C.LIRIf; �L;J / and
C.LIRIf 0; �0

L
;J 0/ the construction at point Section 3.2 (e). provides a comparison

chain morphism relating them. There is an alternative way to construct a comparison
map

�f;f
0

W C.LIRIf; �L;J /! C.LIRIf 0; �L;J
0/

in case f and f 0 are in general position (and, to simplify the argument below, we use
the same Riemannian metric �L for both f and f 0 ). In homology, this induces the
same morphism as the one provided by the map �F;z�L; zJ constructed at point (e) in
Section 3.2. This alternative comparison map is useful in the understanding of duality.
The definition of this map is

�f;f
0

.x/D
X
T 0

#.PT 0/yt�ŒT
0�=NL

where the sum is taken over all the trees T 0 of symbol .x Wy/, x2Crit.f /, y 2Crit.f 0/
and jxj � jyj C �.ŒT 0�/ D 0. We put in this case f1 D f and f2 D f

0 . The exit
rule – point (v) in Section 3.1 A – needs to be slightly modified for these trees: in the
tree T 0 there is one special vertex v0 so that for all vertices above it the exit rule is
‚.f1/D f1 , for all the vertices below it the exit rule is ‚.f2/D f2 and at v0 the exit
rule is ‚.f1/D f2 . Condition (iv) in Section 3.1 A is also slightly modified in the
sense that the vertex v0 is allowed to satisfy !.Œv0�/D 0. The marked point selector is
as at point Section 3.2 (a). The duality map

�W C.LIRIf; �;J /! sn.C.LIRIf; �;J /ˇ/

is defined as the composition �D �0
f
ı�F;�L;J where the map �0

f
is the canonical iden-

tification of chain complexes obtained by “reversing” the flow �0
f
W C.LIRI �f; �;J /!

sn.C.LIRIf; �;J /ˇ/ (sending each critical point x 2Critk.�f / to x 2Critn�k.f /)
and the map �F;�L;J is the comparison map associated to a Morse homotopy F
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between f and �f . To prove the identity H.z�/D �L.���/, let f 0 be another Morse
function in generic position with f . In homology �� D �G;�L;J

� ı .�0
f 0
/� ı�

F 0;�L;J
�

where F 0 is a Morse homotopy from f to �f 0 and G is a Morse homotopy from
f 0 to f . Thus we also have �� D �G;�L;J

� ı .�0
f 0
/� ı�

f;�f 0

� . The relation we want to
justify follows by comparing the moduli spaces associated to the trees T 0 of symbol
.x W y/ with x 2 Crit.f /, y 2 Crit.�f 0/ used in the definition of �f;�f

0

and the
moduli spaces associated to trees T of symbol .x;y W m/ (with f D f1 , f 0 D f2 )
where x 2 Crit.f /, y 2 Crit.f 0/, m 2 Crit0.f3/ used in the definition of the product
��� at the point (b) in Section 3.2. Here m is the unique minimum of the function f3 .
Indeed it is immediate to see that the 0–dimensional such moduli spaces are in bijection
and this implies the claimed identity.

It remains to prove that the pairing H.z�/0 (and thus H.z�/) is nondegenerate when
RDƒ. From now on we put RDƒ and omit it from the notation.

Let C be a finite rank free ƒ–chain complex (eg C D C.LIf; �;J /). Consider the
following pairing:

(23) ‚W Hk.C/˝H�k.Cˇ/!ƒ0 D Z2;

which is defined as follows. Given two classes a 2 Hk.C/, g 2 H�k.Cˇ/ choose
cycles representing them, aD Œ˛�, g D Œ'�, and define ‚.a˝g/D '.˛/. It is easy to
see that ‚ is well defined. We will prove below the following.

Lemma 4.4.2 The pairing ‚ is nondegenerate.

Note that in view of the canonical isomorphisms QH�.L/ŠH��n.C.LIf; �;J /ˇ/
the nondegeneracy of ‚ (for C D C.LIf; �;J /) implies that H.z�/0 is nondegenerate.

We now proceed to prove Lemma 4.4.2. Given l 2 Z denote by .homƒ.H.C/;ƒ//l
the space of ƒ–linear morphisms hW H.C/!ƒ that have degree l . Consider now the
following canonical map:

�W Hl.Cˇ/! .homƒ.H.C/;ƒ//l ;

defined as follows. Given g 2Hl.Cˇ/, choose a cycle ' 2 Cˇ
l
D .homƒ.C; ƒ//l that

represents g . Clearly, ' descends to a map H�.C/! ƒ�Cl which we define to be
�.g/. It is easy to see that the map � is well defined. Note also that we have

‚.a˝g/D �.g/.a/; 8a 2Hk.C/;g 2H�k.Cˇ/:

Lemma 4.4.3 Let C be as above. Then for every l 2 Z the map � is an isomorphism.
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Before proving this lemma let us see how it implies the nondegeneracy of ‚ (hence
that of H.z�/0 ).

Proof that ‚ is nondegenerate Let 0 ¤ a 2 Hk.C/. Choose a homomorphism
�k W Hk.C/! ƒ0 D Z2 with �k.a/¤ 0. Extend �k to a ƒ–linear homomorphism
�W H�.C/! ƒ��k (this extension can be done by linearity over ƒ in degrees � D
kC qNL and by 0 in all other degrees). Clearly ‚.a˝ ��1.�//D �.a/¤ 0.

Assume now that 0 ¤ g 2 H�k.Cˇ/. Then �.g/W H�.C/ ! ƒ��k is a nontrivial
homomorphism. This means that there exists j 2Z and b 2Hj .C/ such that �.g/.b/¤
0. As �.g/.b/ 2 ƒj�k it follows that NL j .j � k/. Put a D t .j�k/=NLb 2 Hk.C/.
Clearly �.g/.a/¤ 0, which implies that ‚.a˝g/¤ 0. This concludes the proof of
the nondegeneracy of ‚, modulo the proof of Lemma 4.4.3.

To prove Lemma 4.4.3 we need some more preparation. Let R be a commutative
graded ring and M a graded R–module. Denote by �i W M !Mi the projection on
the i –th component of M . Let N �M be a submodule. We say that N is a graded
submodule if for every x 2N we have �i.x/ 2N for every i 2 Z. In that case the
grading of M induces a grading on N and N becomes a graded R–module by itself.
Note that not every submodule of a graded module is graded. However:

Lemma 4.4.4 (i) A submodule N �M is a graded submodule if and only if it
is generated (over R) by a collection fxsgs2S of homogeneous elements. In
particular, if N1;N2 �M are graded submodules then so is N1CN2 .

(ii) Let R D ƒ. Let M be a free finite rank graded ƒ–module and N � M a
graded submodule. Then there exists a graded submodule Q �M which is a
complement of N , ie N ˚QDM .

Proof The proof of statement (i) is straightforward, so we omit it.

We prove (ii). Choose a homogeneous element x1 2 M nN (if there are no such
elements clearly N DM ). Put Q.1/ Dƒx1 . We claim that N \Q.1/ D 0. Indeed,
assume that 0¤ �x1 2N for some � 2ƒ. As x1 is homogeneous and N is a graded
submodule, all the homogeneous components of �x1 must lie in N . In particular
there exists r 2 Z such that tr x1 2N . As tr is invertible it follows that x1 2N . A
contradiction.

We now continue the same construction inductively, namely we choose a homogeneous
element x2 2M n .N CQ.1//. We claim that ƒx2\ .N CQ.1//D 0. The argument
is similar to the preceding one (for N \ƒx1 D 0). The point is that N CQ.1/ is a
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graded submodule. Put Q.2/ DQ.1/Cƒx2 . Clearly we have N \Q.2/ D 0. Note
also that Q.2/ and N CQ.2/ are both graded submodules of M .

Continuing this inductive construction we obtain, after a finite number of steps � , the
desired complement QDQ.�/ which satisfies N ˚QDM . It is important here that
M is free of finite rank and that ƒ is a PID. These two conditions assure that every
submodule of M is also free with rank � the rank of M . In particular the process of
defining Q concludes in a finite number of steps.

Remark 4.4.5 We remark that the statement at point (ii) does not seem to hold if we
replace ƒ by more general graded rings R. In order for the proof above to work we
need that every nontrivial element in each Rj (8 j 2 Z) is invertible. This obviously
holds for RDƒ, but not for RDƒC for example.

Coming back to a finite rank free ƒ–chain complex .C; d/, denote by Z D ker d � C
the cycles and by B D d.C/� C the boundaries. Note that both Z and B are graded
ƒ–submodules of C . The following Lemma is an immediate consequence of Lemma
4.4.4 (ii).

Lemma 4.4.6 There exist graded ƒ–submodules E � C and Z0 � Z such that Z

and C split as direct sums of graded ƒ–modules:

Z DZ0˚ d.E/; C DZ0˚ d.E/˚E:

In particular, the restriction of d to E , dE D d jE W E! d.E/ is an isomorphism and
d.E/D B . Moreover, E˚ d.E/ is an acyclic complex and H�.C/ŠZ0� .

This decomposition is of course not canonical.

Proof of Lemma 4.4.3 We first show that � is injective. Suppose that �.g/ D 0.
Choose a cycle 'W C�!ƒ�Cl representing g . As �.g/D0 we have 'jZ 0D0 and since
' is a cycle we also have 'jd.E/ D 0. Define  W C�!ƒ�ClC1 by  jZ 0 D  jE D 0

and  jd.E/D ' ıd�1
E

. Clearly we have  ıd D ' which means that ' is a boundary,
hence g D Œ'�D 0. This shows that � is injective.

It remains to show that � is surjective. Let 'W H�.C/ ! ƒ�Cl be an element in
.homƒ.H.C/;ƒ//l . View ' as 'W Z0�!ƒ�Cl . Extend ' by 0 to Z0˚ d.E/˚E .
Call this extension '0 . Clearly '0 is a cycle in Cˇ

l
and �Œ'0�D ' . This concludes the

proof of Lemma 4.4.3 as well as that of Proposition 4.4.1.
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Remark 4.4.7 (a) The relation between the duality above and Poincaré duality is as
follows: in case C.�/ in the statement is replaced with the Morse complex C.f / of
some Morse function f W L!R (and we take RDZ2 ) we may define the morphism
�W C.f /! sn.C.f /ˇ/ as a composition of two morphisms with the first being the
usual comparison morphism C.f /! C.�f / and the second C.�f /! sn.C.f /ˇ/

given by Crit.f / 3 x ! x� 2 homZ2
.C.f /;Z2/

inv . We have the identifications
Hk.s

n.C.f /ˇ// D Hk�n.C.f /
ˇ/ D H n�k.C.f // and the morphism � described

above induces in homology the Poincaré duality map: Hk.L/!H n�k.L/.

(b) Proposition 4.4.1 also shows that QH.L/ together with the bilinear map �L.�ı�/
is a Frobenius algebra, though not necessarily commutative.

(c) The quantum inclusion, iL , the duality map, �, and the Lagrangian quantum
product determine the module structure by the following formula (which extends (6)):

(24) hh; iL.x ıy/i D �.y/.PD.h/~ x/

for h2H�.M IZ2/, x;y2QH�.LIR/. Here �.y/2H�.s
n.homR.C.LIRIf /;R///

so that it can be evaluated on QH�.LIR/. As in formula (6), the pairing on the left
side is the R–linear extension of the standard Kronecker pairing.

4.5 Wide Lagrangians and identifications with singular homology

Let L � .M; !/ be a monotone wide Lagrangian. This means that there exists an
isomorphism QH�.L/ Š .H.LIZ2/˝ƒ/� . However, in general there is no such
canonical isomorphism!

To explain this better, denote by F D .f; �/ pairs of Morse data. For any two pairs
F D .f; �/ and F 0 D .f 0; �0/ and any two choices of almost complex structures J

and J 0 denote by ‰.F0;J0/;.F;J/W H�.C.LIF ;J //! H�.C.LIF 0;J 0// the canonical
isomorphism between the pearl homologies (as described at point (e) in Section 3.2).
Denote by ‰Morse

F0;F W H�.F/!H�.F 0/ the canonical isomorphism between the Morse
homologies associated to F and F 0 . From this point of view, H�.LIZ2/˝ƒ is
identified with the family of homologies H�.F/˝ƒ related by the canonical isomor-
phisms mentioned above. Similarly, the quantum homology QH�.L/ is identified with
the family of homologies H�.C.LIF ;J // together with the canonical isomorphisms
‰.F0;J0/;.F;J/ . Therefore, specifying a map I W H.LIZ2/˝ƒ!QH.L/ is equivalent to
having a family of maps I.F ;J /W H.F/˝ƒ!H.C.LIF ;J // indexed by regular pairs
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.F ;J / such that the following diagram commutes for every two such pairs .F ;J /,

.F 0;J 0/:

(25)

.H.F/˝ƒ/�
‰Morse
F0;F
����! .H.F 0/˝ƒ/�

I.F;J/

??y ??yI.F0;J0/

H�.C.LIF ;J //
‰.F0;J0/;.F;J/
���������! H�.C.LIF 0;J 0//

Of course, in order to define such a family of maps it is enough to choose a reference
pair .F0;J0/, define I.F0;J0/ and then all the other I.F ;J / are uniquely determined.

The point is that, in general, these choices do not lead to a canonical map I . To
illustrate this, consider for simplicity the case when L admits a perfect Morse function
and consider only Morse data F D .f; �/ where f W L!R is a perfect Morse function.
Write the pearl differential d as d D d0 C d 0 , where d0 is the Morse differential.
As f is perfect we have d0D 0, so that d D d 0 . Moreover, since we assume that L is
wide, a dimension comparison shows that d 0 must vanish too (for otherwise the rank of
QH.L/ would be smaller than that of H.L/˝ƒ). Thus d D 0 for every pair .F ;J /
as above. It follows that

H�.F/D Z2hCrit�.f /i; H�.C.LIF ;J //D .Z2hCrit.f /i˝ƒ/�:

At first glance it seems that a natural isomorphism between the singular and quantum
homologies can be defined by I.F ;J /.x/D x for every x 2 Crit.f / for every .F ;J /
(with the Morse function in F being perfect). A more careful inspection shows that if
we define the isomorphisms I.F ;J / in this way the diagram (25) might not commute.
A close look at the definition of the comparison morphism ‰.F0;J0/;.F;J/ from point (e)
in Section 3.2 (see also an alternative description in the proof of Proposition 4.4.1)
shows that ‰.F0;J0/;.F;J/ might differ from ‰Morse

F0;F by some quantum terms. In fact we
have

(26) ‰.F0;J0/;.F;J/ D‰
Morse
F0;F C

X
i�1

ˆi
.F0;J0/;.F;J/t

i ;

where the term ˆi maps Z2hCrit�.f /i to Z2hCrit�CiNL
.f 0/i and is defined by count-

ing elements in some moduli spaces involving J and J 0–holomorphic disks with
total Maslov index iNL . (See the precise description in the proof of Proposition 4.4.1
in Section 4.4.) It is not hard to write down examples where some of the quantum
terms ˆi do not vanish (see Biran and Cornea [13; 12]). In fact, this turns out to be
the case for the Clifford torus Tclif �CPn (see Section 6.2).
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Despite the above there are situations in which a canonical isomorphism QH.L/Š
H.LIZ2/˝ƒ exists, at least in some degrees.

Proposition 4.5.1 Let Ln � .M 2n; !/ be a monotone Lagrangian (not necessarily
wide or narrow).

(i) For every q�n�NLC2 there exists a canonical isomorphism I W Hq.LIZ2/�!

QCHq.L/. Moreover, this isomorphism maps the fundamental class ŒL� to the
unity in QCH.L/.

(ii) If L is not narrow then the isomorphism I from (i) exists also for qDn�NLC1.

(iii) If L is wide, the isomorphism I induces a canonical embedding Hq.LIZ2/˝

ƒ� ,�! QHqC�.L/ for every q � n � NL C 1. In particular (for wide La-
grangians), if NL�nC1 we have a canonical isomorphism .H.LIZ2/˝ƒ/�Š

QH�.L/.

Proof Let F D .f; �/ be a pair formed by a Morse function and a Riemannian metric
on L and let J be an almost complex structure on M such that the pearl complex
CC.LIF ;J / as well as the Morse complex C.F/ are defined. Throughout the proof
we will assume without loss of generality that f has a unique maximum which we
denote by m.

Write the pearl differential d on CC.LIF ;J /D C.F/˝ƒC as

d D @0C @1t C � � �C @� t
� ;

where @0 is the Morse differential and @i is an operator acting as @i W Ck.F/ !
Ck�1CiNL

.F/. For degree reasons we have:

(27) C�n�NLC1.F/D CC�n�NLC1
.LIf; �;J /:

Moreover, d D @0 on C�n�NLC2.F/ and d D @0 C @1t on Cn�NLC1.F/, where
@1W Cn�NLC1.F/! Cn.F/.

Point (i) now easily follows since x 2 C�n�NLC2.F/ is a @0 –cycle if and only if it is
a d –cycle and x is a @0 –boundary if and only if it is a d –boundary. Therefore, the
map

zI W Cq.F/ �! CCq .LIF ;J /; zI.x/D x;

descends to an isomorphism I in homology. As m represents the fundamental class,
I clearly sends ŒL� to the unity of QHC.L/. This completes the proof of (i) except
for the canonicity of I which will be proved soon.

We turn to point (ii). We claim again that x 2 Cn�NLC1.F/ is a @0 –cycle if and only
if it is a d –cycle and x is a @0 –boundary if and only if it is a d –boundary. Indeed, the
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claim is obvious for boundaries since d D @0 on Cn�NLC2.F/. It remains to show
that @0 and d –cycles coincide on Cn�NLC1.F/. Let x 2 Cn�NLC1.F/. We have
d.x/D @0.x/C @1.x/t . This implies that if x is a d –cycle then it is also a @0 –cycle.
Suppose now that x is a @0 –cycle. We then have d.x/D @0.x/C @1.x/t D @1.x/t .
If d.x/¤ 0 then d.x/Dmt which implies that m is a boundary hence QH.L/D 0

and L is narrow, contrary to our assumption. Thus d.x/D 0 and x is a d –cycle.

We can now extend the definition of zI to zI W Cn�NLC1.F/�! CC
n�NLC1

.LIF ;J / by
zI.x/D x , and as before zI descends to an isomorphism I in homology.

To conclude the proofs of points (i), (ii) it remains to show that I is canonical in the
sense discussed before the statement of the proposition. To see this, write the map zI
as zI.F;J/ to denote the relation to the data .F ;J /. For degree reasons it follows that
the maps ˆi

.F0;J0/;.F;J/ in (26) vanish on CCq for q � n�NLC 1, hence the squares
in (25) commute. This completes the proof of the first point of the proposition.

We now prove (iii). Consider the canonical map pW QCH.L/!QH.L/ induced by the
extension of coefficients ƒC!ƒ. The embedding Hq.LIZ2/˝ƒ� ,�!QHqC�.L/

is induced by the map p ı I W Hq.LIZ2/! QHq.L/. So, the proof is reduced to
showing that p ı I is an injection. To see this, let x 2 Cq.F/ be a @0 –cycle with
nontrivial Morse homology class Œx�Morse , where q � n�NLC 1. By what we have
just proved, x is also a d –cycle. We have to prove that x , when viewed as an element
in Cq.LIF ;J /, is not a d –boundary. Consider the minimal model Cmin.L/ together
with the structural map �W C.LIF ;J /! Cmin.L/ as constructed in Section 4.1. Recall
that by that construction �0.x/D Œx�Morse ¤ 0, hence �.x/¤ 0. On the other hand,
by Remark 4.1.3 (c), the differential of Cmin.L/ vanishes because L is wide. As � is
a chain map it follows that x cannot be a d –boundary.

5 Proofs of the main theorems

This section is focused on proving the three main theorems of the introduction.

Before we go on with the proof we would like to make a small but useful algebraic
observation which will be used many times in the sequel. Consider the graded vector
space H.LIZ2/˝ ƒ

C endowed with the grading coming from both factors. Let
a 2 .H.LIZ2/ ˝ ƒ

C/l be a homogeneous element (of degree l ). Then we can
decompose a in a unique way as

aD
X
r�0

alCrNL
tr ; alCrNL

2HlCrNL
.LIZ2/:
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Suppose now that alCr0NL
D ŒL� 2Hn.LIZ2/ for some r0 . In that case we will say

that a contains ŒL� tr0 . (Note that this can happen only if l C r0NL D n.) Then, as
H>n.LIZ2/ D 0, jt j < 0, the decomposition of a cannot contain terms with t of
higher order than r0 , ie

aD ŒL� tr0 C an�NL
tr0�1

C an�2NL
tr0�2

C � � � :

We will abbreviate this by writing aD ŒL� tr0 C l:o:.t/, where l:o:.t/ stands for terms
of lower order in t . Similarly, if a homogeneous element a contains Œpt� t l0 for some
l0 � 0, then we must have a D Œpt� t l0 C h:o:.t/, where h:o:.t/ stands for terms of
higher order in t .

A similar discussion applies to homogeneous elements in the positive quantum homol-
ogy QH�.M IƒC/D .H.M IZ2/˝ƒ

C/� , as well as in the positive pearl complex
CC.LIf; �;J / in case the function f has a unique maximum and a unique minimum.

5.1 Proof of Theorem 1.2.2

The argument is based on the minimal model machinery from Section 4.1. Consider the
pearl complex CC.f;J / and recall from Section 4.1 that there exists a chain complex
.CCmin.L/ D H.LIZ2/˝ƒ

C; ı/, unique up to isomorphism, and chain morphisms
�W CC.f;J /!CCmin.L/,  W C

C
min.L/!CC.f;J / so that �ı D id, ı0D0 (where ı0

is obtained from ı by putting tD0) and � ,  , �0 ,  0 induce isomorphisms in quantum
and Morse homologies. By Remark 4.1.3 the quantum product in CC.f;J / can be
transported by the morphisms � and  to a product �W CCmin.L/˝C

C
min.L/! CCmin.L/

which is a chain map and a quantum deformation of the singular intersection product
and so that ŒL� 2Hn.LIZ2/ is the unity at the chain level (notice though that, as the
maps � and  are not canonical, this product is not canonical either). As discussed
before we put Cmin.L/D CCmin.L/˝ƒC ƒDH.LIZ2/˝ƒ. As in the statement of
the theorem we assume that H�.LIZ2/ is generated by H�n�l.LIZ2/. In view of
Remark 4.1.3 (b) the first point of the theorem reduces to the next lemma.

Lemma 5.1.1 Suppose that NL � l C 1. If ı , the differential of the minimal pearl
complex, does not vanish, then ŒL� is a boundary in Cmin.L/, QH.L/D 0, and NL D

l C 1.

Proof There are two possibilities: either ı D 0 on Hn�l.LIZ2/, or ı ¤ 0 on that
homology.

Assume first that ı D 0 on Hn�l.LIZ2/. We claim that ı D 0 everywhere. To show
this we will prove by induction that ı D 0 on H�n�l�s.LIZ2/ for every s � 0.
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Indeed, for sD 0 this is true since NL� lC1 implies that ıD 0 on H�n�lC1.LIZ2/,
and moreover we have assumed that ı D 0 on Hn�l.LIZ2/. Assume now that the
assertion is true for some s � 0 and let x 2H�n�l�s�1.LIZ2/. By the assumptions
of Theorem 1.2.2 we can write x D

P
j aj where each aj is expressed as (classical)

intersection products of elements from H�n�l.LIZ2/. We now claim that ı.aj /D 0

for every j . To see this write a1 D x1 � � � � � xr with xi 2 H�n�l.LIZ2/, where
� � � is the classical intersection product. We then have ı.xi/ D 0 and we write
ı.x1 �x2 � � � � �xr /D

P
i x1 � � � � ı.xi/� � � � �xr D 0. At the same time

(28) x1 �x2 � � � � �xr D a1C

X
q>0

zqtq;

with zj 2H�n�l�s.LIZ2/. (Recall that jt jD�NL��2). By the induction hypothesis
we have ı.zj /D 0, hence ı.a1/D 0. The same argument shows that ı.aj /D 0 for
every j . It follows that ı.x/D 0. This proves that ı D 0 on H�n�l�s�1.LIZ2/ and
completes the induction.

We now turn to the second case: ı ¤ 0 on Hn�l.LIZ2/. First note that we must have
NL D l C 1. Indeed, if NL � l C 2 then by degree reasons ı D 0 on Hn�l.LIZ2/

and by what we have just proved we obtain ı D 0 everywhere, a contradiction. Thus
NLD lC1. By degree reasons again it follows that ı sends Hn�l.LIZ2/ nontrivially
to Hn.LIZ2/t . Thus there exists x2Hn�l.LIZ2/ such that ı.x/D ŒL� t . This implies
that ŒL� is a boundary. As ŒL� is the unity of QH.L/ we also obtain QH.L/D 0.

We now pursue with the proof of the second point of Theorem 1.2.2. Thus we assume
that L is narrow and so ŒL� is a boundary in Cmin.L/ and NL � l C 1. Let K be the
constant in the statement of the theorem, KDmaxflC1; nC1�NLg when NL< lC1

and K D l C 1 when NL D l C 1. Notice that the degree n component of CCmin.L/

is one-dimensional. This implies that, despite the fact that the minimal pearl model
is determined only up to a noncanonical isomorphism, the generator in degree n is
canonical. It will be denoted (as before) by ŒL�.

In the following lemma we denote the differential of the complex CCmin.L/ by ıC to
distinguish it from its extension ı D ıC˝ 1 defined on Cmin.L/D CCmin.L/˝ƒC ƒ.
The main step is:

Lemma 5.1.2 Either there exists some x 2H�.LIZ2/ so that ıC.x/D ŒL� tqCl:o:.t/
or there are y; z 2 H�.LIZ2/ so that y � z D ŒL� tq C l:o:.t/, where in both cases
0< qNL �K .

Proof As L is narrow, the first point of Theorem 1.2.2 implies that NL � l C 1.
Assume first that NL D lC1. Then by definition K D lC1. In this case, as the proof
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of Lemma 5.1.1 shows, there exists x 2Hn�l.LIZ2/ such that ıCx D ŒL� t . Thus x

satisfies the statement of our lemma with q D 1.

We will assume from now on that NL < l C 1, and so K � l C 1; nC 1�NL . Let
w 2H�.LIZ2/ be an element of maximal degree so that ıCw contains ŒL� t s for some
s > 0. More precisely, denote by � 2H n.LIZ2/ the generator (so that h�; ŒL�i D 1).
We require that w is of maximal degree so that h�; ıCwi 6D 0 2 ƒC . (Here and in
what follows we extend the Kronecker pairing h � ; � i to H�.LIZ2/˝ƒ

C by linearity
over ƒC .) Note that such a w must exist, since L is narrow hence ŒL� tr must be a
ıC–boundary for some r � 1.

If jwj � n� l , the statement of our lemma is satisfied with x D w and q D s because
qNL D n� jıCwj D nC 1� jwj � l C 1 � K . Therefore we assume from now on
that jwj< n� l . We know that H�n�l.LIZ2/ generates H�.LIZ2/ as an algebra. In
particular, jwj< n� l implies that w is decomposable with respect to the intersection
product. We now write

wDw1 �w2Dw1�w2C

X
i>0

zi t
i ; with jwj< jw1j< n; jwj< jw2j< n; jwj< jzi j:

(Of course, w can be a sum of such products but this does not make any difference
in the argument and, in terms of notation, it is simpler to assume that just one such
monomial appears.) Now

h�; ıCwi D h�; .ıCw1/�w2Cw1 � .ı
Cw2/iC

X
i>0

h�; ziit
i :

By the maximality of jwj, and the fact that jwj < jzi j, we see that the second term
on the right vanishes and we also get that for either w1 or w2 , say w1 (the other
case is similar) we have h�; .ıCw1/ � w2i D tq0 for some q0 > 0. We now write
ıCw1 D

P
i>0 ui t

i and we deduce that for some i > 0 we have h�;ui �w2i D tq0�i .
Notice that jui j D jw1jC iNL�1. We put qD q0� i (clearly q � 0 and we will show
below that q > 0). We now get

n� qNL D jui �w2j D jui jC jw2j � nD jw1jC iNL� 1Cjw2j � n

D jwjC iNL� 1�NL� 1:

Thus, qNL � n�NLC 1�K and the statement of our lemma will be satisfied with
y D ui and z D w2 .

It remains only to check that q> 0. Assume by contradiction that qD 0, or equivalently
that q0D i . This implies that ui �w2D ŒL�. But for degree reasons this cannot happen
since jw2j< n. A contradiction.
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To prove the second point of Theorem 1.2.2 we will use Lemma 5.1.2 to show that
L is uniruled of order K . For this, we fix a generic almost complex structure J as
well as a point P 2 L. Fix a Morse function f and a Riemannian metric �L on L

so that the pair .f; �L/ is Morse–Smale. Moreover, we choose f so that P is its
unique maximum. We also pick a second Morse function f1 so that the pair .f1; �L/

is also Morse–Smale, and f and f1 are in general position. We assume that J is
generically chosen so that CC.LIf; �L;J / and CC.LIf1; �L;J / are both defined as
well as the relevant product. As above, we let CCmin.L/ be the minimal pearl complex
and we fix �; ; �1;  1 , the structure maps associated to .f; �L;J / and, respectively,
to .f1; �L;J / as constructed in the proof of Proposition 4.1.1 in Section 4.1.

The following technical result is an easy consequence of the proof of Proposition 4.1.1
and is valid independently of whether L is narrow or not.

Lemma 5.1.3 (i) If there exists z 2 Crit.f / so that �.z/D ŒL� t sC l:o:.t/, s > 0,
then there exists w 2 Crit.f / so that dw D Pt s0 C l:o:.t/ with 0< s0 � s .

(ii) Let a 2H�.LIZ2/ be a homogeneous element such that  .a/D Pt sC l:o:.t/,
s > 0. Then there exists w 2 Crit.f / such that dw D Pt s0 C l:o:.t/ with
0< s0 < s .

Proof We begin with point (i). As in the proof of Proposition 4.1.1, change the
basis in Z2hCrit.f /i so that the generators forming the new basis are of three types
BX ;BY � ker.d0/ and BY 0 so that BY and BY 0 are in bijection and d0.BY 0/ D

BY (where d0 is the Morse differential). For y 2 BY we denote by y0 2 BY 0 the
element so that d0.y

0/ D y . As CCn .LIf; �;J / D Z2P we have P 2 BX . The
map �W CC.LIf; �;J /! CCmin.L/ is defined so that for x 2 BX , �.x/ D Œx� ( Œx�
is the Morse homology class of x ), for y0 2 BY 0 , �.y0/ D 0 and for y 2 BY ,
�.y/D�.y�dy0/. Let u2BY be a generator of the highest degree among the elements
of BY with the property that there exists 0< s0 � s with �.u/D ŒL� t s0C l:o:.t/ (since
�.x/D Œx� for x 2BX , �.y0/D 0 for y0 2BY 0 and �.z/D ŒL� t sC l:o:.t/ with s> 0,
there must be such a u). Write

u� du0 D
X
i>0

xi t
i
C

X
j>0

yj tj
C

X
k>0

y0k tk ; with xi 2 BX ;yj 2 BY ;y
0
k 2 BY 0 :

We now have

ŒL� t s0
C l:o:.t/D �.u/D �.u� du0/D

X
i>0

�.xi/t
i
C

X
j>0

�.yj /t
j :

Note that jyj j > juj and therefore by the maximality of u none of the terms �.yj /

can contribute an ŒL� t s00 , s00 > 0 to that sum. Moreover, none of the terms �.yj /
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can contribute ŒL� to that sum since � of an element in BY is divisible by t . It
follows that there exists i0 such that the term �.xi0

/t i0 contributes the element ŒL� t s0 .
As �.xi0

/ D Œxi0
�Morse it follows that xi0

D P and i0 D s0 . As the degree n part
of BX is P , and BY , BY 0 do not contain elements of degree n, it follows that
u � du0 D Pt s0 C l:o:.t/. As u is a linear combination of pure critical points (it
doesn’t involve t ’s) we now obtain that du0 D Pt s0 C l:o:.t/ (we work here over Z2

so P D�P ). Finally, there must be a critical point w participating in u0 (which is a
linear combination of critical points) so that dw D Pt s0 C l:o:.t/. This completes the
proof of point (i).

We turn to the proof of (ii). Write

(29)  .a/D Pt s
C zs�1t s�1

C � � �C z1t C z0;

with zi 2Z2hCrit.f /i. Note that z0D 0.a/ and that by the construction of � and  
in the proof of Proposition 4.1.1 in Section 4.1 we also have �.z0/D a. Recall also
that � ı D id. Using this, and applying � to both sides of (29) we obtain

0D ŒL� t s
C�.zs�1/t

s�1
C � � �C�.z1/t:

Clearly not all of h�; �.z1/i; : : : ; h�; �.zs�1/i can vanish (where, as before, � 2
H n.LIZ2/ is the generator). Let 1� j � s� 1 be an index such that h�; �.zj /i ¤ 0.
We then have �.zj /D ŒL�t

s�j C l:o:.t/. By point (i) just proved, there exists w and
0< s0 � s� j < s such that dw D Pt s0 C l:o:.t/.

We continue with the proof of point (ii) of Theorem 1.2.2. We begin by analyzing
the first possibility resulting from Lemma 5.1.2: ıCx D ŒL� tq C l:o:.t/ for some
x 2H�.LIZ2/ with 0< qNL �K .

Consider the map �W CC.LIf; �L;J /!CCmin.L/. As the degree n part of BX consists
of P only, we have �.P /D ŒL�. By the definition of � there exists u 2Z2hBX i such
that �.u/D x . Write duD

P
i�0 ai t

i . We have: ŒL� tqC l:o:.t/D ıCxD ıC�.u/D

�.du/D
P

i�0 �.ai/t
i . Thus there exists 0�j �q such that �.aj /t

jD ŒL� tqCl:o:.t/.
There are two possibilities: either j D q or j < q . In case j D q we must have
�.aj / D ŒL� hence aj D P and it follows that du D Ptq C l:o:.t/. The element u

might not be a single critical point of f but a linear combination of such. However
there must be a critical point w participating in the linear combination u such that
dwDPtqCl:o:.t/. In case j <q we obtain �.aj /D ŒL� t

q�jCl:o:.t/ and as q�j >0

we deduce from Lemma 5.1.3 that there exists w 2Crit.f / so that dwDPtq0C l:o:.t/
with 0< q0 � q� j . Summarizing, we see that in both cases (j D q and j < q ) there
is w 2 Crit.f / so that dw D Pt s C l:o:.t/ with 0 < s � q . This implies that there
exists a nonconstant J –disk through P of Maslov index at most qNL .
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It remains to discuss the second case: y � z D ŒL� tqC l:o:.t/. The argument is similar.
By definition y�zD�. 1.y/� .z//. Write  1.y/D

P
i�0 yi t

i ,  .z/D
P

j�0 zj tj ,
with yi 2 Z2hCrit.f1/i, zj 2 hCrit.f /i being homogeneous elements. The equality
ŒL� tq C l:o:.t/ D

P
i;j �.yi � zj /t

iCj implies that there exist i; j � 0 such that
�.yi � zj /t

iCj D ŒL� tqC l:o:.t/. Write yi � zi D
P

k�0 pk tk . We get that there
exists k � 0 such that �.pk/t

kCiCj D ŒL�tqC l:o:.t/. Now there are two possibilities:
either kC i C j < q or kC i C j D q .

In the first case (k C i C j < q ) we get �.pk/ D ŒL� tq�.kCiCj/ C l:o:.t/ and so
by Lemma 5.1.3 (i) there exists w 2 Crit.f / such that dw D Pt s0 C l:o:.t/ with
0< s0 � q� .kC i C j /. It follows that there exists a nonconstant J –disk through P

with Maslov index � s0NL � qNL .

In the second case (k C i C j D q ) we have �.pk/ D ŒL� hence pk D P and
yi � zj D Ptk C l:o:.t/. If k > 0 there exists a nonconstant J –disk through P with
Maslov index � kNL � qNL . In case k D 0 we have yi � zj D P hence for degree
reasons zj D P (and yi D P1 , where P1 is the maximum of f1 ). It follows that
 .z/D Ptj C l:o:.t/. We have j > 0, for otherwise  .z/D P so z D ŒL� which is
impossible in view of our starting equality y �zD ŒL� tqC l:o:.t/ with y 2H�.LIZ2/

and q > 0. Thus  .z/ D Ptj C l:o:.t/ with 0 < j � q . By Lemma 5.1.3 (ii) there
exists w 2 Crit.f / with dw D Ptj 0 C l:o:.t/ with 0< j 0 < j � q and it follows that
there exists a nonconstant J –disk through P with Maslov index � j 0NL < qNL . This
concludes the proof of Theorem 1.2.2.

5.2 Proof of Theorem 1.2.3

Recall that we now suppose that M is point invertible of order k . This means
that in the quantum homology of M with coefficients in �C D Z2Œs� there exists
a 2QH�.M I�C/, aD a0Ca1s with 0¤ a0 2H�.M IZ2/ and a1 2QH�.M I�C/
so that Œpt�� aD ŒM �sk=2CM . Recall that here jsj D �2CM . Denote QH.M IƒC/D
QH.M /˝Z2Œs�ƒ

C . Clearly, we also have in QH.M IƒC/, Œpt�� aD ŒM � tk=NL .

We start with the point (i) of the theorem. We first notice that the relation Œpt�� aD

ŒM � tk=NL implies jaj � 2nD 2n�k and as aD a0Ca1s we have 0� jaj � 2n and
so k D 4n� jaj � 2n. We now use the module structure

QH.M IƒC/˝QCH.L/!QCH.L/

to write

(30) a� .Œpt�� ŒL�/D .a� Œpt�/� ŒL�D .Œpt��a/� ŒL�D ŒM �� ŒL�tk=NL D ŒL� tk=NL :
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We need to analyze Equation (30) at the chain level. For this, we fix a Morse function
f W L!R with a single maximum Pf as well as a Morse function gW M !R with
a single maximum Pg and a single minimum mg . We also fix Riemannian metrics �L

and �M on L and M . The Morse complex of g tensored with ƒC will be denoted by
CC.g/. We also fix a minimal pearl complex for L, CCmin.L/, together with the two
associated structural maps � and  as in Section 4.1. We use the module operation
(on the chain level) in the form

CC.g/˝ CCmin.L/! CCmin.L/;

by transporting the module operation CC.g/˝CC.LIf; �L;J /!CC.LIf; �L;J / via
the structural maps � ,  , ie for h2CC.g/, ˛2CCmin.L/ we define h�˛D�.a� .˛//.

We write

(31) y Dmg � ŒL�D
X
i>0

zi t
i ; where zi 2H�.LIZ2/:

Note that there are no classical terms here (ie i D 0) for degree reasons, since jyj D�n.

Lemma 5.2.1 There exists 0< i < k=NL such that zi ¤ 0.

Proof We write y as a sum of three terms: y D S1C z0tk=NL CS2 with

S1 D

k=NL�1X
iD1

zi t
i ; S2 D

X
i�k=NLC1

zi t
i

and zi ; z
0 2H�.LIZ2/. Notice that S2 D 0 because k � 2n, jyj D �n, jzi j � n.

Choose a cycle a0 2 CC.g/ which represents a. We have

a0 �y D a0 �S1C a0 � z0tk=NL

and thus, a0 �S1C .a
0 � z0� ŒL�/tk=NL 2 Im.ıC/.

We now claim that a0 � z0 D 0. To see this, first note that ja0 � z0j D jajC jz0j � 2nD

.4n� k/C .�nC k/� 2n D n. Write a0 � z0 D
P

q�0 bqtq , with bq 2 H�.LIZ2/.
We have jbqj D ja

0 � z0j C qNL D nC qNL , hence bq D 0 for every q � 1. Thus
a0 � z0 D b0 . Assume by contradiction that b0 ¤ 0. Then ja0j D nC 2n� jz0j � 2n

and so ja0j D 2n, hence a0 D Pf and a D ŒM �. This is impossible in view of our
assumption that Œpt�� aD ŒM � tk=NL . This proves that a0 � z0 D 0.

We now have

(32) a0 �S1� ŒL� t
k=NL 2 Im.ıC/:
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From this equality we deduce S1 6D 0 and the statement of the Lemma. Indeed,
if S1 D 0, then ŒL� is a boundary in Cmin.LIƒ/ which implies that L is narrow,
contradicting our assumption.

We continue with the proof of point (i) of Theorem 1.2.3. In view of Lemma 5.2.1
choose the minimal index 0 < i0 < k=NL such that zi0

¤ 0. We have mg � ŒL� D

zi0
t i0 C h:o:.t/. (h:o:.t/ stands for higher order terms in t .) We now have: �.mg �

 .ŒL�//D zi0
t i0 C h:o:.t/. But  .ŒL�/D Pf , hence �.mg �Pf /D zi0

t i0 C h:o:.t/.
Note that the classical term in mg�Pf vanishes and so mg�Pf D ut lCh:o:.t/ where
0¤u2Z2hCrit.f /i and l > 0. As �.mg�Pf /D zi0

t i0Ch:o:.t/ it follows that l � i0 .
By the definition of the moduli spaces giving the module action (in Section 3.2), this
implies the claim at point (i) of our theorem: for a generic J there exists a nonconstant
J –disk vW .D; @D/! .M;L/ with v.0/Dmg and such that �.Œv�/� lNL � i0NL �

.k=NL� 1/NL D .k �NL/. In particular

(33) w.M nL/� i0NL�� .k �NL/�:

This completes the proof of point (i) of our theorem.

We now turn to the proof of the point (ii) of the theorem. Recall that S1D
Pk=NL�1

iDi0
zi t

i

and that 1� i0 � k=NL� 1. By assumption L is wide so ıC D 0, hence by (32) we
get a0 �S1 D ŒL� t

k=NL . Expanding this equality givesX
i0�rCi�k=NL

a0r � zi t
rCi
D ŒL� tk=NL ;

where we have written a0 D
P

r�0 a0r tr (with a0r 2Z2hCrit.g/i). The key remark is
that

(34) 9 r � 0; i � i0 � 1; such that .a0r � zi/t
rCi
D ŒL� tk=NL C l:o:.t/:

Thus �.a0r � .zi//t
rCi D ŒL� tk=NL C l:o:.t/. Write  .zi/D

P
q�0 xqtq , where

xq 2 Z2hCrit.f /i. It follows that there exists q such that �.a0r �xq/t
qCrCi D

ŒL� tk=NLCl:o:.t/. Finally, writing a0r �xq D
P

s�0 pst s we deduce that there exists s

such that
�.ps/t

sCqCrCi
D ŒL�tk=NL C l:o:.t/:

Put �Dk=NL�.sCqCrCi/. There are two main cases to be considered: sCqCrCi<

k=NL (ie � > 0) and sCqC r C i D k=NL (ie � D 0). Before considering each case
it is important to note that as i � i0 � 1 we always have s; q; r < k=NL .

Case 1 (� > 0) We have �.ps/D t� ŒL�C l:o:.t/ with � > 0 and we deduce from
Lemma 5.1.3 that there exists a critical point w such that dw D Pf t�

0

C l:o:.t/ with
0< � 0 � � . It follows that there exists a nonconstant J –disk through Pf with Maslov
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index � � 0NL � �NL < k , which proves the desired uniruling property of L. In view
of (33) we also have

w.L/C 2w.M nL/� 2�NL�C 2i0NL�D 2

�
k

NL

� s� q� r � iC i0

�
NL�� 2k�:

Case 2 (� D 0) This means that �.ps/D ŒL�, hence ps D Pf . Therefore

(35) a0r �xq D Pf t s
C l:o:.t/:

There are again two cases: s > 0 and s D 0.

Case 2-i (� D 0; s > 0) We obtain from (35) that there exists a nonconstant J –disk
through Pf with Maslov index � sNL < k . As in case 1 above we also have

w.L/C 2w.M nL/� 2sNL�C 2i0NL � 2.sC i/NL�� 2k�:

Case 2-ii (� D 0; s D 0) We will show now that this case is impossible. To see
this, first note that by (35) we have that a0r � xq D Pf , hence a0r D Pg , xq D Pf .
This implies that aD ŒM � tr C l:o:.t/. Write aD ŒM � tr Car�1tr�1C� � �Ca1tCa0 ,
where aj 2H�.M IZ2/ are homogeneous elements. Recall that Œpt�� aD ŒM � tk=NL .
Therefore

ŒM � tk=NL D Œpt�� aD Œpt�tr
C Œpt�� ar�1tr�1

C � � �C Œpt�� a1t C Œpt�� a0:

It follows that there exists 0 � j � r � 1 such that .Œpt� � aj /t
j D Œpt� tr C h:o:.t/,

hence .Œpt��aj /D Œpt� tr�j C h:o:.t/. Clearly this equality takes place in the image of
the inclusion QH.M I�C/! QH.M IƒC/ defined by s! t2CM =NL , therefore we
actually have in QH.M I�C/

(36) .Œpt�� aj /D Œpt�s.r�j/NL=2CM C h:o:.s/:

Note also that by the definition of aj we have aj ¤ ŒM �. We will now show that
such a relation is impossible in quantum homology. To see this note that r � j > 0

since r � j D 0 would give Œpt�� aj D Œpt� which is possible only if aj D ŒM � which
is not the case. As r � j > 0, the relation (36) implies that there exists a homology
class A 2 H S

2
.M / with 2c1.A/ D .r � j /NL such that GW.Œpt�; aj ; ŒM �IA/ ¤ 0.

In particular, for generic J , the moduli space of (simple) J –holomorphic rational
curves uW CP1 ! M in the class A which pass through a given point in M and
intersect a cycle representing aj is not empty. To estimate the dimension of this
space denote by M.A;J / the space of simple rational curves in the class A and by
G D Aut.CP1/� PSL.2;C/ the group of biholomorphisms of CP1 . Consider the
evaluation map

evW
�
M.A;J /�CP1

�CP1
�
=G!M �M; ev.u; z1; z2/D .u.z1/;u.z2//:
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The moduli space in question is ev�1.pt�W u
a0
j

/, where we recall that a0j 2Z2hCrit.g/i
is a Morse cycle representing aj and W u

a0
j

stands for the unstable submanifolds associ-
ated to the critical points in a0j . By transversality we obtain the following dimension
formula:

dim ev�1.pt�W u
a0
j

/D2nC2c1.A/C2C2�6Cjaj j�4nD�2nC.r�j /NL�2Cjaj j:

On the other hand, jaj j D 2n� .r � j /NL by (36). Putting this into the dimension
formula we get dim ev�1.pt�W u

a0
j

/D�2, contradicting the fact that this space is not
empty. This rules out Case 2-ii and concludes the proof of Theorem 1.2.3.

5.3 Proof of Theorem 1.2.7

We first recall the definition of the spectral invariants as well as some other basic facts
and we fix some conventions.

Consider a generic pair .H;J / consisting of a 1–periodic Hamiltonian H W M �S1!

R and an almost complex structure J so that the Floer complex CF�.H;J / is well
defined. (Here, CF.H;J / is the Floer complex for periodic orbits Floer homology.)
Let I D fx
 D .
; y
 /g=� where x is a contractible 1–periodic orbit of the Hamiltonian
flow of H , y
 W D !M is a disk-capping of 
 (ie y
 j@D D 
 ) and the equivalence
relation � is x
 � x
 0 if 
 D 
 0 and !.y
 / D !.y
 0/. Notice that I is a �–module
(we recall that � D Z2Œs

�1; s�), the elements of � acting by changing the capping:
s �.
; y
 /D .
; y
1/, where !.y
1/D!.y
 /�2CM�. As ƒ is a � –module we will define
the Floer complex of interest here as: CF.H;J Iƒ/D Z2hIi˝� ƒ endowed with the
usual Floer differential.

Fix also a Morse function f W L!R as well as a Riemannian metric � on L so that
the pearl complex CC.LIf; �;J / is well defined.

We need to provide a Floer-theoretic description of our module operation ~ which
involves the two complexes above. This is based on moduli spaces P 0T similar to the
ones used in Section 3.2 (c) except that the vertex of valence three in the string of
pearls is now replaced by a half-tube with boundary on L and with the �1 end on an
element x
 2 I . The symbol of the tree is .x
 ;x W y/. The total homotopy class � of
the configuration obtained in this way is computed by using the capping associated to

 to close the semi-tube to a disk and adding up the homotopy class of this disk to the
homotopy classes of the other disks in the string of pearls. More explicitly, a half tube
as before is a solution

uW .�1; 0��S1
!M

of Floer’s equation

(37) @u=@sCJ@u=@t CrH.u; t/D 0
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with the boundary conditions

u.f0g �S1/�L lim
s!�1

u.s; t/D 
 .t/ :

The marked points on the “exceptional” vertex which corresponds to u are so that
the point u.0; 1/ is an exit point for a flow line and u.0;�1/ is the entry point. See
Figure 6. Both compactification and bubbling analysis for these moduli spaces are
similar to what has been discussed before to which is added the study of transversality
and bubbling for the spaces of half-tubes as described by Albers in [2]. As described
in [2], an additional assumption is needed for this part: H is assumed to be such that
no periodic orbit of X H is completely included in L.

x y

�rf �rf

u.0; t/

u.�1; t/

x


Figure 6: An element v 2 P 0T

Counting elements in these moduli spaces defines an operation:

~F W CF.H;J Iƒ/˝ƒ C.LIf; �;J /! C.LIf; �;J / :

Fix a Morse–Smale pair .g; �M / on M and let CC.g/ be the corresponding Morse
complex tensored with ƒC . Recall the module action defined in Section 3.2 (c):

~W CC.g/˝ƒC CC.LIf; �;J /! CC.LIf; �;J / :

There are maps induced by the inclusion ƒC!ƒ

CC.g/! CC.g/˝ƒC ƒD C.g/ and CC.LIf; �;J /! C.LIf; �;J /

which we will denote in both cases by p .

We will now use the Hamiltonian version of the Piunikin–Salamon–Schwarz homo-
morphism [48]: ePSSW C.g/! CF.H;J Iƒ/. Standard arguments show that there is a
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chain homotopy �W CC.g/˝ƒC CC.LIf; �;J /! C.LIf; �;J / which satisfies

(38) ePSS.p.x//~F p.y/�p.x ~ y/D d�.x˝y/� �.d.x˝y//;

for every x 2 CC.g/, y 2 CC.LIf; �;J /.

The Floer complex CF�.H;J / is filtered by the values of the action functional

AH .x
 /D

Z
S1

H.
 .t/; t/ dt �

Z
D

y
 �!

where x
 D .
; y
 /, with 
 a contractible C1–loop in M and y
 a cap of this loop.
This action is compatible with the action of � and we extend it on the generators of
CF.H;J Iƒ/ D Z2hIi ˝� ƒ by: AH .x
 ˝ tk/ D AH .x
 /� k�NL (where � is the
monotonicity constant). The filtration of order � 2R of the Floer complex, CF�� , is
the graded Z2 –vector space generated by all the elements xx˝� of action at most � .

We emphasize that all the homology and cohomology classes to be considered be-
low are homogeneous. We now recall the definition of spectral invariants following
Schwarz [49] and Oh [47]. Fix ˛ 2 QH�.M Iƒ/D .H.M IZ2/˝ƒ/� and define the
spectral invariant �.˛;H / of ˛ by

(39) �.˛;H /D inff�W PSS.˛/ 2 Image. H.CF��/! HF.H;J Iƒ/ /g;

where PSSW QH�.M Iƒ/ ! HF�.H;J Iƒ/ is the morphism induced in homology
by ePSS . Notice that by convention we have �.0IH / D �1. Assuming that H is
normalized, it is well known that �.˛;H / depends only on the class Œ�H � 2 eHam.M /

and on ˛ , and is therefore denoted by �.˛; �H /. We refer the reader to Oh [47; 45;
46; 41], Schwarz [49] and McDuff and Salamon [40] for the foundations of the theory
of spectral invariants. See also Viterbo [53] for an earlier approach to the subject.

Let L � M be a monotone Lagrangian submanifold. Theorem 1.2.7 is an im-
mediate consequence of the first part of Lemma 5.3.1 below. To state it we fix
some more notation. As discussed before, the inclusion ƒC ! ƒ induces a map
pW CC.LIf; �;J /! C.LIf; �;J / which is canonical in homology. We continue to
denote the induced map in homology by p too. Denote by IQC.L/ the image of
pW QCH.L/! QH.L/ and notice that IQC.L/ is a ƒC module so that it makes
sense to say whether a class z 2 IQC.L/ is divisible by t in IQC.L/: this means that
there is some z0 2 IQC.L/ so that z D tz0 .

Lemma 5.3.1 (i) Assume that ˛ 2 QH�.M IƒC/, x;y 2QCH�.L/ are so that
p.y/ is not divisible by t in IQC.L/ and ˛ � x D yt s . Then we have the
following inequality for every � 2 eHam.M /:

�.˛I�/� depthL.�/� sNL� :
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(ii) Let x 2QCH�.L/ and let � 2 eHam.M /. Then

�.iL.x/I�/� heightL.�/

where iLW QH.L/!QH.M Iƒ/ is the quantum inclusion from Theorem A (iii).

The second point of the lemma is an extension of a result of Albers [2].

Before proving Lemma 5.3.1, we show how it implies Theorem 1.2.7. Indeed, if L�M

is not narrow, then ŒL� 2 QH.L/ is not trivial and we have ŒM � � ŒL� D ŒL� which
implies the first point of Theorem 1.2.7 because, for degree reasons, p.ŒL�/ is not
divisible by t in IQC.L/. Moreover, if M is point invertible of order k , then there is
a2QH.M IƒC/ so that Œpt��aD ŒM � tk=NL . Therefore, setting a0Da�ŒL�2QCH.L/

we get Œpt�� a0 D ŒL� tk=NL and by applying the lemma for ˛ D Œpt�, x D a0 , y D ŒL�

we deduce Theorem 1.2.7 (ii).

Proof of Lemma 5.3.1 (i) We fix � 2 eHam.M /. By inspecting the definition of
depth in Section 1.2.3 we see that the inequality we need to prove is reduced to showing
that for every normalized Hamiltonian H with ŒH �D � there exists a loop 
 W S1!L

such that

(40) �.˛; �/�

Z
S1

H.
 .t/; t/ dt C s�NL � 0:

By a small perturbation of H we may assume that no closed orbit of H is contained
in L.

Given any � > 0, in view of the definition of �.˛;H /, we may find in CF��.˛;H /C� a
cycle � with Œ��D PSS.˛/2HF.H;J Iƒ/. Write �D

P
x
i˝ tki where x
i are genera-

tors of CF.H;J / and tki 2ƒ, ki 2Z. Represent also x as a cycle in CC.LIf; �;J /,
xD Œx0� with x0D

P
i�0 xi t

i , xi 2Z2hCrit.f /i. Similarly, represent also y by a cycle
y0 in CC.LIf; �;J /. From Equation (38) we deduce that � ~F x0 � y0t s 2 Im.d/,
where d is the differential in C.LIf; �;J /. Write � ~F x0 D

P
i zi t

i with i 2 Z,
zi 2Z2hCrit.f /i (note that here we cannot assume anymore that i � 0 only). The fact
that y0 is not divisible by t in IQC.L/ implies that there is some zr 6D 0 with r � s .
But this means that there are 
i and xj so that .x
i˝ tki /~F xj tj D zr trC� � � (where
� � � stands for other terms). This means that there are critical points x0

j ; z
0
r 2 Crit.f /

(participating in xj and zr ) so that the moduli space P 0T (described at the beginning
of the section), of symbol .x
i ;x

0
j W z

0
r / and with �.T /D .r � j � ki/NL , is not void.

We now consider an element v 2 P 0T and we focus on the corresponding half-tube u
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(which is part of v ). The usual energy estimate for this half-tube gives

0�

Z 0

�1

Z
S1

k@u=@sk2 dt ds

D

Z
.�1;0��S1

u�!C

Z
S1

H.
i.t/; t/ dt �

Z
S1

H.u.0; t/; t/ dt ;

Z
S1

H.u.0; t/; t/ dt �

Z
.�1;0��S1

u�!C

Z
S1

H.
i.t/; t/ dt:hence:

We now claim that:

(41) AH .
i/C .r � j � ki/�NL �

Z
.�1;0��S1

u�!C

Z
S1

H.
i.t/; t/ dt :

Indeed, ��.T / equals the symplectic area of all the disks in v C the area of the tube
u C the area of the cap y
i corresponding to S
i . The inequality (41) now follows
because the disks in v are J –holomorphic hence their area is nonnegative. But now
�.˛;H /C � �AH .x
i ˝ tki /DAH .x
i/� ki�NL and as j � 0, s � r we obtain

�.˛;H /C �C s�NL �

Z
.�1;0��S1

u�!C

Z
S1

H.
i.t/; t/ dt

so that by taking 
 .t/D u.0; t/ we deduce inequality (40).

(ii) Given a Hamiltonian H with � D �H , a Morse function f , a generic metric �
and a generic almost complex structure J we will define a chain map

ziLW C.LIf; �;J /! CF.H;J Iƒ/

so that the maps induced in homology by ePSS ı iL and by ziL are equal. To describe
this map, fix a particular capping y
 0 for each contractible 1–periodic orbit 
 of the
Hamiltonian vector field X H of H . We denote these pairs by z
 D .
; y
 0/.

For a critical point p 2 Crit.f / we define

(42) ziL.p/D
X
T ;


#2.P 00T / z
 ˝ t�.T /=NL ;

where the moduli spaces P 00T are similar to the ones used in Section 3.2 (d) except that
the last (exceptional) vertex there as well as its exiting edge are replaced here by a
Floer semi-tube; the Maslov index �.T / is the sum of the Maslov indices of the disks
in the chain of pearls summed with the Maslov index of the tube glued to the disk y
 0

with reversed orientation. More precisely, the moduli spaces P 00T used here correspond
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to trees T of symbol .p W z
 /. An element v 2 P 00T consists of a pair .u0;u00/ where
u00 is a Floer semi-tube

u00W Œ0;1/�S1
!M

satisfying Floer’s Equation (37) with the boundary conditions

u00.f0g �S1/�L ; lim
s!1

u00.s; t/D 
 .t/

and u0 is a string of pearls u0 D .u1; : : : ;uk/ in M associated to f , starting at the
critical point p 2 Crit.f / and so that the last incidence condition is

9 t > 0; 

f
t .uk.1//D u00.0;�1/ :

In other words, u0 is an element as of a moduli space as those considered in the
construction of the pearl differential Section 3.2 (a) except that the endpoint is not
2Crit.f / but u00.0;�1/. The Maslov index is given by �.T /D�.u0/C�.u00#.y
 0/�1/

where .y
 0/�1 is the disk with the opposed orientation compared to y
 0 , and u00#.y
 0/�1

indicates the surface obtained by gluing the tube u00 and the capping disk .y
 0/�1

along 
 . The sum in (42) is taken over all .T ; 
 / such that jpj ��.z
 /C�.T /D 0.
It is easy to see that the definition of ziL does not depend on the specific choice of the
cappings y
 0 associated to each 
 .

The regularity issues for the moduli spaces P 00T are similar to those discussed before.
Finally, standard arguments show that by extending this definition by linearity over ƒ
we obtain a chain map and that, the map induced in homology by ziL coincides with
PSS ı iL .

The next step is to establish an action estimate for the configurations vD .u0;u00/2P 00T
considered above. We recall that if z
 is a capped orbit as above, the element z
 ˝ tk is
a generator of CF.H;J Iƒ/ and its action is AH .z
 /� k�NL . The energy estimate
associated to u00 gives

0�

Z
S1

H.u00.0; t/; t/ dt �

Z
S1

H.
 .t/; t/ dt C

Z
Œ0;1/�S1

.u00/�!;

and so

AH .z
 /D�

Z
D

.y
 0/�!C

Z
S1

H.
 .t/; t/ dt �

Z
S1

H.u00.0; t/; t/ dtC!.Œu00#.y
 0/�1�/ :

Clearly, !.Œu00#.y
 0/�1�/D �.T /��!.Œu0�/ and as !.Œu0�/� 0 we deduce

(43) AH .z
 ˝ t�.T /=NL/� heightL.�/ :

Let x 2QCH.L/ and x0D
P

i�0 xi t
i 2 CC.LIf; �;J /, xi 2Z2hCrit.f /i be a pearl

cycle that represents x . Denote
P

i z
i˝ tki by ziL.x0/. Consider any of the terms in
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this sum, say z
j ˝ tkj . There exists r � 0 and a critical point x0
r participating in xr ,

so that ziL.x0
r tr / contains z
j˝ tkj . As ziL is ƒ–linear this means that ziL.x0

r / contains
z
j ˝ tkj�r . From (43) we now obtain

A.z
j tkj /DA.z
j t .kj�r//� rNL�� heightL.�/� rNL�� heightL.�/:

Finally, since ziL and PSS ı iL coincide in homology we can represent PSS.iL.x// as
a linear combination of generators of CF.H;J Iƒ/ each of action at most heightL.�/
which implies our claim.

Remark 5.3.2 (a) Sometimes the point (ii) of Lemma 5.3.1 can be used to estimate
from above spectral invariants of homology classes ˛ 2 H�.M /. For example, it
is easy to see that iL.ŒL�/D inc.ŒL�/, where inc�W H�.LIZ2/!H�.M IZ2/ is the
map induced by the inclusion L�M . Therefore whenever inc�.ŒL�/¤ 0 we obtain
�.inc�.ŒL�/; �/� heightL.�/ for any � 2 eHam.M /.

(b) In a point invertible manifold the first part of Lemma 5.3.1 provides an estimate
from below of �.Œpt�; �/ and so, in view of the proofs of the intersection results
discussed in Corollaries 2.4.1 and 1.2.8, it is particularly important to get also an
estimate from the above. The natural idea is to write Œpt�D iL.x/ for some class x .
However, there are cases when Œpt� is not in the image of this map iL - see for example
the case of the quadric Q2n described in Section 6.3.3.

(c) In case ƒD � we have CF.H;J Iƒ/D CF.H;J /D Z2hIi, where I is the set
of contractible 1–periodic orbits of X H together with all possible cappings (modulo
the usual identifications) I D fx
 D .
; y
 /g=�. In this case the map ziL can be written
as ziL.p/D

P
T ;x
 #2.P 000T /x
 where the moduli space P 000T contains configurations as

those in P 00T but with the additional condition that �.T /D 0. Indeed, as ƒD � any
element z
 ˝ tk can be written uniquely as some x
 .

If additionally, we have NL > n C 1, then a dimension count shows that for the
configurations v D .u0;u00/ used to define ziL we have �.u0/D 0 and so there are no
J –disks present in the definition of ziL . Under these assumptions ziL coincides with a
map introduced by Albers in [2].

(d) It is possible to define a pseudo-valuation �W QH.L/ ! Z [ f1g as follows.
Notice first that for any a 2 QH.L/ there exists k 2 Z so that tka 2 IQC.L/. Define

�.a/Dmaxfs 2 Z j t�sa 2 IQC.L/g 2 Z[f1g:

It is easy to see that � is well defined, and that it satisfies �.a/ � 0 if and only if
a 2 IQC.L/, �.a/D1 if and only if aD 0, �.aCb/�minf�.a/; �.b/g, �.a�b/�

�.a/C�.b/, and �.ta/D �.a/C1. A similar function to � has already been considered
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by Entov and Polterovich [30] in the context of ambient quantum homology. The
inequality at point (i) of Lemma 5.3.1 can now be reformulated as:

�.˛; �/� depthL.�/� .�.x/� �.˛ �x//NL�; 8˛ 2 QH.M Iƒ/; x 2 QH.L/:

5.4 Proof of Theorem 2.4.1

Recall the setting of this theorem. Given L0;L1 �M , monotone Lagrangian sub-
manifolds we have the two associated rings ƒ0 D Z2Œt

�1
0
; t0�, ƒ1 D Z2Œt

�1
1
; t1�

graded by deg t0 D �NL0
and deg t1 D NL1

as well as the ring ƒ0;1 D ƒ0˝� ƒ1

where � D Z2Œs
�1; s�, jsj D �2Cmin . Recall also the two canonical maps: the quan-

tum inclusion iL0
W QH�.L0Iƒ0;1/! QH�.M Iƒ0;1/ and jL1

W QH�.M Iƒ0;1/!

QH��n.L1Iƒ0;1/, defined by jL1
.a/D a� ŒL1�. The claim of the theorem is that if

the composition

jL1
ı iL0
W QH�.L0Iƒ0;1/ �! QH��n.L1Iƒ0;1/:

does not vanish, then L0 and L1 intersect.

We start the proof with a little more preparation. First note that since ƒ0;1 is a �–
module we can naturally extend the definition of periodic orbit Floer homology to coeffi-
cients in ƒ0;1 as the homology of the complex CF.H;J Iƒ0;1/DCF.H;J /˝�ƒ0;1 .
We denote this homology by HF.H;J Iƒ0;1/. Moreover, the PSS isomorphism nat-
urally extends to this case and we get an isomorphism PSSW HF�.H;J Iƒ0;1/ !

QH�.M Iƒ0;1/. Similarly, we can extend the action functional to the generators of
CF.H;J Iƒ0;1/ by defining: AH .xx˝ t

k0

0
˝ t

k1

1
/ D AH .xx/� k0�0NL0

� k1�1NL1
.

Here �i D .!=�/jH D
2
.M;Li / , i D 0; 1, are the monotonicity constants of the La-

grangians. (Clearly, �0 D �1 , unless !j�2.M / D 0 in which case we anyway have
CM D 1, � D Z2 hence CF.H;J Iƒ0;1/ D CF.H;J / ˝ ƒ0 ˝ ƒ1 .) It is easy
to see that this extension of the action is well defined. With these conventions we
have as before a filtration on HF.H;J Iƒ0;1/ by action and we can define spectral
numbers �ƒ0;1

.˛; �/ for every ˛2QH.M Iƒ0;1/, � 2 eHam.M /, in a standard way. A
straightforward algebraic argument shows that for classes ˛2QH.M /�QH.M Iƒ0;1/

(as well as ˛ 2QH.M Iƒi/, i D 0; 1) these “new” spectral numbers coincide with the
usual ones, ie �ƒ0;1

.˛; �/D �.˛; �/. (The point is that ƒ0;1 is a free module over � .)
We will also need the ring ƒC

0;1
DƒC

0
˝�C ƒ

C

1
. As before we have

ƒC
0;1
Š Z2Œt0; t1�=ft

2CM =NL0

0
D t

2CM =NL1

1
g :

Next we remark that Lemma 5.3.1 continues to hold if we replace L by one of the Li ’s,
say L0 , replace ƒ by ƒ0;1 , ƒC by ƒC

0;1
and the condition that “p.y/ is not divisible
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by t in IQC.L/” by “p.y/ is not divisible by t0 in the image of the map p” with p

the canonical “change of coefficients” map pW QH.L0Iƒ
C

0;1
/! QH.L0Iƒ0;1/. The

proof of the lemma carries out to this case without any essential modifications.

Since jL1
ı iL0

¤ 0 there exists x 2QH.LIƒC
0;1
/ so that jL1

ı iL0
.x/ 6D 0. From the

modified version of Lemma 5.3.1 discussed above, we deduce that for some constant K

depending only on jL1
ı iL0

.x/ and for any � 2 eHam.M / we have

depthL1
.�/�K � �.iL0

.x//� heightL0
.�/ :

Now assume by contradiction that L0\L1 D∅. Pick a normalized Hamiltonian H

which is constant equal to C0 on L0 and constant equal to C1 on L1 with C1>C0CK .
This immediately leads to a contradiction and concludes the proof of Theorem 2.4.1.

We now pass to the proof of Corollary 2.4.3. Put L1 D L and let L0 � M be a
non-narrow monotone Lagrangian. The claim follows if we show that if Œpt� � ŒL1�

is not divisible by t2CM =NL1 in IQC.L1/, then jL1
ı iL0

6D 0. We first fix a Morse
function f0W L0!R and a metric �0 on L0 as well as an almost complex structure
J on M so that the pearl complex C.L0Iƒ0If0; �0;J / is defined. We assume that
f0 has a unique minimum m0 . To simplify the notation, we put ci D 2CM=NLi

.

By the nondegeneracy part in Proposition 4.4.1 there exists a class ˛ 2 QH0.L0Iƒ0/

which is nonzero and is represented by a pearl cycle of the form m0 C
P

i>0 xi t
i
0

with xi 2 Crit.f0/. A priori this cycle belongs to C.L0If0; �0;J /, but as jm0j D 0

and jt0j< 0 all the powers of t0 in this cycle must be nonnegative. Thus, in fact this
cycle is in CC.L0If0; �0;J / and ˛ 2 IQC.L0/. In view of the coefficients extension
morphisms QH.L0Iƒ

C

0
/! QH.LIƒC

0;1
/! QH.LIƒ0;1/ we will view from now on

˛ as an element of the image of these maps ie ˛ 2 IQC.L0Iƒ0;1/� QH.L0Iƒ0;1/.
Here we have used again the ring ƒC

0;1
DƒC

0
˝�C ƒ

C

1
Š Z2Œt0; t1�=ft

c0

0
D t

c1

1
g and

the coefficients extension morphisms induced by the obvious inclusions ƒC
0
!ƒC

0;1
!

ƒ0;1 .

As iL0
extends (at the chain level) the inclusion in singular homology we can write

iL0
.˛/D Œpt�C

P
j>0 aj t

j
0

with aj 2 H�.M IZ2/. Notice that QH.L1Iƒ0;1/ D

QH.L1Iƒ1/˝� ƒ0 as C.L1Iƒ0;1If1; �1;J /D .C.L1Iƒ1If1; �1;J /˝�ƒ0; dƒ1
˝

id/ and ƒ0;1 is a free �–module. Taking this into account, we now apply jL1
to

iL0
.˛/ and we obtain

(44) .jL1
ı iL0

/.˛/D yC
X
j>0

yj t
j
0
;

where we have denoted y D Œpt� � ŒL1� 2 QH.L1Iƒ1/˝ 1 and yj D aj � ŒL1� 2

QH.L1Iƒ1/ ˝ 1. It is important to notice that in fact y;yj 2 IQC.L1/ ˝ 1 �
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IQC.L1Iƒ0;1/�QH.L1Iƒ0;1/. Now suppose by contradiction that jL1
ı iL0

.˛/D 0.
As y 2 IQC.L1/˝ 1 identity (44) implies that the second term on its right-hand side
belongs to IQC.L1/˝ 1. This can only happen if for every j with yj ¤ 0 we have
c0jj , so that t

j
0
D .t

c1

1
/j=c0 . It now follows that y is divisible by t

c1

1
, and obviously

this divisibility property continues to hold also in IQC.L1/. A contradiction.

6 Various examples and computations

The first three subsections below contain the proofs of the computational theorems
in Section 2.3 and of their corollaries from Section 1.2.5. The last subsection contains
the justification of Example 1.2.10.

6.1 Lagrangians in CP n with 2H1.LI Z/ D 0

Here we prove Theorem 2.3.1 and its Corollary 1.2.11.

We recall our notation: we denote by hD ŒCPn�1� 2H2n�2.CPnIZ2/ the class of a
hyperplane so that in the quantum homology QH.CPn/ we have

h�j D

(
h\j ; 0� j � n;

ŒCPn�s; j D nC 1 :

We will use quantum homology with coefficients in ƒD Z2Œt
�1; t � and so we recall

that QH.CPnIƒ/DQH.CPn/˝�ƒ, where � DZ2Œs
�1; s�, deg sD�.2nC2/, and

ƒ becomes a � –module by s! t .2nC2/=NL . Obviously, h is invertible in QH.CPn/

so that the existence of the module action claimed in Theorem A directly implies the
first part of:

Lemma 6.1.1 Let L�CPn be a monotone Lagrangian with NL � 2. Then QH�.L/
is 2–periodic, ie QHi.L/ Š QHi�2.L/ for every i 2 Z and the homomorphism
QHi.L/ ! QHi�2.L/ given by ˛ 7! h � ˛ is an isomorphism for every i 2 Z.
Moreover, H1.LIZ/ 6D 0.

Proof The only part that still needs to be justified is that H1.LIZ/ 6D 0. But if
H1.LIZ/ D 0, then NL D 2CCPn D 2nC 2 and by Theorem 1.2.2 (i) we deduce
that L is wide (take l D n in that theorem). The first part of the lemma implies
in this case that QH�.L/ Š .H.LIZ2/˝ ƒ/� is 2–periodic which is impossible
by degree reasons. Indeed, .H.LIZ2/˝ƒ/n ¤ 0 but as jt j D �2n � 2 we have
.H.LIZ2/˝ƒ/nC2 ŠHnC2.LIZ2/D 0.
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Remark 6.1.2 The first part of Lemma 6.1.1 was proved before by Seidel using the
theory of graded Lagrangian submanifolds [51]. The 2–periodicity in [51] follows from
the fact that CPn admits a Hamiltonian circle action which induces a shift by 2 on
graded Lagrangian submanifolds. Note that this is compatible with our perspective since
that S1 –action gives rise to an invertible element in QH.CPn/ (the Seidel element [50;
40]) whose degree is exactly 2n minus the shift induced by the S1 –action. In our case
the Seidel element turns out to be h.

We now focus on our main object of interest in the subsection.

Lemma 6.1.3 Let L be a Lagrangian submanifold in CPn . If 2H1.LIZ/D 0 then
L is monotone, NL D n C 1, L is wide and as a graded vector space we have
H�.LIZ2/ŠH�.RPnIZ2/. Moreover, QHi.L/Š Z2 for every i 2 Z.

Proof Since 2H1.LIZ/D 0 it is easy to see that L is monotone. Moreover, a simple
computation shows that the minimal Maslov number of L is NL D k.nC 1/ with
k 2f1; 2g. We already know from Lemma 6.1.1 that H1.LIZ2/ 6D0 so that H�.LIZ2/

is generated as an algebra by H�1.LIZ2/. Thus, by Theorem 1.2.2 (i), L is wide so
that, again by Lemma 6.1.1, we deduce that .H.LIZ2/˝ƒ/� is 2–periodic. This
2–periodicity implies (for degree reasons) that NL cannot be 2.nC1/, hence kD1 and
NLD nC1. Moreover the 2–periodicity implies that H2i.LIZ2/ŠH0.LIZ2/DZ2

for every 0 � 2i � n. Similarly we have: H1.LIZ2/ Š QH1.L/ Š QH1.L/t
�1 D

QHnC2.L/ Š QHn.L/ Š Hn.LIZ2/ D Z2 . Applying the 2–periodicity again we
obtain H2iC1.LIZ2/ Š Z2 for every 1 � 2i C 1 � n. Summing up we see that
Hj .LIZ2/Š Z2 ŠHj .RPnIZ2/ for every 0� j � n.

As for the last statement regarding QHi.L/, we have

QH2j .L/Š QH0.L/ŠH0.LIZ2/D Z2;

QH2jC1.L/Š QH1.L/ŠH1.LIZ2/Š Z2:

Lemma 6.1.4 There is a map �W L!RPn inducing an isomorphism in Z2 –singular
homology. In particular H�.LIZ2/ is isomorphic to H�.RPnIZ2/ as an algebra.
Moreover, the isomorphism �� identifies the classical external product H�.CPnIZ2/˝

H�.LIZ2/!H�.LIZ2/ with the corresponding action for RPn �CPn .

Proof Let ˛i 2QHi.L/ŠZ2 be the generator. In view of the canonical isomorphism
QH�.L/ Š .H.LIZ2/˝ƒ/� we have Hj .LIZ2/ Š QHj .L/ for every 0 � j � n.
Therefore we will view j̨ , 0� j � n, also as elements of Hj .LIZ2/.
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We first claim that ˛n�1 � ˛n�1 D ˛n�1 � ˛n�1 D ˛n�2 (where � �� is the classical
intersection product). For degree reasons this is equivalent to ˛n�1 �˛n�1 6D 0. In turn,
this is equivalent to showing that ˛1[˛1 6D 0 in H 2.LIZ2/ where ˛1 2H 1.LIZ2/ is
the generator (and so is Poincaré dual to ˛n�1 ). From the fact that H 1.LIZ2/DZ2 and
H1.LIZ/ is 2–torsion we obtain that the Bockstein homomorphism, ˇW H 1.LIZ2/!

H 2.LIZ2/, associated to the exact sequence 0! Z2! Z4! Z2! 0 is not trivial.
But ˇ D Sq1 , the first Steenrod square, which in this degree coincides with the square
cup-product, so that ˛1[˛1 6D 0. This proves that ˛n�1�˛n�1D ˛n�1 �˛n�1D ˛n�2 .

In view of the first part of Lemma 6.1.1 we know that h � ˛i D ˛i�2 for all i . As
˛n�1 � ˛n�1 D ˛n�2 it follows that the Z2 –singular homology of L coincides as an
algebra with that of RPn . Let x�W L! RP1 be the classifying map associated to
˛1 . As dim.L/ D n we deduce that x� factors via a map �W L! RPn and as the
induced map in cohomology H 1.�/W H 1.RPnIZ2/!H 1.LIZ2/ is an isomorphism
it follows that � induces an isomorphism in homology in all degrees. Moreover, using
the relation h�˛i D˛i�2 again, we deduce that the classical external product coincides
with that for RPn .

We now turn to the proof of Theorem 2.3.1. Point (ii) has already been proved
(in the proof of Lemma 6.1.4). Before we go on, recall that we have denoted by
˛i 2 QHi.L/ Š Z2 the generator. Clearly we have ˛i�r.nC1/ D ˛i t

r for every
i; r 2 Z.

Another important fact we will need below is the following. By Theorem A the
quantum inclusion iLW QH.L/! QH.M Iƒ/ is determined by the module action and
the augmentation �L via the formula

(45) hPD.y/; iL.x/i D �L.y �x/:

We are now ready to prove points (iii) and (iv) of Theorem 2.3.1. Assume first that
n is even, nD 2l . Denote by h2r 2H2r .CPnIZ2/ the generator, so that h2n�2 D h

and h2r D h�.n�r/ for every 0� r � n. Fix 0� 2k � n. For degree reasons we have
iL.˛2k/D eh2k for some e 2 Z2 . Applying (45) with x D ˛2k and y D h2n�2k we
obtain

e D �L.h2n�2k �˛2k/D �L.h
�k
�˛2k/D �L.˛0/D 1:

Now fix 1� 2kC 1� n� 1. For degree reasons, iL.˛2kC1/D f h2kCnC2t for some
f 2 Z2 . Applying (45) with x D ˛2kC1 , y D hn�2k�2 we obtain

f t D �L.hn�2k�2 �˛2kC1/D �L.h
�.kC1Cl/

�˛2kC1/D �L.˛�2l�1/D �L.˛0t/D t;

hence f D 1. This concludes the proof for even n. The case nD odd is very similar,
so we omit the details.
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It remains to prove point (i) of Theorem 2.3.1. For this end, first notice that since
ŒL�D ˛n we have ˛n�2 D h � ŒL�. As both ŒL� 2 QH.L/ and h 2 QH.CPnIƒ/ are
invertible (each in its respective ring) it follows that ˛n�2 is invertible too. By the
proof of Lemma 6.1.4 we have ˛n�2 D ˛n�1 �˛n�1 , hence ˛n�1 is invertible too. It
follows that .˛n�1/

�.n�i/¤ 0 2QHi.L/, hence ˛i D .˛n�1/
�.n�i/ . As this is true for

every i 2Z the claim at point (i) of Theorem 2.3.1 readily follows. This concludes the
proof of all the statements of Theorem 2.3.1

We now turn to proving Corollary 1.2.11. We begin with point (iv). This follows
easily from points (iii) and (iv) of Theorem 2.3.1 by looking at the classical part of
the quantum inclusion QH�.L/! QH�.CPnIƒ/. Point (iii) follows in a similar way
from the fact that h� ŒL�D ˛n�2 .

As point (i) and (ii) of Corollary 1.2.11 has already been proved it now remains to
prove points (v), (vi) and (vii) of that corollary. We group these in the next lemma.

Lemma 6.1.5 For a Lagrangian L in CPn with 2H1.LIZ/D 0 we have:

� .CPn;L/ is .1; 0/–uniruled of order nC 1.
� L is 2–uniruled of order nC 1. Moreover, given two distinct points x;y 2L,

for a generic J there is an even but nonvanishing number of disks of Maslov
index nC 1 whose boundary passes through these two points.

� For nD 2, .CP2;L/ is .1; 2/–uniruled of order 6.

Proof Fix a Morse function f W L!R with a single minimum and a single maximum
and fix also a perfect Morse function gW CPn!R. Fix also Riemannian metrics �L

on L and �M on M D CPn as well as an almost complex structure J so that the
pearl complex C.f /D C.LIƒIf; �L;J / and the Morse complex (tensored with ƒ)
C.g/ are defined as well as the module product

C.g/˝ C.f /! C.f / :

Let f 0W L ! R be a second Morse function (again with a single minimum and
maximum) and assume that the pearl complex C.f 0/D C.LIƒIf 0; �L;J / is defined
as well as the quantum product:

C.f 0/˝ C.f /! C.f / :

We now prove point (i). We have the relation

(46) Œpt��˛n D h�n �˛n D ˛�n D ˛1t 2 QH.L/

where, as before, h2H2n�2.CPnIZ2/ is the generator. Denote by w the maximum of
f and by p the minimum of g . The critical point w is a cycle in C.f / and Œw�D ˛n .
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Thus, in view of relation (46) we have p �w ¤ 0 2 C�n.f /. As C�n.f /D C1.f /t D

Z2hCrit.f /it (the last equality being true for degree reasons) we obtain that p �w

has a summand which is of the type yt , where y 2 Crit1.f /. Given the definition
of the module action in Section 3.2 (c) this means that there is a J –disk of Maslov
index nC1 through the point p . As we may choose g so that the point p is anywhere
desired in CPnnL this implies point (i).

For point (ii) we will use the relation

(47) ˛n�1 �˛0 D ˛nt :

To exploit this we denote by m the minimum of f and we let c be a cycle in C.f 0/
which represents ˛n�1 . Because L is wide, m is a Morse cycle and NL D nC 1, we
deduce that m is also a cycle in C.f / so that Œm�D ˛0 . Thus we have, at the chain
level, c �mD wt . In view of the definition of the quantum product in Section 3.2 (b),
we deduce that for generic J there exists a J –disk of Maslov index nC1 through both
w and m. To finish with this point we need now to remark that the number n.m; w/

of such disks is even. Indeed, if d is the differential of the pearl complex C.f /, notice
that for degree reasons the differential of m has the form dmD �wt where � 2 Z2 is
the parity of n.m; w/. But, as mentioned above, L is wide and so � D 0.

For the third point we use the relation

(48) Œpt��˛0 D ˛2t2;

and the fact that, when nD 2, ˛2D Œw�. At the chain level (48) becomes p�mDwt2 .
By interpreting this relation in terms of the moduli spaces used in Section 3.2 (c) to
define the module product we deduce that there is a “chain of pearls” of one of the
following types:

� two disks u1 , u2 joined by a flow line of �rf so that m2u1.@D/, w2u2.@D/,
�.u1/D �.u2/D 3 and p belongs to the image of one of the ui jInt D ’s,

� a single disk u of Maslov index 2nC 2D 6 whose interior goes through p and
with m; w 2 u.@D/.

Notice that given two points k 2CPnnL, and k 0 2L, for a generic J , there is no disk
of Maslov index nC1 passing through both k and k 0 because the virtual dimension of
the moduli spaces of such disks equals �1. Thus generically, case (a) is not possible
and so we are left with case (b) which proves claim (iii) of the lemma.
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6.2 The Clifford torus

This subsection consists of a sequence of results in which we prove all the properties
claimed in Theorem 2.3.2 and Corollary 1.2.12.

Lemma 6.2.1 The Clifford torus Tn
clif 2CPn is wide and NTn

clif
D 2.

This Lemma was first proved by Cho [21] by a direct computation. Below we give a
somewhat different proof.

Proof We first notice that by Theorem 1.2.2 any Lagrangian torus L is narrow or wide
and if NL � 3, then it is wide. In the case of the Clifford torus, Tn

clifD fŒz0 W � � � W zn� 2

CPn j jz0j D � � � D jznjg �CPn , a simple computation shows that it is monotone and
that NTclif D 2. Moreover (see Cho [21]), with the standard complex structure on CPn

there are exactly nC 1 families of disks of Maslov index 2 with boundary on Tn
clif ,


0; 
1; : : : ; 
n so that for any point x 2Tn
clif there is precisely one disk �i.x/ from the

family 
i passing through x . In fact we can describe these disks explicitly as follows.
Write xD Œx0 W � � � W xn� 2Tn

clif with jxi j D 1 for every i . Then the disk �i.x/ is given
by D 3 z 7! Œx0 W � � � W xi�1 W z W xiC1 W � � � W xn� 2CPn .

It is proved in [21] that these disks are regular and we can choose a basis of H1.T
n
clifIZ/

represented by the curves ci D @.�i.x//, 1� i � n. In this basis, c0 D @.�0.x//'

�c1 � c2 � � � � � cn . Using the criterion for the vanishing of Floer homology in
Proposition 4.2.1 we see that the cycle D1 defined there is null-homologous and so
Tn

clif is wide.

For the 2–dimensional Clifford torus we now pass to verifying the properties of the
quantum product as stated in Theorem 2.3.2. Before we go into these computations recall
from Section 4.5 that although T2

clif is wide there might not be a canonical isomorphism
H.T2

clifIZ2/˝ƒ Š QH.T2
clif/. This turns out to be indeed the case (see Biran and

Cornea [13; 12]). However, by Proposition 4.5.1 we have canonical embeddings
H1.T

2
clifIZ2/˝ƒ� ,�! QH1C�.T

2
clif/ and H2.T

2
clifIZ2/˝ƒ� ,�! QH2C�.T

2
clif/.

This implies, for degree reasons, that

(49) QH1.T
2
clif/ŠH1.T

2
clifIZ2/; QH0.T

2
clif/ŠH0.TclifIZ2/˚ ŒT

2
clif� t;

where the first isomorphism is canonical and the second isomorphism is not canonical
but the second summand on its right-hand side (involving the fundamental class ŒT2

clif� t )
is canonical.

In view of (49), let w D ŒT2
clif� 2H2.T

2
clifIZ2/ be the fundamental class and let aD

Œc1�; bD Œc2� 2H1.T
2
clifIZ2/Š QH1.T

2
clif/. By the preceding discussion w , a, b can

be viewed as well defined elements of QH.T2
clif/.
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Lemma 6.2.2 There is an element m 2 QH0.T
2
clif/ which together with wt generates

QH0.T
2
clif/ so that we have a � b D m C wt , b � a D m, a � a D b � b D wt ,

m�mDmt Cwt2 .

Proof We consider a perfect Morse function f W T2
clif!R and, by a slight abuse in

notation, we denote its minimum by m. Similarly, we denote its maximum by w and
we let the two critical points of index 1 be denoted by a0 and b0 . We pick f so that the
closure of the unstable manifold of a0 represents a 2H1.T

2
clifIZ2/ and the unstable

manifold of the critical point b0 represents b .

To simplify notation we denote the disk �i.w/ by di . See Figure 7. By possibly

d1

d2

d3

d3
a0

b0

m

w

�rf

Figure 7: Trajectories of �rf and holomorphic disks on T 2
clif

perturbing the function f slightly we may assume that the unstable manifold of a0

intersects d2 and d3 in a single point and is disjoint from d1 . Similarly, we may
assume that the unstable manifold of b0 intersects d1 and d3 at a single point and
that this unstable manifold is disjoint from d2 . With these choices the pearl complex
.C.f;J; �/; d/ is well defined. Here we take J to be the standard complex structure
of CP2 , or a generic small perturbation of it and � a generic small perturbation of
the flat metric on T2

clif . As f is perfect and T2
clif is wide, the differential in C.f;J; �/

vanishes. From now on we will view m; a0; b0; w as generators (over ƒ) of QH�.T2
clif/.

Recall that m depends on the choice of f in the sense that if we take another perfect
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Morse function zf with minimum zm, then zm might give an element of QH0.T
2
clif/

which is different from m. On the other hand a0; b0; w 2 QH are canonical.

In order to compute the various products of a0 and b0 we use another perfect Morse
function gW T2

clif!R with critical points a00 , b00 , m00 , w00 . We may choose g to be a
small perturbation of f so that the unstable and stable manifolds of a00 , b00 become
“parallel” copies of those of the corresponding points of f (see Figure 8). Moreover,
by taking g to be close enough to f (and keeping J and � fixed) we may assume
that the comparison chain map ‰prl D ‰.f;�;J/;.g;�;J/W C.LIf; �;J /! C.LIg; �;J /
coincides with the Morse comparison chain map ‰Morse

.f;�/;.g;�/
, namely,

‰prl.a0/D a00; ‰prl.b0/D b00; ‰prl.m/Dm00; ‰prl.w/D w00:

See point (e) in Section 3.2 as well as the proof of Proposition 4.4.1 for various descrip-
tions of the comparison map ‰prl (this map was denoted in the proof of Proposition
4.4.1 by �f;f

0

).

d1

d2

d3

d3

a0

a00

b0

b00

m

w

�rf�rg

Figure 8: Trajectories of �rf , �rg and holomorphic disks on T 2
clif

We now compute the product (on the chain level)

�W C.LIf; �;J /˝ C.LIg; �;J /! C.LIf; �;J /:

For degree reasons we have

a0 � b00 DmC �wt; b0 � a00 DmC �0wt; for some �; �0 2 Z2:
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By the definition of the quantum product, � is the number modulo 2 of J –disks with
�D 2 going – in clockwise order ! – through the following points: one point in the
unstable manifold of a0 then w and, finally one point in the unstable manifold of b00 .
Similarly, �0 is the number modulo 2 of disks with �D 2 going in order through a
point in the unstable manifold of b0 , w and then a point in the unstable manifold of
a00 . There is a single disk through w which also intersects both the unstable manifolds
of a0 and b0 – the disk d3 . However, the order in which the three types of points
appear on the boundary of this disk implies that precisely one of � and �0 is nonzero.
Looking at Figure 8 we see that for our choices of Morse data and J we actually have
� D 1, �0 D 0. Thus a0 � b00 D mCwt , b0 � a00 D m, hence in QH.T2

clif/ we have
a� b DmCwt and b � aDm.

Next we compute a � a and b � b via a0 � a00 and b0 � b00 . To this end first note
that a0 � a00 D ıwt with ı 2 f0; 1g (the classical term vanishes here since in singular
homology we have a � aD 0). There are precisely two pseudo-holomorphic disks that
go through w as well as through both unstable manifolds of a0 and of a00 : the disks d2

and d3 . It is at this point that we use the fact that Œd2�D b , Œd3�D�a�b . Indeed, this
means that the order in which these three points lie on the boundary of each of these
two disks is opposite. Thus, exactly one of these disks will contribute to ı and so ıD 1.
(In fact, looking at Figure 8 we see that the relevant disk is d2 .) A similar argument
shows b0 � b00 Dwt . The formula for m�m follows now from the associativity of the
product. Indeed

m�mD .a� bCwt/� .b � a/D a� .b � b/� aC b � at Dmt Cwt2:

(Recall that we are working over Z2 .)

Remark 6.2.3 For the n–dimensional Clifford torus, Tn
clif �CPn , let t1; : : : ; tn be a

basis of Hn�1.T
n
clifIZ2/ dual to the basis Œc1�; : : : ; Œcn� 2H1.T

n
clifIZ2/, with respect

to the (classical) intersection product. The same argument as that giving the product
a�b , b �a in the proof of the lemma above shows that for i 6D j , ti � tj C tj � ti Dwt

where w represents the fundamental class.

We now turn to determining the quantum module structure (points (ii) and (iii) in
Theorem 2.3.2). We recall that h 2H2.CP2IZ2/ is the class of a hyperplane, hence
in this case of a projective line CP1 �CP2 .

Lemma 6.2.4 With the notation above we have:

� h� aD at , h� b D bt , h�w D wt , h�mDmt .

� iL.m/D Œpt�C ht C ŒCP2� t2 , iL.a/D iL.b/D iL.w/D 0.
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Proof We will make use of a second geometric fact concerning the Clifford torus:
there is a symplectomorphism homotopic to the identity, x�W CP2 ! CP2 , whose
restriction to T2

clif is the permutation of the two factors in T2
clif � S1 �S1 . We now

determine what is the map

z�W QH�.T
2
clif/! QH�.T

2
clif/

which is induced by x� . For degree reasons we have z�.w/Dw , z�.a/D b , z�.b/D a

and, by Proposition 4.3.1, we know that z� is a morphism of algebras (from this it also
follows immediately that z�.m/DmCwt ).

We now compute h � a and h � b . We have, h � a D h � z�.b/ D z�.h � b/. Now
h � a D .u1aC u2b/t with u1;u2 2 Z2 which implies that h � b D .u1b C u2a/t .
As in Lemma 6.1.1 we also have that h � .�/W H1.T

2
clifIZ2/!H1.T

2
clifIZ2/t is an

isomorphism. This implies that precisely one of u1;u2 is non zero. Assume first that
u1 D 0 and u2 D 1. Then h � aD bt , h � .h � a/D at2 and h � .h � .h � a//D bt3

which is not possible because h�3 D ŒCP2� t3 (where, ŒCP2� denotes the fundamental
class of CP2 ) and ŒCP2�� aD a. Thus we are left with u1 D 1, u2 D 0 as claimed.

To compute h�w write h�wt D h� .a�a/D .h�a/�aD .a�a/t Dwt2 . Similarly
h�mD h� .b � a/D .h� b/� aDmt .

Finally, point (ii) is an immediate consequence of the first point and of formula (6) in
Theorem A (iii).

Finally, we need to justify the uniruling properties of the Clifford torus as described in
Corollary 1.2.12.

Lemma 6.2.5 For n � 2, .CPn;Tn
clif/ is .1; 0/–uniruled of order 2n and Tn

clif is
uniruled of order 2. For nD 2, .CP2;T2

clif/ is .1; 1/–uniruled of order 4.

Proof As Tn
clif is wide of minimal Maslov number 2 and CPn is point invertible of

order 2nC 2 we deduce from Theorem 1.2.3 that .CPn;Tn
clif/ is uniruled of order

(at most) 2n. The fact that Tn
clif is uniruled of order 2 follows immediately from the

relation ti � tj C tj � ti D wt from Remark 6.2.3. Indeed, this relation implies the
existence of a disk of Maslov index 2 through w (for generic J ). There is also a direct
proof of this, based on the fact that the families of J –disks 
i are regular and thus,
being of minimal possible area, they persist under generic deformations of J . Finally,
for nD 2, with the notation in Lemma 6.2.4 we have the relation Œpt��mDmt2 where
Œpt�D h�2 . We consider a Morse function gW CP2!R which is perfect and we denote
its minimum by p . The previous relation gives (at the chain level): p�mDmt2 where
m is the minimum of a perfect Morse function f W T2

clif! R (so that the respective
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pearl complex and all the relevant operations are defined). This means that there is a
configuration consisting of one of the following:

(a) one J –disk with �D 4 through p , whose boundary is on T2
clif and contains m,

(b) two J –disks, each with �D 2, related by a negative gradient flow line of f
so that one of these two disks goes through p and the boundary of the other
contains m.

To prove our claim we only have to notice that possibility (b) cannot arise for a
generic J . Indeed, generically, the set of points in CP2 which lie in the image of
some J –disk of Maslov index 2 is only 3–dimensional and so, generically, these disks
avoid p .

6.3 Lagrangians in the quadric

Here we prove Theorem 2.3.4 and Corollary 1.2.13.

Let Q� CPnC1 be a smooth complex n–dimensional quadric, where n � 2. More
specifically we can write Q as the zero locus Q D fz 2 CPnC1 j q.z/ D 0g of a
homogeneous quadratic polynomial q in the variables Œz0 W � � � W znC1� 2 CPnC1 ,
where q defines a quadratic form of maximal rank. We endow Q with the symplectic
structure induced from CPnC1 . (Recall that we use the normalization that the sym-
plectic structure !FS of CPnC1 satisfies

R
CP1 !FS D 1.) When n � 3 we have by

Lefschetz theorem H 2.QIR/ Š R, therefore by Moser argument all Kähler forms
on Q are symplectically equivalent up to a constant factor. When nD 2, Q�CP3

is symplectomorphic to .CP1 �CP1; !FS ˚ !FS /. Also note that the symplectic
structure on Q (in any dimension) does not depend (up to symplectomorphism) on the
specific choice of the defining polynomial q (this follows from Moser argument too
since the space of smooth quadrics is connected).

6.3.1 Topology of the quadric The quadric has the following homology:

Hi.QIZ/Š

(
0 if i D odd;

Z if i D even¤ n

Moreover, when nD even, Hn.QIZ/Š Z˚Z. To see the generators of Hn.QIZ/,
write n D 2k . There exist two families F ;F 0 of complex k –dimensional planes
lying in Q (see Griffiths and Harris [34]). Let P 2 F , P 0 2 F 0 be two such planes
belonging to different families. Put aD ŒP �, b D ŒP 0�. Then Hn.QIZ/D Za˚Zb

and h�k D aC b . Moreover, we have:

(50)
for k D odd W a � b D Œpt�; a � aD b � b D 0;

for k D even W a � b D 0; a � aD b � b D Œpt�:
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Here and in what follows we have denoted by � the intersection product in singular
homology.

6.3.2 Quantum homology of the quadric Let h 2H2n�2.QIZ/ be the class of a
hyperplane section (coming from the embedding Q � CPnC1 ), p 2 H0.QIZ/ the
class of a point and u 2H2n.QIZ/ the fundamental class. We will first describe the
quantum cohomology over Z. Define ƒZ D ZŒt; t�1� where deg t D�NL . Here NL

is the minimal Maslov number of a Lagrangian submanifold that will appear later on.
Note that c1.Q/D nPD.h/, hence NLj2n. Let QH.QIƒZ/DH.QIZ/˝ƒZ be the
quantum homology endowed with the quantum product �.

Proposition 6.3.1 (See Beauville [6].) The quantum product satisfies the following
identities:

h�j D h�j 8 0� j � n� 1; h�n D 2pC 2ut2n=NL ; h�.nC1/
D 4ht2n=NL ;

p �p D ut4n=NL :

When nD even we have the following additional identities:

(i) h� aD h� b .

(ii) If n=2D odd then a� b D p , a� aD b � b D ut2n=NL .

(iii) If n=2D even then a� aD b � b D p , a� b D ut2n=NL .

Proof The first three identities and the fact that h� aD h� b are proved in [6]. To
prove the remaining two identities write nD 2k . Recall from [6] that

.a�b/�.a�b/D
�
.a�b/�.a�b/

�1
2
.h�n�4ut2n=NL/D

�
.a�b/�.a�b/

�
.p�ut2n=NL/

(where � �� is the classical intersection product). Substituting (50) in this we obtain

(51) .a� b/� .a� b/D .�1/k2.p�ut2n=NL/:

On the other hand we have h�k D h�k D aC b , hence

(52) .aC b/� .aC b/D h�n D 2pC 2ut2n=NL :

Next we claim that a�aDb�b . Indeed a�a�b�bD .aCb/�.a�b/Dh�k�.a�b/D0.
The desired identities follow from this together with (51), (52).
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6.3.3 Quantum structures for Lagrangian submanifolds of the quadric The quad-
ric Q has Lagrangian spheres. To see this write Q as QD fz2

0
C � � �C z2

n D z2
nC1
g �

CPnC1 . Then L D fŒz0 W � � � W znC1� 2 Q j zi 2 R;8 ig is a Lagrangian sphere. We
assume from now on that n� 2.

Lemma 6.3.2 Let L �Q be a Lagrangian submanifold with H1.LIZ/D 0. Then,
NL D 2n, L is wide and there is a canonical isomorphism QH.L/ŠH.LIZ2/˝ƒ.
Moreover, if we denote by ˛0 2 QH0.L/ the class of a point, by ˛n 2 QHn.L/

the fundamental class and similarly by p 2 QH0.Q/ the class of the point and by
u 2 QH2n.Q/ the fundamental class, then we have:

(i) p �˛0 D ˛0t , p �˛n D ˛nt .

(ii) iL.˛0/D pCut .

(iii) If n is even then ˛0 �˛0 D ˛nt .

Remark 6.3.3 Suppose that L is a monotone Lagrangian which is orientable and
relative spin (see Fukaya, Oh, Ohta and Ono [33] for the definition). In that case, it
is possible to coherently orient the moduli spaces of pseudo-holomorphic disks with
boundary on L using the theory of [33]. It seems very likely that these orientations are
compatible with the quantum operations based on our pearly moduli spaces, hence we
expect our theory to work over Z. Assuming this, let L be a Lagrangian as in Lemma
6.3.2 and suppose in addition that L is relative spin (H1.LIZ/ D 0 automatically
implies orientability). Then we expect the formulae in (i) and (ii) to become:

(i’) p �˛0 D�˛0t , p �˛n D�˛nt .

(ii’) iL.˛0/D p�ut .

Proofs of Lemma 6.3.2 and Remark 6.3.3 Following Remark 6.3.3 we will carry
out the proof over the ring K which is either Z2 or Z. In the latter case the proof is
not 100% rigorous in the sense that it depends on the verification that our theory indeed
works over Z. We remark that for KDZ2 the proof below is completely rigorous (and
in this case we may also drop the assumptions that L is orientable and relative spin).
We will use the ring ƒDKŒt�1; t � with the same grading as before, ie deg t D�NL .

Due to H1.LIZ/ D 0 and CQ D n we see that NL D 2n. By Theorem 1.2.2 we
deduce that L is wide. Moreover, by Proposition 4.5.1 there is a canonical isomorphism
QH�.L/Š .H.LIK/˝ƒ/� .

We first prove the lemma and the remark under the additional assumption that n D

dim L� 3. The case nD 2 will be treated separately at the end of the proof.
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We start with the statement at point (ii’). It easily follows from the definition of the
quantum inclusion map that iL.˛0/D pC eut , for some e 2K. Clearly h�˛0 D 0

since h�˛0 belongs to QH�2.L/Š QH2n�2.L/D 0 (since 2n� 2> n). Therefore
we have

0D iL.h�˛0/D h� .pC eut/D h�pC eht:

On the other hand a simple computation based on the identities of Proposition 6.3.1
gives h�p D ht . It follows that e D�1. This proves point (ii’).

We turn to proving point (i’). By Proposition 6.3.1 p 2 QH0.QIƒ/ is an invertible
element, hence p � .�/W QHi.L/! QHi�2n.L/ is an isomorphism for every i . But
QH0.L/ŠK˛0 and QH�2n.L/ŠK˛0t . Therefore p �˛0 D �˛0t , where � D˙1.
It remains to determine the precise sign of � . Using the formula in (ii’) we obtain

(53) iL.p �˛0/D iL.�˛0t/D �.pt �ut2/:

On the other hand we have

iL.p �˛0/D p � iL.˛0/D p � .p�ut/D ut2
�pt:

Comparing this to (53) immediately shows that � D �1. The proof of the identity
p �˛n D�˛nt is similar. This concludes the proof of point (i’).

We now turn to the proof in case nD2. In this case Q�S2�S2 endowed with the split
symplectic form !˚! with both S2 factors having the same area. Put aD ŒS2 � pt�,
bD Œpt�S2� 2H2.QIZ/ and denote by inc�W H�.LIZ/!H�.QIZ/ the (classical)
map induced by the inclusion L�Q. Note that L must be a Lagrangian sphere, henceR

L !D 0 and inc�.ŒL�/ � inc�.ŒL�/D�2. It follows that inc�.ŒL�/D˙.a�b/. Finally,
in this dimension the hyperplane class h satisfies hD aC b .

As nD 2 we have NLD 4 and so deg t D�4. As before, since p is invertible we can
write p�˛0D �˛0t , where �D˙1, and iL.˛0/DpCeut with e 2Z. It follows that

iL.p �˛0/D p � .pC eut/D ut2
C ept:

On the other hand we also have:

iL.p �˛0/D iL.�˛0t/D �t.pC eut/D �eut2
C �pt:

It follows that �e D 1, hence e D � D˙1. This proves formulas (i) and (ii) over Z2

(that p �˛2 D˙˛2t follows immediately from the fact that p is invertible).

It remains to determine the sign of e and � , so we now work over Z. For this end
write h�˛0 D r˛2 with r 2 Z. Note that ˛2 D ŒL� so

iL.h�˛0/D iL.r˛2t/D r inc�.ŒL�/t D˙r.a� b/t:
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(Here we have used the fact that for the fundamental class ŒL� we have iL.ŒL�/ D

inc�.ŒL�/.) On the other hand

iL.h�˛0/D h� iL.˛0/D h� .pC eut/D ht C eht D .1C e/ht D .1C e/.aC b/t:

It follows that .1C e/.aC b/t D ˙r.a� b/t . This implies r D 1C e D 0, hence
e D�1. The proof of formulae (i), (i’), (ii), (ii’) is now complete for every n� 2.

Finally, we prove (iii) (only over Z2 ). By Proposition 6.3.1 when nD even the element
a 2 QHn.QIƒ/ is invertible (even if we work with coefficients in Z2 ). Therefore
a�˛n D ˛0 and a�˛0 D ˛nt . It follows that

˛0 �˛0 D .a�˛n/�˛0 D a� .˛n �˛0/D a�˛0 D ˛nt:

The following result shows that for nD even, at least homologically, spheres are the
only type of Lagrangian in Q with H1.LIZ/D 0.

Theorem 6.3.4 Assume nD dimC QD even. Let L�Q be a Lagrangian submani-
fold with H1.LIZ/D 0. Then H�.LIZ2/ŠH�.S

nIZ2/.

Proof In view of the isomorphism QH�.L/Š .H.LIZ2/˝ƒ/� , for every q 2 Z,
0� r < 2n we have

(54) QH2nqCr .L/Š

(
Hr .LIZ2/ if 0� r � n;

0 if nC 1� r � 2n� 1:

Reducing modulo 2 the identities from Proposition 6.3.1 it follows that a2QHn.QIƒ/

is an invertible element. Thus a� .�/W QHi.L/! QHi�n.L/ is an isomorphism for
every i 2Z. It now easily follows from (54) that Hi.LIZ2/D 0 for every 0< i <n.

We are not aware of the existence of a Lagrangian submanifold in Q with H1.LIZ/D0

which is not diffeomorphic to a sphere, and it is tempting to conjecture that spheres are
indeed the only examples.

Remark 6.3.5 Theorem 6.3.4 can be also proved by Seidel’s method of graded
Lagrangian submanifolds [51]. Indeed for n even the quadric has a Hamiltonian
S1 –action which induces a shift by n on QH�.L/. To see this write nD 2k and write
Q as Q D f

Pk
jD0 zj zjC1Ck D 0g. Then S1 acts by sending t � Œz0 W � � � W z2kC1� to

Œtz0 W � � � W tzk W zkC1 W � � � W z2kC1�. A simple computation of the weights of the action at
a fixed point gives a shift of n on graded Lagrangian submanifolds in the sense of [51].

When n D odd our methods (as well as those of [51]) do not seem to yield a result
similar to Theorem 6.3.4. However the works of Buhovsky [17] and of Seidel [52] may
provide evidence that such a result should hold.
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Denote J the space of almost complex structures compatible with the symplectic
structure of Q. The next result is a straightforward consequence of Lemma 6.3.2 and it
concludes the proofs of the properties claimed in Theorem 2.3.4 and Corollary 1.2.13.

Lemma 6.3.6 Let L�Q be a Lagrangian submanifold with H1.LIZ/D 0. Assume
nD dimC Q� 2. Then the following holds:

(i) Let x 2L and z 2Q nL. Then for every J 2 J there exists a J –holomorphic
disk uW .D; @D/! .Q;L/ with u.�1/D x , u.0/D z and �.Œu�/D 2n.

(ii) Assume that nD even. Let x0;x00;x000 2L. Then for every J 2 J there exists
a J –holomorphic disk uW .D; @D/! .Q;L/ with u.e2�i=3/D x0 , u.1/D x00 ,
u.e4�i=3/D x000 and �.Œu�/D 2n.

Proof The first point follows as usual by considering a Morse function f W L! R
with a single maximum and a single minimum as well as a perfect Morse function
hW Q!R. We let the minimum of h be denoted by p (by a slight abuse in notation
we identify the critical points of h and the corresponding singular homology classes)
and we denote the minimum of f by m and its maximum by w . As L is wide both
m and w are cycles in the associated pearl complex.

Point (i) in Lemma 6.3.2 gives, at the chain level, p �m D mt which implies the
first point of our lemma. The second point is proved by considering a second Morse
function f 0W L!R with a unique minimum m0 . Relation (iii) in Lemma 6.3.2 now
gives (on the chain level) m�m0 D wt , which proves the needed statement.

6.4 Narrow Lagrangians in CP n

The purpose of this section is to construct the monotone narrow Lagrangians mentioned
in Example 1.2.10. The construction is based on the decomposition technique developed
in [7] and on the Lagrangian circle bundle construction from [8].

Let .M 2n; !/ be a symplectic manifold for which Œ!� 2H 2.M IR/ admits an integral
lift in H 2.M IZ/. Fix such a lift a! . Let †2n�2 �M 2n be a symplectic hyperplane
section in the sense that † is a symplectic submanifold whose homology class is dual
to a positive multiple of a! , ie PDŒ†�D ka! 2H 2.M IZ/ for some integer k > 0.
By rescaling ! we will assume from now on, without loss of generality, that k D 1.

Assume further that M is a complex manifold, that ! is a Kähler form and that
† �M is a complex submanifold (so that † �M is a smooth ample divisor). Put
!
†
D !j† and a† D a! j† 2 H 2.†IZ/. Let � W P ! † be a circle bundle with

Euler class a† and ˛ a connection 1–form on P normalized so that d˛ D���!† .

Geometry & Topology, Volume 13 (2009)



Rigidity and uniruling for Lagrangian submanifolds 2981

Denote by E†! † the associated unit disk bundle, E† D
�
P � Œ0; 1/

�
= �, where

.p0; 0/ � .p00; 0/ if and only if �.p0/ D �.p00/. We endow E† with the following
symplectic structure: !can D �

�!†C d.r2˛/, where r is the second coordinate on
P � Œ0; 1/. Note that with our normalization !canj† D !† and the area of each fibre
of E† with respect to !can is 1.

By the results of [7] there exists a compact isotropic CW–complex ��M n† and a
symplectomorphism F W .E†; !can/�! .M n�;!/. Moreover, for every x 2†�E†
we have F.x/ D x . In most cases � is a Lagrangian CW–complex, ie dim� D
1
2

dim M – this is called the critical case. In special situations it may happen that
dim� < 1

2
dim M , which we call the subcritical case. The dimension of � is in

fact determined by the critical points of a plurisubharmonic function 'W M n†!R
canonically determined by † and the complex structure of M . The CW–complex �
is called the isotropic (or sometimes Lagrangian) skeleton. We refer the reader to
Biran [7] for more details on this type of decompositions. See also Eliashberg and
Gromov [28] and Eliashberg [27] for the foundations of symplectic geometry of Stein
manifolds, as well as Biran and Cieliebak [10; 9] and Biran [8] for applications of
these concepts to questions on Lagrangian submanifolds. We will identify from now
on .M n�;!/ with .E†; !can/ via the map F .

Let L� .†; !†/ be a Lagrangian submanifold. Fix 0< r0 < 1. Put

�L D �
�1.L/� fr0g �E† �M n�:

Note that � W �L!L is a circle bundle isomorphic to the restriction of P !† to L.
A simple computation shows that �L is Lagrangian with respect to ! . We will view
�L as a Lagrangian submanifold of M , but it is important to note that �L is disjoint
from �. We remark also that �L depends on the value of r0 . In fact, different values
of r0 give rise to Lagrangians �L with different area classes. Below we will make a
specific choice of r0 and call �L the Lagrangian circle bundle over L. We refer the
reader to [8] for more details on the subject.

Suppose now that L�† is monotone with proportionality constant �D !=�.

Proposition 6.4.1 Assume that dim M � 6, or that dim M D 4 and � is subcritical.
Let r2

0
D 2�=.2�C 1/. Then the Lagrangian �L �M is monotone. It has minimal

Maslov number N�L
D 2 and proportionality constant y�D �=.2�C 1/.

Proof Fix A 2 �2.M; �L/ and let uW .D; @D/! .M; �L/ be a representative of A.
As dim�C 2 < dim M we may assume by transversality that the image of u is
disjoint from �, hence lies in E† . Denote by x1; : : : ;xk the intersection points
of u with † and assume that they are all transverse. Moreover, we may assume
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that each xi corresponds to a single interior point zi 2 D , so that u�1.xi/ D fzig.
After a suitable homotopy of u (rel @D ) we may assume that the points xi all lie
in L. Denote by Dxi

� E† the disk of radius r0 lying in the fibre over xi (ie
Dxi
D .��1.xi/� Œ0; r0�/= �). Note that the boundary of Dxi

lies in �L . After a
further homotopy of u we may assume that there exist small disks Bi �D around each
zi such that u maps each Bi to ˙Dxi

. Here, ˙ stands for the two possible orientations
on Dxi

, according to whether ujBi
W Bi!Dxi

preserves or reverses orientation. Put
S DD n .

Sk
iD1 Int Bi/. Put v D ujS . Clearly the image of v is disjoint from † and

moreover v maps the boundary of S to �L . After another homotopy of v , rel @S we
may also assume that the image of v lies in P � fr0g �E† . Note that

!canjP�fr0g
D .��!†C 2rdr ^˛C r2d˛/jP�fr0g

D .1� r2
0 /�
�!†;

hence we have Z
S

v�! D .1� r2
0 /

Z
S

.� ı v/�!†:

Denote by �i 2 f�1; 1g the intersection index of ujBi
with †. We have

(55)

!.A/D

Z
D

u�! D

kX
iD1

Z
Bi

u�!C

Z
S

v�!

D

� kX
iD1

�i

�
r2
0 C .1� r2

0 /

Z
S

.� ı v/�!†;

�.A/D

kX
iD1

�.ŒujBi
�/C�.Œv�/D 2

� kX
iD1

�i

�
C�.Œv�/:

Denote by �LW H2.†;L/! Z the Maslov index of L�†. A simple computation
shows that �.Œv�/D�L.Œ� ıv�/ (see Proposition 4.1.A in [8] and its proof.) Next, note
that Œ� ı v� in fact lies in the image of �2.†;L/!H2.†;L/. By the monotonicity
of L we now get:

R
S .� ı v/

�!† D ��L.Œ� ı v�/. Using this and (55) we deduce
that �L � M will be monotone if r2

0
=2 D .1 � r2

0
/�. Solving this equation gives

r2
0
D 2�=.2�C 1/.

Remark The Lagrangian �L , when viewed as a submanifold of M n†, is obviously
monotone too (in fact, for every value of r0 ). Its minimal Maslov number (as a
Lagrangian in M n†), N 0

�L
, satisfies N 0

�L
DNL . See Biran [8] for more details.

Based on the above we can construct examples of narrow Lagrangians in CPn .
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6.4.1 Narrow Lagrangians in CPn Consider M D CPn , n � 3, endowed with
the following normalization of the standard symplectic structure !0FS D 2!FS . (The
normalization here is made so that Œ!0FS� 2 H 2.CPnIZ/ is 2 times the generator.)
Let † D Q2n�2 � CPn be the smooth complex quadric hypersurface, given for
example by Q D fz2

0
C � � � C z2

n D 0g. The Lagrangian skeleton in this case is
�DRPn D fŒz0 W � � � W zn� j zi 2R; 8 ig. See Biran [7] for the computation.

Let L�Q2n�2 be any monotone Lagrangian (eg a Lagrangian sphere), and consider
�L � CPn constructed as above. By construction, �L \RPn D ∅. By Corollary
1.2.11 RPn is wide. It follows from Corollary 1.2.8 that �L is narrow.

The same construction actually works also for M D CP2 , although � is not sub-
critical. In this case Q� S2 and we can take L � S2 to be a circle which divides
S2 into two disks of equal areas. The corresponding Lagrangian circle bundle �L

is a 2–dimensional torus in CP2 . The fact that �L is monotone follows from a
direct computation of Maslov indices and areas for each of the three generators of
�2.CP2;L/ Š Z˚3 . Thus we obtain a narrow Lagrangian torus �L � CP2 . We
remark that �L is not symplectically equivalent to the Clifford torus T2

clif � CP2

since the latter is wide. On the other hand, these two tori, Tclif and �L turn out to be
Lagrangian isotopic one to the other. It would be interesting to understand the relation
of this example with Chekanov’s exotic torus [18] as well as with the works Eliashberg
and Polterovich [29] and Blechman and Polterovich [14].

6.4.2 More examples One can iterate the Lagrangian circle bundle construction by
looking at hyperplane sections of hyperplane sections †0 �†�M etc. (with different
choices of †’s as well as different choices of L’s) and obtain many examples of narrow
monotone tori in CPn . It would be interesting to figure out how many of them are
symplectically nonequivalent. It would also be interesting to understand the relation of
these tori to the recent series of pairwise nonequivalent Lagrangian tori constructed by
Chekanov and Schlenk [19].

7 Open questions

Traditionally, the class of monotone Lagrangians has been of interest because it provides
a context in which Floer homology remains reasonably simple to define and, simul-
taneously, is sufficiently rich so as to provide a wide variety of examples. However,
the structural rigidity properties discussed in this paper indicate that this class is also
interesting in itself. We remark that wide monotone Lagrangians also satisfy a form of
numerical (or arithmetic) rigidity (some results on this can be found in [12]).
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Of course, many questions remain open at this time. An obvious issue is whether higher
order operations – beyond the module and product structures, in particular – can be
used to produce further extensions of the results proved here. A considerable amount
of additional technical complications are involved in setting up the machinery needed
to deal with that degree of generality so we have not pursued this avenue here. In a
different direction, it is clearly possible to further pursue relative packing computations
as well as various Gromov radius estimates.

Another obvious problem is to establish the theory described here with coefficients
in Z. As already mentioned in Section 6.3.3 Remark 6.3.3, we expect our theory to
work over Z however we have not rigorously checked the needed compatibility with
orientations. Still, it is instructive to see an example showing that this issue is important
for certain applications.

Let Q�CPnC1 be a smooth complex quadric hypersurface endowed with the symplec-
tic structure induced from CPnC1 . The following corollary shows that the composition
jL1
ı iL0

introduced in Section 2.4 does not vanish for a class of Lagrangians in the
quadric, provided that we work with Z (rather than Z2 ) as the ground ring of coefficients
and so – by Theorem 2.4.1 (again with Z–coefficients) – any two Lagrangians in this
class intersect. We mark the Corollary with a � to indicate that its proof is not 100%
rigorous.

Corollary� 7.0.2 Let L0;L1�Q be two Lagrangians with H1.Li IZ/D 0, i D 0; 1

and assume in addition that L0;L1 are relative spin (see Fukaya et al [33] for the
definition). (For example, L0 and L1 are two Lagrangian spheres). Then, over Z, the
composition jL1

ı iL0
does not vanish. In particular L0\L1 ¤∅.

Proof� As H1.Li IZ/D 0, the Lagrangians L0;L1 are orientable, hence in view of
the relative spin condition we can orient all the moduli spaces of disks following [33].

The condition H1.Li IZ/ D 0 implies that NL0
D NL1

D 2CQ D 2n. Therefore in
the ring ƒ0;1 (from Section 2.4 ) we have t0 D t1 or in other words ƒ0;1 Š ƒ0 Š

ƒ1 Š ZŒt�1; t �, with deg t D�2n. (Note again, we are using Z as the ground ring.)

We will now use the notation from Section 6.3.3, Lemma 6.3.2 and Remark 6.3.3. Recall
that by this Lemma and this Remark we have iL0

.˛0/Dp�ut , where ˛02QH0.L0/ is
the generator, p 2QH0.Q/ is the class of a point and u2QH2n.Q/ is the fundamental
class. Denoting by ˛0n 2 QHn.L1/ the fundamental class we now have by the same
lemma and remark (now applied to L1 ),

jL1
ı iL0

.˛0/D .p�ut/�˛0n D�˛
0
nt �˛0nt D�2˛0nt ¤ 0:

By Theorem 2.4.1, L0\L1 ¤∅.
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We conclude with two conjectures which, we believe, have a significant structural
significance for the understanding of the subject so that we want to make them explicit
here. We recall that here, as all along the paper, we include in the definition of a
monotone Lagrangian submanifold the condition NL � 2.

Conjecture 1 Any monotone Lagrangian submanifold is either narrow or wide.

Conjecture 2 In a point invertible manifold, if two monotone Lagrangian submani-
folds do not intersect, then at least one of them is narrow.

Remark (a) As shown in Theorem 1.2.2 the dichotomy narrow–wide can be estab-
lished in many relevant cases and we can prove it in a few more. It is true, for example,
for nD dim L� 3 (at least when L admits a perfect Morse function).

There is an equivalent statement of the conjecture which is worth indicating here. Recall
the map p�W Q

CH.L/!QH.L/ induced by the change of coefficients ƒC!ƒ and
that we denote by IQC.L/ its image. It is easy to see that the kernel of p� consists
precisely of the torsion ideal TC.L/ of QCH.L/,

TC.L/D fz 2QCH.L/ W 9 m 2N; tmz D 0g :

It is a simple exercise to see that L is wide if and only if TC.L/D 0 and L is narrow
if and only if TC.L/DQCH.L/. Thus the wide–narrow conjecture is equivalent to
showing that the torsion ideal of any monotone Lagrangian can only be 0 or coincide
with the entire ring.

(b) The difficulty in proving the second conjecture is caused by the following phenom-
enon (see also Theorem 2.4.1). First, notice that the result immediately follows if one
can show that there is a constant C and a class ˛ 2 QH.M Iƒ/ (with M the ambient
symplectic manifold) so that for any monotone, non-narrow Lagrangian L�M and
any � 2 eHam.M / one has

(56) depthL.�/�C � �.˛; �/� heightL.�/CC:

By Lemma 5.3.1 (i), if ˛ is invertible (for example, ˛ D Œpt� for a point invertible
manifold) the left inequality (56) follows because ˛ acts nontrivially on QH.L/.
The second inequality is implied by the second point of the same Lemma if one
can show ˛ 2 Im.iL/. Finding a class ˛ which satisfies both properties is however
quite nontrivial. Notice that in a point invertible manifold of order k not only is
the left inequality in (56) satisfied for ˛ D pt but we can also deduce the estimate
��.Œ!n�; �/ WD inff�.ŒM �C s�1x; �/ j x 2 QH.M Iƒ/g � heightL.�/C k where
x 2 QCH.M /, s is the Novikov variable in � D Z2Œs

�1; s�, and ��.!n; �/ is by
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definition the infimum given above (this notation is justified because it coincides with
the cohomological spectral invariant of the class Œ!n�). It is clear from the “triangle
inequality” that �.ŒM �; �/ � �.Œpt�; �/ but it is in general not easy to show that
��.Œ!n�; �/� �.Œpt�; �/.
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