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Rigidity and uniruling for Lagrangian submanifolds

PAUL BIRAN
OcTtAV CORNEA

This paper explores the topology of monotone Lagrangian submanifolds L inside
a symplectic manifold M by exploiting the relationships between the quantum
homology of M and various quantum structures associated to the Lagrangian L.

53D12; 53D05

1 Introduction

The purpose of this paper is to explore the topology of monotone Lagrangian sub-
manifolds L inside a symplectic manifold M by exploiting the relationships between
the quantum homology of M and various quantum structures associated to the La-
grangian L. We show that the class of monotone Lagrangians satisfies a number of
structural rigidity properties which are particularly strong when the ambient symplectic
manifold contains enough genus-zero pseudo-holomorphic curves. Indeed, we will
see that (very often) if M is “highly” uniruled by curves of area A, then (M, L) (or
just L) is uniruled by curves of area strictly smaller than A (see Section 1.1.2 for the
definition of the appropriate notions of uniruling).

1.1 Setting

All our symplectic manifolds will be implicitly assumed to be connected and tame
(see Audin, Lalonde and Polterovich [3]). The main examples of such manifolds are
closed symplectic manifolds, manifolds which are symplectically convex at infinity
as well as products of such. All the Lagrangian submanifolds will be assumed to be
connected and closed (ie compact, without boundary).

We start by emphasizing that our results apply to monotone Lagrangians. These are
characterized by the fact that the morphisms

w: m(M,L) >R, u:may(M,L)—7Z,
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the first given by integration and the second by the Maslov index, are proportional with
a positive proportionality constant w = nu with n > 0. Moreover, we will include here
in the definition of the monotonicity the assumption that the minimal Maslov index

Np = min{u(e) |« € m3(M, L), pu(a) > 03

of a homotopy class of strictly positive Maslov index is at least two, Ny > 2. If L is
monotone, then M is also monotone and Ny, divides 2Cys where Cpy is the minimal
Chern number of M

Cy = min{cq (@)|o € T (M), ¢1 (o) > 0} .

1.1.1 Size of Lagrangians Fix a Lagrangian submanifold L C M .

We say that a symplectic embedding of the closed, standard symplectic ball of radius r,
e: (B?(r), wga) — (M, w), is relative to L if

e Y (L) =B*(r)NR".
These types of embeddings were first introduced and used by Barraud and Cornea
[4; 5].

Consider now a vector vp g = (Fi,...,7p; p1,- - -, pg) € (RT)PT9. We will not allow
for both p and ¢ to vanish. If just one does, say p = 0, we will use the notation

Vo,g = (D:p1,....,0q)-

Definition 1.1.1 The mixed symplectic packing number, w(M,L : vy 4), of type
Vpg = (F1.....7piP1....,pq) of (M, L) is defined by

p q
w(M,L:vpg)= sup(z m(tr)* + % Z T[('L',Oj)z)

>08—y j=1

where the supremum is taken over all T such that there are mutually disjoint symplectic
embeddings

fir (B*™(tri), w0) > (M\L), 1 =i < p, ¢j: (B¥(zpj),w0) > M, 1= j =¢q

so that the e;’s are embeddings relative to L.

The most widespread examples of such vectors v, 4 have all their components equal
to 1. We also notice that w(M) := w(M, @ : (1; @)) is the well-known Gromov width
of M : the supremum of 77?2 over all symplectic embeddings of B2"(r) into M. A
similar notion has been introduced by Barraud and Cornea [4] (see also Cornea and
Lalonde [25]) to “measure” Lagrangians: the width of a Lagrangian, w(L), is the
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supremum of 772 over all symplectic embeddings of B2"(r) which are relative to L.
With our conventions, w(L) = 2w(M, L : (&;1)). Moreover, w(M \ L), the Gromov
width of the complement of L, is given by w(M, L : (1; @)).

1.1.2 Uniruling The main technique used to prove width and packing estimates is
based on establishing uniruling results.

Definition 1.1.2 We say that (M, L) is uniruled of type (p, q) and order k (or shorter,
(M, L) is (p, q)—uniruled of order k) if for any p distinct points P; € M\ L, 1<i <p,
and any ¢ distinct points, Q; € L, 1 < j <g¢, there exists a Baire second category
(generic) family of almost complex structures 7 with the property that for each
J € J there exists a nonconstant J—holomorphic disk u: (D2, dD?) — (M, L) so that
P; € u(Int(D?)) forall i, Q; € u(dD?) forall j, and p(u) <k. In case L is void,
we take ¢ = 0, and instead of a disk, u is required to be a nonconstant J —holomorphic
sphere so that P; € u(S?), forall .

If (M, 2) is (p,0)—uniruled we will say that M is uniruled of type p. Thus the usual
notion of uniruling for a symplectic manifold — M 1is uniruled if through each point
of M passes a J—sphere in some fixed homotopy class in 7, (M) —is equivalent in our
terminology with M being 1-uniruled. Similarly, in case (M, L) is (0, g)—uniruled
we will say that L is g—uniruled. Additionally, if ¢ = 1 we say that L is uniruled.

The relation with packing is given by the following fact:

Lemma 1.1.3 If the pair (M, L) is (p, q)—uniruled of order k, then for any vector
Vpg = (F1,...7p; p1,...pq) the mixed symplectic packing number w(M, L : vp 4)
satisfies

w(M, L:vpgq) <nk

where 1 is the monotonicity constant, 1 = w/ L.

The proof of this is standard and is a small modification of an argument of Gromov [35].
It comes down to the following simple remark which also explains the 1/2 factor in
the definition of w(M, L :vp4). If a J—curve u with boundary on a Lagrangian goes
through the center of a standard symplectic ball or radius r embedded in M relative
to L so that J coincides with the standard almost complex structure inside the ball,
then we have 7r2/2 < J u*w. This is in contrast to the case when u has no boundary,
when the inequality is, as is well-known, 7r? < Ju*w.

The simplest way to detect algebraically that M is p—uniruled is to find some class
o € mp(M) and r > 1 so that, for distinct points Pq,..., Pp, and a generic J, the
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evaluation at r distinct points on the J—spheres of class a which pass through the
fixed points P;, 1 <i < p, has a homologically nontrivial image in the product M *" .
This can be translated in terms of Gromov—Witten invariants: if there exist a € 7, (M)
and classes a; € Hy(M ;7Z5),1 <i <r, so that

(1) GW(pt,...,pt,aq,...,ar;a)#0

where the class of the point, pt € Hy(M ;Z,), appears p times, then M is clearly
p—uniruled (we recall that the Gromov—Witten invariant GW(by, ... bs; @) counts —
in this paper with Z, coefficients — the number of J—spheres in the homotopy class
a € o (M) which each pass through generic cycles representing the homology classes
bi € H*(M, Zz))

Remark 1.1.4 Incase p =1 the condition in (1) gives the notion of “strong uniruled”
which appears in McDuff [39] (with the additional constraint that the degree of the
homology classes a; are even).

If we fix p > 2 and add the requirement that r = 1, then, by the splitting property of
Gromov—Witten invariants, the uniruling condition implies GW (pt, pt, a; &’) # 0 for
some choices of a € Hyx(M ;7Z,) and o’ € o (M ). Of course, this can be reinterpreted
in quantum homology as the relation [pt] x a = [M le® 4 --- where [ptl € Hy(M; Z>)
represents the point, [M] € Hy, (M, Z,) is the fundamental class, and the Novikov
ring used is Z,[my(M)].

A stronger condition will play a key role in the following. Consider the quantum
homology of M with coefficients in I' = Z,[s~!, 5] with deg(s) = —2Cps (where
Cyy is the minimal Chern number). This is QH, (M) = Hy (M ;Z,) Q T.

Definition 1.1.5 With the notation above we say that M is point invertible if [pt]
is invertible in QH(M ). This implies that there exists 0 # ag € Hx(M;Z,), a; €
H.(M:;Z,) ® Z5[s], and k € N so that, if we put ¢ = ag + a5, then in QH, (M)
we have

[pt] *xa = [M]Sk/sz .

The natural number & above is uniquely defined and we specify it by saying that M is
point invertible of order k .

Of course, as indicated above, a point invertible manifold is 2—uniruled. The class of
point invertible manifolds includes, for example, CP" and the quadric Q2" c CP"+!,
Moreover, in view of the product formula for Gromov—Witten invariants, this class is
closed with respect to products.
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In general, no such direct algebraic criteria can be found to test the existence of mixed
uniruling of the pair (M, L) or even whether L itself is uniruled because relative
Gromov—Witten invariants are not well-defined in full generality.

1.2 Main results

Recall that by the work of Oh [42] if L C M is a monotone Lagrangian, which
we will assume from now on, then the Floer homology HF(L) := HF(L, L) with
7., —coefficients is well-defined (the construction will be briefly recalled later in the
paper). Floer homology is easily seen to be isomorphic (in general not canonically)
to a quotient of a sub—vector space of H(L;Z,) ® A. Here H(L;Z,) is singular
homology and A = Z,[t ™!, t] where the degree of ¢ is |t| = —N (see Section 3.2 (g)
for the precise definition). Thus, there are two extremal cases:

Definition 1.2.1 If HF(L) =0 we say that L is narrow; if there exists an isomorphism
HF(L) =~ H(L;Z,) ® A, then we call L wide. Note that the latter isomorphism is
not required to be canonical in any sense.

Remarkably, all known monotone Lagrangians are either narrow or wide. We will
see that the dichotomy narrow—wide plays a key role in structuring the properties of
monotone Lagrangians. In particular, narrow Lagrangians tend to be small in the sense
that their width is bounded and non-narrow ones tend to be barriers in the sense of
Biran [7]: the width of their complement tends to be smaller than that of the ambient
manifold. Wide Lagrangians are even more rigid.

1.2.1 Geometric rigidity We start with one result concerning narrow Lagrangians
which also shows that the “narrow—wide” dichotomy holds in a variety of cases (related
results are due to Buhovsky [15]):

Theorem 1.2.2 Let L" C M?" be a monotone Lagrangian. Assume that its singu-
lar homology Hy«(L;Z,) is generated as a ring (with the intersection product) by
H>y(L;Zs).

(i) If Np > 1, then L is either wide or narrow. Moreover, if N;, > [ + 1, then L is
wide.

(ii) In case L is narrow, then L is uniruled of order K with K = max{/ + 1,
n+1—Np}yif Np <l+1,and K =141 if Np =[+ 1. Moreover, w(L) <
2Kn where n is the monotonicity constant. In particular, the width of narrow
monotone Lagrangians L is “universally” bounded: w(L) < 2(n + 1)n. In
case L is narrow and not a homology sphere the bound can be improved to
w(L) <2nn.
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Note that the finiteness of w(L) from point (ii) is not trivial since M is not assumed
to be compact nor of finite volume or width. Moreover, when L is not narrow, w (L)
might be infinite. For example, zero-sections in cotangent bundles (which are wide)
have infinite width. A class of Lagrangians for which Theorem 1.2.2 gives nontrivial
information is that of monotone Lagrangian tori. In this case H.(L;Z,) is generated
by H>,—1(L;7Z,) hence we can take / = 1. As Ny >2 > [ we see that any monotone
Lagrangian torus is either narrow or wide. In case such a Lagrangian is narrow we
have w(L) < 4y.

To obtain any meaningful uniruling results for Lagrangians which are not narrow,
the same example of zero sections in cotangent bundles shows that some additional
conditions need to be imposed on the ambient manifold M .

Theorem 1.2.3 Let L be a monotone Lagrangian in a symplectic manifold M which
is point invertible of order k .

(1) If L is not narrow, then (M, L) is uniruled of type (1,0) of order < k. In
particular,
w(M\L) = (k—=Ngr)n.

(ii) If L is wide, then L is uniruled of order < k and we have

2 w(L) 4+ 2w(M\L) < 2kn.

We emphasize that the somewhat surprising part of the statement is that the uniruling
involving L is of order strictly lower than & whenever M is point invertible of order
precisely k (in particular, it might happen that M itself is uniruled of order precisely k).

Remark 1.2.4 (a) There are a few additional immediate inequalities that are worth
mentioning: as M is uniruled we have w(M) < kn and so w(L) < kn. Moreover,
as M is 2-uniruled, we have w(M, @; (r1, r2; @)) < kn. Obviously, we always have
w(M, 25 (r1,r2;9)) Z w(M, L; (r1;r2)).

(b) These general inequalities do not imply the inequality (2). Indeed, in contrast to
w(M, L; (r1;r3)), the two balls involved in estimating separately the width of L and
that of its complement are not required to be disjoint !

(c) A nontrivial consequence of point (i) of the Theorem is that if M is point invertible
of order k and L is non-narrow, then Ny < k/2.

(d) Assuming the setting of the point (ii) of the Theorem we deduce from the fact that
L is uniruled of order < k, that w(L) < 2(k — Nr)n. However, this inequality lacks
interest because 2(k — Np) = k (since k > 2Ny ).

Geometry & Topology, Volume 13 (2009)



Rigidity and uniruling for Lagrangian submanifolds 2887

1.2.2 Corollaries for Lagrangians in CP" We endow CP”" with the standard
Kéhler symplectic structure wps normalized so that f(C p1 Wps = 1. With this nor-
malization we have CP" \ CP"~! ~ Int B?"(1//7) hence w(CP") = 1. Note also
that for every monotone Lagrangian L C CP" we have n = 1/(2n + 2) and that CP"
is point invertible of order k = 2n + 2.

Corollary 1.2.5 Let L be a monotone Lagrangian in CP".

(i) At least one of the following inequalities is satisfied:
@ w(L)=n/(n+1).
(b) w(CP"\L)<n/(n+1). Moreover, if L is not narrow then possibility (b)
holds and in fact we have

_w v

w((CP”\L)_Z(}H_l).

(i1) If L is wide, then we have

w(L) 4+ 2w(CP"\L) < 2.

In case L is not narrow, the inequality w(CP"\L) <n/(n+ 1) follows directly from
Theorem 1.2.3. If L is narrow, as L cannot be a homology sphere (see eg Biran and
Cieliebak [9]) we can take / =n—1 in Theorem 1.2.2 which then implies the inequality
at (i) (a) above. Point (ii) of the Corollary follows from point (ii) of Theorem 1.2.3.

Corollary 1.2.5 implies in particular that for any monotone Lagrangian in CP" we
have

n 1
3 L CP\L)<14+——=2—
3 w(L) +w(CP\L) S 14— =2
or, in other words, any monotone Lagrangian in CP” is either a barrier (in the sense

of [7]) or its width is strictly smaller than that of the ambient manifold. For example,
R P" C CP" satisfies w(RP") =1 and w(CP"\R P") = 1/2; for the Clifford torus

T(ﬁlf:{[zo"uzn]E(CPn | |Zol =-..|Zn|}

we have w(TZ,;) <2/(n+ 1) (an explicit construction due to Buhovsky [16] shows
that we actually have an equality here) and w(CP"\T%;) = n/(n + 1) so that for
n = 2 both (a) and (b) are sharp. Both R P" and TJ};; show that the inequality at (ii)
is sharp. We do not know if the inequality (3) is sharp.
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1.2.3 Spectral rigidity To summarize the results above, monotone non-narrow La-
grangians (at least) in appropriately uniruled symplectic manifolds are geometrically
rigid. Of course, by standard Floer intersection theory, monotone Lagrangians which
are not narrow, are also rigid in the sense that such a Lagrangian cannot be disjoined
from itself by Hamiltonian deformation. We now present a different type of rigidity.

Let I-/I;r/n(M ) be the universal cover of the Hamiltonian diffeomorphism group of a
symplectic manifold M . Recall that, by work of Oh [47] and Schwarz [49] we can
associate to any ¢ € ﬁafll(M ) and any singular homology class @« € Hx(M;Z,) a
spectral invariant, o (e, ¢) € R. See Section 5.3 for the definition.

Here are two natural notions measuring the variation of an element ¢ € %(M ) on
a Lagrangian submanifold L C M .
Definition 1.2.6 The depth and, respectively, the height of ¢ on L are

depth; (¢) = sup inf H(y(t),t)dt
[H]=¢ YT (L) J 51

height; (¢) = inf  sup H(y(t),t)dt,
[H]l=¢ yer(r) JS!

where T'(L) stands for the space of smooth loops y: S' — L, H: M xS' - R isa
normalized Hamiltonian, and the equality [H] = ¢ means that the path of Hamiltonian
diffeomorphisms induced by H, ¢tH , 1s in the (fixed ends) homotopy class ¢.

Theorem 1.2.7 Let L. C M be a monotone non-narrow Lagrangian. Then for every
¢ € Ham(M):

(i) We have o ([M], ¢) > depthy (¢).

(i) If M is point invertible of order k, then

o ([pt], ) > depth; (¢) —kn.

We will actually prove a more general statement than the one contained in Theorem
1.2.7, however, even this already has a nontrivial consequence.

Corollary 1.2.8 Any two non-narrow monotone Lagrangians in CP" intersect.

Here is a quick proof of this Corollary. First, the theory of spectral invariants shows
that for any manifold M so that QH,,(M) = Z,[M] and any ¢ € I-Tz;r/n(M) we
have o ([pt], ¢~ ') = —o([M], ¢). This is the case for M = CP" and thus, as for CP"
we have k =2n+2, n =1/(2n + 2), by Theorem 1.2.7 (ii) we deduce for any ¢:
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o([CP"],¢) = —o([pt], ') < —depth; (¢~!) + 1 = height; (¢) + 1. Therefore, we
have the inequalities

4) depth; (¢) < o (|CP"], ¢) < height; (¢) + 1.

Assume now that Lg and L, are two non-narrow Lagrangians in CP" and Lo N L, =
& . In this case, for any two constants Cy, C; € R we may find a normalized Hamiltonian
H which is constant equal to Cy on L and is constant and equal to C; on L;. We
pick Cy > Cy + 1. Applying the first inequality in (4) to L and the second to Ly we
get

C1 = depthy, (¢) <o ([CP"],¢*) < heighty, (¢) +1 = Co+ 1

which leads to a contradiction.

A more general intersection result based on a somewhat different argument is stated
later in the paper, in Section 2.4.

Remark 1.2.9 (a) We expect that, at least under possibly stronger assumptions, the
Z,-Floer homology of the two Lagrangians involved (when defined) is not zero. We
have a different, more algebraic approach [11] to the result in Corollary 1.2.8 which
should be helpful in settling this issue. However, this approach goes beyond the scope
of this paper and so it will not be further discussed here (see also Remark 2.4.2).

(b) The argument for the proof given above to Corollary 1.2.8 has been first used by Al-
bers in [2] in order to detect Lagrangian intersections and by Entov and Polterovich [30];
Entov and Polterovich first noticed that this Corollary follows from an early version
of our theorem in [12] combined with the results in [30]. Using the terminology
of [30], Theorem 1.2.7 implies that a monotone non-narrow Lagrangian is heavy.
This is because [M] is an idempotent which satisfies o([M],¢) > depth; (¢) for
all ¢. Assume now, additionally, that M is point invertible of order & and moreover
that for any ¢ € I-/Izr/n(M), o(ptl. ¢~ 1) = —o([M].¢). In this case, we deduce
o(M],¢) = —o([pt], $~!) < —depth; (p~ ') + kn = height; (¢) + kn so that L is
even super-heavy.

1.2.4 Existence of narrow Lagrangians Clearly, a displaceable Lagrangian is nar-
row. For general symplectic manifolds this is the only criterion for the vanishing of
Floer homology that we are aware of. Unfortunately, except in very particular cases,
this is not very efficient as, for a given Lagrangian it is very hard to test the existence
of disjoining Hamiltonian diffeomorphisms. Because of this, till now there are very
few examples of monotone, narrow Lagrangians inside closed symplectic manifolds.
One very simple example is a contractible circle embedded in a surface of genus > 1.
However, even in CP” it is nontrivial to detect such examples. Corollary 1.2.8 yields
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as a byproduct many examples of such narrow monotone Lagrangians: if one monotone
Lagrangian which is not narrow is known, it suffices to produce another monotone
Lagrangian which is disjoint from it.

Example 1.2.10 There are narrow monotone Lagrangians in CP", n > 2.

Such Lagrangians are obtained using the Lagrangian circle bundle construction from
Biran [8]. Namely, we take any monotone Lagrangian Ly C 0?"~2 in the quadric
hypersurface (eg a Lagrangian sphere) and then push it up to the normal circle bundle of
the complex quadric hypersurface Q2”2 C CP" of appropriate radius such as to get a
monotone Lagrangian L. C CP" which is an S'-bundle over Lg. As we will see, this
produces a Lagrangian that does not intersect R P, which in turn is wide. A detailed
construction of narrow Lagrangians in CP" along these lines is given in Section 6.4.

1.2.5 Methods of proof and homological calculations All our results are based on
exploiting the following machinery. It is well-known that counting pseudo-holomorphic
disks with Lagrangian boundary conditions (and appropriate incidence conditions)
does not lead, in general, to Gromov—Witten type invariants as these counts strongly
depend on the choices of auxiliary data involved (almost complex structures, cycles etc).
However, the moduli spaces of pseudo-holomorphic disks are sufficiently well structured
so that these counts appropriately understood can be used to define a chain complex —
which we call the pearl complex (this construction was initially proposed by Oh [44]
following an idea of Fukaya and is a particular case of the more recent cluster complex
of Cornea and Lalonde [24] called there linear clusters). The resulting homology
QH(L) is an invariant which we call the quantum homology of L. The key bridge
between the properties of the ambient manifold and those of the Lagrangian is provided
by the fact that QH (L) has the structure of an augmented two-sided algebra over the
quantum homology of the ambient manifold, QH(M ), and, with adequate coefficients,
is endowed with duality. At the same time, again with appropriate coefficients, QH (L)
is isomorphic to the Floer homology HF(L, L) of the Lagrangian L with itself.
Moreover, many of the additional algebraic structures also have natural correspondents
in Floer theory. However, the models based on actual pseudo-holomorphic disks
rather than on Floer trajectories are much more efficient from the point of view of
applications: they provide a passage from geometry to algebra which is sufficiently
explicit so that, together with sometimes delicate algebraic arguments, they lead to the
structural theorems listed before. Actually, in this paper we will not make any essential
use of the fact that the Lagrangian quantum homology can be identified with the Floer
homology.

The deeper reason why the models based on pseudo-holomorphic disks are so efficient
has to do with the fact that they carry an intrinsic “positivity” which is algebraically
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useful and is inherited from the positivity of area (and Maslov index, in our monotone
case) of J-holomorphic curves. These methods also allow us to compute explicitly the
various structures involved in several interesting cases. In particular, for the Clifford
torus in T¢ir C CP”, for Lagrangians, L C CP" with 2H,(L;Z) = 0, and for simply
connected Lagrangians in the quadric Q. The results of these calculations will be stated
in three Theorems in Section 2.3 once the algebraic structures involved are introduced.
However, these calculations imply a number of homological rigidity results as well as
some uniruling consequences which can be stated without further preparation and so
we review these just below.

The first such corollary deals with Lagrangian submanifolds L C CP”" for which
every a € H{(L;Z) satisfies 2a = 0 (in short: “2H(L;Z) = 07). It extends some
earlier results obtained by other methods in Seidel [51] and Biran [8]. Before stating
the result let us recall the familiar example of R P" C CP", n > 2, which satisfies
2H(RP";Z) =0.

Corollary 1.2.11 Let L C CP" be a Lagrangian submanifold with 2H(L;Z) = 0.
Then L is monotone with Ny, = n + 1 and the following holds:

(i) There exists amap ¢: L — R P" which induces an isomorphism of rings on Z,—
homology: ¢«: Hy(L:;Z,)= H«(R P";7Z,), the ring structures being defined
by the intersection product. In particular we have H;(L;7Z,) = Z, for every
0 <i <mn,and H«(L;Z,) is generated as a ring by H,—1(L;Z,).

(i) L is wide. Therefore, as N, = n + 1 and in view of point (i) just stated, we
have HF;(L, L) = 7, forevery i € 7.

(ili) Denote by h = [CP"~'] € H,,_,(CP";Z,) the generator. Then h Ny [L] is the
generator of H,_,(L;Z,). Here Ny, stands for the intersection product between
elements of Hx(CP";Z,) and H«(L;7Z,).

(iv) Denote by incy: Hi(L;Z,) — H;j(CP";Z,) the homomorphism induced by
the inclusion L C CP". Then inc4 is an isomorphism for every 0 <i = even
<n.

(v) (CP™, L) is (1,0)-uniruled of order n + 1.

(vi) L is 2—uniruled of order n 4+ 1. Moreover, given two distinct points x,y € L,
for generic J there is an even but nonvanishing number of disks of Maslov index
n + 1 each of whose boundary passes through x and y.

(vii) Forn =2, (CP?, L) is (1,2)-uniruled of order 6.

Other than L = R P" we are not aware of any other Lagrangian L C CP" satisfying
2H{(L;Z) = 0. In view of Corollary 1.2.11 it is tempting to conjecture that the only
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Lagrangians L C CP" with 2H(L;Z) = 0 are homeomorphic (or diffeomorphic) to
R P™, or more daringly symplectically isotopic to the standard embedding of R P" —>
CP"™. Note however that in CP? there exists a Lagrangian submanifold L, not
diffeomorphic to R P3, with H;(L;Z,) = Z, for every i. This Lagrangian is a
quotient of R P* by the dihedral group Ds. It has H;(L;Z) = Z4. This example is
due to Chiang [20].

Our second corollary is concerned with the Clifford torus,
Thi=1{lzo: - :zn] € CP" | |z9| = -+ = |zn|} CCP".

This torus is monotone and has minimal Maslov number Np» =2. As before, we endow
CP"™ with the standard symplectic structure wgs normalized so that f(C p1wrs = 1.

Corollary 1.2.12 The Clifford torus T, C CP" is wide, (CP", Tl is (1,0)—
uniruled of order 2n and T is uniruled of order 2. For n = 2, (CP2, T2, is

(1, 1)—uniruled of order 4. In particular, w(CP?2, Tczlif 2(r,p) <2/3.

Finally, we also indicate a result concerning Lagrangians in the smooth complex quadric
hypersurface Q2" C CP"*! endowed with the symplectic structure induced from CP" .
The next corollary is concerned with Lagrangians L C Q2" with H;(L;Z) =0. We
recall the familiar example of a Lagrangian sphere in Q2" which can be realized for
example as a real quadric.

Corollary 1.2.13 Let L C Q?", n>2, be a Lagrangian submanifold with H,(L; Z) =
0. Then L is wide and (Q, L) is (1, 1)—uniruled of order 2n. In particular, w(Q, L :
(r, p)) < 1. If we assume in addition that n = dim¢c Q is even, then we also have:

() H«(L;Z2) = Hx(S™; Z2).
(ii) L is 3—uniruled of order 2n (an so w(Q, L : (; p1, p2,p3)) < 1).

1.3 Structure of the paper

The main results of the paper are stated in the introduction and in Section 2. Namely,
in the second section, after some algebraic preliminaries we review in Section 2.2 the
structure of Lagrangian quantum homology. This structure is needed to state in Section
2.3 three theorems containing explicit computations. Each one of the three corollaries
already described in Section 1.2.5 is a consequence of one of these theorems. Section 2
concludes — in Section 2.4 — with the statement of a Lagrangian intersection result
which is a strengthening of Corollary 1.2.8.
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In Section 3 and Section 4 we develop the tools necessary to prove the results stated in
the first two sections. More precisely, Section 3 contains the justification of the structure
of Lagrangian quantum homology. While we indicate the basic steps necessary to
establish this structure, certain technical details are omitted. These details are contained
in our preprint [12] and we have decided not to include them here because they are quite
tedious and long and relatively unsurprising for specialists. The fourth section contains
a number of auxiliary results which provide additional tools which are necessary to
prove the theorems of the paper.

The actual proofs of the results stated in Section 1 and Section 2 are contained in
Sections 5 and 6. Namely, the fifth section contains the proofs of the three main
structural Theorems stated in the introduction as well as that of the Lagrangian inter-
section result stated in Section 2.4 and the sixth section contains the proofs of the three
“computational” theorems stated in Section 2.3 and that of their corresponding three
Corollaries from Section 1.2.5. The construction of the example mentioned in Section
1.2.4 is also included here as well as a few other related examples.

Finally, in Section 7 we discuss some open problems derived from our work.
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2 Lagrangian quantum structures

In this section we introduce the algebraic structures and invariants essential for our
applications. We will then indicate the main ideas in the proof of the related statements
as well as a few technical aspects. Full details appear in [12].

2.1 Algebraic preliminaries

We fix here algebraic notation and conventions which will be used in the paper.

2.1.1 Graded modules and chain complexes Let R be a commutative graded ring,
ie R is a commutative ring with unity, R splits as R =P,z Ri, forevery i, j € Z we
have R;-R; CRj+j and 1 € Ry. By a graded R—module we mean an R—-module M
which is graded M = ;.5 M; with each component M; being an Ro-module and
moreover for every i, j € Z we have R; - M; C M4 ;.

The chain complexes (C,d) we will deal with will often be of the following type.
Their underlying space C = @,y C; will be a graded R-module, and moreover the
differential d, when viewed as a map of the total space d: C — C, is R-linear. Since
it is not justified to call such complexes C “chain complexes over R” (as each C; is
not an R—module) we have chosen to call them R—complexes. Note that (C, d) is in
particular also a chain complex of Rg—modules in the usual sense. Note also that the
homology H(C, d) is obviously a graded R—module.

Most of our chain complexes (C,d) will be free R—complexes. By this we mean
that (the total space of) the R—complex C is a finite rank free module over R. In
other words C = G ® R where G is a graded finite dimensional Z,—vector space and
the grading on C is induced from the grading of G and from the grading of R. The
differential d on C of course does not need to have the form d = dg ® 1. In fact
we can split 4, in a unique way, as a (finite) sum of operators d = ) ;. §; where
81: Gx > G141 ® R_;. (Here G4 is identified with G« ® 1 C G« ® R and the
operators §; are extended to C by linearity over R). In most of the complexes below
the operators §; will actually be given as §; = Zj 0,j@rpj with 0y j: Gx — Gy_y4y
and r;; € R_y.

Finally, we say that the differential d of a free R—complex (C, d) is positive if §; =0
for every / < 0. In that case we will call the operator &g the classical component of d .

2.1.2 Coefficient rings Denote by HZD (M, L) C Hy(M, L;Z) the image of the
Hurewicz homomorphisms 7, (M, L) — Hy(M, L). Let H2D (M, L) be the monoid
of all the elements u so that w(u) > 0. Put AT = Zz[HZD (M, L)t/ ~] with ~
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the equivalence relation # ~ v if and only if w(u) = p(v) and similarly A =
Zz[HZD (M, L)/ ~]. We grade these rings so that the degree of u equals —p (). In prac-
tice we will use the following natural identifications: A+ 2= Z,[t], A = Z,[t~!,¢] in-
duced by HZD (M, L)>u— t*®/NL  The grading here is chosen so that deg r = — N7 .

As mentioned in the introduction, the quantum homology of the ambient manifold
is naturally a module over the ring I' = Z,[s™!, 5] where the degree of s is —2Cyy.
There is an obvious embedding of rings I' < A which is defined by s — 1@Cm)/NL
The same embedding also identifies the ring I'" = Z,[s] with its image in A™*. Using
this embedding we regard A (respectively A™) as a module over I' (respectively,
over I't") and we define the following obvious extensions of the quantum homology:

QH(M; N)= Hy(M;Z2)®A =QH,(M)Qr A, QH(M; AT)=H (M;Z)QA™.

We endow QH(M:;A) and QH(M ; A") with the quantum intersection product *
(see McDuff and Salamon [40] for the definition). Notice that we work here with
quantum homology (not cohomology), hence the quantum product *: QHy (M ; A) ®
QH;(M;A) — QHp 4 1—2,(M; A) has degree —2n. The unitis [M] e QH,,(M;A),
thus of degree 2n.

While we will essentially stick with A, AT in this paper, for certain applications
it can be useful to also use larger rings which distinguish explicitly the elements in
HZD (M, L). This is done as follows. Let H2S (M, L) C Hy(M;Z) be the image of
the Hurewicz homomorphism (M) — Hy(M;Z), and let HZS (M)* C st (M)
be the semigroup consisting of classes A with ¢;(A4) > 0. Similarly, denote by
HZD (M,L)* C H2D (M, L) the semigroup of elements 4 with u(A) > 0. Let [t=
Zz[st (M)T]U {1} be the unitary ring obtained by adjoining a unit to the nonunitary
group ring Zz[yzs (M)™]. Similarly we put At = ZZ[HZD (M, L)T]u {1}. We write
elements Q € 't and P € AT as “polynomials” in the formal variables S and T :

Q(S)=ao+ Y. asS* P(T)=bo+ Y bpT®  ag.as.bo.bpeZ,.
c1(A4)>0 w(B)>0
We endow these rings with the following grading:
deg s = —2¢1(A), deg T8 = —u(B).

Note that these rings are smaller than the rings [0 = Zy[{A | ¢1(A) = 0}] and
A=0 = Z,[{B | w(B) > 0}]. For example, A=% and I'=° might have many nontrivial
elements in degree 0, whereas in '™ and AT the only such element is 1.

Let QH(M ; f+) =HM;Z,)® " be the quantum homology of M with coefficients
in 't endowed with the quantum product, which we still denote by * (note that now *
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takes into account the actual classes of holomorphic spheres not only their Chern
numbers). We have a natural map H, S (M)* - H, DM, L)+ which induces on AT
a structure of a I't —module. Put QH (M A+) = QH (M:;Th)®= Bt AT and endow it
with the quantum intersection product, still denoted *. Note that the quantum product
is well defined with this choice of coefficients, since by monotonicity Chern numbers of
pseudo-holomorphic spheres are nonnegative and the only possible pseudo-holomorphic
sphere with Chern number 0 is constant. We grade this ring with the obvious grading
coming from the two factors.

The most general rings of coefficients relevant for this paper are rings R that are graded
commutative A+ —algebras. We will usually endow a graded commutative ring R with
the structure of A1 —algebra by specifying a graded ring homomorphism ¢: AT — R.

Here are a few examples of such rings R which are useful in applications.

(1) Take R = A = Z,[t~ !, 1], and define g by ¢(T4) = (#(AD/NL
(2) Take R = AT = Z,[t], and define ¢ as in (1).

(3) Take R = ZZ[HZD (M, L)] with the obvious K+—algebra structure. We denote
this ring by A.

Given a graded commutative K+—algebra ‘R we extend the coefficients of the quantum
homology of the ambient manifold by QH(M ; R) = QH(M; A1) ® i+ R.

2.1.3 A useful filtration There is a natural decreasing filtration of A™ and A by
the degrees of ¢, ie

5) FEN = (P Zylt. 7| P(t) = apt® + ajy i 4}

We will call this filtration the degree filtration. In a similar way we can define the
analogous filtrations on any graded A+ -algebra R. This filtration induces an obvious
filtration on any free 'R—module.

2.2 Structure of Lagrangian quantum homology

Let f/: L — R be a Morse function on L and let p be a Riemannian metric on
L so that the pair (f, p) is Morse—-Smale. We grade the elements of Crit( /) by
|x| =inds(x). Fix also a generic almost complex structure J compatible with . We
recall that as we work in the monotone case (which, with the conventions of this paper
includes Ny, > 2), the Floer homology HF«(L;R) = HF «(L, L; R) is well defined
and invariant whenever R is a commutative ZZ[HZD (M, L)]—algebra (see Section
3.2 (g) for a rapid review of the construction).
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Theorem A Let R be a graded commutative K+—algebra (egR=A, AT, or K).
For a generic choice of the triple (f, p, J) there exists a finite rank, free R—chain
complex

C(L;R; [. p, J) = (Zo(Crit(/)) @ R, d7)

with grading induced by Morse indices on the left factor and the grading of R on the
right. The differential d™ of this complex is positive (see Section 2.1.1) and its classical
component coincides with the Morse-homology differential dM™* ® 1 (see Section
2.1.1). Moreover, this complex has the following properties:

®

(i)

(ii1)

(6)

The homology of this chain complex is a graded 'R —module and is independent
of the choices of (f, p, J), up to canonical comparison isomorphisms. It will be
denoted by OH . (L;R). There exists a canonical (degree preserving) augmenta-
tion €;: QH,(L;R) — R which is an R —module map. Moreover, for R = A
the augmentation €y, is nontrivial whenever QH(L; A) # 0.

The homology QH(L;R) has the structure of a two-sided algebra with a unity
over the quantum homology of M, QH(M ; R). More specifically, for every
i, j,k € Z there exist R—bilinear maps

OH;(L:R)® QH;(L;R) > QH;1j n(L:R), a@®pr>aofp,
OH(M:R)®QH;(L:R) > QHy 1 j2x(L:R), a®a—~>a®«,

where n = dim L. The first map endows QH(L;R) with the structure of a
ring with unity. This ring is in general not commutative. The second map
endows QH(L;R) with the structure of a module over the quantum homology
ring QH(M ; R). Moreover, when viewing these two structures together, the
ring QH(L; R) becomes a two-sided algebra over the ring QH(M ; R). (The
definition of a two-sided algebra is given below, after the statement of the
theorem.) The unity of QH(L;R) has degree n = dim L and will be denoted
by [L].

There exists a map
ir: QH*(L§ R) - QH*(M, R)

which is a QH, (M ; R)-module morphism and which is induced by a chain
map which is a deformation of the singular inclusion (viewed as a map between
Morse complexes). Moreover, this map is determined by the relation

(PD(h),iL(x)) = eL(h @ x)

for x € QH(L;R), h € Hy«(M), with PD(—) Poincaré duality and (—, —)
the R-linear extension of the Kronecker pairing (ie (PD(h),) , z,T") =
> (PD(h),z,)T").
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(iv) The differential d™ respects the degree filtration and all the structures above are
compatible with the resulting spectral sequences.

(v) The differential d™ is in fact defined over AT in the sense that the relation
between C(L;R; f,p,J) and C(L; A; f,o, J) is that C(L:R; f.p, J) =
C(L;A™; f,p, J)®X+R and d® = dAt ® id. Moreover, any graded At -
algebra homomorphism R — R’ (eg the inclusion A — A ) induces in homol-
ogy a canonical morphism QH(L;R) — QH(L;R’).

(vi) If'R is a commutative ZZ[HZD (M, L)]-algebra (eg R = A ), then there exists
an isomorphism
OH,(L;R) — HF«(L;R)

which is canonical up to a shift in grading.

The existence of the morphism QH(L;R) — QH(L;R’) at point (v) of the Theo-
rem is not a purely algebraic statement about extension of coefficients. Rather, it
means that the canonical extension of coefficients morphisms H«(C(L;R; f, p,J)) —
H.(C(L;R; f,p,J)) donot depend on (f, p, J) in the sense that they are compatible
with the canonical comparison isomorphisms relating the homologies associated to
any two triples ( fo, po, Jo) and (f1, p1, J1). In view of point (v) we will denote from
now on the differential d” by d whenever the ring R is fixed and there is no risk of
confusion.

By a two-sided algebra A over a ring R we mean that A is a module over R, that A
is also a (possibly noncommutative) ring, and the two structures satisfy the following
compatibility conditions:

Vr e Randa,b € A wehave r(ab) = (ra)b = a(rb).

In other words, the first identity means that A, when considered as a left module
over R, is an algebra over R, and the second one means that 4 continues to be an
algebra over R when viewed as a right module over R, where the left and right module
operations are the same one.

Before going on any further we would like to point out that, the existence of a module
structure asserted by Theorem A has already some nontrivial consequences. For instance,
the fact that QH, (L; A) is a module over QH, (M ; A) implies that if a € QH; (M ; A)
is an invertible element of degree &, then the map a ® (—) gives rise to isomorphisms
QOH;(L;A) = QH;y}_»,(L;A) for every i € Z, or in other words, QH,(L; A) is
(k —2n)—periodic. In view of point (vi) of the theorem the same periodicity holds for
the Floer homology HF ,(L) too. Note that there is yet another obvious periodicity for
QH (L) that always holds (regardless of the module structure). Namely multiplying
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by ¢ € A always gives isomorphisms QH,(L;A) = QH,_p, (L: A). This follows
immediately from the fact that QH(L; A) is a graded A—-module and that 1 € A_y;,
is invertible. The above two periodicities, when applied together, provide a powerful
tool in the computations of our invariants.

In most of the applications below we will take the ring of coefficients R to be either
A or AT . Therefore we will sometimes drop the ring of coefficients from the notation
and use the following abbreviations:

C(L: fip, ) =C(L:A; fop, ). QH(L) = QH(L; ),
CH(L; f.p. ) =C(L; A™; fop, ), OTH(L) = QH(L; A™).

We will call the complex C(L: f. p, J) (respectively CT(L; f, p,J)) the (positive)
pearl complex associated to f, p, J and we will call the resulting homology the (posi-
tive) quantum homology of L. In the perspective of [24; 25] the complex C(L; f, p, J)
corresponds to the linear cluster complex.

Remark 2.2.1 (a) The complex C(L; f, p, J) was first suggested by Oh [44] (see
also Fukaya [32]) and, from a more recent perspective, it is a particular case of the
cluster complex as described by Cornea and Lalonde [24]. The module structure
over QTH(M) discussed at point (ii) is probably known by experts — at least in the
Floer homology setting — but has not been explicitly described yet in the literature.
The product at (ii) is a variant of the Donaldson product defined via holomorphic
triangles — it might not be widely known in this form. The map iy at point (iii) is
the analogue of a map first studied by Albers in [2] in the absence of bubbling. The
spectral sequence appearing at (iv) is a variant of the spectral sequence introduced
by Oh [43]. The compatibility of this spectral sequence with the product at point (ii)
has been first mentioned and used by Buhovsky [15] and independently by Fukaya,
Oh, Ohta and Ono [33]. The comparison map at (vi) is an extension of the Piunikin—
Salamon—Schwarz construction [48], it extends also the partial map constructed by
Albers in [1] and a more general such map was described independently in [24] in
the “cluster” context. We also remark that this comparison map (with coefficients
in A) identifies all the algebraic structures described above with the corresponding
ones defined in terms of the Floer complex.

(b) The isomorphism QH(L) = HF (L) at point (vi) of Theorem A is an important
structural property of the Lagrangian quantum homology. However, we would like
to point out that this property of QH(L) is in fact not used in any of the applications
presented in this paper. There is only one minor exception to this rule. Namely, our
definition of wide and narrow Lagrangians L goes via HF(L). However we could
have defined these notions directly using QH(L), and actually in the rest of the paper
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this will be the more relevant definition. The reason we have chosen to define wide
and narrow using Floer homology is two-fold. Firstly, Floer homology is already well
known in symplectic topology, and we wanted to base the notions of wide and narrow
on a familiar concept. Secondly, it is easier to produce examples of narrow Lagrangians
this way, simply by using the fact that if a Lagrangian L is Hamiltonianly displaceable
then HF(L) = 0.

We insist on separating between HF and QH because we do not view our Lagrangian
quantum homology as a Lagrangian intersections invariant. Moreover, the results in this
paper suggest that Lagrangian quantum homology has applications beyond Lagrangian
intersections and thus we believe that this homology should be developed and studied
in its own right.

2.3 Some computations

Here we present a few explicit computations of the various quantum structures men-
tioned in Theorem A performed on three examples: Lagrangians L C CP" with
2H{(L;Z) =0 (eg L =R P"), the Clifford torus T2 C CP? and Lagrangians L in
the quadric with Hy(L;7Z) = 0 (eg spheres). The proofs of the three results listed here
are given in Section 6. More results in this direction can be found in [12].

We work here over the ring A. We start with Lagrangians L C CP" that satisfy
2H{(L;Z) = 0. Recall from Corollary 1.2.11 that QH;(L) = HF;(L) = Z, for
every i € Z. Denote by a; € QH;(L) the generator. Denote by & = [CP""!] €
Hy,—»(CP"; Z) the class of a hyperplane. Recall also that in the quantum homology
QH(CP") we have

nj :
%) h*f:{h Lo 0=js=n

[CPMs, j=n+1.

As we will see (and is stated in Corollary 1.2.11) Ny, = n + 1, thus the embedding
I < A is given by s — ¢2. It follows that in QH(CP"; A) the last relation of (7)
becomes /4**+1) = [CP"]t2. Finally note that both / and [pt] are invertible elements
in QH(CP™").
Theorem 2.3.1 Let L C CP" be a Lagrangian with 2H(L;Z,) = 0. Then:

(i) Foreveryi,j€Z,ajotj =0jtj—p.

(ii) Foreveryi € Z,h®o; =oj_».

Furthermore, denote by hj € Hj(CP";Z,) the generator (so that hyp—» = h, hy =
W=k 0 <k <n, hoga = 0 etc.) then:
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(iii) For n = even we have:

ir () = hag, V0<2k <n,
iL(C2k+1) = hok4n+2t, Vi<2k+1l=n-1.

(iv) For n = odd we have:

ip(aar) = hok + hogynt1t, V0 <2k <n,
iL(a2k+1):0, VkeZ.

The next result describes our computations for, mainly, the 2—dimensional Clifford
torus T2, C CP2.

Theorem 2.3.2 The Clifford torus T, is wide for every n > 1. Let
w € Hy(Ti: Z2) <> QHo (Teir: Z)

be the fundamental class. There are generators a, b € H, (']I‘Czlif, Z,) =~ QH, (Tczhf), and
m e QH, (Tczhf) which together with w generate QH (Tczhf) as a A —module and satisfy
the following relations:

(i) aob=m+wt,boa=m,aoca=bob=wt, mom=mt+ wt?.

() h@®a=at, h®b=>bt, h®@w = wt, h®&m = mt. Here h = [CP!] €
H,(CP?;7Z,) is the class of a projective line.

(i) iz (m) = [pt]+ ht +[CP?]t?, ir(a) =ip(b) =ir(w)=0.

We remark that, as the formulas in (i) indicate, the quantum product on QH(L) is in
general noncommutative (even if we work over Z,).

Remark 2.3.3 (a) The fact that the Clifford torus is wide and point (i) of Theorem
2.3.2 have been obtained before by Cho in [21; 22] by a different approach. From the
perspective of [22] the Clifford torus is a special case of a torus which appears as a
fibre of the moment map defined on a toric variety. See also Cho [23] for related results
in this direction.

(b) Given that ']I‘Czlif is wide we have QH (Tfhf ~ H, (Tczhf; Z,) ® A. Note however
that such an isomorphisms cannot be made canonical in all degrees (see also Section
6.2). Nevertheless there is a canonical embedding H, (T chif) — QH,(T C2lif) and the
isomorphism QH I(Tczﬁf ~ H (Tczﬁf; Z) is canonical. (See our papers [12; 13] for
more on this.)
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We now turn to the third example: Lagrangians in the quadric. Let L C Q%" be a
Lagrangian submanifold of the quadric (where dimg Q =2n) that satisfies H; (L;Z) =
0. Such Lagrangians are monotone and the minimal Maslov number is Ny = 2n.
Recall that by Corollary 1.2.13 L is wide hence QH, (L) =~ (H(L;Z3) ® A)«. As
degt = —2n we have QH,(L) =~ Hy(L;Z,) and QH, (L) =~ H,(L;Z,). Denote
by a9 € QHy(L) and o, € QH,(L) the respective generators. Finally, denote by
[pt] € Hy(Q: Z>) the class of a point.

Theorem 2.3.4 Let L C Q be as above. Then:
1) [pt] ® xg = —apt, [pt] ® o = —aut.
(ii) ip(xo) = [pt]—[Q]t, where [Q] € H2,(Q;7Z,) is the fundamental class.

(iii)) If n is even then o o 0ty = Qpt .

Remark 2.3.5 The significance of the signs in the formulae above comes from the
fact that we expect our machinery to hold with coefficients in Z and, if so, these are
the signs that we obtain when taking into account orientations. As we shall see these
signs play a significant role in some applications — see Corollary* 7.0.2.

2.4 A criterion for Lagrangian intersections

We describe here a criterion for Lagrangian intersections which is somewhat more
general than Corollary 1.2.8 and which is stated in terms of the machinery described in
Theorem A.

Let Lo, L1 C M be two monotone Lagrangian submanifolds. Let Ao = Zs[t, Lt
A= Zz[tl_1 , 1] be the associated rings, graded by deg 7o =—Np,, and deg?; =—Np, .
Recall from Section 2.1.2 that we also have the ring I' = Zz[s_1 ,8], degs = —2Cyy,
and that Ay, Ay are I'-modules. Consider now the ring Ao 1 = Ao ®r A with the
grading induced from both factors (it is easy to see that this grading is well defined).
Equivalently,

Ao = Lolty 1710, 1]/ {5 M NE0 = 7MLy,
Note that A ; isa Ag—algebra, a A—algebraas well as I'-algebra. Thus we have well
defined quantum homologies QH(Lo; Ag,1), QH(L1: Ao,1) as well as QH(M ; Ag,1).

With the above notation we have two canonical maps. The first one is the quan-
tum inclusion iz ,: OH,(Lo;Ao,1) — OH.(M;Ay,1), mentioned at point (iii) of
Theorem A. The second map is jr,: OH,(M;Ag1) = OH,_,(L1;Ao,1), defined
by jr,(a) =a ®[L,]. Consider the composition

le OiL(): QH*(L01 AO,]) - QH*—n(Ll; AO,])-
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Theorem 2.4.1 If ji, oir, #0,then Lo NL; # 2.

Remark 2.4.2 (a) We expect by [11] (also by [13]) that the condition j, oif, # 0
implies the nonvanishing of the Floer homology HF(Lg, L) (when defined and
possibly under some additional restrictions).

(b) The map j, has appeared before in a different setting in the work of Albers [2].

Here is a consequence of this theorem which provides a different proof of Corollary
1.2.8. To state it we fix some more notation. As discussed before, for any Lagrangian
submanifold the inclusion of the associated coefficient rings A* — A induces a map
of pearl complexes (when defined) p: C(L;A™; f,p,J) — C(L:; A; f, p, J) which
is canonical in homology. Denote by IQ" (L) the image of p«: QH(L;A") —
QH(L; A), the map induced in homology by p, and notice that IQ1 (L) isa AT—
module so that it makes sense to say whether a class z € IQT (L) is divisible by # in
IQ"(L): this means that there is some z’ € IQ1 (L) so that z = ¢z,

Corollary 2.4.3 Let L C M be a non-narrow monotone Lagrangian submanifold. Let
[pt] € QH(M ; A) be the class of the point. If the product [pt] ® [L] is not divisible
by t2Cm INL in JQF (L) then L must intersect any non-narrow monotone Lagrangian
inM.

Any non-narrow monotone Lagrangian L C CP" satisfies the condition in the statement
and so Corollary 2.4.3 implies Corollary 1.2.8. Indeed, put z = [pt] ® [L] € IQT, (L).
Assume that z = r2¢cPn/NLz/ for some 2/ € IQT (L). We have 2Ccpn = 2n+ 2 and
|r2Ccpn/NL| = —(2n 4 2). Therefore, |z’| = —n + 2n + 2 = n + 2. But for degree
reasons IQ;L (L) = 0 for every / > n and so z/ = 0. In particular z = 0. On the
other hand as [pt] € QH(M ; A) is invertible and [L] # 0 we must have z # 0. A
contradiction.

The proof of Corollary 2.4.3 is given in Section 5.4 after the proof of Theorem 2.4.1.

Remark 2.4.4 (a) By Theorem A, L is non-narrow if and only if [L] # 0 € QH(L).
The reason is that [L] is the unity of QH(L) when viewed as a ring. Moreover,
whenever M is point invertible and L is not narrow the product [pt] ® [L] does not
vanish. Of course, the nondivisibility condition in the statement of Corollary 2.4.3 is
an additional strong restriction.

(b) The criterion in Corollary 2.4.3 does not apply to Lagrangians L in the quadric
which satisfy H;(L;Z) = 0 so it does not lead to intersection results in this case.
However, later in the paper (in Corollary* 7.0.2) we will see that Theorem 2.4.1 can
also be applied to this setting but by working with integer coefficients, thus under the
assumption that our machinery continues to work when taking into account orientations.
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2.5 Simplification of notation

As mentioned before, whenever we use the rings A and AT we will drop them from
the notation in the following way:

C(L: fip,J)=C(L:As £, p, J), QH(L) = QH(L; A),

® CT(L: fip, ) =C(L: AT fip, J), QTH(L) = QH(L; A™).

Another simplification is the following. Theorem A involves three different algebraic
operations: the quantum intersection product *, the Lagrangian quantum product o,
and the external module operation &:

%1 QHy (M R) ® QH;(M:R) — OHy 4 1_20(M: R),
©) o: QH,(L;R) ® QH;(L; R) — QH; 1 j_o(L:R),
®: QHy(M:R) ® OH;(L:R) — QH;y j 5, (L: R).

As all these operations commute in the sense that QH(L;R) is an algebra over
QH(M ; R) we will sometimes denote all these operations by .

3 Sketch of proof for Theorem A

We will explain the ideas behind the proof but, as mentioned in the introduction, we
will not prove here this theorem in full. However, all the technical details which are
omitted here can be found in [12]. The reason for proceeding in this way is that, on
one hand, many of the actual technical verifications are not novel for specialists but
quite long so including them here does not seem judicious. On the other hand, it is
not possible to apply efficiently this theorem in the absence of a good understanding
of the underlying moduli spaces and thus it is important to give a sufficiently detailed
description of the construction of our machinery. We will also shortly review the main
ideas behind the proof of transversality as well as the basic argument needed to prove
the identities contained in the statement of the theorem.

3.1 The moduli spaces

It is useful to view our further constructions as a “quantum” version of standard
constructions in Morse theory. In particular, in Morse theory, the Morse differential is
modeled by a tree with one entry and one exit but no interior vertex. The same is true
for a Morse morphism which relates two Morse complexes. The intersection product is
modeled on trees with two entries and one exit. For the associativity of this product, are
required trees with three entries and one exit. The quantum version of this construction
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consists in allowing each edge in these simple trees to be subdivided by a finite number
of quantum contributions represented by pseudo-holomorphic disks or spheres. Such
contributions can also appear at the vertices of the trees. Obviously, a more precise
definition is required and we proceed to give one below.

A. Combinatorial preliminaries The trees needed here are of a reasonably simple
type because we only use some rather elementary algebraic structures. The vertices of
these trees will be of two types, corresponding to J—holomorphic disks (with boundary
on L) or J-holomorphic spheres, and the edges will correspond to flow lines of
Morse functions some defined on L and some on M . The entries and the exit will
correspond to critical points of these Morse functions. Here is a more precise description,
unavoidably quite tedious. Conditions (i)—(iii) below simply model the data: each
edge in the tree needs to carry a label (which geometrically corresponds to a particular
Morse function). Each interior vertex will correspond to some J—holomorphic sphere
or disk so that it needs to carry a label given by some homotopy class etc. A stability
restriction is needed and is added as condition (iv). In the compactifications of such
moduli spaces appear configurations where one (or more) edges are represented by
flow lines of zero length. The corresponding geometric objects also appear by disk (or
sphere) bubbling off. For our construction it is crucial that each configuration of this
type appears exactly twice: once by bubbling off and once by the degeneration of a
flow line. The purpose of condition (v) is to insure precisely this property. Point (vi)
describes how the flow lines arriving at a vertex represented by a J —holomorphic curve
are anchored to that curve.

Here are the precise details of the construction: We consider connected trees 7 with
oriented edges embedded in R x [0, 1] C R? with entries lying on the line R x {1} and
a single exit which is situated on the line R x {0} and so that the edges strictly decrease
the y—coordinate. Clearly, at each internal vertex there is precisely one “exiting” (or
departing) edge and at least one “entering” (or arriving) edge. There will be at most
three entries and one exit. We call such a tree, 7, (M, L)—labeled if the following
additional structure is given:

e The entries and the exit have valence one (and they are the only vertices with
this property). The vertices of the tree — except for the entries and the exit — are
labeled by elements A € HZD (M, L) or by elements u € HZS (M) with w(A) >0,
w(u) = 0. The first kind of vertex will be called of disk type and the second
will be called spherical. The set of vertices of 7 (including entries and the exit)
is denoted by v(7), the set of the spherical vertices is denoted by vg(7) and
the set of disk type vertices is denoted by vp (7). The set of interior vertices
will be denoted by vin(7) = vp(7) Uvg (7). The class of an interior vertex v
will be denoted by [v] € HP (M, L) or € HY (M).
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Let F1 be a finite set of Morse functions defined on L and let Fjs be a finite set of
Morse functions defined on M . Put F = Fr U Fpr. An (M, L)-labeled tree 7 is
called F-colored if it satisfies the following three properties:

e The set of edges of 7 is denoted by e(7") and is partitioned into two classes,
the edges of type L, er (7), and the edges of type M, epr (7). Each edge e
of type L is colored by a Morse function f, € Fr and each edge e of type
M is colored by a Morse function f, € Fasr. For v € v(7) we let nr (v) be
the number of edges of type L which are incident to v and we let nys(v) be
the number of those edges of type M . For an edge ¢ we let e— € v(7) be the
(initial) vertex where e starts and we let e4 be the end (or final) vertex of e. If a
vertex v €vg(7), then ny (v) =0. Ifvevp(7),then ny(v) >1.If ecer(7)
and e_ (respectively e ) is not an entry (respectively, not the exit), then e—
(respectively ey ) belongs to vp (7).

e Each entry as well as the exit is labeled by a critical point of the Morse function
corresponding to the incident edge. In other words, for all edges e, if e— is an
entry, then this implies that e_ is labeled by a critical point of the function f,
and similarly for the exit. Any two distinct entries correspond to critical points
of different Morse functions.

¢ At each vertex, distinct arriving edges are labeled by different Morse functions
(but the exiting edge might be labeled with the same function as one of the arriving
edges). If a vertex v € vp(7) has the property w([v]) =0 and ny (v) < 2, then
npr(v) > 1. If a vertex v € vg(7) has the property w([v]) = 0, then nps(v) > 3.

The coloring of our trees will be usually described by means of an exit rule. Namely,
fix as before a collection F of Morse functions (some on L, some on M ). Notice
that, for a planar tree 7, at each vertex v, the planarity of the tree induces an order
among the arriving edges (by the values of the x—coordinates of the intersections of
these edges with a horizontal line close to the vertex but above it).

e Anexitrule ® associates to each ordered vector, ( fi,..., fs) with f; € F, and
symbol S which can be either L or M, a new function O(f1,... fs;S) € F.
An F—colored tree 7 is called ®—admissible if, for each vertex of 7 whose exit
edge is of type S and whose arriving edges are colored, in order, by ( f1,..., fs),
the departing edge is colored by O(f1,..., fs;S) € Fg.

Given an exit rule ® notice that, for any (M, L)-labeled tree 7, if a coloring of the
entry edges is given, then there exists a unique F—coloring of 7 that is ®—admissible.
Note also that, in order to color 7 in this way, we do not always need to know the
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value of ® on all possible configurations (since some of them might not appear in any
relevant trees).

We recall that the moduli spaces that we intend to construct consist of J—holomorphic
disks and spheres joined by Morse trajectories. To proceed from trees to these moduli
spaces we need an additional structure which describes how the flow lines are “anchored”
to the J—curves. The structure in question is as follows:

* A marked point selector for an F—colored tree 7 is given by an assignment Q
which associates to each vertex v € vg(7) a collection Q, of distinct points in
S? which is in 1-1 correspondence with the incident edges and, similarly, Q
associates to a vertex v € vp(7) a collection Q, C D so that if an edge e is
of type M its corresponding marked point is in Int(D) and if the edge e is of
type L the corresponding marked point is in dD. Moreover, for v € vp(7) the
order among the marked points in dD matches the order of the incident edges
of type L clockwise around the circle. If e is an arriving edge (at some internal
vertex) the respective marked point is denoted by ¢+ (e) and if the edge is the
exiting one, then the marked point is denoted by ¢g—(e).

We denote F—colored trees together with a marked point selector Q by (7, Q) and we
refer to the pair (7, Q) as an F—colored tree with marked points. The marked point
selectors that will be used here satisfy an additional property: they only depend on the
type of the edge e, the valence of the vertex v, on whether the edge e is an exit edge
or an entry one and, in this last case, on the planar order of the edge among the arriving
edges at the vertex v. In other words, we can view such a marked point selector as an
abstract rule which associates a certain marked point to each edge incident to a vertex
of any F—colored tree. In view of this, if Q and Q' are marked point selectors we
can write Q = Q’ if the two corresponding rules agree.

For a tree 7 we indicate its entries and the exit by a symbol like (x, y,z : w) where
the first components — in this case, they are three — are the labels of the entries written
in the planar order and the last component indicates the label of the exit. We call this
data the symbol of the tree 7. We denote the symbol of the F—colored tree 7 by
symb(7). The class of the tree 7, [T] € HZD (M, L) is defined to be the sum of the
classes of the interior vertices.

B. Construction of the moduli spaces Fix an F—colored tree with marked points
(7, Q). Fix also a pair p = (par, pr) Where pr, is a Riemannian metric on L and
oM 18 a Riemannian metric on M . For every f € F let ytf be the associated negative
gradient flows (with respect to the metric py, for the functions defined on L and with
respect to the metric pps for the functions defined on M'). Denote by (xy,...,x7: )
the symbol of 7.
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For an w—compatible almost complex structure J and a class A € H2D (M, L) (orin
HZS (M)) let M(A,J) be the moduli space of parametrized J—disks (respectively
J —spheres) in the class A.

The pearl moduli space modeled on (7, Q) will be denoted by Pr o (J, p) (or, if the
data involved is clear from the context, just Pz ) and it is defined as follows. If 7 has no
interior vertex or, equivalently, it consists of precisely one edge e connecting the entry
(which is labeled by a critical point x = x; of f,) to the exit labeled by y € Crit( fe),
then Pr is the unparametrized moduli space of flow lines of )/f ¢ connecting x to y.

In case 7 contains an internal vertex, consider the product
= [[ M@.))
V€V (T)
and let S7 g consist of all {uy}yeqy,, () € [1(7) subject to the constraints:

e For each internal edge e € e(7) there is ¢ > 0 (called the length of e) such that

Y (ue_(q—(€))) = e, (g1 (e)).

¢ For an entry edge, e, let x; be the critical point labeling the vertex e_. We have
im y ey (g1(e) = xi
—Oo0
¢ For the exit edge e we have

lim y/(ue_(g-(e)) =y

Finally, define Pr g = S7,9/ ~ where ~ is given by the action of the obvious
reparametrization groups which act on the M([v], J)’s and preserve the marked points.
See Figure 1 for an example.

The moduli space Pr ¢ has a virtual dimension which only depends on the structure
encoded in the definition of the colored trees with marked points. This virtual dimension
will be denoted by §(7). When transversality is achieved, it coincides with the
actual manifold dimension of Pr . As we will see in the next section, under this
transversality assumption, the space Pr ¢ is a manifold, in general noncompact, with
a boundary consisting of configurations where some edge of 7 has 0—length.

Assume that the symbol of 7 is (xq,..., Xt : y) and that there are s entries among
the x;’s which are critical points of functions in Fjs. Then the formula giving this
virtual dimension is

(10) 8(T) =Y Ixil =yl + plT]+e(k) = (s + k — n
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Figure 1: A tree of symbol (x,y : z) on the left and a pearly trajectory
corresponding to it on the right. See Section 3.2 (b) below for the choice of
the labeling of the edges.

where e(k) =—1if k=1, y € L, and ¢(k) = 0 otherwise.

C. Equivalence of trees In the sequel two JF—colored trees will be viewed as
equivalent if the underlying topological trees are isomorphic by a tree isomorphism
which preserves the order of the entering edges at each vertex and which also preserves
the labels and the coloring.

Remark 3.1.1 Most of our moduli spaces are constructed according to the recipe above.
In particular, they are all modeled on (M, L)-labeled trees. However, sometimes we
need to work with variants of the last part of the construction. For example, we might
use instead of Morse functions, Morse cobordisms; instead of a single almost complex
structure we might require a family of such structures. Moreover, sometimes, some
of the curves used in the construction satisfy a perturbed Cauchy—Riemann equation
or the domains of some of the “vertices” in our trees will not be spheres or disks but
rather, cylinders or strips etc. In all these cases we will describe explicitly the (generally
minor) modifications that are needed in the construction above.
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3.2 Definition of the algebraic structures

The formalism given above allows us to define all the particular moduli spaces needed
for our various operations and we will describe all these constructions below. In all
these cases, we indicate the relevant moduli spaces by following the scheme above. In
each case we will describe the various structures involved, namely, the class of Morse
functions F, the exit rule ® (we will give its values only over that part of its domain
which is relevant), the marked point selector Q as well as the symbol symb(7") of the
relevant trees. We will also indicate in each case the formula for the virtual dimension
of the respective moduli spaces.

The definitions of our operations and their properties depend on the transversality
results which will be reviewed in the next section. Moreover, the various relations that
need to be proved require to understand the compactification of these moduli spaces, a
description of their boundary and a gluing formula. This part will be discussed in the
last subsection.

We write the formulas below over A1 — see Section 2.1.2. Given any K"'—algebra R
given by a graded ring homomorphism g: At — R, these formulas induce correspond-
ing ones over R by simply replacing the formal variables T4, 4 € HZD (M, L), by
their values ¢(74). As before, we fix a pair p = (pr., par) of Riemannian metrics
on L and on M as well as an almost complex structure J compatible with .

(a) (The pearl complex and its differential) Here and in the points (b) and (c) below
all the internal vertices are of disk type and all internal edges are of type L so that we
omit from the notation of ® the symbol S as S = L in these three cases.

Consider a single Morse function f: L — R and put F = { f'}. The pearl complex is
C(L:R: f.pr. J) = (Z2(Crit(f)) ® R. d) .

The differential d is defined for generic choices of our data. To describe it, we consider
F —colored trees with marked points, (7, Q), with symbol (x : y) with x, y € Crit(f)
and so that the marked point selector associates to each e € e(7), g—(e) = +1 € dD
and g4 (e) = —1 € dD. See Figure 2. It is easy to see that the virtual dimension of the
associated moduli spaces is given by §(7) = |x| —|y| + u[7]—1.

We now put

(11) dx= )" #(Pro)y T
y.(T,0)

where, y, (7, Q) go over all the trees (7, Q) as above and we only count elements in
Pr,0 when the associated virtual dimension is 0 (we will use the same convention in
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Figure 2: A tree of symbol (x : y) at the top and a pearly trajectory corre-
sponding to it at the bottom

the other examples below). The relation d? = 0 is based on the properties of the same
type of moduli spaces but with virtual dimension equal to 1. The necessary ingredients
for this verification and the outline of the proof will be indicated in Section 3.3 and
Section 3.4. Notice that if f has a single maximum, P, then, for degree reasons, P is
a cycle in the pearl complex C(L;R; f, pr., J) (the point here is that the differential is
defined over AT).

We will omit L, J, p, R from the notation if they are clear from the context.

(b) (The quantum product) In this case F = { fi, f>, f3} with the three functions f;
all defined on L. The product is defined by:

(12) o C(f)®RC(f2) >C(f3). xoy= Y (#Pro)zT!]
z,(7,0)

where the sum is taken over all the F—colored trees with marked points (7, Q)
of symbol (x,y : z) with x € Crit(f;), y € Crit(f;) and z € Crit( f3) which are
®-admissible with Q and ® as follows. First, the marking selector satisfies: if
e+ is of valence at most 2 then g4 (e) = —1 € dD; if e_ is of valence at most 3,
q—(e) =+1€0D;if e4 is of valence 3, and e is the j—th entering edge (in the planar
order) at the vertex e, (clearly, j € {1,2}), then gy (e) = e~2%//31 ¢ 3D . In other
words, at a vertex of valence 3, the marked (or incidence) points are the roots of order
three of the unity. Finally, the exit rule is ®@( f;) = f; Vi €{1,2,3}, O(f1, f2) = f3.
The virtual dimension in this case is §(7") = |x| + |y| —|z| —# + n[7]. Schematically,
the trees used here and the associated configurations are depicted in Figure 1.

Similar moduli spaces but of virtual dimension 1 are used to show that the linear map
defined by (12) defines a chain morphism and thus descends to homology.

A useful remark here is that we can also use instead of the three functions f1, f>, f3
only two function f; and f, with the same exit rule as above except that for the vertex
of valence 3 we require O(f1, f2) = f>. Itis easy to see that this definition provides
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a product

(13) o: C(f1) ®r C(f2) = C(f2)

which coincides in homology with the product given before (see also the invariance
properties described at point (e)). This is particularly useful in verifying the associativity
of the product as described at point (f) below as it allows one to work in that verification
with only three Morse functions. Another reason why this description of the product is
useful is that, assuming that f7 has a single maximum P, we see that if a moduli space
P10 used to define (13) is of symbol (P, y : z) and of dimension 0, then y = z and
P10 consists of the unique Morse trajectory of f; joining P to y. Thus Poy =y
hence P is a unity at the chain level for the product defined in (13).

(¢) (The module structure) We now have F = { fi, f»} with one Morse function
f1: M — R and one Morse function f5: L—R. Let CM(f1; R)=7Z,(Crit(f1)) ® R
be the Morse complex of f; tensored with the ring R (endowed with the Morse
differential d = dporse ® 1). The module action is defined by

(14)  ® CM(f)®rC(f2) >C(fr). a®x= Y (#Pr)y T
».(7,0)

where the sum is taken over all the F—colored trees (7, Q) of symbol (a, x : y) with
a € Crit(f1) and x, y € Crit(f;) which are ®-admissible for Q and ©® defined as
follows: for all edges e of type L, g+(¢) =—1€ 9D, g_(e) =+1€dD;if e is an
edge of type M (there can in fact be at most one such edge), then ¢+ (¢) =0 € D;
O(f2) = f2, ©(f1, f2) = f>. See Figure 3. The virtual dimension in this case is
§ =lal+|x|=[y[=2n+pn(T).

The same type of moduli spaces but of virtual dimension 1 serve to prove that this
operation passes to homology. However, at this step a modification is needed and has
to do with the proof of transversality: we need that in these moduli spaces if a vertex v
is of valence three, then the corresponding curve u, is not pseudo-holomorphic but
rather it carries a small Hamiltonian perturbation of type

as) {u: (D,dD) — (M, L),

osu+ J(w)dru =—Xp(s,t,u)—J(u)Xg(s,t,u)
with F,G: D x M — R well chosen Hamiltonians and Xr and Xg the respective
Hamiltonian vector fields (see McDuff and Salamon [40] and Biran and Cornea [12]

for details). The reason why these perturbations are needed will be explained in the
next section and we refer to [12] for the full construction.

(d) (The inclusion i;,) In this case we use one Morse function fi: L — R and
another Morse function f; : M — R and F = { f1, f»}. The relevant F—colored trees
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Figure 3: A tree of symbol (a,x : y) on the left and a pearly trajectory
corresponding to it on the right

with marked points have symbol (x : @) with x € Crit( f1), a € Crit( f2). The marking
is chosen as follows: for all the edges e of type L, g—(e) = +1, g+ (e) = —1; for the
edge e of type M, g_(e) =0 € D (it is easy to see that the stability condition (iv) in
Section 3.1 together with the form of the symbol imply that there can only be a unique
edge of type M ). The exitrule is O(f1; L) = f1, O(f1; M) = f> (notice that, this
is the first place where the symbol S in the definition of the exit rule at point (v) in
Section 3.1 is of use; moreover, because the symbol is (x : @), the only disk type vertex
with the exit edge of type M is the one just before the end of the tree). The virtual
dimension is in this case § = |x| — || + #([7]) and the quantum inclusion is defined
by
iL: C(f1) > CM(f2:R): ip(x)=Y (hPro)a T

(e) (Invariance) Assume given two sets of data (f, oz, J) and (f”, p} . J') so that
the pearl complexes C(L;R; f, pr,J) and C(L:R: f', p} . J') are defined. We now
need to construct a chain morphism

pT P T CL: £ pr, ) > C(L: £, Pl )

which induces a canonical isomorphism in homology (we omit the ring R from the
notation). This morphism is associated to: J = {J;}, a smooth one parametric family
of almost complex structures with Jo = J,J; = J', F: L x[0,1] - R, a Morse
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homotopy (see Biran and Cornea [12] as well as Cornea and Ranicki [26]) between
S/ and f’, pr a metric on L x [0, 1] with p|zx(0y = pr and plrxgy = o7 . In
other words, we use here a slight modification of our standard construction by taking
F = {F} and using trees as at point (a), but with F replacing f, pr, replacing pr
and J instead of J. The symbol is (x : y) with x € Critg 41 (F)|rxg0; = Critg (f)
and y € Crity(F)|fx¢13 = Critg(f”). In particular, both the marked point selector Q
and the exit rule are the same as at point (a). The points (a), (b), (c), in Section 3.1 B
are also modified as follows.

The set S7,¢p is now a subset of the product

.= J] M@.J)
vevn(7), t€[0,1]
where M (], J) = {u: (D, D) — (M x {t}, L x{t}) | 3, (u) = 0} .

The flow ytf is replaced by the negative gradient flow, th , of F' with respect to

por. (which is a flow on L x [0, 1] ) and points (a), (b), (¢c) now apply without further
modifications. In short, the curves which appear at the start (and respectively the end)
of the edge e are J;—holomorphic where ¢ is determined by the second coordinate of
the starting point (respectively, end) of the flow line of —V (F) which corresponds to ¢.
Notice that in our construction all intervening curves are genuinely J;,—holomorphic
for some 7y € [0, 1] in contrast to the continuation method familiar in Floer theory.

The virtual dimension is § = |x| —|y| 4+ u[7]. The morphism is defined by

"7 (x) = Y #:Pr ) » T

An additional parameter is required to show that the morphism induced in homology is
canonical — by constructing a chain homotopy between any two morphisms as above
which is associated to a Morse homotopy of Morse homotopies. Perfectly similar
constructions provide chain homotopies which proves the invariance of the quantum
product and of the module structure.

(f) (The associativity type relations) The purpose here is to define the moduli spaces
needed to prove the associativity of the quantum product as well as the other relations
at point (ii) of Theorem A.

For the associativity of the quantum product we will use three functions f;: L —
R, i € {1,2,3} and the moduli spaces to be considered are modeled on trees 7
of symbol (xi,Xx,,x3 : w) with x; € Crit(f;) and w € Crit(f3); the exit rule is
O(fkys--+» Jk;) = Smaxtky,...k;}- We will now define a particular family of marked

point selectors Q = {Qy} consisting of one marked point selector Qg for each
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0 € (0,2m/3). This Qg is as in the definition of the quantum product for all vertices
of valence 2 and 3 and in case one vertex v is of valence 4 then the first two edges
arriving at v (in the planar order) and the exit edge are attached at the roots of the
unity of order 3 —in the same way as for the vertices of valence 3. The third arriving
edge e satisfies gg 4 (¢) = ¢'? . The moduli spaces used to prove the associativity of
the quantum product are

Pro= U Pr.g,x{}.
0e(0,27/3)

The resulting virtual dimension of this moduli space is § = |x1| + |x2| + |x3| — |w| +
w[T]+ 1 (the +1 comes from the additional parameter 6).

Both 0— and 1-dimensional such moduli spaces are needed to verify associativity:
the 0—dimensional moduli spaces are used to define a chain homotopy 1: C( f1) ®r
C(f2) ®=r C(f3) — C(f3) and the 1-dimensional moduli spaces are used to prove the
relation ((—o—)o—) 4+ (—o(—o0—)) = (dn+ nd)(—® —® —). More details appear
in [12].

To prove the relation (a*xb)®x =ax(b®x) witha,be QH(M ; R) and x e QH(L;R)
we use two functions fi, fo: M — R and f3: L — R. The moduli spaces in question
are modeled on trees 7 of symbol (a,b,x : y) with a € Crit(f1), b € Crit( /),
x,y € Crit(f3). The exit rule is O(fk,..... fk;) = fmaxiky,...k;}- Again we will
need to define a special family of marked point selectors, denoted in this case by
Q = {Q.} for T € (—1,0). The marked point selector O is as at point (c) for all
vertices of valence 2 or 3. If a vertex is of valence 4 then the marked points are the
same as at point (c) for the edges of type L. At this vertex there are also two entering
edges of type M and the respective marked points are as follows: for the edge e,
colored with f;, we put g (e;) =0 € D?; for the edge e,, colored with f», we put

g+(e1) =t € (—=1,0) C Int(D?). Finally the moduli spaces needed here are

Pro= U Pro. xih.
te(—1,0)

We will again need moduli spaces of this sort and of dimensions 0 and 1. As at
point (c), to achieve transversality, some of the disks appearing in these moduli spaces
will need to be perturbed by using perturbations as described by Equation (15). More
precisely, in the moduli spaces of dimension 0, if a vertex is of valence 4, then its
corresponding curve is a perturbed J—disk. In the moduli spaces of dimension 1, the
disks of valence 3 as well as the disk of valence 4 (if present) need to be perturbed.
Again, for more details see our paper [12].
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(g) (Comparison with Floer homology) The version of Floer homology that we need
is defined in the presence of a generic Hamiltonian H: M x [0, 1] — R. Consider the
path space Po(L) ={y € C=([0,1]. M) |y(0)e L, y(I) e L, [y]=1€em (M. L)}
and inside it the set of (contractible) orbits, or chords, Og C Py(L) of the Hamiltonian
flow Xg. Assuming H to be generic we have that O is a finite set. Fix a generic
almost complex structure J .

There is a natural epimorphism p: 71 (Po(L)) — H, D (M, L) and we take Po (L) to
be the regular, abelian cover associated to ker(p) so that H, D (M, L) acts as the group
of deck transformations for this covering. Consider all the lifts X € PO(L) of the
orbits x € O and let O be the set of these lifts. Fix a base point 1g in Po (L)
and define the degree of each element X by |X| = (X, no) with p being here the
Viterbo—Maslov index. Let R be a commutative Z5[H, D (M, L)]-algebra (eg R = A,
or A’ or ZZ[HD(M L)] itself but not At or AT).

The Floer complex is the R—module
CFi(L; H,J) = Z5(On) ®z,5P M.y R -

The differential is given by dX = ) #M(X, y)y where M(X, ¥) is the moduli space
of solutions u: R x[0, 1] — M of Floer’s equation du/ds + J du/dt + VH(u,t) =0
which satisfy u(R x{0}) C L, u(R x{1}) C L and they lift in Po (L) to paths relating
X and y. Moreover, the sum is subject to the condition u(x,y)—1=0.

The comparison map from the pearl complex
¢ru:C(L; f.prL.J) — CF(L:H,J)

is defined by the PSS method (see Piunikin, Salamon and Schwarz [48] and, in the
Lagrangian case, Barraud and Cornea [4], Cornea and Lalonde [24] and Albers [1]) as
well as the map in the opposite direction

Vu,r: CF(L; H,J) - C(L; f,pL, J) .

In our language, the map ¢y g is defined by counting elements in moduli spaces
modeled on trees of symbol (x : y) with x € Crit(f), y € Oy - thus notice a first
modification of the “pearl” construction, the exit of the tree is labeled in this case by
an orbit. There will be just one Morse function f: L — R and the exit rule as well as
the marked point selector are as at point (a) (in Section 3.2). However, the last vertex
in the tree, the exit, will no longer correspond to a critical point but rather to a solution
u: Rx[0,1]— M of the equation

(16) ou/ds + Jou/ot + B(s)VH(u,t) =0
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so that 8: R — [0, 1] is an appropriate increasing smooth function supported in the
interval [—1, +00) and which is constant equal to 1 on [1, +00). This solution u
has also to satisfy u(R x {0}) C L, u(R x{1}) C L, limg_co u(s,—) = y(—) and
limg_ oo u(s,—) = P € L so that condition (c) in Section 3.1 B which describes
the geometric relation associated to the exit edge e, is replaced by: “3 ¢ > 0 so that
v/¢(ue_(q—(e))) = P”. The map Yy r is given by using similar moduli spaces
but with the first vertex being a perturbed one (the perturbation will use the function
B’ =1—B) and starting from an element of Ox. Proving that these maps are chain
morphisms and that their compositions induce inverse maps in homology depends, in
the first instance, on using one-dimensional moduli spaces as above and, in the second,
on yet some other moduli spaces which will produce the needed chain homotopies. For
¢r.H °YVH, 5 these moduli spaces are again modeled on trees with a single entry and
exit, as in the differential of the pearl complex, but both the exit and entry vertices are
of the perturbed type as in (16) (with a perturbation 8’ for the entry and f for the exit).
In the case of Y s odr g one of the internal vertices satisfies a perturbed equation
but a function B” with support in an interval of type [—r, ] is used instead of B (see
again Albers [1] and Biran and Cornea [12] for details).

(h) (The augmentation) Fix a pearl complex C(L;R; f, p, J) where R is a AT
algebra (as in Section 2.1.2). Define

€r: C(L;R; f,p,J) >R

by €7 (x) = 0 for all critical points x € Crit-o(f) and €7 (x) = 1 for those critical
points x € Crit( /) with |x| = 0. Notice that a (local) minimum X, cannot appear
in the differential dy = ) a,, 42T of any critical point y except for A = 0 and
|y| = 1. Indeed, a moduli space P7 modeled on a tree 7 of symbol (y : xg) as at
the point (a) in this section is of dimension |y| — 1 + u[7] and thus can only be of
dimension 0 if [7] = 0. Since for each critical point of index 1 there are precisely
two flow lines emanating from it, we deduce that €y o d = 0 and so €7, is a chain
map. The same type of argument, now applied to the comparison map constructed in
the invariance argument at point (e) shows that, in homology, €7 commutes with the
canonical isomorphisms.

3.3 Transversality

As mentioned before we will not give here the full proof of transversality (we refer to
[12] for that). However, we will review the main ideas.

Given an F—colored tree with marked points (7, Q) as defined in Section 3.1 we
discuss the proof of the fact that, for generic J, the associated moduli space Pr ¢ is a
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manifold of dimension equal to the virtual dimension §(7). The finite family F of
Morse functions defined on L or on M is fixed throughout the section and it contains
at most three functions defined on L and two defined on M . The only moduli spaces
to be treated are those appearing in Section 3.2.

In the argument, slightly more general such moduli spaces will also be needed. As
before, the numbers of entries will always be at most 3 and there will be a single exit.
However, we will not impose any particular restriction on the exit rule (in particular,
all possible exit rules will be allowed in the inductive argument below). Secondly, we
will need to prove the regularity of moduli spaces of type

Pr,o = U Pr,0, X {s}
seU

where Q = {Q;s}scr is a family of marked point selectors Qg so that at most two of
the marked points provided by Qg (and which are associated to vertices of valence at
least 3) are allowed to take the values in the set U. Here U = U; x U, where both
U; C D are connected submanifolds without boundary of dimension at most 2. These
types of moduli spaces have already appeared in the discussion of associativity at the
point (f). in Section 3.2 and some additional ones will appear in the transversality
argument. More precisely, our allowed choices for these sets U; are as follows. If
dim U; =0, then U; coincides with one of the marked points appearing in the description
of the marked point selectors in Section 3.2 (in other words, U; is one of the points
+1,—1,e271/3 o4mi/3 ) ¢ D); if dimU; = 1, then Uj; is one of the following two
choices (—=1,0) C D or {e'"}g<;<ar /3 C dD (both have been already used at point (f)
in Section 3.2); finally, if dim U; = 2, then U; = Int(D). We will still refer to these
moduli spaces by Pr ¢ and refer to them as F—colored moduli spaces with marked
points and, by a slight abuse of notation, Q will still be referred to as a marked point
selector. The virtual dimension of these moduli spaces is given by a formula similar
to (10) to which is added another term depending on the dimension of the sets U; as
above and on the valence of the vertices to which these marked points are associated.
In view of this, we denote this virtual dimension by §(7, Q).

Let P;,Q be the moduli spaces associated to F—colored trees with marked points
(7, Q) which satisfy the additional condition that all the J—-holomorphic curves
uy corresponding to the internal vertexes v € v(7) have the property that they are
simple and that they are absolutely distinct. We recall that a curve u: ¥ — M is
simple if it is injective at almost all points z € Int(X) in the sense that du; # 0 and
u~Y(u(z)) = {z}. The curves (u,) are absolutely distinct if no single curve u, has its
image included in the union of the images of the others, Im(uy) Z Uy ey (7)\ o3 Im(uy).
By a straightforward adaptation of now standard techniques, as in [40] Chapter 3 in
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particular Proposition 3.4.2, we obtain that 73;’ 0 is a manifold of dimension 6(7, Q),
in general noncompact, with a boundary consisting of configurations so that some
edges in 7 are represented by gradient flow lines of 0-length (recall that we allow the
length of edges to be > 0). Notice that, in case some perturbed J—holomorphic curves
appear also in the elements of Pz ¢ as at (c) in Section 3.2, there is no need to impose
any similar condition to them: a choice of generic perturbations insures the needed
transversality. To simplify the argument, we focus in the proof below on the case
where just a single almost complex structure appears in the definition of our moduli
spaces. However, if as for the invariance argument, point (e) in Section 3.2, we need to
deal with a family J = {Jt}tef0,1] of almost complex structures, then the “absolutely
distinct” condition only needs to be verified for the disks that are J;—holomorphic for
each ¢ at a time and by taking this remark into account the argument below adapts
easily to this setting.

The key point is to show that 73;, 0= Pr,0 aslongas 6(7, Q) <1. In turn, the proof of
this is by induction. To be more explicit, fix the symbol symb(7) = (x1, X2,...,X7: )
of the tree 7 . Fix some k € N. The combinatorial data used to define F—colored trees
with marked points (7, Q) so that u[7] < k is finite. Thus, up to isomorphism, there
are only finitely many such trees. Suppose, by induction, that for all F—colored trees
with marked points (7”, Q') of symbol of length at most 4 and with u[7"'] < u[7]
and 6(77, Q') <1, we have

(17) P;‘/’Q/ = P’]'/,Q/ .

To prove identity (17) for 7 it suffices to show that the following simplification step is
true:

3(7’, Q') such that
(18)  Pro#Pr o= ysymb(ZT') =symb(T), u(T')) < (7).
5(T'.0))<0.Prg #2.

Indeed, if §(7’, Q') < 0, the identity (17) together with the regularity of the moduli
spaces consisting of simple, absolutely distinct curves implies that P77 o, = & and
the conclusion follows by contradiction.

The key to prove (18) is a structural result concerning J—holomorphic disks which is
the disk counterpart of the multiply-covered <> almost everywhere injective dichotomy
valid in the case of J—holomorphic spheres. One such result is due to Lazzarini [37;
38] (an alternative one is due to Kwon and Oh [36]). Here are more details on this
point.
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Let u: (D,dD) — (M, L) be a nonconstant J-holomorphic disk. Put C(u) =
u~'({du = 0}). Define a relation R, on pairs of points z;,z, € Int D \ C(u) in
the following way:

V neighborhoods V., V; of zq, z5,
d neighborhoods Uy, U, such that:
(1) z1eU; CVi,z0 €Uy C V5.
(i) u(U) =u(Uy).

ZIRMZZ :>

Denote by R, the closure of R, in D x D. Note that R, is reflexive and symmetric
but it may fail to be transitive (see Lazzarini [37] for more details on this). Define the
noninjectivity graph of u to be:

G(u) ={z e D|3z €dD such that zR,,z'}.

It is proved in [37; 38] that G(u) is indeed a graph (with a finite number of branching
points) and its complement D \ G(u) has finitely many connected components. We
use the following theorem due to Lazzarini (see his paper [37] as well as [38]).

Theorem 3.3.1 (Decomposition of disks [37; 38]) Let u: (D,0D) — (M, L) be a
nonconstant J —holomorphic disk. Then for every connected component ® C D\ G(u),
there is a compact Riemann surface with boundary (Sg, 0So), a complex embedding
ho: (So,0So) — (D, G(u)) whose interior verifies ho(Int Sp) = D, a simple J —
holomorphic disk ve: (D’,0D") — (M, L), and a surjective map wo: Sp — D’,
holomorphic on Int S and continuous on So of well defined degree mo € N, such
that the following holds: vg o mn = u o hg. Moreover, in HzD (M, L;7Z) we have

[u] =) _molvol.
D
where the sum is taken over all connected components © C D\ G(u).

The notion of a complex embedding just mentioned is taken from [37]. It is defined
as follows. Let (S, 0S) be a compact Riemann surface with boundary and G C D an
embedded graph (see Lazzarini [37; 38]). A complex embedding /: (S,dS) — (D, G)
is a holomorphic map with the properties that #(Int S) NG = @ and h~ 1 (h(2)) = {z}
for every z € Int S'. (Thus /4 need not be injective along 4.'.)

Two Lemmas, 3.3.2 and 3.3.3, to be stated a bit later, are easy consequences of
the theorem above and, as we will see, they reduce our problem to a sequence of
combinatorial verifications.
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Returning to the proof of (18) we proceed in two steps. First we discuss the argument
insuring that all J—curves involved are simple. The second step will show that they
can also be assumed to be absolutely distinct. We focus here on the case dim(L) > 3
and will comment on the case dim(L) < 2 at the end.

Thus, suppose that u € Pr ¢ is so that u = (uy)yey,, (7) and for some internal vertex
v € v(7) the corresponding J—holomorphic curve u, is not simple.

In the trees used in this paper a sphere-type vertex does not carry more than three
incidence points. Therefore, in case u, is a J—sphere it can clearly be replaced by a
simple one u, and the marked point selector is not modified. This means that we may
take in this case 7" to be topologically the same tree as 7 except that the label of the
vertex v is now [u;] instead of [uy]. Thus we may now suppose that u, is a J—disk.
To deal with this case we will make use of the following consequence of Theorem
3.3.1. We refer to [12] for the proof.

Lemma 3.3.2 Suppose n = dim L > 3. Then there exists a second category subset
Jreg CJ (M, w) such that for every J € Jre, the following holds. For every nonconstant,
nonsimple J —holomorphic disk u: (D, dD) — (M, L) there exists a J —holomorphic
disk u’: (D, dD) — (M, L) with the following properties:

(1) u'(D)=u(D) and u'(0D) = u(dD).
(2) u' is simple.

3) w([u']) < w([u]). In particular, if L is monotone we also have u([u']) < u([u]).

We apply Lemma 3.3.2 to replace the J —disk u, by the simple disk ], provided by the
Lemma. Thus, to prove (18), the relevant tree 7" that we are looking for is identified
with 7 except that the vertex v will now be labeled by [u}]. A slightly delicate point
needs to be made concerning the marked point selector Q' corresponding to 7”. The
way this is constructed is the following: as u}, (D) = uy(D), and u),(dD) = u,(dD),
the points u#,(g+(e)) (where e is an incident edge at v) can be lifted to the domain
of u/, and used as marked points there. Of course, this works only if all these points,
uy(q+(e)), are distinct. If this is not the case some additional vertices need to be
included in the tree so that they correspond to constant disks or spheres which are
related to the vertex v by edges colored by functions in F and of 0—length.

We still need to verify that §(7”, Q") < 0. Given that Nz > 2 and so u(u}) < p(uy)—1
this inequality is automatic if Q' = Q because in this case §(7’, Q') <8(7, Q) — Np .
This is the case if v carries two or three marked points all on dD. The same is true
also if v carries two marked points, one on the boundary and one in the interior of D.
Suppose now that v carries two boundary marked points, —1 and +1, and the interior
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marked point 0 (as at point (c) in Section 3.2). In this case the marked point selector
for 7’ cannot be assumed to be the same as that for 7 : the internal marked point
for u, cannot be assumed anymore to be as assigned by Q but can be anywhere
inside D — in other words in this case Q' = {Qy}semy(p)- In this situation we have
w[T'] < u[T]— N, and it is easy to see that §(7’, Q') <8(7, Q) — N + 1. Thus,
if (7, Q) = 0 we still have §(7’, Q') < 0 so that (17) remains true for the moduli
spaces needed to define the module structure without the need to use any perturbations.
However, to prove the fact that the operation defined there is a chain morphism we need
to use moduli spaces as before but which satisfy §(7, Q) = 1. This is precisely why
we use perturbed J—holomorphic disks in this case: as mentioned before, the proof
of the transversality of the relevant evaluation maps requires only the nonperturbed
J —holomorphic curves to be simple and absolutely distinct. The same issue appears
for both the 0— and 1-dimensional moduli spaces used to prove the associativity of the
module action as in the second part of point (f) in Section 3.2 and this shows that the
perturbations indicated there are necessary. Full details for these arguments are found
in [12].

We now pass to the second step: showing that the J—curves {uy}, are absolutely
distinct. The main tool is the next result which can be deduced too from Theorem 3.3.1.

Lemma 3.3.3 Suppose n = dim L > 3. Then there exists a second category subset
Jreg C J (M, w) such that for every J € Jreg the following holds. If u, w: (D, dD) —
(M, L) are simple J —holomorphic disks such that u(D) Nw(D) is an infinite set, then
at least one of the following relations is valid:

e u(D)Cw(D) and u(0D) C w(dD).
e w(D)Cu(D) and w(dD) Cu(dD).

This implies that if the J—curves in {uy }yey,,(7) are not absolutely distinct, then there
exist two vertices vg and v; both corresponding to J—holomorphic (unperturbed)
curves so that uy, (D) C uy,(D) and uy, (0D) C ty,(3D). The aim now is to show
that we can “simplify” both {u,}, and the tree by eliminating v; (as well as possibly
other vertices and edges) and thus produce a new tree (7”, Q') of lower Maslov number
and with §(7”, Q") <0 as well as a new element {1}, } ey, (77) € P(77,0’) thus arriving
at a contradiction.

There are three different cases to consider:

(i) vo and vy are independent, in the sense that they are on different branches of
the tree.
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(i) vy is above v; in the tree, in the sense that by following the tree starting from
vo we reach v.

(iii)) vy is above vy in the tree.

In the first two cases we obtain the new tree 7’ by simply taking the branch in the
tree above vy but containing vy and pasting it in 7 with vy in the place of v.
Thus in the tree 7" the vertex v; has disappeared and has been replaced with vg.
To avoid confusion we denote this vertex in 7’ by ;. The corresponding pearly
element {u) }yey,, (77) Will satisfy ) = u, for every v # v; and u%l = Uy, . A similar
construction can be performed in the third case. Here is a more precise description of
this operation in each of the cases (i)—(iii).

In case (i) we first remove from 7 the branch By, of the tree lying above vy (and
including vg). Then we also remove from 7 the path going from vg to the branch
point below vy which is closest to vy. Denote the remaining tree by 7. We define
T’ by gluing By, to Ty identifying vy with v;. This new vertex will be now denoted
by ;. We label 0; by the homology class of vy and we define Q' at 0y using the
marked points of both vy and v; except of the exit marked point of vy which becomes
irrelevant now and is hence dropped. See Figure 4 for an example.

X Y z X Y z

w w

Figure 4: Passing from 7 to 7’ — case (i)

In case (ii), if there is a branch point U ; between vg and v; we define 7" as follows.
We delete from 7 the branch By, as in case (i) above. We also delete from 7 the
path between v and j,; and denote the remaining tree by 7. We define 7’ as in
case (i) by gluing By, to 7, identifying vy with vy, calling the this new vertex ;.
As in case (i) above, we label vy by the homology class of vg and define Q using the
marked points of both vy and vy, excluding the exit marked point of vqy. See Figure 5
for an example. To conclude case (ii) we need to describe 7 in case there is no branch
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Figure 5: Passing from 7 to 7’ — case (ii)

point between vy and vy . In that case, we just define 7' by removing the path between
vo and v; and identifying vo with vy. This new vertex v is labeled by the label of v
and the marked points now are inherited from vy and v; except of the exiting marked
point of vy and the corresponding entering marked point of vy which are now dropped.

Suppose we are now in case (iii), ie vg is lower than vy in the tree. This case is dealt
with similarly to (ii). In this case, the tree 7" is obtained as before but with the roles
of the vertices vy and v; reversed: the branch above v; and containing v is grafted
to the tree in the place of vy and the branch leaving from v; and reaching the first
branch point separating v; and vg (or the portion in the tree between vy and vg if no
such branch point exists) is omitted. The new vertex (corresponding to vy and v;) is
now called 7. Again the J—curves associated to the vertices of 7’ are the same as
the corresponding curves associated to the vertices of 7" except that ug, = ty,,.

There is yet another point at which care should be taken (in all cases (i)—(iii). It
may happen that some of the relevant marked points of vy and of v coincide (again,
we disregard those marked points that are dropped as above), and in this case the
description given above for (7”7, Q') is incomplete. If such a coincidence of marked
points occurs we need to insert some additional vertices, corresponding to constant
J —curves, carrying distinguished marked points as well as connecting edges. This
modification is straightforward and we will not go into more detail about it.

It now easily follows that the resulting tree 7’ has a strictly lower Maslov index
than 7 . The dimension verification is also immediate except if v; carries some internal
marked points. If there is a single such marked point and §(7, Q) = 0, then we
take Q" = {Qs}semp (because the internal marked point may now take any value
inside D) and we still have, as in the reduction to simple disks, (77, Q') < 0. If v;
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carries two internal incidence points or if it carries one but §(7, Q) = 1, then, by the
particular choice of the moduli spaces in Section 3.2, v corresponds to a perturbed
J —holomorphic disk in contradiction to our starting assumption.

The case n < 2 is easily reduced to a number of combinatorial problems. The assump-
tions n <2, Np > 2 and §(7, Q) < 1 imply that the total number of J—curves is
relatively small (for example, there are at most two for the verifications involving the
pearl complex) so that combinatorial arguments apply in many of these cases. In fact,
it is not hard to use directly Theorem 3.3.1 to deal with trees 7 in which the total
Maslov index of the vertices represented by J —disks is at most 6 (even if there might be
additional vertices corresponding to perturbed disks). This covers all the verifications
involved with the pearl complex and its invariance, the product and its associativity and
invariance, the definition of the module structure and its invariance. This also works for
the proof of the relation (¢ *b) ®x =a®@ (b®x), a,b € QH(M;R), x € QH(L;R)
for Ny > 3. Finally, the remaining case can also be dealt with combinatorially.

3.4 Compactness and the final step

The transversality arguments in the previous section show that our moduli spaces are
manifolds. We will start here by describing the structure of the compactification of
these moduli spaces. For this, besides the transversality results described before, we
only need the Gromov compactness theorem (for disks see Frauenfelder [31]). We first
remark that given an F—colored tree with marked points (7, Q) and an associated
moduli space Pr g — constructed as described in Section 3.1 — there is a natural
Gromov type topology on Pr as well as a natural compactification Py .

In short, the elements of }_’T\PT are modeled on the tree 7 and the only modification
with respect to our definition in Section 3.1 concerns the points (a), (b), (c), at the end
of that section. Specifically, the product IT(7) is replaced by its compactification

=[] M(l.J).
vevn(7)

where M ([v], J) is the Gromov compactification of M([v], J) so that, for each internal
vertex v, the associated geometric object u,, € M([v], J). The points (a), (b), (c), are
then replaced by the following variants:

* For each internal edge e € ¢(7), the points u._(g—(e)) and u., (q+(e)) are

related by a possibly broken flow line (possibly of 0—length) of yf e,
» For an entry edge, ¢, let x; be the critical point labeling the vertex e—. The point

x; is related to the point u., (¢+(e)) by a possibly broken flow line (possibly
of 0-length) of )/fe.
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e For the exit edge e so that the vertex e is labeled by the critical point y of fe,
the point u,_(g—(e)) is related to y by a possibly broken flow line (possibly of
0-length) of yle.

A remark is needed concerning the marked point selectors. The various marked points
which correspond to the same vertex in the configurations described above are again
required to be distinct and are given in the same way as that described in Section 3.2.
In particular, each time two (or more) such incidence points “merge” a ghost curve
needs to be introduced.

From now on we will only focus on F—colored trees that are of virtual dimension
8(7) <1 and, in view of our transversality results, we may assume that (17) is satisfied
so that P3 = P (the role of the marked point selector is less crucial in this part and
we will omit it from the notation). Under this hypothesis, the first key remark is that
each element i € P7\P7 contains exactly one configuration among the three types
below:

¢ a flow line broken exactly once,

e avertex vy € v(7) corresponding to a cusp curve with precisely two components
(which can be ghosts),

¢ aflow line of length 0.

The reason for this is that if more than a single such configuration occurs we can extract
from % an object u’ € Pz with §(7") < 0 which is impossible because such a moduli
space of negative virtual dimension is regular and thus void.

The second important remark is that the condition Ny > 2 insures that no “lateral”
bubbling is possible. More explicitly, this means that if the element u satisfies condi-
tion (ii), then the incidence points associated to the vertex v,, are distributed among the
two components of the cusp curve so that not all of them are in just one component.
This happens because, otherwise, the component which does not carry any of these
incidence points can be omitted thus giving rise to an object u’ which belongs to a
moduli space of virtual dimension lower by at least Ny, than §(P7) which again is
not possible.

The last step is to use the description of the compactification given above to verify the
various relations required to establish the theorem (as described at the points (a)—(g)
and (i) in Section 3.2). The technical ingredient for this verification is gluing. Gluing
procedures have already appeared for example in [33] and for full details we refer again
to [12]. This gluing procedure insures that, when §(7) = 1, each element u which is
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modeled on the tree 7 and which satisfies exactly one of the properties (i), (ii), (iii)
above actually belongs to P \Pr and appears as a boundary element of Pr.

Finally, the verification of the relations mentioned involves in an essential way the fact
that our algebraic operations are defined by using ®-admissible trees. The role of the
exit rule ® (as described at point (v) in Section 3.1) is as follows: for a tree 7 with
s(T)=1,ifue 8737 satisfies (ii) above, then, due to the fact that “lateral” bubbling
is not possible, # is also an element of 3Pz where 7 is the tree obtained from 7
by replacing the vertex vz by two vertices (corresponding to the two components of
the cusp curve associated to vy) related by an edge of length 0 whose type is uniquely
determined by the exit rule. Moreover, by gluing, each # € 9P satisfying (iii) is an
element in the boundary of a moduli space modeled on a tree obtained from 7 by
replacing the two vertices related by the edge of O—length by a single vertex. Denote by
91 (Pr) the parts of the boundary of Pz formed by the points satisfying (i). and fix the
symbol (x1, x5, ...x;7:y) of 7. When summing over all trees (of virtual dimension 1)
and of fixed symbol we see that the configurations of types (ii) and (iii) cancel (as we
will see below, due to the presence of perturbations in some of our moduli spaces, an
additional argument is sometimes needed at this point) and so we deduce

> #0,(Pr)=0.

symb(77)=(x1,...x7:y)

The relations that need to be justified are then obtained by identifying each element
u € 0;(Pr) of type (i) with precisely one element of the product Pz; x Pz, where
7: and 7T, are the two trees obtained as follows: first, introduce in 7 an additional
vertex U on the edge which corresponds to the broken flow line and then let 77, 7, be
the two (sub)-trees which have in common only the vertex v and whose union gives 7 .

Clearly, in what concerns the comparison with Floer homology — point (g) in Section
3.2 — the argument above needs to be modified slightly. The required modification
is however obvious and we will not discuss it further. However, a more substantial
addition to the argument is needed in the case of the perturbations of type (15) which
were introduced in the moduli spaces needed to verify that the module action is a
chain map and to check some of the related associativity — as at points (c) and (f) in
Section 3.2. This happens in precisely two cases. The first — concerning the fact that
the module operation is a chain map — has to do with the identification of an element
u € 1 (Pr) with an element of the product Pz, x Pr,. The problem here is that, by
the definition of the relevant 1—dimensional spaces at the end of (c¢) in Section 3.2 we
see that such a # can be viewed as product of two configurations modeled on two trees
7T, and 7, but one of these configurations contains a vertex of valence three which
corresponds to a perturbed curve. At the same time both Pz, and Pz, are moduli
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spaces of virtual dimension 0 and so, following the definition of the module action and
the pearl differential, they do not contain perturbed curves.

The second case concerns the verification of the associativity type relations involving
the module action and it arises if the initial curve leading by bubbling to an element
i € 9P is in fact a perturbed curve (satisfying (15)), and carrying 4 marked points,
two of which are interior points and each of the two components of the resulting cusp
curve carries one interior point. The problem in this case is that just one of the resulting
cusp curves satisfies the perturbed equation and the other one is a usual J—holomorphic
curve (the definition of the marked point selector in this case implies that the lower
component in the tree is the perturbed one) and this configuration # does not actually
appear as an object of type (iii). The reason is that in the relevant moduli spaces all the
vertices of valence three correspond to perturbed curves and thus, the configurations of
type (iii) in this case contain a cusp curve with both components being perturbed.

The solution to these two issues turns out to be simple: a further analysis of the moduli
spaces involved in both cases shows that if the relevant perturbations are small enough
— which can be obviously assumed — then the two types of configurations which are
compared in each case are in bijection. This is proved by a cobordism argument which
is possible because both the perturbed and the unperturbed configurations are regular —
see again our paper [12] for more details.

4 Additional tools

In this section we introduce a number of additional tools which will be useful for the
proof of the main theorems and in related computations.

4.1 Minimal pearls

As before, we assume here that L C (M, @) is monotone. Suppose that for some almost
complex structure J and Morse function f: L — R the pearl complex C*(L; £, pr., J)
is defined. Itis clear thatif f is a perfect Morse function, in the sense that the differential
of its Morse complex is trivial, then the pearl complex is most efficient for computations.
Clearly, not all manifolds admit perfect Morse functions. However, we will see that,
algebraically, we can always reduce the pearl complex to such a minimal form (a similar
construction in the cluster set-up has been sketched in [24]).

It is crucial to work here over a “positive” coefficient ring. We will use in this section
At = Z,[t]. In the algebraic considerations below the fact hat deg(r) < —2 plays an
important role.
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Let G be a finite dimensional graded Z,—vector space and let D = (G ® AT, d) be
a chain complex with a differential d which is A+ —linear — in other words D is a
At —chain complex. For an element x € G let d(x) = do(x) +d; (x)t with dy(x) € G.
In other words dy is obtained from d(x) by treating ¢ as a polynomial variable and
putting t = 0. Clearly do: G — G, dg = 0. Similarly, for a chain morphism &
we denote by &y the dy—chain morphism obtained by making ¢ = 0. Let H be the
homology of the complex (G, dy). We refer to this homology as dp—homology in
contrast to d —homology which is denoted by H« (D).

Proposition 4.1.1 With the notation above there exists a chain complex
Dmin = (H® AT, 8), with §o =0

and chain maps ¢: D — Dpin, ¥: Dmin — D so that: ¢ oy =1id, ¢o and ¥y induce
isomorphisms in dg—homology and ¢ and v induce isomorphisms in d —homology.
Moreover, the properties above characterize Dy up to (a generally noncanonical)
isomorphism.

Concerning the uniqueness part of the statement see also Section 4.1.1.

Here is an important consequence of Proposition 4.1.1:

Corollary 4.1.2 There exists a complex C;]rin (L) = (Hx(L;Z>)®AT,8), with §5 =0
and so that, for any (L, f, p,J) such that CT(L; f, p, J) is defined, there are chain
morphisms ¢: CY(L; f,p,J) — C;l'in(L) and : erl'in(L) — CT(L; f,p,J) which
both induce isomorphisms in quantum homology as well as in Morse homology and
satisfy ¢ oy = id. The complex C;I;n(L) with these properties is unique up to (a

generally noncanonical) isomorphism.

We call the complex provided by this corollary the minimal pearl complex and the
maps ¢, ¥ the structure maps associated to C*(L; f, p, J) (or shorter, to f). This
terminology originates in rational homotopy where a somewhat similar notion is central.
There is a slight abuse in this notation as, while any two complexes as provided by
the corollary are isomorphic this isomorphism is not canonical. Obviously, in case a
perfect Morse function exists on L any pearl complex associated to such a function is
already minimal. As mentioned before, in the arguments below it is essential that the
differential and morphisms are defined over AT (but the same constructions also work
over At see Section 2.1.2 for the various Novikov rings available). In case we need
to work over A we define Cyn(L) = C;lrin(L) a+ A.
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Remark 4.1.3 (a) An important consequence of the existence of the chain morphisms
¢ and ¥ is that all the algebraic structures described before (product, module structure
etc.) can be transported and computed on the minimal complex. For example, the
product is the composition

®
(L&t (L) L2 (i fip. D)@ CHL: fa.p. T)

min

(19) ct

5 CHL fip ) Bt (L)

where ¥, ¢; are the structure maps given by Corollary 4.1.2 and which correspond to
the complexes associated to f;. There is a cycle in C;}rin(L) equal to ¢(P) where P
is the maximum of any Morse function f so that CT(L; f, p, J) is defined and so that
f has a single maximum; 1, ¢ are the associated structure maps. By degree reasons in
dimension n = dim(L) we have ¢ = ¢¢ and ¥ = ¢ and so this cycle is independent
of the choice of f and of that of the associated structure maps and it coincides with
[L]® 1 where [L] is the fundamental class of L. By a slight abuse of notation we
will continue to denote by [L] both the cycle ¢(P) as well as its quantum homology
class. In homology, the product defined by (19) has as unity the fundamental class [L].
Moreover, with the simplified description of the quantum product given in (13) — where
f> = f3 we obtain a product so that [L] is the unity at the chain level. It also follows
from the fact that ¢, ¥ induce isomorphisms in Morse homology that the “minimal”
product described above is a deformation of the intersection product.

(b) A consequence of point (a) is that HF(L) = QH(L) = 0 if and only if there
is some x € C;lrin(L) = H(L:Z») ® At so that §x = [L]#¥. Indeed, suppose that
QH(L) = 0. Then, as for degree reasons [L] is a cycle in Cpin(L), we obtain that it
has to be also a boundary. This means that there exists a € Cyin(L) so that da = [L].
Multiplying a by a large enough positive power k of ¢ gives an element x = ark
which now lies in C;l'in(L) and such that §x = [L]¢*. Conversely, if §x = [L]¢¥ then
[L] is a boundary in Cpin(L). On the other hand the cycle [L] € Cruin(L) represents the
unity for the product on Hy(Crin(L)) = QH, (L) just mentioned at point (a) above.

Thus the unity is 0, hence QH(L) = 0.

(c) Itis also useful to note that there is an isomorphism QH(L) = H(L;Z,) ® A if
and only if the differential 6 in Cpin(L) is identically zero.

We now proceed to the proof of the Proposition and of its Corollary.

Proof of Proposition 4.1.1 We start with a useful algebraic property.
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Lemmad4.14 LetD' =(G'®AT,d") and D" = (G" ® AT, d") be two A+ —chain
complexes. If a chain morphism &: D' — D" which is At —linear is so that &, induces
an isomorphism in dy—homology, then & induces an isomorphism in d —homology.

Proof Recall that the filtration FXA+ = ¥ AT induces a filtration, called the degree
filtration, on any free AT - module. The resulting spectral sequence induced on any
At —chain complex is called the degree spectral sequence. Clearly, & respects the
degree filtration and thus it induces a morphism relating the degree spectral sequences
of D’ and D”. We notice that E!(£) is identified with the morphism induced by &, in
do—-homology. Therefore, this is an isomorphism. As we work over a field (specifically
Zy) this implies that H,(£) is an isomorphism. m|

Remark 4.1.5 (a) Under the assumptions in Lemma 4.1.4, the same spectral sequence
argument also shows that the chain morphism

S@idAi D,®A+ A —>D”®A+ A
induces an isomorphism in homology.

(b) Let G’, G” be finite dimensional, graded Z,—vector spaces. We claim that a
AT —linear morphism

£ GCIANT >G"@AT
is an isomorphism if and only if &, is an isomorphism. Indeed, any such & can
be viewed as a morphism of chain complexes by assuming that the differentials in
the domain and target are trivial. We deduce from Lemma 4.1.4 that, if & is an
isomorphism, then & is an isomorphism. Conversely, if £ is an isomorphism, then
t&: t(G'®AT) = t(G"®A™) is an isomorphism. As & is identified with the quotient
morphism

G'QAT G"QAT

—
H(G'RAT)  t(G"®AT)

induced by &, it follows that &, is an isomorphism.

We now return to the proof of Proposition 4.1.1. Start by choosing a basis for the
complex (G, dy) as follows: G =Zy(x;:1 € [) D Zy(yj:j € J) EBZz(y]’. 1 jeld)
so that dox; = 0, do(y;) =0, doyj’. = yj, Yj € J. For further use, we denote
Bx ={x;j:iel}, By ={yj:jeJ}, BY/:{y]/-IjEJ}.

Clearly, H = Z,(x;) and we will identify further these two vector spaces and denote
Dinin = Z»(X;) ® A+ where X;,i € I are of the same degree as the x; s (the differential
on Dyin remains to be defined). We will construct ¢ and ¥ and § so that ¢g(x;) = X;,

do(yj) = qbo(yj/.) =0, Yo(X;) = x; and 6o = 0. If ¢ and ¢ satisfy these properties,
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then, they induce an isomorphism in dy—homology and, by Lemma 4.1.4, i and ¢
induce isomorphisms in ¢ —-homology.

The construction is by induction. We fix the following notation: Dk =7, (x;, y Vj:

|xi| > k, |y | > k) ® AT . Similarly, we put Dfl‘lm =7,(Xi:|xi| > k)®AT. Notlce
that there are some generators in DK which are of degree k — 1, namely the y;’s

of that degree. With this notation we also see that DK is a subchain complex of D
(because dy; = di(y})t and so |dy(y;)| = |y;| + 1, the same type of relation holds
for x; and for y; we have dy; = y; +d;(yi)t). Assume that n is the maximal degree
of the generators in G. For the generators of D" we let ¢ be equal to ¢g, we put
§=0on DI andwe also let Yy = v on DI . To see that ¢: D" — DI is a chain

morphism with these definitions it suffices to remark that if y € By, |y| =n—1, then
y=doy =dy andso dy =0.

We now assume ¢, §, ¥ defined on D" ~5+1, DI'I’];SH so that ¢, i are chain morphisms,
they induce isomorphisms in homology and ¢ o ¥y = id. We intend to extend these
maps to D"~*, D5 We first define ¢ on the generators x € By, y’ € By, which
are of degree n —s: ¢(x) = X, ¢(3') = 0. We let §(X) = ¢"*T1(dx) (when
needed, we use the superscript (—)*~*T! to indicate the maps previously constructed
by induction). Here it is important to note that, as dox = 0, we have that dx € D"~5+1,
We consider now the generators y € By N'D"~% which are of degree n —s — 1 and we
put ¢(y) = ¢"5+1(y—dy’). This makes sense because y —dy’ € D"5T1. We write
dy’ = y + " and we first see ¢(dy’) =0 =68(¢()’)) so that, to make sure that ¢" 5
is a chain morphism with these definitions, it remains to check that §¢(y) = ¢(dy) for
all y € By of degree n—s—1. But §¢(y) = —8¢"*T1(y”) and as " ! is a chain
morphism, we have §¢" 1 (y") = ¢"=5+1d(y") which implies our identity because
dy" +dy = d?y’ = 0. Clearly, ¢y ° induces an isomorphism in dop—homology and
hence in d -homology too.

To conclude our induction step it remains to construct the map ¥ on the generators
X of degree n —s. We now consider the difference dx — " *T1(§X) and we want
to show that there exists v € D" 5T! so that dt = dx — y"*T1(§X) and 7 €
ker(¢"S*1). Assuming the existence of this T we will put ¥ (X) = x — r and we
see that v is a chain map and ¢ o ¥y = id. To see that such a t exists remark that
w=dx—y"ST1(X) e D5t and dw = —d (Y" S T1(8X)) = -y T1(806X) =0
(because ¥t is a chain map). Moreover, ¢(w) = ¢" 511 (dx) — 5% = 0 because
¢" St o =51 = id. Therefore w is a cycle belonging to ker(¢”5*1!). But
¢"5*1 is a chain morphism which induces an isomorphism in homology and which
is surjective. Therefore Hy (ker(¢”*T1)) = 0. Thus there exists 7 € ker(¢"**1) so
that dt = w and this concludes the induction step.
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This construction concludes the first part of the statement and to finish the proof of the
proposition we only need to prove the uniqueness result. For this, suppose ¢': D — D’
and y': D’ — D are chain morphisms so that ¢’ o ' = id with D' = (H ® AT, §'),
8o =0 and H some graded, Z,—vector space and ¢’, ¥’, ¢, ¥ induce isomorphisms
in the respective homologies. We want to show that there exists a chain map ¢: Dpin —
D’ so that ¢ is an isomorphism. To this end we define ¢(u) = ¢’ o ¥ (u), for all
U € Dmin. Now Hy(¢o) and Hi(¢y), Hx(Vo), Hx(yy) are all isomorphisms (in
do-homology). So H(cp) is an isomorphism but as §o =0 = 5’0 we deduce that ¢ is
an isomorphism. By Remark 4.1.5 (b), the map ¢ is an isomorphism. |

Proof of Corollary 4.1.2 Fix a triple f©, p°, J° and assume that C*(L; °, p°, J°)
is defined. Apply Proposition 4.1.1 to this complex. Denote by (C;l'in, ¢, V) the resulting
minimal complex and the chain morphisms as in the statement of Proposition 4.1.1.
The only part of the statement which remains to be proved is that given a different set of
data (f/,p’,J’) sothat CY(L; f’, p’, J') is defined, there are appropriate morphisms
@', ¥’ as in the statement. There are comparison morphisms: 4: CY(L; 17, p/, J') —
CT(L; 9,00 J% as well as h': CT(L; £°,p° J% — CT(L; f'.p',J') so that,
by construction, both / and 4’ are inverse in homology and both induce isomor-
phisms in Morse homology (and these two isomorphisms are also inverse). Define
9 CH(Li 1.0 J)) = Clye ¥ Cly — CH(L:f 0 T') by @' = ¢ 0 h and
V" =h oy Itis clear that ¢’, ¥", ¢ and ¥ induce isomorphisms in homology.
Moreover, as /o and /i, are inverse in homology and §p = 0 in C:un it follows that
¢ © ¥, = id. This means by Lemma 4.1.4 that v = ¢’ o ¥” is a chain isomorphism
so that vy is the identity. We now put ¥’ = " ov™! and this satisfies all the needed
properties. The uniqueness of CnJlrin(L) now follows from the uniqueness part in

Proposition 4.1.1. |

4.1.1 Further remarks on minimal models While the minimal complex Dy, as-
sociated to AT —complex D is unique (up to isomorphism), this is not the case for the
structural maps ¢ and . For these maps we expect uniqueness in a weaker sense
such as uniqueness up to chain homotopy, however we will not pursue this direction
here. On the other hand, we will use minimal models in Section 5 quite frequently. In
fact, in Section 5 we will have to use the specific choice of the morphisms ¢, ¥ (as
well as ¢¢, Vo) that is constructed in the proof of Proposition 4.1.1. It seems plausible
that this can be avoided by axiomatizing more the theory of minimal models, but we
will not do this here since we view the minimal model as a purely computational tool.
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4.2 Geometric criterion for the vanishing of QH(L)

Let L C (M, ) be a monotone Lagrangian submanifold. Remark 4.1.3 (b) provides a
criterion for the vanishing of QH(L). We provide here a more geometric such criterion
which is useful when Nj = 2 which we will assume in this section.

Let 0: H,(M, L;Z) — Hy(L;Z) denote the boundary homomorphism and denote
by 0z,: Hy(M, L;Z) — H(L;Z,) the composition of d with the reduction mod 2,
H{(L;Z) — H{(L;Z,). Given A € HZD(M, L) and J € J(M,w) consider the
evaluation map

eva,j: M(A,J)x3dD)/G — L, evy j(u,p)=u(p),
where G = Aut(D) =~ PSL(2,R) is the group of biholomorphisms of the disk.

For every J € J(M,w) let £,(J) be the set of all classes A € HZD(M, L) with
u(A) = 2 for which there exist J-holomorphic disks with boundary on L in the
class A:

Er(J) ={A € HP (M, L)| ju(4) =2, M(4,J]) # o},

Define: L= [ &W.
JeJ(M,w)
Standard arguments show that:

(1) &,(J) is a finite set for every J.

(2) There exists a second category subset Jee C J(M,w) such that for every
J € Jreg» €2(J) = &, In other words, for generic J, £>(J) is independent
of J.

(3) Forevery J € J and every A € £, (J) the space M(A, J) is compact and all
disks u € M(A4, J) are simple.

(4) For J € Jreg and A € &,, the space (M(A, J) x dD)/G is a compact smooth
manifold without boundary. Its dimension is # = dim L. In particular, for generic
x € L, the number of J-holomorphic disks u € M(A, J) with u(dD) > x is
finite.

(5) Forevery A € & and Jo, J1 € Jreg the manifolds (M(4, Jo) x dD)/G and
(M(A, J1) x9dD)/G are cobordant via a compact cobordism. Moreover, the
evaluation maps ev4, j,, €v4, s, extend to this cobordism, hence degz,, ev4, s, =
degyz, ev4,s, - In other words degy, ev4,; depends only on Ae&,.

(6) In fact, the set Je above can be taken to be the set of all J € J (M, w) which
are regular for all classes 4 € HZD (M, L) in the sense that the linearization of
the 0y operator is surjective at every u € M(4, J).
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Let J € Jree and let x € L be a generic point. Define a one dimensional Z,—cycle
8+ (J) to be the sum of the boundaries of all J-holomorphic disks with @ = 2 whose
boundaries pass through x. Of course, if a disk meets x along its boundary several
times we take its boundary in the sum with appropriate multiplicity. Thus the precise
definition is

(20) Sx(N)=Y_ > u@D).

A€E (u,p)eevy! (x)

By the preceding discussion the homology class Dy = [6x(J)] € H{(L;Z,) is inde-
pendent of J and x. In fact

@1) Dy =) (degz, eva,1)dz, 4.
Ae&;

Proposition 4.2.1 Let L C (M,w) be a monotone Lagrangian submanifold with
Np =2.1If Dy #0 then QH,(L) =0.

Proof Choose a generic J € J(M,w). Let f: L — R be a generic Morse function
with precisely one local maximum at a point x € L and fix a generic Riemannian
metric on L. Denote by (CM«(f), o), (C«(f, J),d) the Morse and pearl complexes
associated to f, J and the chosen Riemannian metric. As discussed in Section 3.2 (b),
x is a cycle in the pearl complex of f and its quantum homology class is the unity.

For degree reasons the restriction of d to CM,_i(f) C C,—1(f,J) is given by
d =09 + 912, where d1: CM,_1(f) - CM,(f) = Z,x counts pearly trajectories
with holomorphic disks of Maslov index 2. Since x is a maximum of f, no —V f
trajectories can enter x (ie W7 (f) = {x}). Therefore for every y € Crit,_;(f) we
have

(22) Iy = #z, (W (/) Nx(J))x.

Assume now that Dy # 0. By Poincaré duality there exists an (n — 1)—dimensional
cycle C in L such that
#7,CNéx(J) #0.

Let z € CM,—1(f) be a dg—cycle representing [C] € H,—1(L;Z,). Then
d(z) =01(2)t = #Zz(qu(f) N (Sx(J))xt =#z, (C N 8X(J))xt =axt

for some nonzero scalar a. (Of course, a # 0 is the same as a = 1 here, since we
work over Z,. However we wrote ax to emphasize that the argument works over
every field.) It follows that [x] = 0 € QH,(L). But, as [x] is the unity of QH, (L),
we deduce QH, (L) =0. a
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4.3 Action of the symplectomorphism group

We now describe a property of our machinery which is very useful in computations
when symmetry is present. In this section R is any of the rings described in Section
2.1.2.

Proposition 4.3.1 Let ¢: L — L be a diffeomorphism which is the restriction to L
of an ambient symplectic ditfeomorphism ¢ of M . Let f, p,J be so that the pearl
complex C(L;R; f, p, J) is defined. There exists a chain map

¢: C(L;R; f,p,J) = C(L;R; f,p,J)

which respects the degree filtration, induces an isomorphism in homology, and so that
the morphism E! ((Z) induced by 5 at the E' level of the degree spectral sequence
coincides with Hy(¢) ® idp+ (where Hy(¢) is the isomorphism induced by ¢ on
singular homology). The map ¢ — (5 induces a representation

: Symp(M, L) — Aut(QH,(L; R))

where Aut(QH,(L;R)) are the ring automorphisms of QH,(L;R) preserving the
augmentation and Symp(M, L) are the symplectomorphisms of M which keep L
invariant. The restriction of h to Sympy (M) N Symp(M, L) takes values in the
automorphisms of QH(L;R) as an algebra over QH(M ; R) (here Symp, (M) is the
component of the identity in Symp(M) ).

Proof To ease notation, we omit the ring R in the writing of the pearl complexes
below.

Assume that ¢: L — L is a diffeomorphism which is the restriction to L of the
symplectomorphism ¢ and f, p, J are such that the chain complex C(L; f, p, J) is
defined. Let f® = f o¢~!. There exists a basis preserving isomorphism

h?: C(L; f.p.J) = C(L; f®.p*. J*)

induced by x — ¢ (x) for all x € Crit( /') where p*, J* are obtained by the pushforward
of p, J by means of ¢ and the symplectomorphism ¢. The isomorphism 4% acts in
fact as an identification of the two complexes.

Next, there is also the standard comparison chain morphism, canonical up to chain
homotopy

c: C(L; f2,p*. J*) = C(L; f.p.J).
We now consider the composition 5 = coh?. Itis clear that this map induces an
isomorphism in homology and that it preserves the ring structure and the augmentation
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(as each of its factors does so). We now inspect the Morse theoretic analogue of these
morphisms — in the sense that we consider instead of the complexes C(L; f, —, —) the
respective Morse complexes C( f,—). It is easy to see that the Morse theoretic version
of 5 induces in Morse homology precisely Hy(¢). But this means that at the E! stage
of the degree filtration the morphism induced by 5 has the form Hy(¢) ® idg.

We now denote k = /i gqgl and we need to verify that for any two elements b,V €
Symp(M, L) we have h(¢p o) = h(p)oh(y). Itis easy to see that this is implied by
the commutativity of the diagram

C(L: /) —" oL (1))
C(L: f) —C(L. 1)

for any two Morse function f and f” so that the respective complexes are defined. To
verify this commutativity, first we use some homotopy H, joining f to f’, to provide
the comparison morphism ¢ and we then use the homotopy H o ¢! to define ¢’.

Finally, recall that the module structure of QH(L) over QH(M) is defined by using
an additional Morse function F: M — R. If we put F® = F o_q_b_l we see easily that
the external operations defined by using f, F, p, J and f ¢ Fo, p*, J* are identified
one to the other via the application #? (extended in the obvious way to the critical
points of F). There is a usual comparison map ¢ relating the Morse complex of F¢ to
that of F'. Together with ¢ the map ¢ identifies — in homology — the external product
associated to ¢, F®, p*, J* and the external product associated to f, F, p, J. At the
level of the quantum homology of M the composition ¢ o 4% induces Hy (&) ®Ridg.
Therefore, if ¢ € Symp, (M), it follows that this last map is the identity and proves
the claim. |

Remark 4.3.2 It results from the proof above that for h(¢) to be an algebra automor-
phism it is sufficient that ¢ induce the identity at the level of the singular homology
of M, eg when ¢ is homotopic to the identity.

4.4 Duality

We start by fixing some algebraic notation and conventions. Let R be a commutative
AT algebra. Suppose that (C, ) is a free R—chain complex. Thus C = G ® R with
G some graded Z,—vector space. We let

C® =homz(C,R)
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graded so that the degree of a morphism g: C — R is k if g takes C; to R for
all /.

Let C' =homg,(G,Z;) ® R be graded such that if x is a basis element of G, then
its dual x* € C’ has degree |x*| = —|x|. There is an obvious degree preserving
isomorphism y: C® — C’ defined by ¥ (f) =Y, f(gi)g; where (g;) is a basis of
G and (g7) is the dual basis. We define the differential of C®, 9*, as the adjoint of 9:

(0* f.x) = (f.0x), Vx eC, f €C®.
Clearly, C® continues to be a chain complex (and not a co-chain complex).

An additional algebraic notion will be useful: the co-chain complex C* associated
to C. To define it, for a graded Z,—vector space V let V" be the graded vector space
obtained by reversing the degree of the elements in V: if v € V™, then its degree is
lv] = —degy (v). Clearly, (V @ W)™ = ViV g Winv,

For the complex C as above we let C* = (C®)™ = homz, (G, 7)™ ® R™. The
complex C* is obviously a co-chain complex and its differential is a R"™—module
map. The cohomology of C is then defined as HX(C) = H¥*(C*). Obviously, there is
a canonical isomorphism: H_z (C®) = Hk(C*).

A particular case of interest here is when C = C(L;R; f, p, J). In this case we denote
QH*(L:R) = H*(C(L:R: /.p. ])*).

Notice that the chain morphisms n: C — C® of degree —n are in 1-1 correspondence
with the chain morphisms of degree —n:

.CORC—TR

via the formula 7(x ® y) = n(x)(y). Here the ring R on the right hand-side is
considered as a chain complex with trivial differential.

For n € 7Z and any chain complex C as before we let s”C be its n—fold suspension.
This is a chain complex which coincides with C but it is graded so that the degree of x
in s"C is n+ the degree of x in C. A particular useful case where both duality and
suspension appear is in the following sequence of obvious isomorphisms: Hy (s"C®) =
Hy_,(C®) = H™(C*).

Proposition 4.4.1 Let n = dim(L). There exists a degree preserving morphism of
chain complexes

n: C(L:R; fop. J) = s"(C(L;R; f.p, J)®)
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which is a morphism of 'R —modules and induces an isomorphism in homology. In par-
ticular, we have an isomorphism: n: QH; (L; R) — QH"k (L;R). The corresponding
(degree —n ) bilinear map

H@: QH(L:R) ®=r QH(L:R) > R

coincides with the product described at point (ii) of Theorem A composed with the
augmentation €;,. When R = A the pairing H (%) is nondegenerate. Moreover, for
any k € Z the induced pairing

H®°: QHp(L) ®z, QH,— (L) > Ao = Z,

is nondegenerate.

Proof of Proposition 4.4.1 For any two pearl complexes C(L;R; f, pr,J) and
C(L:R: f', p} . J') the construction at point Section 3.2 (e). provides a comparison
chain morphism relating them. There is an alternative way to construct a comparison
map
¢/ C(LiR: fopr. J) = C(LiR: [ pr. T)

in case f and f’ are in general position (and, to simplify the argument below, we use
the same Riemannian metric py, for both f and f”). In homology, this induces the
same morphism as the one provided by the map ¢ PL>T constructed at point (e) in
Section 3.2. This alternative comparison map is useful in the understanding of duality.
The definition of this map is

oI () = Y #(Pr) y YN
e

where the sum is taken over all the trees 7" of symbol (x : y), x € Crit( f), y € Crit( /")
and |x| —|y| + u([7']) = 0. We put in this case f; = f and f> = f’. The exit
rule — point (v) in Section 3.1 A — needs to be slightly modified for these trees: in the
tree 7' there is one special vertex vg so that for all vertices above it the exit rule is
O(f1) = f1, for all the vertices below it the exit rule is ®( f3) = f> and at vq the exit
rule is ®( f1) = f>. Condition (iv) in Section 3.1 A is also slightly modified in the
sense that the vertex v is allowed to satisfy w([vg]) = 0. The marked point selector is
as at point Section 3.2 (a). The duality map

n: C(L:R; fop. J) = s"(C(L; R; f.p, J)®)

is defined as the composition n = 77} o pF+PL:T where the map 77} is the canonical iden-
tification of chain complexes obtained by “reversing” the flow n’f: C(L;R;—f,p,J)—
s"(C(L:R; f. p, J)®) (sending each critical point x € Crity (— f) to x € Crit,_(f))
and the map ¢f+PL-/ is the comparison map associated to a Morse homotopy F
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between f and — /. To prove the identity H(7]) =€ (—*—), let f’ be another Morse
function in generic position with f. In homology 74 = *G LT (n/f,)* ok "oLsJ
where F’ is a Morse homotopy from f to —f” and G is a Morse homotopy from
/' to f. Thus we also have ny = ¢@*L-7 o (n’f,)* ° qi{’_f/. The relation we want to
justify follows by comparing the moduli spaces associated to the trees 7' of symbol
(x : y) with x € Crit(f), y € Crit(—f’) used in the definition of ¢f’_f/ and the
moduli spaces associated to trees 7 of symbol (x, y : m) (with /= f1, f/ = f3)
where x € Crit( /), y € Crit(f’), m € Critg( f3) used in the definition of the product
— s — at the point (b) in Section 3.2. Here m is the unique minimum of the function f3.
Indeed it is immediate to see that the 0—dimensional such moduli spaces are in bijection
and this implies the claimed identity.

It remains to prove that the pairing H(77)° (and thus H(i7])) is nondegenerate when
R = A. From now on we put R = A and omit it from the notation.

Let C be a finite rank free A—chain complex (eg C = C(L; f, p, J)). Consider the
following pairing:

(23) O: Hi(C)® H_(C®) — Ay = Z»,

which is defined as follows. Given two classes a € Hy(C), g € H_;(C®) choose
cycles representing them, a = [«], g = [¢], and define O(¢ ® g) = p(x). It is easy to
see that ® is well defined. We will prove below the following.

Lemma 4.4.2 The pairing ® is nondegenerate.
Note that in view of the canonical isomorphisms QH, (L) 2= H._,(C(L; f. p, J)®)

the nondegeneracy of ® (for C = C(L; f, p,J)) implies that H(7})° is nondegenerate.

We now proceed to prove Lemma 4.4.2. Given / € Z denote by (homp (H(C), A));
the space of A-linear morphisms /: H(C) — A that have degree /. Consider now the
following canonical map:

p: Hy(C®) — (homp (H(C), A));,

defined as follows. Given g € H;(C®), choose a cycle ¢ € CZO = (homp (C, A)); that
represents g. Clearly, ¢ descends to a map Hy(C) — A44; which we define to be
p(g). It is easy to see that the map p is well defined. Note also that we have

O ®g) =p(g)(a), Vae Hi(C), g€ H_(C).

Lemma 4.4.3 Let C be as above. Then for every | € Z the map p is an isomorphism.
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Before proving this lemma let us see how it implies the nondegeneracy of ® (hence
that of H(7)°).

Proof that © is nondegenerate Let 0 # a € H;(C). Choose a homomorphism
or: H(C) —> Ay = Z, with ¢p(a) # 0. Extend ¢ to a A-linear homomorphism
¢: Hy(C) — A4_j (this extension can be done by linearity over A in degrees * =
k 4+ ¢Ny, and by 0 in all other degrees). Clearly O(a ® p~!(¢)) = ¢(a) # 0.

Assume now that 0 # g € H_;(C®). Then p(g): H«(C) — As_ is a nontrivial
homomorphism. This means that there exists j € Z and b € H; (C) such that p(g)(b) #
0. As p(g)(h) € Aj_y it follows that Ny | (j —k). Put a = tV=0/Np e H(C).
Clearly p(g)(a) # 0, which implies that ®(a¢ ® g) # 0. This concludes the proof of
the nondegeneracy of ®, modulo the proof of Lemma 4.4.3. |

To prove Lemma 4.4.3 we need some more preparation. Let R be a commutative
graded ring and M a graded 'R—module. Denote by z;: M — M; the projection on
the 7 —th component of M . Let N C M be a submodule. We say that N is a graded
submodule if for every x € N we have m;(x) € N for every i € Z. In that case the
grading of M induces a grading on N and N becomes a graded R—module by itself.
Note that not every submodule of a graded module is graded. However:

Lemma 4.4.4 (i) A submodule N C M is a graded submodule if and only if it
is generated (over R ) by a collection {xs}scs of homogeneous elements. In
particular, if Ny, Ny C M are graded submodules then so is N1 + N;.

(i) Let R = A. Let M be a free finite rank graded A -module and N C M a
graded submodule. Then there exists a graded submodule Q C M which is a
complementof N,ie N&® Q = M.

Proof The proof of statement (i) is straightforward, so we omit it.

We prove (ii). Choose a homogeneous element x; € M \ N (if there are no such
elements clearly N = M ). Put Q) = Ax;. We claim that N N Q") = 0. Indeed,
assume that 0 # Ax; € N for some A € A. As x; is homogeneous and N is a graded
submodule, all the homogeneous components of Ax; must lie in N . In particular
there exists » € Z such that t"x; € N. As t” is invertible it follows that x; € N. A
contradiction.

We now continue the same construction inductively, namely we choose a homogeneous
element x, € M \ (N + Q). We claim that Ax, N (N + Q") = 0. The argument
is similar to the preceding one (for N N Ax; = 0). The point is that N + Q(l) isa
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graded submodule. Put 0@ = 0W 4 Ax,. Clearly we have N N 0® =0. Note
also that Q(z) and N + Q(z) are both graded submodules of M .

Continuing this inductive construction we obtain, after a finite number of steps v, the
desired complement Q = Q) which satisfies N @ Q = M . It is important here that
M is free of finite rank and that A is a PID. These two conditions assure that every
submodule of M is also free with rank < the rank of M . In particular the process of
defining Q concludes in a finite number of steps. O

Remark 4.4.5 We remark that the statement at point (ii) does not seem to hold if we
replace A by more general graded rings R. In order for the proof above to work we
need that every nontrivial element in each R; (V j € Z) is invertible. This obviously
holds for R = A, but not for R = A for example.

Coming back to a finite rank free A—chain complex (C, d), denote by Z =kerd C C
the cycles and by B = d(C) C C the boundaries. Note that both Z and B are graded
A —submodules of C. The following Lemma is an immediate consequence of Lemma
4.4.4 (ii).

Lemma 4.4.6 There exist graded A —submodules E C C and Z' C Z such that Z
and C split as direct sums of graded A —modules:

Z=7'@®d(E), C=Z@®dE)DE.

In particular, the restriction of d to E, dg = d|g: E — d(E) is an isomorphism and
d(E) = B. Moreover, E & d(E) is an acyclic complex and Hy(C) = Z,.

This decomposition is of course not canonical.

Proof of Lemma 4.4.3 We first show that p is injective. Suppose that p(g) = 0.
Choose acycle ¢: Cx — A4 representing g. As p(g) =0 we have ¢|z/ =0 and since
@ is a cycle we also have ¢|y(g) = 0. Define ¥: C« — Ayqj41 by V|2 =¥ |g =0
and ¥ |qp) =¢o dEl . Clearly we have ¥ od = ¢ which means that ¢ is a boundary,
hence g = [¢] = 0. This shows that p is injective.

It remains to show that p is surjective. Let ¢: Hx(C) — A44; be an element in
(homp (H(C), A));. View ¢ as ¢: Z, — Ay1;. Extend ¢ by 0 to Z' @ d(E) D E.
Call this extension ¢’. Clearly ¢’ is a cycle in Clo and p[¢’] = ¢. This concludes the
proof of Lemma 4.4.3 as well as that of Proposition 4.4.1. O
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Remark 4.4.7 (a) The relation between the duality above and Poincaré duality is as
follows: in case C(—) in the statement is replaced with the Morse complex C( f) of
some Morse function f: L — R (and we take R = Z,) we may define the morphism
n: C(f) — s"™(C(f)®) as a composition of two morphisms with the first being the
usual comparison morphism C( f) — C(— f) and the second C(—f) — s"(C(f)®)
given by Crit(f) > x — x* € homgz,(C(f),Z,)™. We have the identifications
Hi (s"(C(/)®)) = Hy_y(C(f)®) = H"*(C(f)) and the morphism 7 described
above induces in homology the Poincaré duality map: Hy (L) — H"k(L).

(b) Proposition 4.4.1 also shows that QH (L) together with the bilinear map €7 (—o—)
is a Frobenius algebra, though not necessarily commutative.

(c) The quantum inclusion, iy, the duality map, 1, and the Lagrangian quantum
product determine the module structure by the following formula (which extends (6)):

(24) (h.ip(xoy)) =n(y)(PD(h) & x)

forhe H*(M;7Z,), x, y€ QH,(L:R). Here n(y) € Hyx(s" (homg (C(L;R; /). R)))
so that it can be evaluated on QH,(L;R). As in formula (6), the pairing on the left
side is the R—linear extension of the standard Kronecker pairing.

4.5 Wide Lagrangians and identifications with singular homology

Let L C (M, ) be a monotone wide Lagrangian. This means that there exists an
isomorphism QH, (L) = (H(L;Z,) ® A)«. However, in general there is no such
canonical isomorphism!

To explain this better, denote by F = (f, p) pairs of Morse data. For any two pairs
F=(f,p) and F' = (f', p') and any two choices of almost complex structures J
and J' denote by Wy, r.p: He(C(L;F,J)) — Hy(C(L;F',J’)) the canonical
isomorphism between the pearl homologies (as described at point (e) in Section 3.2).
Denote by WY*: H,(F) — H«(F') the canonical isomorphism between the Morse
homologies associated to F and F’. From this point of view, Hy(L;Z,) ® A is
identified with the family of homologies H(F) ® A related by the canonical isomor-
phisms mentioned above. Similarly, the quantum homology QH, (L) is identified with
the family of homologies H«(C(L;F, J)) together with the canonical isomorphisms
Wz yn.r.5- Therefore, specifyingamap I: H(L;Z,)®A — QH(L) is equivalent to
having a family of maps /(7 j): H(F)® A — H(C(L;F, J)) indexed by regular pairs
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(F,J) such that the following diagram commutes for every two such pairs (F, J),
(F,J):

Morse
F.F

(HF)® N —5  (HF)® A
(25) I(f,J)l llm,m
Ho(C(L: F. JY) 00 e 7, 07y

Of course, in order to define such a family of maps it is enough to choose a reference
pair (Fo, Jo), define Iz, j,) and then all the other /(£ ;) are uniquely determined.

The point is that, in general, these choices do not lead to a canonical map /. To
illustrate this, consider for simplicity the case when L admits a perfect Morse function
and consider only Morse data F = (f, p) where f: L — R is a perfect Morse function.
Write the pearl differential d as d = dy + d’, where d is the Morse differential.
As [ is perfect we have dy = 0, so that d = d’. Moreover, since we assume that L is
wide, a dimension comparison shows that d’ must vanish too (for otherwise the rank of
QH(L) would be smaller than that of H(L)® A). Thus d = 0 for every pair (F, J)
as above. It follows that

Hy(F) = Z2(Crits(f)),  H«(C(L: F. J)) = (Z2(Crit( /) ® A)+.

At first glance it seems that a natural isomorphism between the singular and quantum
homologies can be defined by Iz j)(x) = x for every x € Crit( /) for every (F,J)
(with the Morse function in F being perfect). A more careful inspection shows that if
we define the isomorphisms /(r j) in this way the diagram (25) might not commute.
A close look at the definition of the comparison morphism W ;7 (#.,, from point (e)
in Section 3.2 (see also an alternative description in the proof of Proposition 4.4.1)
shows that Wz ;, r. 5, might differ from \IJM‘“S"' by some quantum terms. In fact we
have

(26) Wirr sy = VR + Z q’(ﬁ .ol

i>1

where the term ®' maps Z, (Crit«(f)) to Z,(Crityy; ~, (7)) and is defined by count-
ing elements in some moduli spaces involving J and J’—holomorphic disks with
total Maslov index i Ny . (See the precise description in the proof of Proposition 4.4.1
in Section 4.4.) It is not hard to write down examples where some of the quantum
terms @ do not vanish (see Biran and Cornea [13; 12]). In fact, this turns out to be
the case for the Clifford torus Tg;r C CP™ (see Section 6.2).
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Despite the above there are situations in which a canonical isomorphism QH(L) =~
H(L;Z,) ® A exists, at least in some degrees.

Proposition 4.5.1 Let L" C (M?", ) be a monotone Lagrangian (not necessarily
wide or narrow).

(i) Forevery g >n—Ny +2 there exists a canonical isomorphism I: Hy(L;7Z,) —
QTHy(L). Moreover, this isomorphism maps the fundamental class [L] to the
unity in QTH(L).

(i1) If L is not narrow then the isomorphism I from (i) exists also forq =n—Nr +1.

(iii) If L is wide, the isomorphism I induces a canonical embedding Hy(L;7Z>) ®
Asx —> QH, (L) for every ¢ = n — Np + 1. In particular (for wide La-
grangians), if Ny > n+1 we have a canonical isomorphism (H(L; Z2)® A)y =
OH,(L).

Proof Let F = (f, p) be a pair formed by a Morse function and a Riemannian metric
on L and let J be an almost complex structure on M such that the pearl complex
CT(L;F,J) as well as the Morse complex C(F) are defined. Throughout the proof
we will assume without loss of generality that f/ has a unique maximum which we
denote by m.

Write the pearl differential d on CT(L; F,J) = C(F)® A as
d =00+ 01t +---+0,t",

where d¢ is the Morse differential and d; is an operator acting as d;: Cx(F) —
Ck—1+in, (F). For degree reasons we have:

(27) CZn—NL—H(f) =C;n_NL+1(L;f»p, J)

Moreover, d = 09 on C>,_n; +2(F) and d = 0y + 91t on Cy_n, +1(F), where
912 Cp—nNp +1(F) = Cu(F).

Point (i) now easily follows since x € C>,_n; +2(F) is a dp—cycle if and only if it is
a d—cycle and x is a dp—boundary if and only if it is a d —boundary. Therefore, the
map

T:Co(F)—Cf(L:; 7, J), I(x)=x,
descends to an isomorphism / in homology. As m represents the fundamental class,
I clearly sends [L] to the unity of QH'(L). This completes the proof of (i) except
for the canonicity of /I which will be proved soon.

We turn to point (ii). We claim again that x € C,—n, +1(F) is a dp—cycle if and only
ifitis a d—cycle and x is a dg—boundary if and only if it is a d—boundary. Indeed, the
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claim is obvious for boundaries since d = dg on C,_p, +2(F). It remains to show
that dy and d—cycles coincide on C,_p, +1(F). Let x € Cy—n, +1(F). We have
d(x) = dg(x) 4+ d1(x)t. This implies that if x is a d—cycle then it is also a dg—cycle.
Suppose now that x is a dg—cycle. We then have d(x) = do(x) 4+ 91 (x)t = 31 (x)t.
If d(x) # 0 then d(x) = mt which implies that m is a boundary hence QH(L) =0
and L is narrow, contrary to our assumption. Thus d(x) =0 and x is a d —cycle.

We can now extend the definition of 7 to I Co—nNy +1(F) — C: Ny +1 (L;F,J) by

T (x) = x, and as before T descends to an isomorphism 7/ in homology.

To conclude the proofs of points (i), (ii) it remains to show that / is canonical in the
sense discussed before the statement of the proposition. To see this, write the map [
as Iz j to denote the relation to the data (F, J). For degree reasons it follows that
the maps @, ,,, ., in (26) vanish on C;r for ¢ > n— N + 1, hence the squares
in (25) commute. This completes the proof of the first point of the proposition.

We now prove (iii). Consider the canonical map p: Q" H(L)— QH(L) induced by the
extension of coefficients AT — A . The embedding Hg(L;Z3) ® Asx —> QHy 14 (L)
is induced by the map p o I: Hy(L;Z3) — QH,(L). So, the proof is reduced to
showing that p o I is an injection. To see this, let x € Cy(F) be a dp—cycle with
nontrivial Morse homology class [X]viorse, Where ¢ > n— Ny + 1. By what we have
just proved, x is also a d —cycle. We have to prove that x, when viewed as an element
in C4(L;F,J), is not a d-boundary. Consider the minimal model Cpin(L) together
with the structural map ¢: C(L; F, J) — Cmin(L) as constructed in Section 4.1. Recall
that by that construction ¢g(x) = [X]mose 7 0, hence ¢(x) # 0. On the other hand,
by Remark 4.1.3 (c), the differential of Cpi(L) vanishes because L is wide. As ¢ is
a chain map it follows that x cannot be a d —boundary. O

5 Proofs of the main theorems

This section is focused on proving the three main theorems of the introduction.

Before we go on with the proof we would like to make a small but useful algebraic
observation which will be used many times in the sequel. Consider the graded vector
space H(L;Z,) ® AT endowed with the grading coming from both factors. Let
a € (H(L;Z,) ® A™); be a homogeneous element (of degree /). Then we can
decompose a in a unique way as

a=zal+l’NLtr’ aj+rNy, EH1+FNL(L;Z2)'

r=0
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Suppose now that a;1,,n, =[L] € Hy(L:Z,) for some rg. In that case we will say
that @ contains [L]¢"°. (Note that this can happen only if / + ro Ny = n.) Then, as
H-,(L;Z,) =0, |t| <0, the decomposition of a cannot contain terms with ¢ of
higher order than ry, ie

a=[Lt" +ap_n, " Fay_on 1O 4

We will abbreviate this by writing @ = [L]¢™ 4 1.0.(¢), where 1.0.(¢) stands for terms
of lower order in 7. Similarly, if a homogeneous element a contains [pt] 1% for some
lo > 0, then we must have a = [pt]7/0 + h.o.(¢), where h.o.(¢) stands for terms of
higher order in ¢.

A similar discussion applies to homogeneous elements in the positive quantum homol-
ogy OH,(M:AT) = (H(M:Z,) ® A")4, as well as in the positive pearl complex
Ct(L; f,p,J) in case the function f has a unique maximum and a unique minimum.

5.1 Proof of Theorem 1.2.2

The argument is based on the minimal model machinery from Section 4.1. Consider the
pearl complex C*( f, J) and recall from Section 4.1 that there exists a chain complex
(Ct (L) = H(L;Z,) ® AT, 8), unique up to isomorphism, and chain morphisms

¢:mCm+(f, J)—Ct (L), y: C;rin(L) —CT(f,J) sothat oy =id, §o =0 (where 8¢

min
is obtained from § by putting t =0) and ¢, ¥, ¢g, Vo induce isomorphisms in quantum
and Morse homologies. By Remark 4.1.3 the quantum product in C*(f, J) can be
transported by the morphisms ¢ and 1 to a product x: C;;n L)® Canin(L) — C;“in(L)
which is a chain map and a quantum deformation of the singular intersection product
and so that [L] € H,(L;Z,) is the unity at the chain level (notice though that, as the
maps ¢ and i are not canonical, this product is not canonical either). As discussed
before we put Cpin(L) = Cn’;n(L) ®a+ A= H(L;Z>)® A. As in the statement of
the theorem we assume that Hy(L;Z;) is generated by Hs,_;(L;Z;). In view of

Remark 4.1.3 (b) the first point of the theorem reduces to the next lemma.

Lemma 5.1.1 Suppose that Ny > [ + 1. If §, the ditferential of the minimal pearl
complex, does not vanish, then [L] is a boundary in Cyin(L), QH(L) =0, and Ny =
[+1.

Proof There are two possibilities: either § = 0 on H,_;(L;Z;), or § # 0 on that
homology.

Assume first that § =0 on H,_;(L;7Z,). We claim that § = 0 everywhere. To show
this we will prove by induction that § =0 on H>,_;_s(L;Z,) for every s > 0.
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Indeed, for s = 0 this is true since Ny, > /41 implies that § =0 on H>,_;4(L;Z,),
and moreover we have assumed that § = 0 on H,_;(L;Z,). Assume now that the
assertion is true for some s > 0 and let x € H>,_;_s_1(L;Z;). By the assumptions
of Theorem 1.2.2 we can write x = ) i aj where each a; is expressed as (classical)
intersection products of elements from Hx,_;(L;Z,). We now claim that §(a;) =0
for every j. To see this write a; = xq ----- X, with x; € H>,_;(L;Z,), where
— - — is the classical intersection product. We then have §(x;) = 0 and we write
S(xp®xg ko Xp) =D ; Xy % 8(X;) %+ % x, = 0. At the same time

(28) xl*xz*---*xrzal—}—qulq,
q>0

with zj € H>,_j_s(L; 7). (Recall that || = — Ny, <—2). By the induction hypothesis
we have §(zj) = 0, hence §(a;) = 0. The same argument shows that 6(a;) = 0 for
every j. It follows that §(x) = 0. This proves that § =0 on H>,_;_s1(L;Z;) and
completes the induction.

We now turn to the second case: § # 0 on H,_;(L;Z,). First note that we must have
Np =1+ 1. Indeed, if Ny >[4 2 then by degree reasons § =0 on H,_;(L;Z;)
and by what we have just proved we obtain § = 0 everywhere, a contradiction. Thus
N =1+ 1. By degree reasons again it follows that § sends H,,_;(L; Z;) nontrivially
to H,(L;7Z5)t. Thus there exists x € H,,_;(L; Z,) such that §(x) =[L]¢. This implies
that [L] is a boundary. As [L] is the unity of QH(L) we also obtain QH(L) =0. O

We now pursue with the proof of the second point of Theorem 1.2.2. Thus we assume
that L is narrow and so [L] is a boundary in Cpin (L) and Ny </ + 1. Let K be the
constant in the statement of the theorem, K =max{/+1,n+1—N} when Ny </+1
and K =741 when Ny =1/ + 1. Notice that the degree n component of C;lrin(L)
is one-dimensional. This implies that, despite the fact that the minimal pearl model
is determined only up to a noncanonical isomorphism, the generator in degree n is
canonical. It will be denoted (as before) by [L].

In the following lemma we denote the differential of the complex C;rin(L) by §* to
distinguish it from its extension § = §7 ® 1 defined on Cpn(L) = CnJlrin(L) Qa+ A
The main step is:

Lemma 5.1.2 Either there exists some x € Hy(L; Z,) so that §7(x) =[L]t9+1.0.(¢)
or there are y,z € Hy«(L;Z,) so that y * z = [L]t? 4 1.0.(t), where in both cases
0<gNL <K.

Proof As L is narrow, the first point of Theorem 1.2.2 implies that Ny <[+ 1.
Assume first that Ny =/ + 1. Then by definition K =/ + 1. In this case, as the proof
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of Lemma 5.1.1 shows, there exists x € H,_;(L;Z,) such that §*x =[L]¢. Thus x
satisfies the statement of our lemma with ¢ = 1.

We will assume from now on that Ny </ +1,andso K >/ +1,n+1— Nr. Let
w € Hy(L;Z5) be an element of maximal degree so that § 7w contains [L]* for some
s > 0. More precisely, denote by p € H"(L; Z,) the generator (so that {p,[L]) = 1).
We require that w is of maximal degree so that (p,§Tw) # 0 € AT. (Here and in
what follows we extend the Kronecker pairing (-,-) to Hyx(L;Z,) ® AT by linearity
over AT.) Note that such a w must exist, since L is narrow hence [L]#" must be a
8T —boundary for some r > 1.

If |[w| = n—1, the statement of our lemma is satisfied with x = w and ¢ = s because
gNL =n—|§Tw|=n+1—|w| <!+ 1 < K. Therefore we assume from now on
that |w| <n—1. We know that H>,_;(L;Z,) generates Hx(L;Z,) as an algebra. In
particular, |w| < n —/ implies that w is decomposable with respect to the intersection
product. We now write

W=w; Wy =w *wz—i—Zz,-ti, with |w| < |wi| <n, |w|<|wy|<n, |w|<|z|.
i>0

(Of course, w can be a sum of such products but this does not make any difference

in the argument and, in terms of notation, it is simpler to assume that just one such

monomial appears.) Now

(p.8Tw) = (p. B wy) *wy +wy T wa)) + ) (p.zi)t".

i>0
By the maximality of |w|, and the fact that |w| < |z;|, we see that the second term
on the right vanishes and we also get that for either w; or wj, say w; (the other
case is similar) we have (p, (§7Tw) * wy) = 4 for some ¢’ > 0. We now write
§Twy =Y, o uit’ and we deduce that for some i > 0 we have (p, u; * wy) = 191
Notice that |u;| = |wi|+iNg —1. We put ¢ = ¢’ —i (clearly ¢ > 0 and we will show
below that ¢ > 0). We now get

n—gqNp = |uj *wa| = u;j| + |wa| —n = |wi| +iNL =1+ [wz| —n
Thus, Ny <n— Ny + 1 < K and the statement of our lemma will be satisfied with

y=u; and z = w,.

It remains only to check that ¢ > 0. Assume by contradiction that ¢ = 0, or equivalently
that ¢’ =i . This implies that u; * w, = [L]. But for degree reasons this cannot happen
since |w;| < n. A contradiction. a
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To prove the second point of Theorem 1.2.2 we will use Lemma 5.1.2 to show that
L is uniruled of order K. For this, we fix a generic almost complex structure J as
well as a point P € L. Fix a Morse function f and a Riemannian metric py on L
so that the pair (f, pr) is Morse—Smale. Moreover, we choose f so that P is its
unique maximum. We also pick a second Morse function f; so that the pair ( /1, pr)
is also Morse—Smale, and f and f; are in general position. We assume that J is
generically chosen so that CT(L; f, pr,J) and CT(L; f, pr.J) are both defined as
well as the relevant product. As above, we let Cn"l'in(L) be the minimal pearl complex
and we fix ¢, ¥, ¢1, V1, the structure maps associated to ( f, pr., J) and, respectively,
to (f1, pr,J) as constructed in the proof of Proposition 4.1.1 in Section 4.1.

The following technical result is an easy consequence of the proof of Proposition 4.1.1
and is valid independently of whether L is narrow or not.

Lemma 5.1.3 (i) If there exists z € Crit( f) so that ¢(z) =[L]t* +1.0.(¢), s > 0,
then there exists w € Crit( /) so that dw = Pt5" +1.o.(t) with 0 < s’ <s.

(ii) Leta € H«(L;Z,) be a homogeneous element such that W (a) = Pt* +1.0.(¢),
s > 0. Then there exists w € Crit(f) such that dw = Pt* + lLo.(¢) with
0<s' <s.

Proof We begin with point (i). As in the proof of Proposition 4.1.1, change the
basis in Z,(Crit(f)) so that the generators forming the new basis are of three types
By, By C ker(dp) and By’ so that By and By are in bijection and do(By’) =
By (where d, is the Morse differential). For y € By we denote by )’ € By the
element so that do(y') = y. As CH(L; f,p,J) = Z> P we have P € By. The
map ¢: CY(L; f,p.J) — C;lrin(L) is defined so that for x € By, ¢(x) = [x] ([x]
is the Morse homology class of x), for y' € By, ¢(»') = 0 and for y € By,
¢(y) =¢(y—dy’). Let u € By be a generator of the highest degree among the elements
of By with the property that there exists 0 < s’ < s with ¢ (u) = [L]#* +Lo.(¢) (since
¢(x) =[x] for x € By, ¢(y') =0 for y’ € By and ¢(z) =[L]#* +1.0.(¢) with s >0,
there must be such a u). Write

u—du = le'ti + Zyjlj + Z y,/ctk, with x; € By, y; € By,y,/c € By.
i>0 j>0 k>0
We now have
(L] +Lo.() = pu) = pu—du') = Y ()’ + Y ¢t
i>0 j>0
Note that |yj| > |u| and therefore by the maximality of # none of the terms ¢(y;)
can contribute an [L]#*”, s” > 0 to that sum. Moreover, none of the terms ¢ ( Vi)
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can contribute [L] to that sum since ¢ of an element in By is divisible by #. It
follows that there exists o such that the term ¢ (x;,)¢? contributes the element [L] 5
As ¢(xiy) = [XigImorse it follows that x;, = P and iy = s’. As the degree n part
of By is P, and By, By’ do not contain elements of degree n, it follows that
u—du = Pts" + l.o.(¢). As u is a linear combination of pure critical points (it
doesn’t involve 7°s) we now obtain that du’ = Pts’ + l.o.(¢) (we work here over Z,
so P = —P). Finally, there must be a critical point w participating in «’ (which is a
linear combination of critical points) so that dw = Pts + l.o.(¢). This completes the
proof of point (i).

We turn to the proof of (ii). Write
(29) V(a) = P15+ zg_ 11"V oo b 241 + 20,

with z; € Z,(Crit(f)). Note that zg = Yo (a) and that by the construction of ¢ and
in the proof of Proposition 4.1.1 in Section 4.1 we also have ¢(z¢) = a. Recall also
that ¢ oy = id. Using this, and applying ¢ to both sides of (29) we obtain

0=[L]t5 +¢(zs—)t" 4+ p(z1)t.

Clearly not all of {p,¢(z1)),...,{p,¢(zs—1)) can vanish (where, as before, p €
H"(L;Z,) is the generator). Let 1 < j <s—1 be an index such that (p, ¢(zj)) # 0.
We then have ¢(z;) = [L]t*=/ +1.0.(¢). By point (i) just proved, there exists w and
0<s' <s—j <s such that dw = Pt* +1.0.(¢). O

We continue with the proof of point (ii) of Theorem 1.2.2. We begin by analyzing
the first possibility resulting from Lemma 5.1.2: §Tx = [L]#9 4 L.o.(t) for some
x € Hy(L;Zy) with 0 <gNp < K.

Consider the map ¢: CT(L; f. pr. J) — CHJ;n(L). As the degree n part of By consists
of P only, we have ¢(P) = [L]. By the definition of ¢ there exists u € Z,(By) such
that ¢ (u) = x. Write du =) ;5 a;t'. We have: [L]t9+1.0.(t) =6Tx =6T¢p(u) =
d(du)=> ;5 ¢ (a;)t’ . Thus there exists 0 < j <g such that ¢(aj)lj =[L]t?+1.0.(z).
There are two possibilities: either j = ¢ or j < ¢g. In case j = ¢ we must have
¢(aj) = [L] hence a; = P and it follows that du = Pt9 +1.0.(¢). The element u
might not be a single critical point of f but a linear combination of such. However
there must be a critical point w participating in the linear combination u such that
dw = Pt?+41.0.(¢). Incase j <g we obtain ¢(a;) =[L] t97J +1.0.(t) andas g—j >0
we deduce from Lemma 5.1.3 that there exists w € Crit( /) so that dw = Pt +1.0.(¢)
with 0 < ¢’ < ¢ — j. Summarizing, we see that in both cases (j = ¢ and j < ¢) there
is w € Crit(f) so that dw = Pt* + 1.0.(¢) with 0 < s < ¢q. This implies that there
exists a nonconstant J —disk through P of Maslov index at most g /N .
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It remains to discuss the second case: y * z =[L]t? 4+1.0.(¢). The argument is similar.
By definition yxz = (¥ (1) #¥ (). Write 1 (0) = Yy it ¥/(2) = ¥y 51
with y; € Z,(Crit(f1)), zj € (Crit(f)) being homogeneous elements. The equality
[L]t9 4+ lo.(t) = > ; d(yi * zj)t' T/ implies that there exist i, j > 0 such that
¢ (yi x zj)t't = [L]t9 +1.o.(¢). Write y; *z; = Y k>0 prt®. We get that there
exists k > 0 such that ¢ (py)*+ti+7 =[L]r9 +1.0.(t). Now there are two possibilities:
either k+i+j<qork+i+j=gq.

In the first case (k +i + j < q) we get ¢(pg) = [L]19~*+i+7) 4 1.0.(f) and so
by Lemma 5.1.3 (i) there exists w € Crit(f) such that dw = Pt5" +Lo.(t) with
0<s"<qg—(k-+i+ j).Itfollows that there exists a nonconstant J—disk through P
with Maslov index < s'Ny <¢Np .

In the second case (kK +i + j = ¢) we have ¢(pr) = [L] hence p; = P and
Vi*zj = Ptk +1.0.(t). If k > 0 there exists a nonconstant J—disk through P with
Maslov index <kNp <¢gNp . Incase k =0 we have y; * z; = P hence for degree
reasons z; = P (and y; = P;, where P; is the maximum of fj). It follows that
¥ (z) = Pt/ +1.0.(t). We have j > 0, for otherwise ¥ (z) = P so z = [L] which is
impossible in view of our starting equality y %z =[L]#9 +1.0.(z) with y € Hx(L; Z,)
and ¢ > 0. Thus ¥ (z) = Pt/ +1.o.(t) with 0 < j <¢. By Lemma 5.1.3 (ii) there
exists w € Crit(f) with dw = Pt/" +1o.(z) with 0 < j' < j <¢ and it follows that
there exists a nonconstant J—disk through P with Maslov index < j'Ny < ¢Np . This
concludes the proof of Theorem 1.2.2. O

5.2 Proof of Theorem 1.2.3

Recall that we now suppose that M is point invertible of order k. This means
that in the quantum homology of M with coefficients in I't = Z,[s] there exists
a€QH, (M;T), a=ayg+ays with 0# ag € Hy(M;Z5) and a; € QH, (M ;TT)
so that [pt] x @ = [M]s¥/2CM _ Recall that here |s| = —2Cjs. Denote QH(M ; A1) =
QH(M) ®7,[s] A7 . Clearly, we also have in QH(M ; At), [pt] xa = [M]t*/Nc .

We start with the point (i) of the theorem. We first notice that the relation [pt] x a =
[M]¢%/NL implies |a| —2n =2n—k and as a = ag +a;s we have 0 < |a| < 2n and
so k =4n—|a| = 2n. We now use the module structure

QH(M:;AY)® QTH(L) - QVH(L)
to write

(30) a* ([pt]*[L]) = (ax*[pt]) *[L] = (Ipt] @) * [L] = [M]* [L]*/NL = [L]F/ Ve
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We need to analyze Equation (30) at the chain level. For this, we fix a Morse function
S+ L — R with a single maximum Py as well as a Morse function g: M — R with
a single maximum Pg and a single minimum mg. We also fix Riemannian metrics pg
and pps on L and M . The Morse complex of g tensored with A will be denoted by
C7(g). We also fix a minimal pearl complex for L, C;rin(L), together with the two
associated structural maps ¢ and v as in Section 4.1. We use the module operation
(on the chain level) in the form

ctgech (L) —cl (L),

min
by transporting the module operation C*(g)QC*(L: f. pr,J)—=CT(L; f. pr. J) via
the structural maps ¢, ¥, ie for h e CT(g), a €CT. (L) we define hxa = ¢ (axy ().

min
We write
3D yzmg*[L]=Zz,~ti, where z; € Hx(L:Z>).
i>0
Note that there are no classical terms here (ie i = 0) for degree reasons, since |y| = —n.

Lemma 5.2.1 There exists 0 <i < k/Np such that z; # 0.

Proof We write y as a sum of three terms: y = S| + Z/tk/NL 1S, with

k/Np—1
S = Z Z,‘l‘l, S, = Z Z,‘l‘l
i=1 i>k/Np+1

and z;,z' € Hy(L;Z,). Notice that S, = 0 because k > 2n, |y| = —n, |z;| <n.

Choose a cycle a’ € CT(g) which represents a. We have

dxy=d xS +a xz kN

and thus, @’ % Sy + (¢’ % 2 —[L])t*/NL e Im(§1).

We now claim that ¢’ % z’ = 0. To see this, first note that |a’ * 2’| = |a| + |z/| —2n =
(4n—k)+(-—n+k)—2n=n. Write @’ xz' =3 - bqt?, with by € Hy(L;Z,).
We have |by| = |a' *z'| + ¢Np = n + qNr, hence by = 0 for every ¢ > 1. Thus
a' xz' = by. Assume by contradiction that by # 0. Then |¢’| =n +2n—|Z'| > 2n
and so |a’| = 2n, hence @’ = Py and a = [M]. This is impossible in view of our
assumption that [pt] % a = [M]¢%/NL _ This proves that @’ z/ = 0.

‘We now have

(32) d % Sy —[L]t*'Nt e Im(§Y).
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From this equality we deduce S; # 0 and the statement of the Lemma. Indeed,
if §; =0, then [L] is a boundary in Cpin(L; A) which implies that L is narrow,
contradicting our assumption. O

We continue with the proof of point (i) of Theorem 1.2.3. In view of Lemma 5.2.1
choose the minimal index 0 < iy < k/Nr, such that z;, # 0. We have mg * [L] =
ziotio +h.o.(t). (h.o.(z) stands for higher order terms in 7.) We now have: ¢ (mg *
w(L)) = zioti" +h.o.(?). But ¥ ([L]) = Pr, hence ¢(mg * Py) = z,-otiO + h.o.(?).
Note that the classical term in mg * Py vanishes and so mg * Py = ut! +h.0.(t) where
0% u € Z(Crit(f)) and I > 0. As ¢p(mg * Pr) = zj,t" +h.0.(¢) it follows that / <iy.
By the definition of the moduli spaces giving the module action (in Section 3.2), this
implies the claim at point (i) of our theorem: for a generic J there exists a nonconstant
J—disk v: (D,dD) — (M, L) with v(0) = mg and such that u([v]) <INy <ioNp =<
(k/Nr —1)Nr = (k — Np). In particular

(33) w(M\ L) <igNrn =< (k—Nr)n.

This completes the proof of point (i) of our theorem.

We now turn to the proof of the point (ii) of the theorem. Recall that S; = Zfi %L_l zit!

and that 1 <iy <k/Ng — 1. By assumption L is wide so §7 = 0, hence by (32) we
get @’ % Sy = [L]t*/NL  Expanding this equality gives

Z a;*zilr+i :[L]lk/NL,
io<r+i<k/NL
where we have written @’ =}, - a,t” (with a} € Z,(Crit(g))). The key remark is
that

(34)  3r>0,i>ip>1, suchthat(d, z)t" T =[L]*/M +1.0.0).

Thus ¢ (@’ % ¥ (z;)t" T = [L]1t*/NL 4 1o.(t). Write ¥(z;) = > g0 Xqt?, where
Xq € Z(Crit(f)). It follows that there exists ¢ such that ¢(a} x xg)r9t "+ =
[L]t*/NL 41.0.(r). Finally, writing a, ¥ Xqg =Y >0 Pst® we deduce that there exists s
such that .
¢ (ps)ts T = [L) RN 10.(7).

Put t =k /Np—(s+g+r—+i). There are two main cases to be considered: s+¢g+r+i <
k/Np (iet>0)and s+q+r+i =k/Ng (ie T =0). Before considering each case
it is important to note that as i > iy > 1 we always have s,¢q,r <k/Np.

Casel (7 >0) Wehave ¢(ps) =t*[L]+1.0.(¢) with t > 0 and we deduce from
Lemma 5.1.3 that there exists a critical point w such that dw = Pfl’/ + lL.o.(¢) with
0 < v/ < 7. It follows that there exists a nonconstant J—disk through P with Maslov

Geometry & Topology, Volume 13 (2009)



Rigidity and uniruling for Lagrangian submanifolds 2955

index < 1'Np <1tNp <k, which proves the desired uniruling property of L. In view
of (33) we also have

k
w(L)4+2w(M \ L) <2tNpn+2igNpn = 2(N——s—q—r —i +io)NLn <2kn.
L

Case2 (7 =0) This means that ¢(ps) =[L], hence ps = Pr. Therefore
(35) da, *xq = Prt® +1.0.(1).
There are again two cases: s > 0 and s = 0.

Case2-i (t =0, s >0) We obtain from (35) that there exists a nonconstant J—disk
through Py with Maslov index < sNy < k. As in case 1 above we also have

w(L)+2w(M \ L) <2sNpn+2igNp, <2(s+i)Nrn < 2kn.

Case 2-ii (r =0, s =0) We will show now that this case is impossible. To see
this, first note that by (35) we have that a, * x; = Py, hence a, = Pg, x4 = Py.
This implies that a = [M]t" +1.0.(t). Write a = [M]t" +a,_1t" "' +---+ait +ay,
where a; € Hx(M;Z,) are homogeneous elements. Recall that [pt] x a = [M] tk/NL |
Therefore

[M]¥/N = [pt] % a = [pte” + [pt]* ap— 1" 4+ [pt] % a1 + [pt] * ao.

It follows that there exists 0 < j < r — 1 such that ([pt] * a;)t/ = [pt]#" + h.o.(2),
hence ([pt]* a;) = [pt]#" =/ +h.o.(¢). Clearly this equality takes place in the image of
the inclusion QH(M;TH) — QH(M; A1) defined by s — t2M/NL | therefore we
actually have in QH(M ;T'F)

(36) ([Ipt] * aj) = [pt)s " =INL/2CM 1o (s).

Note also that by the definition of a; we have a; # [M]. We will now show that
such a relation is impossible in quantum homology. To see this note that r — j > 0
since r — j = 0 would give [pt] * a; = [pt] which is possible only if a; = [M] which
is not the case. As r — j > 0, the relation (36) implies that there exists a homology
class 4 € HZS(M) with 2¢1(A4) = (r — j)Nr such that GW([pt],a;,[M]; A) # 0.
In particular, for generic J, the moduli space of (simple) J—holomorphic rational
curves u: CP! — M in the class A which pass through a given point in M and
intersect a cycle representing a; is not empty. To estimate the dimension of this
space denote by M(4, J) the space of simple rational curves in the class A and by
G = Aut(CP!) ~ PSL(2,C) the group of biholomorphisms of CP!. Consider the
evaluation map

ev: (M(A,J)xCP' xCPY)/G — M x M, ev(u,zy,z5) = (u(z1), u(z2)).
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The moduli space in question is ev—! (ptx W” ), where we recall that a € Z,{(Crit(g))
is a Morse cycle representing a; and W¥ o stands for the unstable submamfolds associ-
ated to the critical points in a . By transversahty we obtain the following dimension
formula:

dimev™! (ptx Wa‘é) =2n+2c1(A)+24+2—64|aj|—4n=—-2n+(—j)NL—2+|a;|.

On the other hand, |aj| = 2n — (r — j)Nr, by (36). Putting this into the dimension
formula we get dimev™! (pt x W”) = —2, contradicting the fact that this space is not
empty. This rules out Case 2-ii and concludes the proof of Theorem 1.2.3. O

5.3 Proof of Theorem 1.2.7

We first recall the definition of the spectral invariants as well as some other basic facts
and we fix some conventions.

Consider a generic pair (H, J) consisting of a 1—periodic Hamiltonian H: M x S —
R and an almost complex structure J so that the Floer complex CF«(H, J) is well
defined. (Here, CF(H, J) is the Floer complex for periodic orbits Floer homology.)
Let I ={¥ = (y.y)}/~ where x is a contractible 1—periodic orbit of the Hamiltonian
flow of H, y: D — M is a disk-capping of y (ie ¥|yp = y) and the equivalence
relation ~ is ¥ ~ ¥’ if y =y’ and w(¥) = w(y’). Notice that I is a I'-module
(we recall that T = Z[s~!, 5]), the elements of I" acting by changing the capping:
s-(y,7)=(y,71), where (1) =@ (¥)—2Cpn. As A is a I'-module we will define
the Floer complex of interest here as: CF(H, J; A) = Z,{I) ®r A endowed with the
usual Floer differential.

Fix also a Morse function f: L — R as well as a Riemannian metric o on L so that
the pearl complex CT(L; f, p, J) is well defined.

We need to provide a Floer-theoretic description of our module operation ® which
involves the two complexes above. This is based on moduli spaces PJ- similar to the
ones used in Section 3.2 (c) except that the vertex of valence three in the string of
pearls is now replaced by a half-tube with boundary on L and with the —oco end on an
element ¥ € I. The symbol of the tree is (3, x : y). The total homotopy class A of
the configuration obtained in this way is computed by using the capping associated to
y to close the semi-tube to a disk and adding up the homotopy class of this disk to the
homotopy classes of the other disks in the string of pearls. More explicitly, a half tube
as before is a solution
u: (—o00,0lx St > M

of Floer’s equation

(37) ou/ds + Jou/ot +VH(u,t) =0
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with the boundary conditions
u0}xSH L lim u(s,t)=y().
§—>—00

The marked points on the “exceptional” vertex which corresponds to u are so that
the point (0, 1) is an exit point for a flow line and #(0, —1) is the entry point. See
Figure 6. Both compactification and bubbling analysis for these moduli spaces are
similar to what has been discussed before to which is added the study of transversality
and bubbling for the spaces of half-tubes as described by Albers in [2]. As described
in [2], an additional assumption is needed for this part: H is assumed to be such that
no periodic orbit of X # is completely included in L.

4
‘u(—oo,t)

VS Lo

=0

u(0,1)

Figure 6: An element v € P/

Counting elements in these moduli spaces defines an operation:
®F: CF(H,J; N) @A C(L; f,p,J) = C(L; f,p,J).

Fix a Morse—Smale pair (g, pps) on M and let C T (g) be the corresponding Morse
complex tensored with A" . Recall the module action defined in Section 3.2 (c):

®@: CT(Q) @+ CT(L; f.p,J) = CT(L; f.p,]).
There are maps induced by the inclusion AT — A
CT (@) > CT(@)®p+A=C(g) and CY(L:f.p.J)—>C(L: f.p.J)
which we will denote in both cases by p.

We will now use the Hamiltonian version of the Piunikin—Salamon—Schwarz homo-
morphism [48]: PSS: C(g) — CF(H, J; A). Standard arguments show that there is a
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chain homotopy &: CT(g) ® s+ CY(L: f,p. J) — C(L: f. p, J) which satisfies

(38) PSS(p(x) @F p(y) = p(x @ y) = di(x ® y) —E(d(x ® y)),
forevery x e C*(g), yeCY(L; f,p, J).

The Floer complex CF«(H, J) is filtered by the values of the action functional

an®) = [ neo.da- [ 7'

where ¥ = (y,7), with y a contractible C*°—loop in M and § a cap of this loop.
This action is compatible with the action of I" and we extend it on the generators of
CF(H,J;\) = Z,(I) ®r A by: Ag (¥ ® t*) = Ag(¥) —knNg (where 7 is the
monotonicity constant). The filtration of order v € R of the Floer complex, CF=", is
the graded 7Z,—vector space generated by all the elements X ® A of action at most v.

We emphasize that all the homology and cohomology classes to be considered be-
low are homogeneous. We now recall the definition of spectral invariants following
Schwarz [49] and Oh [47]. Fix o« € QH, (M ; A) = (H(M ; Z») ® A)4« and define the
spectral invariant o (¢, H) of « by

(39 o (o, H) = inf{v: PSS(x) € Image( H(CF=") — HF(H, J; A) )},

where PSS: QH, (M ; A) — HF«(H, J; A) is the morphism induced in homology
by PSS. Notice that by convention we have 0(0; H) = —oo. Assuming that H is
normalized, it is well known that o (o, H) depends only on the class [¢#] € Ham(M)
and on o, and is therefore denoted by o («, p). We refer the reader to Oh [47; 45;
46; 41], Schwarz [49] and McDuff and Salamon [40] for the foundations of the theory
of spectral invariants. See also Viterbo [53] for an earlier approach to the subject.

Let L C M be a monotone Lagrangian submanifold. Theorem 1.2.7 is an im-
mediate consequence of the first part of Lemma 5.3.1 below. To state it we fix
some more notation. As discussed before, the inclusion AT — A induces a map
p: CTY(L; f,p,J) = C(L; f, p, J) which is canonical in homology. We continue to
denote the induced map in homology by p too. Denote by IQ" (L) the image of
p: OYH(L) — QH(L) and notice that JQ" (L) is a AT module so that it makes
sense to say whether a class z € IQT (L) is divisible by # in IQ1 (L): this means that
there is some z’ € IQT (L) so that z = tz’.

Lemma 5.3.1 (i) Assume that o € QH, (M ;A™"), x,y € QTHy(L) are so that
p(p) is not divisible by t in IQ" (L) and « * x = yt*. Then we have the
following inequality for every ¢ € Ham(M):

o(a;¢) = depthy (¢) —sNL7.
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(i) Let x € QTHy(L) and let ¢ € Ham (M. Then

0 (iL(x):¢) = heighty (¢)

where iy : QH(L) — QH(M ; A) is the quantum inclusion from Theorem A (iii).

The second point of the lemma is an extension of a result of Albers [2].

Before proving Lemma 5.3.1, we show how it implies Theorem 1.2.7. Indeed, if L C M
is not narrow, then [L] € QH(L) is not trivial and we have [M] % [L] = [L] which
implies the first point of Theorem 1.2.7 because, for degree reasons, p([L]) is not
divisible by ¢ in IQ" (L). Moreover, if M is point invertible of order k, then there is
a€QH(M; At) sothat [pt]xa =[M]¢%/NL  Therefore, setting @’ =ax[L]e QTH(L)
we get [pt] x @’ = [L]t*/NL and by applying the lemma for o = [pt], x = a’, y = [L]
we deduce Theorem 1.2.7 (ii). O

Proof of Lemma 5.3.1 (i) We fix ¢ € ﬁzr/n(M ). By inspecting the definition of
depth in Section 1.2.3 we see that the inequality we need to prove is reduced to showing
that for every normalized Hamiltonian H with [H] = ¢ there exists a loop y: S' — L
such that

(40) o(a,d) _/Sl H(y(),t)dt +snNg > 0.

By a small perturbation of H we may assume that no closed orbit of H is contained
in L.
Given any € > 0, in view of the definition of o («, H), we may find in Cr=ola.H)te 4
cycle ¢ with [{]=PSS(w) e HF(H, J; A). Write { =) 7 ®tki where j; are genera-
tors of CF(H, J) and thi ¢ A, ki € Z. Represent also x as a cycle in CH(L; fip,J),
x=[x"]withx" =35, xit!, x; € Z,(Crit(f)). Similarly, represent also y by a cycle
y"in CY(L; f, p, J). From Equation (38) we deduce that { ® r x’ — y't* € Im(d),
where d is the differential in C(L; f, p, J). Write { ®p x' =) ; zit! with i € Z,
z; € Z,{Crit( f)) (note that here we cannot assume anymore that i > 0 only). The fact
that ' is not divisible by ¢ in IQT (L) implies that there is some z, # 0 with r <.
But this means that there are y; and x; so that (y; ® kY@ g thj =z;t" +--- (where
- stands for other terms). This means that there are critical points x](.), 20 € Crit(f)
(participating in x; and z,) so that the moduli space P/ (described at the beginning
of the section), of symbol (33, x](.) :29) and with u(7) = (r — j —k;) N, is not void.
We now consider an element v € P/ and we focus on the corresponding half-tube u
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(which is part of v). The usual energy estimate for this half-tube gives

0</ / 0w/ ds|* dt ds

_/ ooo]xslu w+/ H(yi (1), z)dr—/ Hu(0,1),1)dt

hence: / Hu(0,1),1)dt 5/ u*a)+/ H(y;(t),1) dt.
S1 (—00,0]xS1 S1
‘We now claim that:
@) An+ o= kN, = [ wor [ HOO.0d
00,0]x.S1 St

Indeed, nu(7) equals the symplectic area of all the disks in v + the area of the tube
u + the area of the cap y; corresponding to y;. The inequality (41) now follows
because the disks in v are J-holomorphic hence their area is nonnegative. But now
oo, H) +€> Ag (7 @15y = Ay (#%) —kinNg and as j >0, s > r we obtain

o(a, H)+e+anLZ/ u*a)—i—/ H(y;i(t),1) dt
(—00,0]xS! S

so that by taking y(¢) = u(0,¢) we deduce inequality (40).

(ii) Given a Hamiltonian H with ¢ = ¢*', a Morse function f, a generic metric p
and a generic almost complex structure J we will define a chain map

ir: C(L; f,p,J) — CF(H, J; \)

so that the maps induced in homology by PSSoi 1, and by i, are equal. To describe
this map, fix a particular capping 3’ for each contractible 1-periodic orbit y of the
Hamiltonian vector field X # of H. We denote these pairs by 7 = (y, 7).

For a critical point p € Crit( /) we define

(42) iL(p) = Z#z(P ) § @D

where the moduli spaces 77% are similar to the ones used in Section 3.2 (d) except that
the last (exceptional) vertex there as well as its exiting edge are replaced here by a
Floer semi-tube; the Maslov index w(7) is the sum of the Maslov indices of the disks
in the chain of pearls summed with the Maslov index of the tube glued to the disk 7’
with reversed orientation. More precisely, the moduli spaces P7 used here correspond
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to trees 7 of symbol (p : 7). An element v € P consists of a pair (u’, u”") where
u” is a Floer semi-tube
u”:[0,00)x S' - M

satisfying Floer’s Equation (37) with the boundary conditions
W0y x SYH c L, lim u”(s,1) =y(1)
§—>00

and u’ is a string of pearls ¥’ = (uy,...,ux) in M associated to f', starting at the
critical point p € Crit( f) and so that the last incidence condition is

3> 0, v/ we(1)) =u"0,-1).

In other words, u’ is an element as of a moduli space as those considered in the
construction of the pearl differential Section 3.2 (a) except that the endpoint is not
€ Crit(f) but u”(0, —1). The Maslov index is given by (7)) = pu(u’) + (" #(7")~1)
where (7’)7! is the disk with the opposed orientation compared to 7', and u”#(7") ™!
indicates the surface obtained by gluing the tube u” and the capping disk (5’)~!
along y. The sum in (42) is taken over all (7, y) such that |p| — u(y) + n(7) = 0.
It is easy to see that the definition of iz, does not depend on the specific choice of the
cappings y’ associated to each y.

The regularity issues for the moduli spaces P4 are similar to those discussed before.
Finally, standard arguments show that by extending this definition by linearity over A
we obtain a chain map and that, the map induced in homology by iy coincides with
PSSoir.

The next step is to establish an action estimate for the configurations v = (u’, u”) € P/
considered above. We recall that if ¥ is a capped orbit as above, the element y ® " is
a generator of CF(H, J; A) and its action is Ag (¥) —knNp . The energy estimate
associated to u” gives

OE/S1 H"(0,1),t) dt—/:ql H()/(t),t)dz+/[0 ") o,

,00)xS'1

and so

an@) == [ @ 7o+ [ Ho@ds [ HGO.0.0 dol G,
Clearly, w([u"#(3")™']) = n(T)n—w([u']) and as w([u']) > 0 we deduce

(43) A (7 ® t"D/NL) < heighty (¢) .

Let xe QTH(L) and x’ = Y >0 xitt e CT(L; f,p. J), xi € Z»(Crit(f)) be a pearl

cycle that represents x. Denote ) ; ¥; ® rki by i1.(x"). Consider any of the terms in
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this sum, say y; ® tki . There exists r > 0 and a critical point x?° participating in x,,
so that 77 (x%") contains Vi ®t% . Asir is A-linear this means that iy, (x?) contains
Vi ® t%i=7 _ From (43) we now obtain

A@Fitkiy = AFt %=1y — rNpy < heighty (¢) — rNL7 < height; (¢).

Finally, since iz, and PSSoi coincide in homology we can represent PSS(iz,(x)) as
a linear combination of generators of CF(H, J; A) each of action at most height; (¢)
which implies our claim. O

Remark 5.3.2 (a) Sometimes the point (ii) of Lemma 5.3.1 can be used to estimate
from above spectral invariants of homology classes o € Hy«(M). For example, it
is easy to see that iy ([L]) = inc([L]), where incy: Hy(L;Z,) — H«(M;Z,) is the
map induced by the inclusion L C M . Therefore whenever incy«([L]) # 0 we obtain
o(inc«([L]), ¢) < height; (¢) for any ¢ € ﬁaTn(M).

(b) In a point invertible manifold the first part of Lemma 5.3.1 provides an estimate
from below of o([pt], ¢) and so, in view of the proofs of the intersection results
discussed in Corollaries 2.4.1 and 1.2.8, it is particularly important to get also an
estimate from the above. The natural idea is to write [pt] = i, (x) for some class x.
However, there are cases when [pt] is not in the image of this map iz, - see for example
the case of the quadric Q2" described in Section 6.3.3.

(¢) Incase A =T wehave CF(H,J;A)=CF(H,J) = Z,(I), where I is the set
of contractible 1—periodic orbits of X together with all possible cappings (modulo
the usual identifications) I = {y = (y,7)}/ ~. In this case the map 7, can be written
as ip(p) = > 7.7 #2(P7)y where the moduli space 7’ contains configurations as
those in P7 but with the additional condition that 1(7) = 0. Indeed, as A =T any
element ¥ ® 1k can be written uniquely as some ).

If additionally, we have Ny > n + 1, then a dimension count shows that for the
configurations v = (u’,u”) used to define ir, we have u(u') =0 and so there are no
J —disks present in the definition of 77 . Under these assumptions i, coincides with a
map introduced by Albers in [2].

(d) It is possible to define a pseudo-valuation v: QH(L) — Z U {oco} as follows.
Notice first that for any « € QH(L) there exists k € Z so that tka e 10* (L). Define

v(a) =max{s € Z | tSa cIQT (L)} € Z U {oo}.

It is easy to see that v is well defined, and that it satisfies v(a) > 0 if and only if
aeclQ" (L), v(a) = oo if and only if a =0, v(a + b) > min{v(a), v(b)}, v(a*xb) >
v(a)+v(b), and v(ta) =v(a)+1. A similar function to v has already been considered
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by Entov and Polterovich [30] in the context of ambient quantum homology. The
inequality at point (i) of Lemma 5.3.1 can now be reformulated as:

o(u,¢) —depthy (¢) > (v(x) —v(*x))Nrn, VYaeQH(M;A), x € QH(L).

5.4 Proof of Theorem 2.4.1

Recall the setting of this theorem. Given L, L; C M, monotone Lagrangian sub-
manifolds we have the two associated rings Ay = Zz[to_l,to], A = Zz[tl_l,tl]
graded by degty = —Np, and deg?; = N, as well as thering Ag 1 = Ao ®r Ay
where I' = Z,[s™!, 5], |s| = —2Cin. Recall also the two canonical maps: the quan-
tum inclusion iz ,: QH,(Lo; Ao,1) — OH (M ;Ao 1) and jr,: OH,(M;Ao;1) —
QH,_,(L;Ao,1), defined by jr,(a) = a*[L]. The claim of the theorem is that if
the composition

JrL, °iry: OH(Lo; Ao,1) —> QH,_y(L1; Ao,1).
does not vanish, then Ly and L intersect.

We start the proof with a little more preparation. First note that since Ag; isa I'—
module we can naturally extend the definition of periodic orbit Floer homology to coeffi-
cients in Ag,; as the homology of the complex CF(H, J; Ag,1) =CF(H,J)®r Ao,1.
We denote this homology by HF(H, J; Ag,1). Moreover, the PSS isomorphism nat-
urally extends to this case and we get an isomorphism PSS: HF«(H, J; Ao,1) —
QH (M ; Ap,1). Similarly, we can extend the action functional to the generators of
CF(H,J; Ag,1) by defining: Ap (X ® 15 @1¥) = Ay (%) — konoNL, —kim Ni, -
Here n; = (w/n)| HP(M,L;)> I = 0,1, are the monotonicity constants of the La-
grangians. (Clearly, no = 1y, unless @|,,ar) = 0 in which case we anyway have
Cyv =00, I' = Zj3 hence CF(H,J;Ao,1) = CF(H,J) ® Ao ® Ay.) Itis easy
to see that this extension of the action is well defined. With these conventions we
have as before a filtration on HF(H, J; Ag,1) by action and we can define spectral
numbers o, (o, ¢) forevery « € QH(M ; Ao,1), ¢ € ﬁgfn(M), in a standard way. A
straightforward algebraic argument shows that for classes « € QH(M ) C QH(M ; Ay,1)
(as well as @« € QH(M ; A;), i =0, 1) these “new” spectral numbers coincide with the
usual ones, ie op, , (o, ¢) = o (a0, ¢). (The point is that Ag,; is a free module over T".)
We will also need the ring A(J)r’1 = A(J)r ®r+ AT. As before we have
A(—)F,l =~ Z»[to, ll]/{l(fCM/NLO = ZIZCM/NLI ).

Next we remark that Lemma 5.3.1 continues to hold if we replace L by one of the L;’s,
say Lo, replace A by Ag,1, AT by A(J)r’ , and the condition that “ p(y) is not divisible
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by ¢ in IQT(L)” by “ p(») is not divisible by ¢, in the image of the map p” with p
the canonical “change of coefficients” map p: QH(Lg; A(;Ll) — QH(Lo; Ao,1). The
proof of the lemma carries out to this case without any essential modifications.

Since jr,, oir, # 0 there exists x € QH(L; A(’)Ll) so that jr, oir,(x) # 0. From the
modified version of Lemma 5.3.1 discussed above, we deduce that for some constant K
depending only on jr,, oir,(x) and for any ¢ € Ham (M) we have

depthy (¢) — K < 0(i,(x)) < heighty (¢).

Now assume by contradiction that Lo N L{ = &. Pick a normalized Hamiltonian H
which is constant equal to Cy on L and constant equal to Cy on L; with C; > Cyp+ K.
This immediately leads to a contradiction and concludes the proof of Theorem 2.4.1. O

We now pass to the proof of Corollary 2.4.3. Put L; = L andlet Lo C M be a
non-narrow monotone Lagrangian. The claim follows if we show that if [pt] % [L1]
is not divisible by 2CM/NLy 10" (Ly), then Jjr,oir, #0. We first fix a Morse
function fy: Ly — R and a metric pg on L as well as an almost complex structure
J on M so that the pearl complex C(Lg; Ao; fo, po,J) is defined. We assume that
Jo has a unique minimum m . To simplify the notation, we put ¢; = 2Cps /Ny, .

By the nondegeneracy part in Proposition 4.4.1 there exists a class « € QHg(Lo; Ag)
which is nonzero and is represented by a pearl cycle of the form mg + ) ;- x,—té
with x; € Crit( fo). A priori this cycle belongs to C(Lg; fo, 0o, J), but as |mg| =0
and |79| < 0 all the powers of # in this cycle must be nonnegative. Thus, in fact this
cycle is in Ct(Lo; fo. po. J) and a € IQT (Ly). In view of the coefficients extension
morphisms QH(Ly:; A(J)r) — QH(L; A(J)r’l) — QH(L; Ay,1) we will view from now on
o as an element of the image of these maps ie o € IQ™ (Ly; No,1) COH(Lo: Ao,1)-
Here we have used again the ring A(J)r’1 = A(J)r Qr+ AT = Zslto, n]/{t,° ="} and
the coefficients extension morphisms induced by the obvious inclusions Ag — A('{l —
AO,I .

As ip,, extends (at the chain level) the inclusion in singular homology we can write
ir, (o) =[pt]+Zj>0ajt({ with a;j € Hy(M;Z,). Notice that QH(L;A¢,1) =
OH(L1; A1) ®r Ag as C(L1; Ao1: f1.01.J) = (C(L1sAr: f1, 01, J)®r Ao, dA, ®
id) and Ag; is a free I'-module. Taking this into account, we now apply jr, to
ir,(a) and we obtain

(44) (L, oig)@ =y+ > yjtg.

j>0
where we have denoted y = [pt] *[L;] € QH(L1; A1) ® 1 and y; = aj *[L] €
QH(Li; A1) ® 1. It is important to notice that in fact y, y; € 0T (L) ®1C
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107 (Ly; Ag,1) CQH(Ly; Ag,1). Now suppose by contradiction that JL,°irL,(@)=0.
As y € IQ1 (L) ® 1 identity (44) implies that the second term on its right-hand side
belongs to IQ+_ (L1) ® 1. This can only happen if for every j with y; # 0 we have
¢olj, so that t({ = (tlc‘)j /€0 1t now follows that y is divisible by ¢!, and obviously
this divisibility property continues to hold also in Q" (L). A contradiction. O

6 Various examples and computations

The first three subsections below contain the proofs of the computational theorems
in Section 2.3 and of their corollaries from Section 1.2.5. The last subsection contains
the justification of Example 1.2.10.

6.1 Lagrangiansin CP" with 2H,(L;Z) =0

Here we prove Theorem 2.3.1 and its Corollary 1.2.11.

We recall our notation: we denote by # = [CP" '] € H,,_>(CP";Z,) the class of a
hyperplane so that in the quantum homology QH(CP") we have

h*j— hmj, 0=<j=n,
[CP")s, j=n+1.

We will use quantum homology with coefficients in A = Z,[t~!,¢] and so we recall
that QH(CP™; A) = QH(CP")®r A, where T' = Z,[s~!, 5], degs = —(2n+2), and
A becomes a I'—module by s — t2"+2/NL Qbviously, / is invertible in QH(CP™)
so that the existence of the module action claimed in Theorem A directly implies the
first part of:

Lemma 6.1.1 Let L C CP" be a monotone Lagrangian with Ny > 2. Then QH, (L)
is 2—periodic, ie QH;(L) =~ QH;_,(L) for every i € Z and the homomorphism
QH;(L) — QH;_,(L) given by a — h * « is an isomorphism for every i € 7.
Moreover, Hi(L;Z) # 0.

Proof The only part that still needs to be justified is that Hy(L;Z) # 0. But if
H{(L;7Z) = 0, then Ny, = 2Ccpr = 2n + 2 and by Theorem 1.2.2 (i) we deduce
that L is wide (take / = n in that theorem). The first part of the lemma implies
in this case that QH, (L) =~ (H(L;Z,) ® A)« is 2—periodic which is impossible
by degree reasons. Indeed, (H(L:Z;) ® A), # 0 but as |[t| = —2n — 2 we have
(H(L;Z2) ® Nn+y2 = Hy2(L:Z3) = 0. o
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Remark 6.1.2 The first part of Lemma 6.1.1 was proved before by Seidel using the
theory of graded Lagrangian submanifolds [51]. The 2—periodicity in [51] follows from
the fact that CP" admits a Hamiltonian circle action which induces a shift by 2 on
graded Lagrangian submanifolds. Note that this is compatible with our perspective since
that S —action gives rise to an invertible element in QH(CP") (the Seidel element [50;
40]) whose degree is exactly 2z minus the shift induced by the S!-action. In our case
the Seidel element turns out to be /.

We now focus on our main object of interest in the subsection.

Lemma 6.1.3 Let L be a Lagrangian submanifold in CP". If 2H,(L;Z) = 0 then
L is monotone, Ny = n + 1, L is wide and as a graded vector space we have
Hy(L;Z,) =~ H«(RP";Z,). Moreover, QH;(L) = Z, foreveryi € 7.

Proof Since 2H{(L;Z) =0 itis easy to see that L is monotone. Moreover, a simple
computation shows that the minimal Maslov number of L is Ny = k(n + 1) with
k €{1,2}. We already know from Lemma 6.1.1 that H;(L; Z,) # 0 so that Hy(L; Z,)
is generated as an algebra by H>{(L;Z,). Thus, by Theorem 1.2.2 (i), L is wide so
that, again by Lemma 6.1.1, we deduce that (H(L;Z;) ® A)x is 2—periodic. This
2—periodicity implies (for degree reasons) that Ny cannotbe 2(n+ 1), hence k =1 and
Np =n+1. Moreover the 2—periodicity implies that Hy;(L;Z,) =~ Hy(L;Z,) =7
for every 0 < 2i < n. Similarly we have: H,(L;Z,) = QH{(L) = QH,(L)t~! =
QOH,.,(L) = QH,(L) = H,(L;Z,) = Z,. Applying the 2—periodicity again we
obtain Hyj+1(L;Z,) = Z, for every 1 < 2i + 1 < n. Summing up we see that
Hj(L;Z,) =7y = Hj(RP";Z,) forevery 0 < j <n.

As for the last statement regarding QH; (L), we have
OH,;(L) = QHy(L) = Ho(L; Z3) = Z3,
QHyj (L) = QH (L) = H\(L;Z3) = 7. O

Lemma 6.1.4 There is a map ¢: L — R P" inducing an isomorphism in Z, —singular
homology. In particular Hy(L;Z,) is isomorphic to H«(R P";Z,) as an algebra.
Moreover, the isomorphism ¢ identifies the classical external product Hx(CP";Z,)®
H.(L;Z,) — H«(L;Z,) with the corresponding action for R P" C CP".

Proof Let o; € QH;(L) = Z, be the generator. In view of the canonical isomorphism

QH, (L) = (H(L;Z3) ® A)x we have H;(L;Z3) = QH;(L) for every 0 < j <n.
Therefore we will view «;, 0 < j <n, also as elements of H;(L;Z,).
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We first claim that oy, * ap—1 = 0t—1 - 0¢—1 = @p—o (Where — - — is the classical
intersection product). For degree reasons this is equivalent to o1 - a,—1 7 0. In turn,
this is equivalent to showing that o' Uac! # 0 in H?(L;Z,) where a! € H'(L;Z,) is
the generator (and so is Poincaré dual to a,,_ ). From the fact that H'(L; Z,) =7, and
H,(L;Z) is 2—torsion we obtain that the Bockstein homomorphism, 8: H'(L;Z,) —
H?(L;Z5), associated to the exact sequence 0 — Zy — Z4 — Z, — 0 is not trivial.
But B = Sq’, the first Steenrod square, which in this degree coincides with the square
cup-product, so that alUal # 0. This proves that o, —1 *0ty—1 = Qp—1-0y—1 = Up—3.

In view of the first part of Lemma 6.1.1 we know that /& * o; = a;_, for all i. As
Op—10y—1 = Qy—p it follows that the Z,—singular homology of L coincides as an
algebra with that of R P". Let ¢: L — RP> be the classifying map associated to
al. As dim(L) = n we deduce that 5 factors via a map ¢: L — R P" and as the
induced map in cohomology H'!(¢): H' (R P";Z,) — H'(L;Z,) is an isomorphism
it follows that ¢ induces an isomorphism in homology in all degrees. Moreover, using
the relation /1 *o; = o;—, again, we deduce that the classical external product coincides
with that for R P". |

We now turn to the proof of Theorem 2.3.1. Point (ii) has already been proved
(in the proof of Lemma 6.1.4). Before we go on, recall that we have denoted by
aj € QH;(L) = Z, the generator. Clearly we have o;_,41) = o;t” for every
i,reZ.

Another important fact we will need below is the following. By Theorem A the
quantum inclusion iy : QH(L) — QH(M ; A) is determined by the module action and
the augmentation €7, via the formula

(45) (PD(y).ir(x)) = €L (y *x).

We are now ready to prove points (iii) and (iv) of Theorem 2.3.1. Assume first that
n is even, n = 2/. Denote by hy, € Hy,(CP";Z,) the generator, so that hy,_» = h
and hp, = h*®=7) for every 0 < r <n. Fix 0 < 2k < n. For degree reasons we have
ir(as) = ehyy for some e € Z,. Applying (45) with x = apx and y = hyy, o We
obtain
e = ep(hanak ¥ aok) = e ("™ wazp) = e () = 1.

Now fix 1 <2k + 1 <n— 1. For degree reasons, iy (¢2x+1) = fhok4n+2t for some
f €Z,. Applying (45) with x = oz 41, ¥ = hy_px—> We obtain

k+1+1
ft=er(hn_sk_a*arpyr) =ep (W D wqn 1) =er(@_s_y) = ep(aot) =1,

hence f = 1. This concludes the proof for even n. The case n = odd is very similar,
so we omit the details.
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It remains to prove point (i) of Theorem 2.3.1. For this end, first notice that since
[L] = a, we have o> = h*[L]. Asboth [L] € QH(L) and h € QH(CP"; A) are
invertible (each in its respective ring) it follows that «;,_, is invertible too. By the
proof of Lemma 6.1.4 we have «;,,_» = o,,—1 * ®y—1, hence oy, is invertible too. It
follows that (ap—1)*®@~ #£ 0 € QH; (L), hence o; = (aty—1)**~? . As this is true for
every i € Z the claim at point (i) of Theorem 2.3.1 readily follows. This concludes the
proof of all the statements of Theorem 2.3.1 O

We now turn to proving Corollary 1.2.11. We begin with point (iv). This follows
easily from points (iii) and (iv) of Theorem 2.3.1 by looking at the classical part of
the quantum inclusion QH, (L) — QH,(CP"; A). Point (iii) follows in a similar way
from the fact that &« [L] = oy—5 .

As point (i) and (ii) of Corollary 1.2.11 has already been proved it now remains to
prove points (v), (vi) and (vii) of that corollary. We group these in the next lemma.

Lemma 6.1.5 For a Lagrangian L in CP" with 2H(L;Z) = 0 we have:
e (CP" L) is (1,0)—uniruled of order n + 1.

e [ is 2—uniruled of order n + 1. Moreover, given two distinct points x,y € L,
for a generic J there is an even but nonvanishing number of disks of Maslov
index n + 1 whose boundary passes through these two points.

e Forn=2,(CP2, L) is (1,2)-uniruled of order 6.

Proof Fix a Morse function f: L — R with a single minimum and a single maximum
and fix also a perfect Morse function g: CP" — R. Fix also Riemannian metrics pr,
on L and pps on M = CP" as well as an almost complex structure J so that the
pearl complex C(f) =C(L;A; f, pr,J) and the Morse complex (tensored with A)
C(g) are defined as well as the module product

C@®C()—=C(f).

Let f/: L — R be a second Morse function (again with a single minimum and
maximum) and assume that the pearl complex C(f’) =C(L; A; f’, pr, J) is defined
as well as the quantum product:

C(fHec(f)—Cf).
We now prove point (i). We have the relation
(46) [pt]l*an =A™ xay = a—p = a1t € QH(L)

where, as before, h € H,,_,(CP";Z,) is the generator. Denote by w the maximum of
/ and by p the minimum of g. The critical point w is a cycle in C(f') and [w] = .
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Thus, in view of relation (46) we have p*x w # 0 € C_,(f). As C—_,(f) =C1 ()t =
Z,(Crit( f))¢ (the last equality being true for degree reasons) we obtain that p * w
has a summand which is of the type yt, where y € Crity(f). Given the definition
of the module action in Section 3.2 (c¢) this means that there is a J—disk of Maslov
index n + 1 through the point p. As we may choose g so that the point p is anywhere
desired in CP™\ L this implies point (i).

For point (ii) we will use the relation
@7 Oy—1 * Qg = Qpl .

To exploit this we denote by m the minimum of /* and we let ¢ be a cycle in C(f”)
which represents «,_1. Because L is wide, m is a Morse cycle and Ny =n+ 1, we
deduce that m is also a cycle in C(f) so that [m] = «y. Thus we have, at the chain
level, ¢ xm = wt. In view of the definition of the quantum product in Section 3.2 (b),
we deduce that for generic J there exists a J —disk of Maslov index n + 1 through both
w and m. To finish with this point we need now to remark that the number n(m, w)
of such disks is even. Indeed, if d is the differential of the pearl complex C( f), notice
that for degree reasons the differential of m has the form dm = ewt where € € Z; is
the parity of n(m, w). But, as mentioned above, L is wide and so € = 0.

For the third point we use the relation
(48) [pt] % org = aat?,

and the fact that, when 7 = 2, @, = [w]. At the chain level (48) becomes p *m = wt?.
By interpreting this relation in terms of the moduli spaces used in Section 3.2 (¢) to
define the module product we deduce that there is a “chain of pearls” of one of the
following types:

e twodisks uy, u; joined by a flow line of —V f sothat m € u{(dD), w €u,(dD),
u(uq) = u(uy) =3 and p belongs to the image of one of the u;|y p’s,

* asingle disk # of Maslov index 2n + 2 = 6 whose interior goes through p and
with m, w € u(dD).

Notice that given two points k € CP"\ L, and k" € L, for a generic J, there is no disk
of Maslov index n + 1 passing through both k and k' because the virtual dimension of
the moduli spaces of such disks equals —1. Thus generically, case (a) is not possible
and so we are left with case (b) which proves claim (iii) of the lemma. O
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6.2 The Clifford torus

This subsection consists of a sequence of results in which we prove all the properties
claimed in Theorem 2.3.2 and Corollary 1.2.12.

Lemma 6.2.1 The Clifford torus T, € CP" is wide and Npn =2.

This Lemma was first proved by Cho [21] by a direct computation. Below we give a
somewhat different proof.

Proof We first notice that by Theorem 1.2.2 any Lagrangian torus L is narrow or wide
and if Ny > 3, then it is wide. In the case of the Clifford torus, T, = {[zg : -+ : zx] €
CP" | |zo| = -+ = |zn|} € CP", a simple computation shows that it is monotone and
that N_,, = 2. Moreover (see Cho [21]), with the standard complex structure on CP"
there are exactly n + 1 families of disks of Maslov index 2 with boundary on TZ,
Y0, V15 - - -, ¥n so that for any point x € T/, there is precisely one disk A;(x) from the
family y; passing through x. In fact we can describe these disks explicitly as follows.
Write x = [xg :---:x,] € Tl with |x;| =1 for every i. Then the disk A;(x) is given
by D3zt [Xg:- i Xjm1:Z:Xj41: . Xp] € CP.

Itis proved in [21] that these disks are regular and we can choose a basis of H; (T} Z)
represented by the curves ¢; = d(A;(x)), 1 <i <n. In this basis, co = I(Ag(x))

—c1 — ¢y — +++ — ¢p. Using the criterion for the vanishing of Floer homology in
Proposition 4.2.1 we see that the cycle D defined there is null-homologous and so
T2 is wide. O

For the 2—dimensional Clifford torus we now pass to verifying the properties of the
quantum product as stated in Theorem 2.3.2. Before we go into these computations recall
from Section 4.5 that although Tczhf is wide there might not be a canonical isomorphism
H(T32:Z>) ® A = QH(T3.,). This turns out to be indeed the case (see Biran and
Cornea [13; 12]). However, by Proposition 4.5.1 we have canonical embeddings
H, (']I*C2hf; L) @ Ax —> QH1+*(TC21if) and HZ(TCZMQ ZLy) @ Ny —> QH2+*(TC2ﬁf)-
This implies, for degree reasons, that

(49) OH|(T&y) = H\(T3: Z2), OHo(T3ip) = Ho(Teir; Z2) ® [Tl ¢,

where the first isomorphism is canonical and the second isomorphism is not canonical
but the second summand on its right-hand side (involving the fundamental class [Tflif] 1)
is canonical.

In view of (49), let w = [Tczlif] € H, (Tczlif; Z,) be the fundamental class and let a =
[c1], b =[c2] € H\(T2; Z,) = QH(T2;). By the preceding discussion w, a, b can
be viewed as well defined elements of QH (Tczlif .
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Lemma 6.2.2 There is an element m € QH, (Tczhf) which together with wt generates
QHO(TCZM) so that we have a xb = m+ wt, bxa=m, axa =bxb = wt,
mxm=mt+ wt>.

Proof We consider a perfect Morse function f: ']I‘Czhf — R and, by a slight abuse in
notation, we denote its minimum by . Similarly, we denote its maximum by w and
we let the two critical points of index 1 be denoted by ¢’ and »’. We pick /" so that the
closure of the unstable manifold of &’ represents a € H; (Tczlif; Z,) and the unstable
manifold of the critical point b’ represents b.

To simplify notation we denote the disk A;(w) by d;. See Figure 7. By possibly

Figure 7: Trajectories of —V /" and holomorphic disks on T2

perturbing the function f slightly we may assume that the unstable manifold of a’
intersects d, and d3 in a single point and is disjoint from d;. Similarly, we may
assume that the unstable manifold of 4’ intersects d; and d3 at a single point and
that this unstable manifold is disjoint from d,. With these choices the pearl complex
(C(f, J, p),d) is well defined. Here we take J to be the standard complex structure
of CP2, or a generic small perturbation of it and p a generic small perturbation of
the flat metric on Tczhf. As f is perfect and Tfhf is wide, the differential in C(f, J, p)
vanishes. From now on we will view m, a’, b’, w as generators (over A) of QH, (']I‘Czlilc .
Recall that m depends on the choice of f in the sense that if we take another perfect
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Morse function f with minimum 72, then 7 might give an element of QH,, (Tc%if
which is different from m2. On the other hand a’, b’, w € QH are canonical.

In order to compute the various products of @’ and 5" we use another perfect Morse
function g: T2, — R with critical points a”, b”, m”, w”. We may choose g to be a
small perturbation of f so that the unstable and stable manifolds of a”, b” become
“parallel” copies of those of the corresponding points of f (see Figure 8). Moreover,
by taking g to be close enough to f (and keeping J and p fixed) we may assume
that the comparison chain map W™ = W, , .o.n: C(L; f,p,J) = C(L: g, p,J)

. . . . Morse
coincides with the Morse comparison chain map W . ), namely,

\Dprl(al) — a//’ leprl(b/) — b”, \ijrl(m) — m//’ \ijrl(w) — w//.
See point (e) in Section 3.2 as well as the proof of Proposition 4.4.1 for various descrip-

tions of the comparison map WP (this map was denoted in the proof of Proposition
4.4.1 by ¢).

Figure 8: Trajectories of —V f', —Vg and holomorphic disks on TZ;

We now compute the product (on the chain level)
x:C(L; f,p, J)QC(L;g,p,J)—C(L; f,p,J).
For degree reasons we have

axb" =m+ewt, b xd’ =m+€wt, forsomee, e €Zs.
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By the definition of the quantum product, € is the number modulo 2 of J—disks with
W = 2 going — in clockwise order ! — through the following points: one point in the
unstable manifold of ¢’ then w and, finally one point in the unstable manifold of »”.
Similarly, €’ is the number modulo 2 of disks with ;& = 2 going in order through a
point in the unstable manifold of 4’, w and then a point in the unstable manifold of
a” . There is a single disk through w which also intersects both the unstable manifolds
of @’ and b’ — the disk d3. However, the order in which the three types of points
appear on the boundary of this disk implies that precisely one of € and €’ is nonzero.
Looking at Figure 8 we see that for our choices of Morse data and J we actually have
e=1,€ =0. Thus @’ *b” = m+ wt, b’ xa” = m, hence in QH(T3,) we have
axb=m+wt and bxa=m.

Next we compute a * a and b x b via a’ x a” and b’ % b”. To this end first note
that a’ * a” = Swt with § € {0, 1} (the classical term vanishes here since in singular
homology we have a-a = 0). There are precisely two pseudo-holomorphic disks that
go through w as well as through both unstable manifolds of @’ and of a”: the disks d,
and d5. It is at this point that we use the fact that [d,] = b, [d3] = —a —b. Indeed, this
means that the order in which these three points lie on the boundary of each of these
two disks is opposite. Thus, exactly one of these disks will contribute to 6 and so § = 1.
(In fact, looking at Figure 8 we see that the relevant disk is d5.) A similar argument
shows b" x b” = wt. The formula for m x m follows now from the associativity of the
product. Indeed

msxm=(axb+wt)x(bxa)=axb*b)xa+bxat =mt+ wt.
(Recall that we are working over Z;.) O
Remark 6.2.3 For the n—dimensional Clifford torus, T/, C CP",let t;,...,1, be a
basis of H,_1(TJ:Z,) dual to the basis [c1], ..., [cn] € H1 (T4 Z5), with respect
to the (classical) intersection product. The same argument as that giving the product

a*b, bxa in the proof of the lemma above shows that for i # j, t; xtj +; *t; = wt
where w represents the fundamental class.

We now turn to determining the quantum module structure (points (ii) and (iii) in
Theorem 2.3.2). We recall that 1 € H,(CP?;Z,) is the class of a hyperplane, hence
in this case of a projective line CP! C CP2.

Lemma 6.2.4 With the notation above we have:

e hxa=at,hxb=>bt,hxw=wt, hxm=mt.
o ir(m)=|[pt]+ht +[CP?)t?,ir(a) =ir(b) =ir(w)=0.
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Proof We will make use of a second geometric fact concerning the Clifford torus:
there is a symplectomorphism homotopic to the identity, 5: CP? — CP?, whose
restriction to ']I‘Czhf is the permutation of the two factors in Tczlif ~ St x S!. We now
determine what is the map

¢: OH, (T2 — OH (T3

which is induced by ¢. For degree reasons we have a(w) =w, g(a) =b, (Z(b) =a
and, by Proposition 4.3.1, we know that ¢ is a morphism of algebras (from this it also
follows immediately that ¢(m) = m + wt).

We now compute /s« a and & xb. We have, hxa = h a(b) = a(h x b). Now
hxa= (uja+ uyb)t with uy,u, € Z, which implies that & x b = (u1b + uya)t.
As in Lemma 6.1.1 we also have that /& x (—): H; (Tczlif; Z,) — H (Tczhf; Z)t is an
isomorphism. This implies that precisely one of u, u, is non zero. Assume first that
uy=0and up =1. Then hxa=>bt, h+ (hxa) =at? and h* (h * (h *a)) = bt?
which is not possible because 4*3 = [CP?]¢3 (where, [CP?] denotes the fundamental
class of CP?) and [CP?]*a = a. Thus we are left with u; = 1, u, = 0 as claimed.

To compute /2 % w write hxwt =h*(axa) = (h*a)*a = (a*a)t = wt?. Similarly
hxm=hx(bx*xa)=(h*b)*xa=mt.

Finally, point (ii) is an immediate consequence of the first point and of formula (6) in
Theorem A (iii). O

Finally, we need to justify the uniruling properties of the Clifford torus as described in
Corollary 1.2.12.

Lemma 6.2.5 For n > 2, (CP",T/.) is (1,0)—uniruled of order 2n and TZ.. is

cli cli

uniruled of order 2. For n =2, (CP2, Tczlif) is (1, 1)—uniruled of order 4.

Proof As T is wide of minimal Maslov number 2 and CP" is point invertible of
order 2n + 2 we deduce from Theorem 1.2.3 that (CP", T[;;) is uniruled of order
(at most) 2n. The fact that T/ is uniruled of order 2 follows immediately from the
relation #; * t; + ¢; * f; = wt from Remark 6.2.3. Indeed, this relation implies the
existence of a disk of Maslov index 2 through w (for generic J). There is also a direct
proof of this, based on the fact that the families of J—disks y; are regular and thus,
being of minimal possible area, they persist under generic deformations of J. Finally,
for n = 2, with the notation in Lemma 6.2.4 we have the relation [pt] * m = mt? where
[pt] = h*2. We consider a Morse function g: CP? — R which is perfect and we denote
its minimum by p. The previous relation gives (at the chain level): p*m = mt? where
m is the minimum of a perfect Morse function f: T Cz“f — R (so that the respective
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pearl complex and all the relevant operations are defined). This means that there is a
configuration consisting of one of the following:

(a) one J-disk with u =4 through p, whose boundary is on ']I‘Czhf and contains 1,

(b) two J—disks, each with u = 2, related by a negative gradient flow line of f
so that one of these two disks goes through p and the boundary of the other
contains m.

To prove our claim we only have to notice that possibility (b) cannot arise for a
generic J. Indeed, generically, the set of points in CP? which lie in the image of
some J —disk of Maslov index 2 is only 3—dimensional and so, generically, these disks
avoid p. O

6.3 Lagrangians in the quadric

Here we prove Theorem 2.3.4 and Corollary 1.2.13.

Let Q C CP™*! be a smooth complex n—dimensional quadric, where n > 2. More
specifically we can write Q as the zero locus Q = {z € CP"T1 | q(z) = 0} of a
homogeneous quadratic polynomial ¢ in the variables [zg : -+ : z,41] € CP"T1,
where ¢ defines a quadratic form of maximal rank. We endow Q with the symplectic
structure induced from CP”*1. (Recall that we use the normalization that the sym-
plectic structure wgs of CP"t1 satisfies f(C p1 wrs = 1.) When n > 3 we have by
Lefschetz theorem H?(Q;R) = R, therefore by Moser argument all Kihler forms
on Q are symplectically equivalent up to a constant factor. When n =2, Q c CP3
is symplectomorphic to (CP! x CP!,wrs @ wrs). Also note that the symplectic
structure on Q (in any dimension) does not depend (up to symplectomorphism) on the
specific choice of the defining polynomial ¢ (this follows from Moser argument too
since the space of smooth quadrics is connected).

6.3.1 Topology of the quadric The quadric has the following homology:

0 ifi =odd,

Hi(Q:2) = {Z ifi =even#n

Moreover, when n = even, H,(Q;7Z) =~ 7 & 7. To see the generators of H,(Q;7Z),
write n = 2k. There exist two families F, " of complex k—dimensional planes
lying in Q (see Griffiths and Harris [34]). Let P € F, P’ € F’ be two such planes
belonging to different families. Put @ = [P], b = [P’]. Then H,(Q;7Z) = Za ® Zb
and h** = a + b. Moreover, we have:

fork=o0dd: a-b=|[pt], ara=b-b=0,

(50) fork =even: a-b=0,a-a=b-b=|pt].
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Here and in what follows we have denoted by - the intersection product in singular
homology.

6.3.2 Quantum homology of the quadric Let /i1 € H,,,_,(Q;Z) be the class of a
hyperplane section (coming from the embedding Q € CP"*1), p € Hy(Q:7Z) the
class of a point and u € H,,(Q; Z) the fundamental class. We will first describe the
quantum cohomology over Z. Define AZ = Z[t,t~'] where degt = —Ny . Here Ny
is the minimal Maslov number of a Lagrangian submanifold that will appear later on.
Note that ¢; (Q) = nPD(h), hence Np|2n. Let QH(Q:; A%) = H(Q:Z) ® AZ be the
quantum homology endowed with the quantum product .

Proposition 6.3.1 (See Beauville [6].) The quantum product satisfies the following
identities:

W =hvV0<j<n—1, h*"=2p+42u>/Ne — pO+D — gp2n/Ne
p*p= ut*"/NL
When n = even we have the following additional identities:
i) hxa=h=xb.
(i) Ifn/2=oddthenaxb=p,axa=>bxb=ut?"/Nr,

(iii) Ifn/2=eventhenaxa=>bxb=p,axb=ur?"/Nc,

Proof The first three identities and the fact that 4 xa = h *x b are proved in [6]. To
prove the remaining two identities write n = 2k . Recall from [6] that

(a—b)*(a—b) = ((a—b)~(a—b))%(h*”—4u12”/NL) = ((a—b)-(a—b))(p—ut*"/Nr
(where — - — is the classical intersection product). Substituting (50) in this we obtain
(51) (a—Db)*(a—b) = (=D)*2(p —ut>/Nr),

On the other hand we have /** = h*K = 4 + b, hence

(52) (a+b)x(a+b)=h"=2p+2ur*/Nt.

Next we claim that axa = bxb. Indeed axa—bxb = (a+b)*(a—b) = h* % (a—b) =0.

The desired identities follow from this together with (51), (52). O
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6.3.3 Quantum structures for Lagrangian submanifolds of the quadric The quad-
ric QO has Lagrangian spheres. To see this write O as Q = {Zg + -t Z,% = Zﬁ_H} C
CP" ! Then L ={[zg:+-:zy41] € O | z; € R,V i} is a Lagrangian sphere. We
assume from now on that n > 2.

Lemma 6.3.2 Let L C Q be a Lagrangian submanifold with H,(L;Z) = 0. Then,
Ny =2n, L is wide and there is a canonical isomorphism QH(L) = H(L;Z;) ® A.
Moreover, it we denote by ag € QHy(L) the class of a point, by o, € QH,(L)
the fundamental class and similarly by p € QHy(Q) the class of the point and by
u € QH,,(Q) the fundamental class, then we have:

(1) pxag=opt, p*kay=aut.

(i) ir (o) = p+ut.

(iii)) If n is even then o * 0ty = Qpt.

Remark 6.3.3 Suppose that L is a monotone Lagrangian which is orientable and
relative spin (see Fukaya, Oh, Ohta and Ono [33] for the definition). In that case, it
is possible to coherently orient the moduli spaces of pseudo-holomorphic disks with
boundary on L using the theory of [33]. It seems very likely that these orientations are
compatible with the quantum operations based on our pearly moduli spaces, hence we
expect our theory to work over Z. Assuming this, let L be a Lagrangian as in Lemma
6.3.2 and suppose in addition that L is relative spin (H;(L;Z) = 0 automatically
implies orientability). Then we expect the formulae in (i) and (ii) to become:

1) pxag=—apt, p*xoy =—apt.

(ii’) ip(eo) = p—ut.

Proofs of Lemma 6.3.2 and Remark 6.3.3 Following Remark 6.3.3 we will carry
out the proof over the ring K which is either Z, or Z. In the latter case the proof is
not 100% rigorous in the sense that it depends on the verification that our theory indeed
works over 7Z . We remark that for K = Z, the proof below is completely rigorous (and
in this case we may also drop the assumptions that L is orientable and relative spin).
We will use the ring A = K[t~!, ] with the same grading as before, ie degt = —Np..

Due to H{(L;Z) = 0 and Cp = n we see that Ny = 2n. By Theorem 1.2.2 we
deduce that L is wide. Moreover, by Proposition 4.5.1 there is a canonical isomorphism
OH,(L) = (H(L;K)® A)«.

We first prove the lemma and the remark under the additional assumption that n =
dim L > 3. The case n = 2 will be treated separately at the end of the proof.
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We start with the statement at point (ii’). It easily follows from the definition of the
quantum inclusion map that iy (eg) = p + eut, for some e € K. Clearly 4 xag =0
since h * g belongs to QH_,(L) = QH,,_»(L) = 0 (since 2n — 2 > n). Therefore
we have

O0=ip(h*ayg)=hx(p+eut)=hxp+eht.

On the other hand a simple computation based on the identities of Proposition 6.3.1
gives i x p = ht. It follows that ¢ = —1. This proves point (ii’).

We turn to proving point (i’). By Proposition 6.3.1 p € QHy(Q; A) is an invertible
element, hence p * (—): QH;(L) — QH;_5,(L) is an isomorphism for every i . But
QOHy(L) = Kag and QH_,, (L) = Kagt. Therefore p x ag = €agt, where € = £1.
It remains to determine the precise sign of €. Using the formula in (ii’) we obtain

(53) ir(p=xag) =ir(eapt) =e(pl—u12).

On the other hand we have

iL(pxag) = pxip(ao) = px(p—ut) =ut’— pt.

Comparing this to (53) immediately shows that ¢ = —1. The proof of the identity
P * oy = —ay,t is similar. This concludes the proof of point (i’).

We now turn to the proof in case # = 2. In this case Q ~ S?xS? endowed with the split
symplectic form @ @ @ with both S? factors having the same area. Put a = [S? x pt],
b =[ptx S?] € Hy(Q;7Z) and denote by inc«: Hy(L;7Z)— H«(Q;Z) the (classical)
map induced by the inclusion L C Q. Note that L must be a Lagrangian sphere, hence
[, @ =0 and inc«([L])-inc«([L]) = —2. It follows that inc«([L]) = +(a—b). Finally,
in this dimension the hyperplane class / satisfies h =a +b.

As n =2 we have N;, =4 and so degt = —4. As before, since p is invertible we can
write p ko = €agt, where € = £1, and iy (ag) = p + eut with e € Z. It follows that

ir(p*ag) = px*(p+eut)=ut’*+ept.
On the other hand we also have:
ir(p*ag) =ir(eagt) = et(p + eut) = eeut® + ept.

It follows that ee = 1, hence e = ¢ = £1. This proves formulas (i) and (ii) over Z,
(that p x ay = Fayt follows immediately from the fact that p is invertible).

It remains to determine the sign of e and €, so we now work over Z. For this end
write /1 % g = rap with r € Z. Note that oy =[L] so

ir(h*ag) =ip(rast) =rinck([L])t = £r(a—b)t.
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(Here we have used the fact that for the fundamental class [L] we have ip ([L]) =
inc«([L]).) On the other hand

ipr(h*xoag)=hx*ip(ag) =h=*(p+eut)=ht+eht =1+e)ht =(1+e)(a+b)t.

It follows that (1 4 e¢)(a + b)t = £r(a — b)t. This implies r = 1 + e = 0, hence
e = —1. The proof of formulae (i), (i’), (ii), (ii’) is now complete for every n > 2.

Finally, we prove (iii) (only over Z, ). By Proposition 6.3.1 when n = even the element
a € QH,(Q; A) is invertible (even if we work with coefficients in Z;). Therefore
axo, =ag and a x oy = ayt. It follows that

Qg *0g = (@ *ay) xag =ax* (o, *ag) = da*ag = ayl. m]

The following result shows that for n = even, at least homologically, spheres are the
only type of Lagrangian in Q with H;(L;Z) = 0.

Theorem 6.3.4 Assume n = dimc Q = even. Let L C Q be a Lagrangian submani-
fold with Hy(L;Z) =0. Then Hy«(L;Z7) = H«(S";Z>).

Proof In view of the isomorphism QH, (L) = (H(L;Z;) ® A)+«, for every q € Z,
0 <r <2n we have

H.(L:Z,) if0<r<n,

54 H L)=
(54) Q 2nq+r( ) {0 ifnd+1<r<2n-—1.

Reducing modulo 2 the identities from Proposition 6.3.1 it follows that a € QH,(Q; A)
is an invertible element. Thus a % (—): QH; (L) — QH;_,(L) is an isomorphism for
every i € Z. It now easily follows from (54) that H;(L;Z,) =0 forevery 0 <i <n. O

We are not aware of the existence of a Lagrangian submanifold in Q with H,(L;Z)=0
which is not diffeomorphic to a sphere, and it is tempting to conjecture that spheres are
indeed the only examples.

Remark 6.3.5 Theorem 6.3.4 can be also proved by Seidel’s method of graded
Lagrangian submanifolds [51]. Indeed for n even the quadric has a Hamiltonian
S1_action which induces a shift by n on QH, (L). To see this write n = 2k and write
Qas Q= {Zj-‘zo ZjZj+1+k = 0}. Then S acts by sending - [z : ++ : Zog41] tO
[tzo i+ itz i Zk+1 " Zak+1]. A simple computation of the weights of the action at
a fixed point gives a shift of n on graded Lagrangian submanifolds in the sense of [51].

When n = odd our methods (as well as those of [51]) do not seem to yield a result
similar to Theorem 6.3.4. However the works of Buhovsky [17] and of Seidel [52] may
provide evidence that such a result should hold.
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Denote 7 the space of almost complex structures compatible with the symplectic
structure of Q. The next result is a straightforward consequence of Lemma 6.3.2 and it
concludes the proofs of the properties claimed in Theorem 2.3.4 and Corollary 1.2.13.

Lemma 6.3.6 Let L C Q be a Lagrangian submanifold with H(L;7Z) = 0. Assume
n =dimc Q > 2. Then the following holds:

(i) Letxe L andz € Q\ L. Then forevery J € J there exists a J —holomorphic
disk u: (D,dD) — (Q, L) with u(—1) = x, u(0) = z and u(Ju]) = 2n.

(ii) Assume that n = even. Let x’, x”,x"" € L. Then for every J € J there exists

a J —holomorphic disk u: (D,dD) — (Q, L) with u(e?™/3) = x', u(1) = x",
u(e*™1/3)y = x" and u(u)) = 2n.

Proof The first point follows as usual by considering a Morse function f: L — R
with a single maximum and a single minimum as well as a perfect Morse function
h: Q — R. We let the minimum of / be denoted by p (by a slight abuse in notation
we identify the critical points of / and the corresponding singular homology classes)
and we denote the minimum of f by m and its maximum by w. As L is wide both
m and w are cycles in the associated pearl complex.

Point (i) in Lemma 6.3.2 gives, at the chain level, p * m = m¢ which implies the
first point of our lemma. The second point is proved by considering a second Morse
function f’: L — R with a unique minimum m’. Relation (iii) in Lemma 6.3.2 now
gives (on the chain level) m % m’ = wt, which proves the needed statement. O

6.4 Narrow Lagrangians in CP”

The purpose of this section is to construct the monotone narrow Lagrangians mentioned
in Example 1.2.10. The construction is based on the decomposition technique developed
in [7] and on the Lagrangian circle bundle construction from [8].

Let (M 2", ) be a symplectic manifold for which [w] € H?*(M ;R) admits an integral
lift in H2(M;Z). Fix such a lift a,,. Let £2"=2 C M?" be a symplectic hyperplane
section in the sense that X is a symplectic submanifold whose homology class is dual
to a positive multiple of a,, ie PD[X] = ka, € H?(M;Z) for some integer k > 0.
By rescaling @ we will assume from now on, without loss of generality, that k = 1.

Assume further that M is a complex manifold, that @ is a Kdhler form and that
> C M 1is a complex submanifold (so that ¥ C M is a smooth ample divisor). Put
wy, = ol and ay = ay|s € H*(Z;Z). Let n: P — X be a circle bundle with
Euler class ax, and o a connection 1—form on P normalized so that do = —n*wy;.
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Denote by Ey, — X the associated unit disk bundle, Ex = (P x[0, 1))/ ~, where
(p',0) ~ (p”,0) if and only if 7 (p') = n(p”). We endow Eyx with the following
symplectic structure: wea, = 7*wy +d (rzoe), where r is the second coordinate on
P x[0,1). Note that with our normalization wc,|yx = wy and the area of each fibre
of Ey with respect to weay is 1.

By the results of [7] there exists a compact isotropic CW—complex A C M \ ¥ and a
symplectomorphism F: (Ey, wcan) —> (M \ A, ). Moreover, for every x € ¥ C Ex,
we have F(x) = x. In most cases A is a Lagrangian CW-complex, ie dim A =
%dim M — this is called the critical case. In special situations it may happen that
dim A < %dimM , which we call the subcritical case. The dimension of A is in
fact determined by the critical points of a plurisubharmonic function ¢: M \ ¥ — R
canonically determined by ¥ and the complex structure of M . The CW—complex A
is called the isotropic (or sometimes Lagrangian) skeleton. We refer the reader to
Biran [7] for more details on this type of decompositions. See also Eliashberg and
Gromov [28] and Eliashberg [27] for the foundations of symplectic geometry of Stein
manifolds, as well as Biran and Cieliebak [10; 9] and Biran [8] for applications of
these concepts to questions on Lagrangian submanifolds. We will identify from now
on (M \ A, w) with (Ey, Wcan) via the map F.

Let L C (¥, wy) be a Lagrangian submanifold. Fix 0 <ry < 1. Put
I =n"YL)x{ro} C Ex ~ M\A.

Note that r: I';, — L is a circle bundle isomorphic to the restriction of P — 3 to L.
A simple computation shows that 'y is Lagrangian with respect to w. We will view
I'z as a Lagrangian submanifold of M , but it is important to note that I'y, is disjoint
from A. We remark also that I'y depends on the value of ry. In fact, different values
of ro give rise to Lagrangians I'; with different area classes. Below we will make a
specific choice of ry and call I'y, the Lagrangian circle bundle over L. We refer the
reader to [8] for more details on the subject.

Suppose now that L. C ¥ is monotone with proportionality constant 1 = w /L.

Proposition 6.4.1 Assume that dim M > 6, or that dim M = 4 and A is subcritical.
Let rg = 2n/(2n + 1). Then the Lagrangian 'y C M is monotone. It has minimal
Maslov number Nr, = 2 and proportionality constant 1) = n/(2n+1).

Proof Fix A € mp(M,I'r) and let u: (D,dD) — (M, I'r) be a representative of A.
As dim A 4+ 2 < dim M we may assume by transversality that the image of u is
disjoint from A, hence lies in Eyx. Denote by xq,...,x; the intersection points
of u with ¥ and assume that they are all transverse. Moreover, we may assume
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that each x; corresponds to a single interior point z; € D, so that u~'(x;) = {z;}.
After a suitable homotopy of u (rel dD) we may assume that the points x; all lie
in L. Denote by Dy, C Ex the disk of radius ro lying in the fibre over x; (ie
Dy, = (71 (x;) x[0,70])/ ~). Note that the boundary of Dy, lies in I'y,. After a
further homotopy of # we may assume that there exist small disks B; C D around each
z; such that # maps each B; to =Dy, . Here, = stands for the two possible orientations
on Dy, , according to whether u|p;: B;i — Dy, preserves or reverses orientation. Put
S =D\ (Uf;l Int B;). Put v = u|g. Clearly the image of v is disjoint from X and
moreover v maps the boundary of S to I'z,. After another homotopy of v, rel 9.5 we
may also assume that the image of v lies in P x {ro} C Ex. Note that

Ocan| Px{rg} = (m*ws, +2rdr na + rzda)lpx{ro} =(1— r(f)n*a)g,

hence we have

/Sv*w:(l—rg)/s(nov)*a)g.

Denote by €; € {—1, 1} the intersection index of u|p;, with X. We have

k
A — * — * + *
w(A) /Dua) ;/Biuw vaa)
k
(55) =(Zei)rg—l—(l—rg)/(nov)*a)g,
i=1 S
k

k
w(A) =3 uuls ) + (o) = 2(Zei) T ().

i=1 i=1

Denote by uy: Hy(X, L) — Z the Maslov index of L C X. A simple computation
shows that w([v]) = ur ([r ov]) (see Proposition 4.1.A in [8] and its proof.) Next, note
that [ o v] in fact lies in the image of 7, (X, L) — H,(X, L). By the monotonicity
of L we now get: fS (mr ov)*wy = nur ([ ov]). Using this and (55) we deduce
that 'y, C M will be monotone if rg /2=(- rg)n. Solving this equation gives
rg:277/(2n+1). O

Remark The Lagrangian I'z , when viewed as a submanifold of M \ X, is obviously
monotone too (in fact, for every value of ry). Its minimal Maslov number (as a
Lagrangian in M \ X), N’L, satisfies le.L = N . See Biran [8] for more details.

Based on the above we can construct examples of narrow Lagrangians in CP”".
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6.4.1 Narrow Lagrangians in CP" Consider M = CP", n > 3, endowed with
the following normalization of the standard symplectic structure wyq = 2wgs. (The
normalization here is made so that [wfg] € H 2(CP™;Z) is 2 times the generator.)
Let ¥ = Q2"2 C CP" be the smooth complex quadric hypersurface, given for
example by Q = {z 4+ --- + z7 = 0}. The Lagrangian skeleton in this case is
A=RP"={zo:---:z4]|zi €R, Vi}. See Biran [7] for the computation.

Let L C Q*"~2 be any monotone Lagrangian (eg a Lagrangian sphere), and consider
't € CP" constructed as above. By construction, I'y N R P" = @. By Corollary
1.2.11 RP" is wide. It follows from Corollary 1.2.8 that Iy, is narrow.

The same construction actually works also for M = CP2, although A is not sub-
critical. In this case Q ~ S? and we can take L C S? to be a circle which divides
S? into two disks of equal areas. The corresponding Lagrangian circle bundle I'y
is a 2—dimensional torus in CP2. The fact that 'z is monotone follows from a
direct computation of Maslov indices and areas for each of the three generators of
7,(CP?, L) = Z®3. Thus we obtain a narrow Lagrangian torus 'y, C CP?. We
remark that I'z is not symplectically equivalent to the Clifford torus Tcznf c cp?
since the latter is wide. On the other hand, these two tori, T and 'z, turn out to be
Lagrangian isotopic one to the other. It would be interesting to understand the relation
of this example with Chekanov’s exotic torus [18] as well as with the works Eliashberg
and Polterovich [29] and Blechman and Polterovich [14].

6.4.2 More examples One can iterate the Lagrangian circle bundle construction by
looking at hyperplane sections of hyperplane sections ¥’ C ¥ C M etc. (with different
choices of X’s as well as different choices of L ’s) and obtain many examples of narrow
monotone tori in CP™. It would be interesting to figure out how many of them are
symplectically nonequivalent. It would also be interesting to understand the relation of
these tori to the recent series of pairwise nonequivalent Lagrangian tori constructed by
Chekanov and Schlenk [19].

7 Open questions

Traditionally, the class of monotone Lagrangians has been of interest because it provides
a context in which Floer homology remains reasonably simple to define and, simul-
taneously, is sufficiently rich so as to provide a wide variety of examples. However,
the structural rigidity properties discussed in this paper indicate that this class is also
interesting in itself. We remark that wide monotone Lagrangians also satisfy a form of
numerical (or arithmetic) rigidity (some results on this can be found in [12]).
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Of course, many questions remain open at this time. An obvious issue is whether higher
order operations — beyond the module and product structures, in particular — can be
used to produce further extensions of the results proved here. A considerable amount
of additional technical complications are involved in setting up the machinery needed
to deal with that degree of generality so we have not pursued this avenue here. In a
different direction, it is clearly possible to further pursue relative packing computations
as well as various Gromov radius estimates.

Another obvious problem is to establish the theory described here with coefficients
in Z. As already mentioned in Section 6.3.3 Remark 6.3.3, we expect our theory to
work over Z however we have not rigorously checked the needed compatibility with
orientations. Still, it is instructive to see an example showing that this issue is important
for certain applications.

Let Q C CP"*! be a smooth complex quadric hypersurface endowed with the symplec-
tic structure induced from CP"*1. The following corollary shows that the composition
JL, ©iL, introduced in Section 2.4 does not vanish for a class of Lagrangians in the
quadric, provided that we work with Z (rather than Z, ) as the ground ring of coefficients
and so — by Theorem 2.4.1 (again with Z—coefficients) — any two Lagrangians in this
class intersect. We mark the Corollary with a * to indicate that its proof is not 100%
rigorous.

Corollary* 7.0.2 Let Ly, L1 C Q be two Lagrangians with Hy(L;;Z)=0,i =0,1
and assume in addition that L, L, are relative spin (see Fukaya et al [33] for the
definition). (For example, Ly and L; are two Lagrangian spheres). Then, over Z, the
composition jr, oir, does not vanish. In particular Lo N L} # &.

Proof* As Hi{(L;;Z) =0, the Lagrangians L, L are orientable, hence in view of
the relative spin condition we can orient all the moduli spaces of disks following [33].
The condition H;(L;;Z) = 0 implies that Ny, = Ny, = 2Cg = 2n. Therefore in
the ring Ag,; (from Section 2.4 ) we have 7o = #; or in other words Ag ;1 = Ag =
Ay = Z[t71, t], with degt = —2n. (Note again, we are using Z as the ground ring.)

We will now use the notation from Section 6.3.3, Lemma 6.3.2 and Remark 6.3.3. Recall
that by this Lemma and this Remark we have iy , (o) = p—ut, where a9 € QHy(Lo) is
the generator, p € QHy(Q) is the class of a point and u € QH,,(Q) is the fundamental
class. Denoting by «;, € OH, (L) the fundamental class we now have by the same
lemma and remark (now applied to L),

JL, 0irn, (o) = (p—ut) x oy, = —apt — ot = =20t # 0.

By Theorem 2.4.1, Lo N L # &. O
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We conclude with two conjectures which, we believe, have a significant structural
significance for the understanding of the subject so that we want to make them explicit
here. We recall that here, as all along the paper, we include in the definition of a
monotone Lagrangian submanifold the condition Ny, > 2.

Conjecture 1 Any monotone Lagrangian submanifold is either narrow or wide.

Conjecture 2 In a point invertible manifold, if two monotone Lagrangian submani-
folds do not intersect, then at least one of them is narrow.

Remark (a) As shown in Theorem 1.2.2 the dichotomy narrow—wide can be estab-
lished in many relevant cases and we can prove it in a few more. It is true, for example,
for n = dim L < 3 (at least when L admits a perfect Morse function).

There is an equivalent statement of the conjecture which is worth indicating here. Recall
the map ps: QTH(L) — QH(L) induced by the change of coefficients AT — A and
that we denote by IQ1 (L) its image. It is easy to see that the kernel of p consists
precisely of the torsion ideal 7+ (L) of QTH(L),

TT(L)y={ze QtH(L): 3meN, "z =0}.

It is a simple exercise to see that L is wide if and only if 77 (L) =0 and L is narrow
if and only if 7% (L) = QYH(L). Thus the wide—narrow conjecture is equivalent to
showing that the torsion ideal of any monotone Lagrangian can only be 0 or coincide
with the entire ring.

(b) The difficulty in proving the second conjecture is caused by the following phenom-
enon (see also Theorem 2.4.1). First, notice that the result immediately follows if one
can show that there is a constant C and a class o € QH(M ; A) (with M the ambient
symplectic manifold) so that for any monotone, non-narrow Lagrangian L C M and
any ¢ € ﬁzr/n(M) one has

(56) depth; (¢) — C < o(, ¢) < height; (¢) + C.

By Lemma 5.3.1 (i), if « is invertible (for example, o = [pt] for a point invertible
manifold) the left inequality (56) follows because « acts nontrivially on QH(L).
The second inequality is implied by the second point of the same Lemma if one
can show « € Im(iy). Finding a class o which satisfies both properties is however
quite nontrivial. Notice that in a point invertible manifold of order & not only is
the left inequality in (56) satisfied for ¢ = pt but we can also deduce the estimate
o*([w").¢) := inf{lo((M] + s 'x,¢) | x € QH(M; A)} < height; (¢) + k where
x € QTH(M), s is the Novikov variable in I' = Z,[s~!,s], and o* (", ¢) is by
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definition the infimum given above (this notation is justified because it coincides with
the cohomological spectral invariant of the class [w™]). It is clear from the “triangle
inequality” that o ([M],$) > o([pt], $) but it is in general not easy to show that

o*([0"].¢) = o ([pt]. ¢).
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