Volume 13, issue 5 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Free groups in lattices

Lewis Bowen

Geometry & Topology 13 (2009) 3021–3054
Abstract

Let G be any locally compact unimodular metrizable group. The main result of this paper, roughly stated, is that if F < G is any finitely generated free group and Γ < G any lattice, then up to a small perturbation and passing to a finite index subgroup, F is a subgroup of Γ. If GΓ is noncompact then we require additional hypotheses that include G = SO(n,1).

Keywords
free group, surface group, Kleinian group, limit set
Mathematical Subject Classification 2000
Primary: 20E07
Secondary: 20F65, 20F67, 22D40, 20E05
References
Publication
Received: 27 May 2007
Revised: 26 August 2009
Accepted: 17 August 2009
Published: 26 September 2009
Proposed: Martin Bridson
Seconded: Benson Farb, Jean-Pierre Otal
Authors
Lewis Bowen
Department of Mathematics
University of Hawaii
Honolulu, HI 96822
USA