
Geometry & Topology 14 (2010) 243–275 243

An elementary construction of Anick’s fibration

BRAYTON GRAY

STEPHEN THERIAULT

Cohen, Moore, and Neisendorfer’s work on the odd primary homotopy theory of
spheres and Moore spaces, as well as the first author’s work on the secondary suspen-
sion, predicted the existence of a p–local fibration S2n�1 �! T2n�1 �!�S2nC1

whose connecting map is degree pr . In a long and complex monograph, Anick
constructed such a fibration for p � 5 and r � 1 . Using new methods we give a
much more conceptual construction which is also valid for p D 3 and r � 1 . We go
on to establish an H space structure on T2n�1 and use this to construct a secondary
EHP sequence for the Moore space spectrum.

55P45, 55P40, 55P35

1 Introduction

In [6; 5; 15], Cohen, Moore and Neisendorfer proved a landmark result concerning the
exponent of the homotopy groups of spheres localized at an odd prime p . When p � 3

and r � 1 they constructed a map �nW �
2S2nC1 �!S2n�1 such that the composition

with the double suspension

�2S2nC1 �n
�! S2n�1 E2

�!�2S2nC1

is homotopic to the pr –power map. The existence of such a map for r D 1 was used
to show that pn annihilates the p–torsion in ��.S2nC1/.

In [4], Cohen, Moore and Neisendorfer raised the question of whether the map �n

occurs in a fibration sequence1

(A) �2S2nC1 �n
�! S2n�1

�! T2n�1 �!�S2nC1:

The first construction of such a fibration was accomplished for p � 5 by Anick [1] and
was the subject of a 270 page book. There has been much interest in finding a simpler

1We will follow a convention suggested by Mahowald of indexing a family of infinite complexes by a
subscript to denote the least dimension in which the reduced homology is nontrivial.
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construction. It is the purpose of this paper to give an elementary construction of the
space T2n�1 and the fibration (A) which is valid for all odd primes.

The question of the existence of a fibration as in (A) appeared in another context at
about the same time. In trying to understand the secondary suspension (see Cohen [3]
and Mahowald [13]), the first author [9; 10] was led to conjecture the existence of
.i � 1/–connected spaces Ti which fit into secondary EHP sequences

T2n�1
E
�!�T2n

H
�! BWn

T2n
E0

�!�T2nC1
H 0

�! BWnC1

where BWn is the classifying space of the fiber of the double suspension constructed
by the first author in [8]. These EHP fibrations should fit together in such a way that
the resulting spectrum fTig is equivalent to the Moore spectrum S0[pr e1 . The Ti ’s
would then give a refinement of the secondary suspension into 2p stages. The analysis
indicated that T2n is homotopy equivalent to S2nC1fpr g, the fiber of the map of
degree pr on S2nC1 , and that T2n�1 would sit in the fibration sequence (A).

Our first objective is to construct a secondary Hopf invariant H W �T2n �! BWn for
p � 3. This lets us define T2n�1 as the homotopy fiber of H . It follows easily that
T2n�1 satisfies the fibration in (A) and the secondary EHP fibrations. We also show
that the space we construct is homotopy equivalent to Anick’s when p � 5.

The EHP viewpoint also predicted that the Ti ’s should have a rich structure. They
should be homotopy associative and homotopy commutative H –spaces enjoying a
certain universal property. Together, these properties would imply that the mod–pr

homotopy classes of the Ti ’s could be represented by multiplicative maps. That
is, letting P i.pr / be the mod–pr Moore space of dimension i , there should be a
one-to-one correspondence

ŒP iC1.pr /;Tj �$ fhomotopy classes of H –maps from Ti to Tj g:

The properties were easy to establish when i is even [9]. Subsequent to Anick’s work,
Anick and the first author [2] constructed an H –space structure on T2n�1 by showing
that, for each n, there is a .2n� 1/–connected co–H space G2n with the property
that T2n�1 is a retract of �G2n and G2n is a retract of †T2n�1 . They also proved
a semiuniversal property for T2n�1 . This work depended heavily on the analysis of
Anick in [1]. The other properties were later established by the second author [19].

Our second objective is to take advantage of our construction of the space T2n�1 to
give a new, simpler construction of the space G2n and prove all the properties in [2]
for p � 3. Collectively, our results are as follows.
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Theorem 1.1 Suppose p � 3 and r � 1. Then the following hold:

(a) There is an H –fibration sequence

�2S2nC1 �n
�! S2n�1

�! T2n�1 �!�S2nC1

where the composition

�2S2nC1 �n
�! S2n�1 E2

�!�2S2nC1

is the pr –power map.

(b) There is a fibration sequence

�G
h
�! T2n�1 �!R �!G2n

where h has a right homotopy inverse gW T2n�1 �!�G2n so that

�G2n ' T2n�1 ��R

with R a wedge of mod–ps Moore spaces for s � r .

(c) The adjoint of g ,
zgW †T2n�1 �!G2n;

has a right homotopy inverse f W G2n �! †T2n�1 and there is a homotopy
equivalence

†T2n�1 'G2n _W

where W is a wedge of mod–ps Moore spaces for s � r .

(d) There are secondary EHP fibrations

Wn
P
�! T2n�1

E
�!�T2n

H
�! BWn

WnC1
P 0

�! T2n
E0

�!�T2nC1
H 0

�! BWnC1

where T2n D S2nC1fpr g, and there is an equivalence of spectra

fTig ' S0
[pr e1:

Our methods are simpler and more direct than those of Anick. He constructed T2n�1

as a retract of a loop space �D , where D is an infinite dimensional CW–complex
whose bottom two cells are the mod–pr Moore space P2nC1.pr / and whose other
cells come from iteratively attaching certain Moore spaces in a delicately prescribed
fashion. A great deal of his effort was directed towards constructing the attaching
maps, and this necessitated the introduction of many new techniques. The restriction
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to primes strictly larger than 3 was due to a heavy reliance on differential graded
Lie algebras which require that the primes 2 and 3 be inverted in order for the Lie
identities to be satisfied. By contrast, we construct the space T2n�1 directly for all
p � 3 without reference to the space D and without reference to differential graded
Lie algebras. Section 2 is devoted to Extension Theorem 2.2 which introduces a new
technique for doing obstruction theory in principal fibrations. This is the main tool for
all our results. In Section 3 we construct the fibration in Theorem 1.1 (a), without the
H –space structure. In Section 4 we use the extension theorem again in an elaborate
induction to obtain the spaces G2n and the H space structure on T2n�1 . Throughout
the induction we reproduce some of the delicate properties of G2n and T2n�1 which
first appeared in [2].

The new methods may be useful in positively resolving a long-standing conjecture that
the fiber Wn of the double suspension is a double loop space at odd primes. Including
dimension and torsion parameters, the space T2np�1.p/ gives a candidate for a double
delooping: potentially Wn'�

2T2np�1.p/. Such a homotopy equivalence would have
deep implications in homotopy theory, one of which being a much better understanding
of the differentials in the EHP spectral sequence calculating the homotopy groups of
spheres.

This paper is the result of combining separate efforts by the two authors. The second
author discovered the extension theorem and obtained part (a) of Theorem 1.1 without
the H –space structure, as well as part (d). The first author later found a simpler appli-
cation of the extension theorem to obtain the map H and Corollary 3.5, Theorem 3.6,
Proposition 3.7, Theorem 3.8 and Corollary 3.9 below, as well as a further application
of the extension theorem to obtain parts (b) and (c), and the H –space structure.

The authors would like to warmly thank the referee for a sustained effort in carefully
reading the paper and its revisions, and for making many helpful comments and
suggestions.

2 The extension theorem

In this section we establish an extension theorem for principal fibrations defined over
mapping cones. Let

E
�
�!X [� CA
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be a principal fibration classified by a map 'W X [� CA �! Y . We compare this to
the induced fibration over X :

�Y

��

�Y

��
E0

��

// E

�

��
X // X [� CA:

In Extension Theorem 2.2 we will give conditions for when a map E0 �! B extends
to a map E �! B . To motivate the underlying idea, observe that there is a pushout

A
� //

��

X

��
CA // X [� CA:

Map all four corners of this square into Y by composing with the map 'W X[�CA�!

Y . Appropriately turning maps into fibrations, we obtain fibration sequences E �!

X[�CA�!Y , E0�!X �!Y , CA��Y �!CA�!Y , and A��Y �!A�!Y .
By [8] or Mather’s Cube Lemma [14], these fibres fit into a homotopy pushout

(1)

A��Y //

��

E0

��
CA��Y // E:

We wish to produce an extension of f0W E0 �!B as a pushout map f W E �!B . To
obtain this, we need to produce a map CA��Y �! B and show that both it and f0

are homotopic when restricted to A��Y . This leads to two issues. One is to identify
the maps which appear in the homotopy pushout (1). We do this by constructing the
homotopy pushout for E from first principles. The other issue is to impose conditions
on the spaces and maps in (1) and on the space B which will guarantee the existence of
an extension. We will impose three conditions: A is a co–H space, B is a connected
H –space whose q–power map is null homotopic, and the restriction of A��Y to
E0 is divisible by q . It may be worth noting that the exponent condition on B will be
played off of the divisibility condition for the map A �!E0 .

To set things up, observe as in (1) that the map A �! X lifts to E0 . There may be
many inequivalent choices of such a lift. By the homotopy lifting property, we can
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extend this lift to a map of pairs �W .CA;A/ �! .E;E0/ such that the composite

.CA;A/
�
�! .E;E0/

�
�! .X [� CA;X /

induces a cohomology isomorphism. Again, note that there may be many inequivalent
choices of � with this property. In what follows, all spaces will have the homotopy
type of p–local CW–complexes with p > 2.

Extension Theorem 2.2 Let A be a co–H space and B be a connected H –space
whose q–power map is null homotopic. Let �W .CA;A/! .E;E0/ be a map such
that the composition

.CA;A/
�
�! .E;E0/

�
�! .X [� CA;X /

induces a cohomology isomorphism. Suppose that the restriction �jAW A �! E0 is
divisible by q in the co–H structure on A. Then the restriction

ŒE;B� �! ŒE0;B�

is onto. Consequently, any map E0 �! B extends to a map E �! B .

Proof Let sW .CA;A/ �! .X [� CA;X / be the standard map defining the mapping
cone. Observe that �� ¤ s , in general. We first modify � so that this does happen.
We do this by constructing a pullback diagram

E0

��

// E0

� 0

��

‰ // E

�

��
X // X [� 0 CA

 // X [� CA

and a map �0W .CA;A/ �! .E0;E0/ such that

(a) �0jA D �jA ;

(b) � 0�0 D s0W .CA;A/ �! .X [� 0 CA;X /, the standard map;

(c) ‰W E0 �!E is a homotopy equivalence.

Let � 0W A �!X be the restriction of �� to A. Define  W X [� 0 CA �!X [� CA

extending the identity on X with the map ��W CA �!X [� CA. Define E0 as the
pullback of � and  . By the pullback property of E0 , we can define �0 such that ‰�0D
� and � 0�0D s0 . Then  s0D
� 0�0D�‰�0D�� . Since �� induces an isomorphism
in cohomology and s0 is an excision,  W .X [� 0 CA;X /�! .X [� CA;X / induces a
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cohomology isomorphism as well. Hence  is a homotopy equivalence and it follows
that ‰ is a homotopy equivalence.

We are therefore reduced to considering the case when �� D s . Since both fibrations
are principal fibrations, there is an action of �Y on the total space

�Y �E �!E

which restricts to an action on E0

�Y �E0 �!E0:

Consider the composition


 W .�Y �CA; �Y �A/
1��
�! .�Y �E; �Y �E0/ �! .E;E0/:

Identifying �Y �A � �Y �CA with its image under 
 in E0 , define xE D E0 [

�Y �CA by the pushout
�Y �A //

��

E0

��
�Y �CA // xE:

From the map 
 we obtain a pushout map

�W xE DE0[�Y �CA �!E:

Observe that there is a homotopy commutative square

xE DE0[�Y �CA

��

� // E

��
X [� CA X [� CA:

By [8], the left hand vertical map is a quasi-fibration with quasi-fiber �Y . Since
quasi-fibrations induce long exact sequences in homotopy, the 5–lemma implies that
� is a homotopy equivalence.

Let f0W E0�!B . We will construct an extension xf W xE�!B and hence an extension
f W E �! B via the homotopy equivalence � . Since xE is a homotopy pushout, it
suffices to construct a map

gW �Y �CA �! B

such that the composite

�Y �A


�!E0

f0
�! B
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is homotopic to the composite

�Y �A �!�Y �CA
g
�! B:

Define g as the composition

�Y �CA
�1
�!�Y

�
�!E0

f0
�! B

where �1 is the projection and � is the map in the given principal fibration �Y �!

E0 �!X . Then we are reduced to showing that the compositions

˛W �Y �A


�!E0

f0
�! B

ˇW �Y �A
�1
�!�Y

�
�!E0

f0
�! B

are homotopic. In Lemma 2.4, we will show in general that if ˛; ˇW X �A �! B are
two maps with ˛jX�� � ˇjX�� , then ˛ ı .1� q/ � ˇ ı .1� q/. Assuming this for
the moment, apply the lemma in our case. By definition, 
 W �Y �A �! E0 is the
composition

�Y �A
1��
�!�Y �E0 �!E0;

and by hypothesis �jAW A �!E0 is divisible by q . Let �jA D q ��0 . Consequently,

 D 
 0 ı .1�q/ (where 
 0 is constructed by replacing � with �0 ) and ˛D ˛0 ı .1�q/

where˛0Df0ı

0 . Also, the projection in the definition of ˇ implies that ˇDˇı.1�q/.

Thus by Lemma 2.4, ˛0 ı .1� q/ is homotopic to ˇ . That is, ˛ is homotopic to ˇ , as
required.

It remain to prove Lemma 2.4. This will rely on Lemma 2.3, which summarizes some
well known properties of connected H spaces.

Lemma 2.3 Let B be a connected H –space and suppose u; v are maps Z �! B .
Then there is a difference map ı.u; v/W Z �! B such that

(a) ı.u; v/� � if and only if u� v ;

(b) if hW W �!Z , then ı.u ı h; v ı h/� ı.u; v/ ı h;

(c) if C �Z and ujC D vjC , then ı.u; v/jC � �.

Proof Write x;yW B � B �! B for the projections onto the first and second co-
ordinates. Then there is a homotopy equivalence eW B � B �! B � B given by
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eD .x; �.x;y//. Let ıW B�B �!B be the second coordinate of a homotopy inverse
for e . Then

ı.x; �.x;y//� y(2.3.1)

�.x; ı.x;y//� y:(2.3.2)

Define ı.u; v/ as the composition

Z
u�v
�! B �B

ı
�! B:

If ı.u; v/ � �, then u � �.u;�/ � �.u; ı.u; v// � v by (2.3.2). On the other hand,
if u � v , then ı.u; v/� ı.u;u/ � ı.u; �.u;�// � � by (2.3.1). This proves part (a).
Part (b) follows by naturality. For part (c), apply (b) with W D C and h the inclusion.
It follow that ı.u; v/jC � �.

Lemma 2.4 Let B be a connected H –space whose q–power map is null homotopic.
Suppose ˛; ˇW X �A �! B are two maps with ˛jX�� � ˇjX�� . Then ˛ ı .1� q/�

ˇ ı .1� q/.

Proof Write ı D ı.˛; ˇ/W X �A�!B for the difference element defined in Lemma
2.3. Since ıjX�� is null homotopic, we obtain a homotopy commutative diagram

X �A

��

1�q // X �A

��

ı // B

X Ë A
1Ëq // X Ë A

ı0

;;

for some map ı0 . Since X Ë .A1_A2/ is homeomorphic to .X ËA1/_ .X ËA2/, the
co–H structure on A induces a co–H structure on X Ë A and 1 Ë q is the degree q

self-map on X Ë A. The co–H space structure on X Ë A induces the same group
structure on ŒX Ë A;B� as the H –space structure on B . Thus the composite

X Ë A
1Ëq
�!X Ë A

ı0

�! B

is homotopic to the composite

X Ë A
ı0

�! B
q
�! B:

By assumption, the q–power map on B is null homotopic. Thus qıı0 is null homotopic
and so ı0 ı .1 Ë q/ is null homotopic. Therefore ı ı .1� q/D ı.˛; ˇ/ ı .1� q/ is null
homotopic. On the other hand, by Lemma 2.3 (b), ı.˛; ˇ/ ı .1� q/ � ı.˛ ı .1� q/;

ˇ ı .1� q//, implying that the right hand side is null homotopic. Hence Lemma 2.3 (a)
implies that ˛ ı .1� a/� ˇ ı .1� q/.
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3 The construction of the space T2n�1

The purpose of this section is to construct the spaces T2n�1 and produce several
fibration sequences. We begin our discussion with the Moore space

Pk.pr /D Sk�1
[pr ek

which we will abbreviate as Pk . Let us fix some notation by defining a diagram of
fibration sequences induced by the lower right hand corner

(3.1)

�2S2nC1
@ //

��

E
� //

�

��

F //

�

��

�S2nC1

��
� //

��

P2nC1

��

P2nC1 //

��

�

��
�S2nC1 // S2nC1fpr g // S2nC1

pr

// S2nC1:

The spaces E and F were first introduced in [5; 6]. It is easy to see that

H i.F /D

(
Z i D 2kn;

0 i ¤ 2kn

from the cohomology Serre spectral sequence for the fibration

�S2nC1 @
�! F

�
�! P2nC1

which is induced from the path space fibration over S2nC1 .

In [5], Cohen, Moore and Neisendorfer introduced certain iterated relative Samelson
products xi W P

2ni�1�!�F . We will work with their adjoints yxi W P
2ni �!F which

can be thought of as iterated relative Whitehead products. The following lemma was
certainly known by them.

Lemma 3.2 For i � 1, there are maps yxi W P
2ni �! F such that

(a) if Z is an H space and f W P2nC1 �!Z , then f�yxi � � for i > 1;

(b) yxi W P
2ni �! F induces an epimorphism in integral cohomology.

Proof Let yx1W P
2n �! F be a lift of the standard map P2n �! S2n �! P2nC1 .

Since @W �S2nC1 �! F has degree pn in cohomology, yx1 is unique up to homotopy
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and (b) clearly holds. Having constructed yxi , consider the map of fibrations

P2ni Ì�P2nC1

��

W // F

�
��

P2ni _P2nC1

�2

��

�yxi_1 // P2nC1

��
P2nC1 // S2nC1

where the fibration on the left is the universal fibration for relative Whitehead products
and the induced map of fibres defines W . Let yxiC1 be the composition

P2n.iC1/
�! P2ni Ì P2n

�! P2ni Ì�P2nC1 W
�! F

where the first map has a left homotopy inverse and projects trivially to P2ni and the
second map is the natural inclusion. To prove (a), suppose that f W P2nC1!Z where
Z is an H space. Then we can construct a homotopy commutative diagram:

P2ni _P2nC1
pyxi_1 //

��

P2nC1

f
��

P2ni �P2nC1 // Z:

Now since f yxiC1 factors through P2ni �P2nC1 , it is null homotopic by construction.
To prove (b) apply induction and compare the Serre spectral sequences for the two
fibrations.

Since S2nC1fpr g is an H space, the classes �yxi lift to classes yi W P
2ni �! E

for i > 1. Thus �yi � �yxi and �� D � imply that �.�yi � yxi/ is null homo-
topic. Consequently �yi � yxi D @ui for some maps ui W P

2ni �! �S2nC1 . Since
@�W H 2ni.F /�!H 2ni.�S2nC1/ has degree pr , .�yi � yxi/

�D 0 and we obtain the
following.

Lemma 3.3 For i > 1, the composite H 2ni.F /
��

�!H 2ni.E/
y�

i
�!H 2ni.P2ni/ is an

epimorphism.

Define F.i/ as the 2ni skeleton of F . Define E.i/ by the homotopy pullback

E.i/ //

��

E

�

��
F.i/ // F:
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Note that by (3.1) the fibre of � is �2S2nC1 , and so the same is true of the induced
map E.i/ �! F.i/ . Including F.i�1/ as the .2n.i � 1//–skeleton of F.i/ , we obtain a
homotopy pullback diagram

�2S2nC1

��

�2S2nC1

��
E.i�1/

��

// E.i/

��
F.i�1/

// F.i/:

Let Xi W .D
2ni ;S2ni�1/�! .P2ni ;S2ni�1/ be the characteristic map of the 2ni cell.

Then Xi jS2ni�1 has degree pr . The composition

� W .D2ni ;S2ni�1/
Xi
�! .P2ni ;S2ni�1/

yi
�! .E.i/;E.i�1//

�
�! .F.i/;F.i�1//

induces a cohomology isomorphism by Lemma 3.3. Thus there is an equivalence

F.i/ D F.i�1/[� e2ni :

The restriction of � to S2ni�1 is divisible by pr so the conditions of Extension
Theorem 2.2 are satisfied with q D pr . Therefore we have proved the following.

Theorem 3.4 If B is a connected H space whose pr –power map is null homotopic,
then for i > 1 any map E.i�1/ �! B extends to a map E.i/ �! B .

In [8], a classifying space BWn of the fiber of the double suspension was constructed,
along with a fibration sequence

S2n�1 E2

�!�2S2nC1 �
�! BWn:

Corollary 3.5 There is a map �E W E �! BWn such that the composition

�2S2nC1 @
�!E

�E

�! BWn

is homotopic to � .

Proof Since F.1/ D S2n , we have the fibration

�2S2nC1
�!E.1/ �! S2n

�!�S2nC1:
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This fibration was analyzed in [8] and it was shown that E.1/' S4n�1�BWn in such
a way that the composition

�2S2nC1 @
�! S4n�1

�BWn
�2
�! BWn

is homotopic to � . It was also shown that for p � 5 BWn is a homotopy associative
H space. The H space structure on BWn was shown to be homotopy associative for
p D 3 and that the p–power map on BWn is null homotopic in [20]. Thus for i > 1

we can apply Theorem 3.4 to construct maps �i W E.i/ �!BWn by induction such that
�i@i � � . Since E D

S
E.i/ , we define �E W E �! BWn by �E jEi D �i .

Theorem 3.6 There is a diagram of fibrations

S2n�1 //

i
��

�2S2nC1
� //

@

��

BWn

R0
//

��

E
�E

//

��

BWn

F F

with i null homotopic and so �F ' S2n�1 ��R0 .

Proof The space R0 is defined as the fiber of �E . Since the fibration

�2S2nC1 @
�!E �! F

is induced by a map to �S2nC1 which induces an isomorphism in H2n. /, the map
�F �! S2n�1 induces an isomorphism in H2n�1. / and hence has a right homotopy
inverse.

It is worth noting at this point that the space �F0 is split in [6]; consequently there is
a homotopy decomposition

�R0 '

Y
i�1

S2npi�1
fprC1

g ��P .n; r/

where P .n; r/ is a complicated wedge of mod–pr Moore spaces. The fact that the
product on the right is a loop space and is mapped to �F by a loop map is not obvious
from their analysis. The cohomology structure of R0 is rather simple.
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Proposition 3.7 We have

H m.R0/D

(
Z=pr iZ if mD 2ni and i > 1;

0 otherwise.

Moreover, there is a choice of generators ei 2H 2mi.R0/ such that eiej Dpr
�
iCj

i

�
eiCj

when i; j > 0.

Proof Apply the Serre spectral sequence to the fibration S2n�1 �! R0 �! F in
Theorem 3.6.

We now construct the space T in Theorem 1.1 and prove the existence of the fibrations
in parts (a) and (d), leaving the H –structure to the next section. By Diagram (3.1)
there is a fibration sequence

�S2nC1
fpr
g

�
�!E

�
�! P2nC1

�! S2nC1
fpr
g:

Define H by the composition

H W �S2nC1
fpr
g

�
�!E

�E

�! BWn:

Note that H can be regarded as a secondary Hopf invariant. Define T as the homotopy
fiber of H . Then Theorem 3.6 implies the following.

Theorem 3.8 There is a diagram of fibrations

T2n�1
//

��

�S2nC1fpr g
H //

�

��

BWn

R0
//

��

E
�E

//

�
��

BWn

P2nC1 P2nC1:

The connecting maps for the vertical fibrations in Theorem 3.8 immediately give the
following.

Corollary 3.9 There is a homotopy commutative diagram

�P2nC1

��

�P2nC1

��
T2n�1

// �S2nC1fpr g

where the right map is the loop of the inclusion of the bottom Moore space.
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Continuing the diagram in (3.1), we have

�2S2nC1
� // �S2nC1fpr g

�

��
�2S2nC1

@ // E:

Applying Theorems 3.6 and 3.8 gives

H � � �E�� � �E@� �;

and we conclude:

Theorem 3.10 There is a diagram of fibrations

�2S2nC1

�n

��

�2S2nC1

pr

��
S2n�1

E2
//

��

�2S2nC1
� //

�

��

BWn

T2n�1
//

��

�S2nC1fpr g
H //

��

BWn

�S2nC1 �S2nC1:

In particular, the top square in Theorem 3.10 is Cohen, Moore, and Neisendorfer’s
factorization of the pr –power map on �2S2nC1 . Since �n has degree pr , we have
the following corollary.

Corollary 3.11 There is a homotopy commutative diagram

S2n�1
pr

//

��

S2n�1

��
�2S2nC1

pr

//

�n

99

�2S2nC1

for each r � 1.
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4 The construction of G2n and the H –space structure on
T2n�1

In this section we will fix n and abbreviate T2n�1 and G2n as T and G . We will
need to filter T by skeleta and write T m for the m skeleton.

Our purpose is to construct an H –space structure on T . In fact we do more than that.
We construct a corresponding co–H space G in the sense of [11]; ie, we construct a
.2n� 2/–connected space G and maps

f W G �!†T

gW T �!�G

hW �G �! T

such that the compositions

G
f
�!†T

zg
�!G

T
g
�!�G

h
�! T

are homotopic to the identity, where zg is the adjoint of g . We go on to derive several
interesting results from this structure.

We will write T m for the m–skeleton of T . We will also reintroduce the torsion
parameter for Moore spaces as we will need to consider mod–ps Moore spaces Pm.ps/

for s ¤ r . The space G will be filtered by the 2npk C 1 skeleton which we will
abbreviate as Gk . These will be constructed inductively starting with G�1 D �. We
will construct a map

˛k W P
2npk

.prCk/ �!Gk�1

and define Gk as the mapping cone of ˛k .

One of the features of [11] is that the spaces G and T come with a fibration

T �!R �!G:

Thus we seek to construct G inductively over the subspaces Gk together with the
induced fibrations

T �!Rk �!Gk :

The fibration in Theorem 3.8 provides the case k D 0. These fibrations will be induced
from corresponding fibrations

�S2nC1
fpr
g �!Ek �!Gk
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as in Theorem 3.8. The entire induction involves obtaining key properties of the skeleta
of †T as well as G and involves a cyclical induction through 14 steps.

Proposition 4.1 As an algebra, H�.T IZ=pZ/ is generated by classes u of dimension
2n� 1 and vi of dimension 2npi for each i � 0 subject to the relations vp

i D 0 and
u2 D 0. For each i define

ui D uv
p�1
0

v
p�1
1
� � � v

p�1
i�1

:

Then ˇ.rCi/ui D vi . As a vector space zH�.T IZ=pZ/ is generated by classes v.m/
of dimension 2mn and u.m/ of dimension 2mn� 1 for each m� 1 where

v.m/D ves
s � � � v

et

t D ˇ
.rCs/u.s/

u.m/D usv
es
s v

esC1

sC1
� � � v

et

t

and mD
Pt

iDs eip
i , 0� ei < p , es ¤ 0.

Proof We apply the Serre spectral sequence for the cohomology of the fibration

S2n�1
�! T �!�S2nC1:

Using Z=pZ coefficients we see that

H�.T IZ=pZ/ŠH�.S2n�1
IZ=pZ/˝H�.�S2nC1

IZ=pZ/

as algebras. Using integer coefficients we see that �.m/ is the reduction of a class of
order prCs so v.m/D ˇ.rCs/u.s/¤ 0. We define vs D ˇ

.rCs/us .

Note that dually the homology of T has a very simple description. There is a Hopf
algebra isomorphism

H�.T /Šƒ.xu/˝Z=pZŒxv�

where xu and xv are dual to u and v respectively, and the dual Bocksteins are determined
by ˇ.rCi/xvpi

D xuxvpi�1 for i � 0.

Anick [1] introduced the notation Wb
a for the collection of all spaces that are the

homotopy type of simply connected locally finite wedges of mod–ps Moore spaces
for a � s � b . Note that any simply connected Moore space is a suspension, so any
space in Wb

a is a suspension. Recall that the smash of two Moore spaces is homotopy
equivalent to a wedge of Moore spaces: if s � t then there is a homotopy equivalence

Pm.ps/^Pn.pt /' PmCn.ps/^PmCn�1.ps/:

In particular, Wb
a is closed under smash products. Recall also that any retract of a

wedge of Moore spaces is homotopy equivalent to a wedge of Moore spaces, so Wb
a is

closed under retracts.
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Lemma 4.2 Suppose W 2Wb
a is simply connected and f W Pk.pt /�!W is divisible

by pb .
(a) Write W D W1 _ W2 with W1 2 Wb�1

a and W2 2 Wb
b

. Then f factors
through W2 up to homotopy.

(b) Suppose in addition that W2 is .d � 1/ connected and k < pd . Then f � �.

Proof Since W is a wedge, there is a homotopy equivalence

�W D�W2 ��.W1 Ì�W2/

(see, for example, the first author’s work [7]). Since W1;W2 2Wb
a , both spaces are

suspensions, and we can write W1D† SW1 and W2D† SW2 . Since W1 is a suspension,
we have W1 Ì�W2 'W1 _ .W1 ^�W2/. For the right wedge summand, the James
splitting of †�†X as

W
†X .i/ gives

W1 ^�W2 '† SW1 ^�† SW2 '
SW1 ^

�_
† SW

.i/
2

�
:

Combining, we have

W1 Ì�W2 'W1 _

�
W1 ^

�_
W
.i/

2

��
:

In particular, since Wb
a is closed under smash products, we have W1 Ì�W2 2Wb

a .
Applying the Hilton–Milnor theorem therefore implies that

�.W1 Ì�W2/'
Y

i

�Pni .psi /

with a� s � b� 1.

By [16], the prC1 –power map on �2Pm.pr / is null homotopic for any r � 1 and
m� 3. Thus Pm.pr / admits no nontrivial maps which are divisible by prC1 . In our
case, this implies that

Q
i �Pni .psi / admits no nontrivial maps which are divisible by

pb . Thus the adjoint of f , which is divisible by pb , is trivial on �.W1 Ì�W2/ and
so factors through the inclusion �W2 �!�W . Hence, taking the adjoint, f factors
through the inclusion W2 �!W , proving part (a).

For part (b), since W2 2Wb
b

and W2 is .d�1/–connected, the Hilton–Milnor theorem
implies that �W2 D

Q
�Pni .pb/ where ni > d . By [6; 16], P2mC1.pr / admits

no nontrivial maps which are divisible by pr from a CW–complex of dimension
t < 2mp , and P2m.pb// admits no nontrivial maps which are divisible by pr from a
CW–complex of dimension t < 2.2m�1/p . In our case, the CW–complex is Pk.pt /,
the domain of f , and the target Moore spaces are the Pni .pb/ in the decomposition of
�W2 . Since ni > d for each i , the hypothesis k < pd guarantees that the component
of f on Pni .pb/, being divisible by pb , is null homotopic. So f is null homotopic.
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Theorem 4.3 For each k � 0 there are spaces Gk and Wk 2WrCk�1
r satisfying the

following conditions:

(a) †T 2npk�2 'Gk�1 _Wk .

(b) There are maps gk W T
2npk�2 �!�Gk�1 and hk�1W �Gk�1 �! T such that

hk�1gk is homotopic to the inclusion of T 2npk�2 into T .

(c) There is a homotopy commutative diagram of cofibration sequences which
defines the space Gk

P2npk

.prCk/
mk //

†T 2npk�2 //

zgk

��

†T 2npk

g0
k

��
P2npk

.prCk/
˛k // Gk�1

// Gk

where zgk is the adjoint of gk .

(d) There is a map eW P2npk

.prCk�1/_P2npkC1.prCk�1/�!†T 2npk

which in-
duces an epimorphism in mod–p homology in dimensions 2npk and 2npk C 1.

(e) The map mk W P
2npk

.prCk/ �!†T 2npk�2 is divisible by prCk�1 .

(f) There is a map 'k W Gk �! S2nC1fpr g extending 'k�1 .

(g) †Gk 2WrCk
r .

(h) There is a homotopy commutative diagram of fibration sequences

�Gk

hk // T //

��

Rk
//

��

Gk

�S2nC1fpr g //

H

��

Ek
//

�k

��

Gk
// S2nC1fpr g

BWn BWn:

(i) †2�Gk�1 2WrCk�1
r .

(j) The equivalence in (a) extends to an equivalence †T 2npk

'Gk _Wk .

(k) †2T 2npk

2WrCk
r .

(l) Gk ^T 2npk

2WrCk
r .

(m) †T 2npk

^T 2npk

2WrCk
r .
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(n) There is a map �k W T
2npk

�T �!T which is the inclusion on the first axis and
the identity on the second. Furthermore there is a homotopy commutative square

T 2npk

�T
�k //

��

T

��
�S2nC1 ��S2nC1 // �S2nC1:

Proof With G�1D� and G0DP2nC1 these statements are all immediate for k D 0

with '0W P
2nC1 �! S2nC1fpr g the inclusion, E0DE from Theorem 3.6, �0D �

E ,
�0W P

2n�T �!T obtained from the action of �P2nC1 on T defined by the fibration
in Theorem 3.6. We now supposed that (a)–(n) are all valid with k � 1 in the place
of k and we proceed to prove them for k .

Proof of (a) We will construct a map

fmW P
2mnC1.prCs/ �!†T 2npk�2

which induces a monomorphism in mod–p homology for each m satisfying pk�1 <

m< pk , where s D �p.m/. We then assemble these into a map

†T 2npk�1

_

 
pk�1_

mDpk�1C1

P2mnC1.prCs/

!
�!†T 2npk�2

which induces an isomorphism in mod–p homology. By applying (j) in the case k � 1

we are done.

To construct the maps fm we appeal to (n) in the case k�1 and iterate this to produce
a diagram with p factors

T 2npk�1

� � � � �T 2npk�1 //

��

T 2npk

��
J.S2n/pk�1 � � � � �J.S2n/pk�1

// J.S2n/pk

where J.S2n/j is the 2nj skeleton of �S2nC1 . Write m to the base p . Since
pk�1 <m < pk , m has coefficients of pi for i < k and the coefficient of pk�1 is
not zero

mD asps
C � � �C ak�1pk�1 with as > 0 and ak�1 > 0:
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Let l D asps C � � � C ak�2pk�2 so that m D l C ak�1pk�1 and further restrict the
above diagram to one with ak�1C 1 factors

T 2nl �T 2npk�1

� � � � �T 2npk�1
x� //

��

T 2nm

��
J.S2n/l �J.S2n/pk�1 � � � � �J.S2n/pk�1

// J.S2n/m:

Applying the maps in this diagram to a generator of H 2mn.J.S2n/mIZ=pZ/ we get

.x�/� .v.m//D v.l/˝ vk�1˝ � � �˝ vk�1:

Now v.m/D ˇ.rCs/u.m/ and v.l/D ˇ.rCs/u.l/, so

v.l/˝ vk�1˝ � � �˝ vk�1 D ˇ
.rCs/ .u.l/˝ vk�1˝ � � �˝ vk�1/ :

Applying (a) and (m) in case k � 1 we see that

†
�
T 2nl

�T 2npk�1

� � � � �T 2npk�1�
' V _W

where V is a wedge of p spaces, all but one being Gk�1 with the other being the
subspace Gl of Gk�1 , and W 2WrCk�1

r . In particular, the dimension of V is less
than 2npk�1C 2. Since pk�1 <m, ��.u.m// projects trivially to H�.v/. But since
W 2WrCk�1

r , for any class � 2H i.W IZ=pZ/ with ˇ.j/� ¤ 0, there is a map

f� W P
iC1.pj / �!W

with f �
�

an epimorphism. Thus for each m satisfying pk�1 <m<pk we may choose
such a map corresponding to � D u.l/˝ vk�1˝ � � �˝ vk�1 . The composition

P2mnC1.prCs/
f�

�!†
�
T 2nl

�T 2npk�1

� � � � �T 2npk�1� †x�
�!†T 2mn

therefore gives the desired map fm .

Proof of (b) From part (a) we obtain a map T 2npk�2 �!�Gk�1 which induces an
isomorphism in �2n�1. /. The composition

T 2npk�2
�!�Gk�1

hk�1
�! T

factors through the inclusion of T 2npk�2 and provides a self map of T 2npk�2 which
induces an isomorphism on �2n�1. /. Calculations with cup products and Bocksteins
show that this map is a homotopy equivalence, so composing with the inverse provides
a possibly different map

gk W T
2npk�2

�!�Gk�1

such that hk�1gk is homotopic to the inclusion.
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Proof of (c) Using the map gk from (b) we construct a commutative diagram where
the bottom row is the fibration sequence from (h) in case k�1 and the middle row is a
cofibration sequence

T 2npk

=T 2npk�2

��

P2npk

.prCk/

mk

��

T 2npk�2 //

gk

��

T // T=T 2npk�2 //

��

†T 2npk�2

zgk

��
�Gk�1

hk�1 // T // Rk�1
// Gk�1:

Here, mk is defined as the composite T 2npk

=T 2npk�2!T=T 2npk�2!†T 2npk�2 .
Define

˛k W P
2npk

.prCk/ �!Gk�1

as the composite zgk ımk . Define g0
k

by the diagram of cofibration sequences

P2npk

.prCk/
mk //

†T 2npk�2 //

zgk

��

†T 2npk

g0
k

��
P2npk

.prCk/
˛k // Gk�1

// Gk :

Proof of (d) As in part (a), we consider the diagram

T 2npk�1

� � � � �T 2npk�1 z� //

��

T 2npk

��
J.S2n/pk�1 � � � � �J.S2n/pk�1

// J.S2n/pk

with p factors on the left. This is defined by iterated application of part (n) in case
k � 1. Clearly

z��.vk/D vk�1˝ � � �˝ vk�1 D ˇ
.rCk�1/.uv

p�1
1
� � � v

p�1

k�2
˝ vk�1˝ � � �˝ vk�1/:

As before there is a map

qW P2npkC1.prCk�1/ �!†
�
T 2npk�1

� � � � �T 2npk�1�
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such that .†.z�/q/� is an epimorphism in Z=pZ homology in dimension 2npk C 1,
obtained by applying (k) and (m) in case k � 1. Similarly, vk D ˇ

.rCk/uk and

.z�/�uk D

X
p terms

vk�1˝ � � �˝ vk�1˝uk�1˝ vk�1 � � � ˝ vk�1:

In particular, the map

T 2npk�1�1
�T 2npk�1

� � � � �T 2npk�1 z�0

�! T 2npk

has the property that�
z�0
��
.uk/D uk�1˝ vk�1˝ � � �˝ vk�1

D ˇ.rCk�1/ .uk�1˝uk�1˝ vk ˝ � � �˝ vk/ :

It follows, as before, that there is a map

r W P2npk

.prCk�1/ �!†
�
T 2npk�1�1

�T 2npk�1

� � � � �T 2npk�1�
such that .†.z�0/r/� is an epimorphism in Z=pZ homology in dimension 2npk . We
construct e as the wedge sum

e D .†z�0/r _ .†z�/qW P2npk

.prCk�1/_P2npkC1.prCk�1/ �!†T 2npk

:

Proof of (e) We will construct a map nk W P
2npk

.prCk/ ! †T 2npk�2 such that
mk � prCk�1nk out of a commutative diagram obtained from mapping a cofibration
sequence into a fibration sequence. Given a Hurewicz fibration

F
�
�!E

�
�! B

and a commutative square

Y [g CX //

�

��

SX

� 0

��
E

� // B;

one can construct a commutative ladder

X
g //

� 00

��

Y //

� jY
��

Y [g CX
� //

�

��

SX

� 0

��
�B // F // E

� // B
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where � 00 is adjoint to � 0 . (See, for example, Neisendorfer [17, 3.3.1]). We will apply
this to the cofibration induced by the map

P2npkC1.prCk/
prCk�1

�����! P2npkC1.prCk/

and the fibration induced by the map

†T 2npk �
�! P2npkC1.prCk/

pinching the 2npk � 1 skeleton to a point. In this case the space Y [g CX is homo-
topy equivalent to P2npk

.prCk�1/_P2npkC1.prCk�1/ and the map �� induces an
epimorphism in mod p homology. By part (d), .�e/� induces a mod p homology
epimorphism, so for some equivalence � , �e� � �. Taking � D e� and � 0 D 1, we
obtain the diagram

P2npk

.prCk/

��

prCk�1

// P2npk

.prCk/

��

// P
2npk

.prCk�1/

_P2npkC1.prCk�1/

�

��

// P2npkC1.prCk/

�P2npkC1.prCk/ // F //†T 2npk // P2npkC1.prCk/:

The 2npk C 2n� 1 skeleton of F is †T 2npk�2 . Restricting the lefthand square to
the 2npk C 1 skeleton yields a homotopy commutative square:

P2npk

.prCk/
prCk�1

// P2npk

.prCk/

nk

��
P2npk

.prCk/
mk //

†T 2npk�2

Proof of (f) To show that there is an extension of 'k�1 to 'k ,

P2npk

.prCk/
˛k // Gk�1

//

'k�1

��

Gk DGk�1[˛k
CP2npk

.prCk/

'k

tt
S2nC1fpr g

it suffices to show that ˛k is divisible by pr . This holds by (e) since r C k � 1� r .

Proof of (g) By part (g) for k � 1, there is a homotopy equivalence †Gk�1 'Wk�1
iD0 P2npiC2.prCi/. Also, by definition, †Gk D †Gk�1 [†˛k

CP2npk

.prCk/.
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By part (e) ˛kD z̨ı.p
rCk�1�/ so †˛kD†z̨ı.p

rCk�1�/� .prCk�1�/ı†z̨ . However

prCk�1�W

k�1_
iD0

P2npiC2.prCi/ �!

k�1_
iD0

P2npiC2.prCi/

is null homotopic since the order of the identity map on a mod–pr Moore space is pr .

Proof of (h) In case k D 0, this is Theorem 3.8. As we have constructed 'k W Gk �!

S2nC1fpr g in part (f), we have a pullback diagram of principal fibrations

�S2nC1fpr g

��

�S2nC1fpr g

��
Ek�1

//

��

Ek

��
Gk�1

//

'k�1
��

Gk

'k
��

S2nC1fpr g S2nC1fpr g:

Let .CP2npk

.prCk/;P2npk

.prCk//
�
�! .Gk ;Gk�1/ be the relative homeomorphism

extending ˛k and defining Gk . Since Ek �!Gk has the homotopy lifting property,
we can find a map �W CP2npk

.prCk/ �! Ek covering � . As Ek�1 is a pullback,
we get a map of pairs

�W .CP2npk

.prCk/;P2npk

.prCk// �! .Ek ;Ek�1/

covering � . The composition

P2npk

.prCk/
�
�!Ek�1 �!Gk�1

is ˛k which is divisible by prCk�1 . Since k > 1 we may apply Extension Theorem
2.2 to obtain an extension �k of �k�1 .

Proof of (i) By part (j) in case k�1, †2�Gk�1 is a retract of †2�†T 2npk�1

. The
latter space splits since the loop space can be approximated by the James construc-
tion [12], giving

†2�†T 2npk�1

'†2

 _
i�1

.T 2npk�1

/.i/

!
which is in WrCk�1

r by (k) and (l) in case k � 1. Since WrCk�1
r is closed under

retracts we are done.
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Proof of (j) By part (a), we have †T 2npk�2 'Gk�1 _Wk and by (e), we have

†T 2npk

'
�
†T 2npk�2

�
[mk

CP2npk

.prCk/

with mk divisible by prCk�1 . It suffices to show that the map

mk W P
2npk

.prCk/ �!†T 2npk�2
'Gk�1 _Wk

factors though Gk�1 . To this end, observe that there is a homotopy decomposition

�.Gk�1 _Wk/'�Gk�1 ��.Wk Ì�Gk�1/ :

We will show that any map P2npk

.prCk/ �! Wk Ì�Gk�1 which is divisible by
prCk�1 is null homotopic. Since Wk is .4n�1/–connected, the Moore spaces in Wk

are double suspensions, so Wk Ì�Gk�1 2WrCk�1
r by (i). In fact, Wk Ì�Gk�1 '

W1 _W2 with W1 2WrCk�2
r and W2 a retract of

p�1_
rD2

P2npk�1C1.prCk�1/Ì�Gk�1

which is 4npk�1� 1 connected. The result follows from Lemma 4.2.

Proof of (k) This follows immediately from (g) and (j).

Proof of (l) This follows from 3 steps based on an analysis which first appeared
in [18].

Step 1 Gk ^T 2npk�1

2WrCk�1
r .

Consider the cofibration sequence

P2npk

.prCk/^T 2npk�1 ˛k^1
���!Gk�1 ^T 2npk�1

�!Gk ^T 2npk�1

:

We have P2npk

.prCk/ ^ T 2npk�1

2WrCk�1
r and ˛k ^ 1 is divisible by prCk�1 .

Consequently, ˛k ^ 1� � and so there is a homotopy decomposition

Gk ^T 2npk�1

' .Gk�1 ^T 2npk�1

/_ .P2npkC1.prCk/^T 2npk�1

/

which is in WrCk�1
r by (k) in case k � 1.

Step 2 Gk�1 ^T 2npk

2WrCk�1
r .

By (j) in case k � 1, Gk�1 ^T 2npk

is a retract of †T 2npk�1

^T 2npk

. But

†T 2npk�1

^T 2npk

' T 2npk�1

^†T 2npk

' T 2npk�1

^ .Gk _Wk/
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by (j). By Step 1 and (k) in case k�1, the latter space is in WrCk�1
r . Since WrCk�1

r

is closed under retracts, we therefore have Gk�1 ^T 2npk

2WrCk�1
r .

Step 3 Gk ^T 2npk

2WrCk
r .

Consider here the cofibration sequence

P2npk

.prCk/^T 2npk ˛k^1
���!Gk�1 ^T 2npk

�!Gk ^T 2npk

:

The first space is in WrCk
r by (k) and the second is in WrCk�1

r by Step 2. In fact,
Gk�1 ^T 2npk

' .P2npk�1C1.prCk�1/^T 2npk

/_W 0 with W 0 2WrCk�2
r . Here,

the projection onto the first factor is �k�1 ^ 1, where �k�1 is obtained by collapsing
Gk�2 to a point. Applying Lemma 4.2(b), we see that if ˛k ^ 1 is nontrivial, so is the
composition

P2npk

.prCk/^T 2npk ˛k^1
���!Gk�1 ^T 2npk �k�1^1

�����! P2npk�1

.prCk�1/^T 2npk

:

We will show that this composition is null homotopic. Let ı D �k�1˛k , which is
divisible by prCk�1 because ˛k is. According to [15], the prCk�1 –power map on
S2npk�1C1fprCk�1g is null homotopic. Therefore the composition

P2npk

.prCk/
ı
�! P2npk�1C1.prCk�1/ �! S2npk�1C1

fprCk�1
g

is null homotopic. It follows that the composition

P2npk

.prCk/
ı
�! P2npk�1C1.prCk�1/

�
�! S2npk�1C1

is null homotopic. Since the map

P2npk�1C1.prCk/^T 2npk �^1
���! S2npk�1C1

^T 2npk

has a left homotopy inverse, the map

P2npk

.prCk/^T 2npk ı^1
��! P2npk�1C1.prCk/^T 2npk

is null homotopic. Since ˛k ^ 1 is the composition

P2npk

.prCk/^T 2npk ˛^1
���!Gk�1 ^T 2npk ı^1

��! P2npk�1C1.prCk/^T 2npk

;

it is null homotopic as well. Consequently, there is a homotopy decomposition

Gk ^T 2npk

' .Gk�1 ^T 2npk

/_ .P2npkC1.prCk/^T 2npk

/:

Both terms on the right are in WrCk
r by (k) and Step 2.
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Proof of (m) By (j), †T 2npk

^T 2npk

' .Gk _Wk/^T 2npk

. By (l), Gk ^T 2npk

2

WrCk
r , and as Wk is a wedge of Moore spaces which are at least .4n� 1/–connected,

it is a double suspension, so Wk ^T 2npk

2WrCk
r by (k). So †T 2npk

^T 2npk

2

WrCk
r .

Proof of (n) Since the composite Rk �!Ek �!Gk �! S2nC1fpr g �! S2nC1 is
null homotopic by (h), there is a commutative diagram of principal fibrations

�Gk
//

hk

��

�S2nC1

T //

��

�S2nC1

��
Rk

//

��

PS2nC1

��
Gk

// S2nC1

where PS2nC1 is the path space on S2nC1 . Consequently the actions are compatible:

�Gk �T //

��

�S2nC1 ��S2nC1

��
T // �S2nC1:

Using (j) we construct a map gk W T
2npk

�!�Gk such that the composition

T 2npk gk
�!�Gk

hk
�! T

is homotopic to the inclusion as in (b). This gives a homotopy commutative diagram

T 2npk

�T
gk�1 //

�k

��

�Gk �T

a

��
T T:

Combining the preceding two diagrams gives the result and completes the induction.

We now consider the limiting case. Write G D
S

Gk , RD
S

Rk and E1 D
S

Ek .
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Theorem 4.4 There is a diagram of fibration sequences

�G
h // T

i //

E
��

R //

��

G

�S2nC1fpr g //

H

��

E1 //

��

G
' // S2nC1fpr g

BWn BWn

and there are maps zgW T �!�G and f W G �!†T such that the composites

G
f
�!†T

g
�!G

T
zg
�!�G

h
�! T

are homotopic to the identity maps.

Proof The diagram is the direct limit of the diagrams in Theorem 4.3 (h) with

hD lim
�!

hk ; g D lim
�!

gk and f D lim
�!

fk ;

where fk W Gk �!†T 2npk

is a right inverse for gk given by Theorem 4.3 (j).

Theorem 4.5 The following space belong to W1r : †2�G , †G , G ^T , †T ^T ,
and W where †T 'G _W .

Proof This follows immediately from the results in Theorem 4.3 by taking limits.

The retraction of T off �G in Theorem 4.4 induces an H –structure on T by the
composite

mW T �T
zg�zg
�!�G ��G �!�G

h
�! T:

The following proposition establishes the H –fibration property in Theorem 1.1 (a) as
a consequence of a slightly stronger result.

Proposition 4.6 The map T
E
�!�S2nC1fpr g is an H map with respect to the H –

space structure m on T . Consequently, there is an H –fibration sequence S2n�1 �!

T �!�S2nC1 .
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Proof Filling in the fibration diagram in Theorem 4.4 on the right, we obtain a
homotopy commutative square

�G
h // T

E
��

�G
�' // �S2nC1fpr g:

Now consider the diagram

T �T
zg�zg //

E�E ))

�G ��G //

�'��'
��

�G
h //

�'
��

T

E

yy
�S2nC1fpr g ��S2nC1fpr g // �S2nC1fpr g:

The middle square commutes as �' is an H –map and we have just seen that the right
triangle commutes. The left triangle commutes since ' �Eh, so 'zg �E . As the top
row is the definition of the multiplication m on T , the commutativity of the diagram
implies that E is an H –map.

Consequently, the composition T
E
�!�S2nC1fpr g �!�S2nC1 is an H –map as it

is a composite of H –maps, and so the homotopy fibration S2n�1 �! T �!�S2nC1

is of H –spaces and H –maps.

The next proposition and the following corollary give structural properties of the
spaces T , G , and R.

Proposition 4.7 The spaces T and G are atomic.

Proof It is easy to see that T is atomic using the product structure and the Bockstein
relations. The case of G is more difficult. We first show that ˛k is essential for all k .
Suppose not, so that for some k we have a homotopy equivalence

Gk 'Gk�1 _P2npkC1.prCk/:

Using the retraction Gk !Gk�1 we construct a composition

T 2npkC1�2
gkC1

���!�Gk �!�Gk�1

hk�1
���! T

which induces an isomorphism in H 2n . Using the cup product and Bockstein struc-
ture, we infer that this composition is a cohomology isomorphism in dimensions
less than 2npkC1 � 1. Since H 2npk

.T / ' Z=prCk , there must be an element of
H 2npk

.�Gk�1/ of order prCk . This contradicts Theorem 4.3 (i).
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Now suppose 
 W G �! G is a cellular map inducing and isomorphism in H2n . We
will show, by induction on k , that 
pW H2npk .G/ �!H2npk .G/ is an isomorphism.
Assuming that 
� is an isomorphism in degrees less that 2npk , consider the diagram

P2npk

.prCk/
˛k //

d
��

Gk�1
//




��

Gk




��
P2npk

.prCk/
˛k // Gk�1

// Gk

where d is an integer multiple of the identity map. Since d˛kD˛k and ˛k is nontrivial,
d is a p local unit and 
� is an isomorphism in dimension 2npk by the 5–lemma.

Corollary 4.8 R 2W1r .

Proof Since G and T are atomic, Theorem 4.4 implies that .G;T / is a corresponding
pair in the sense of [11]. According to [11, Theorem 3.2], R is a retract of †T ^T .
However †T ^T 2W1r by Theorem 4.3(m).

The next proposition implies that the space T constructed in this paper is homotopy
equivalent to the space Anick constructed in [1] when p � 5 (the primes for which
Anick’s construction holds).

Proposition 4.9 Suppose X is an H space and there is a fibration sequence

�2S2nC1 '
�! S2n�1 i

�!X

such that the composite

�2S2nC1 '
�! S2n�1 E2

�!�2S2nC1

is homotopic to the pr power map. Then X ' T .

Proof Consider the diagram of fibrations

�Wn
//

��

�X //

��

�2S2nC1fpr g

��
PWn

//

��

�2S2nC1

'

��

�2S2nC1

pr

��
Wn

// S2n�1
E2

//

��

�2S2nC1

X:
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Since p ���.Wn/D0 and pr ���
�
S2nC1fpr g

�
D0 we conclude that prC1 ���.X /D0.

Since �2np�1.Wn/ D 0, we also see that pr � �2np�1.X / D 0. According to [2,
Corollary 4.2] this is sufficient to construct a map

'W G �!†X

which induces an isomorphism in �2n . The construction given in [2] depends only on
the co–H space structure on G and the fact that ˛k is divisible by prCk�1 , so the
proof works in this context as well. From this we construct the composition

T
g
�!�G

�'
�!�†X �!X:

It is an easy calculation with the Serre spectral sequence that H�.X IZ=pZ/ Š
H�.T IZ=pZ/, so this map is a homotopy equivalence.
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