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Topological Index Theory for surfaces in 3–manifolds

DAVID BACHMAN

The disk complex of a surface in a 3–manifold is used to define its topological index.
Surfaces with well-defined topological index are shown to generalize well known
classes, such as incompressible, strongly irreducible and critical surfaces. The main
result is that one may always isotope a surface H with topological index n to meet
an incompressible surface F so that the sum of the indices of the components of
H nN.F / is at most n . This theorem and its corollaries generalize many known
results about surfaces in 3–manifolds, and often provides more efficient proofs.
The paper concludes with a list of questions and conjectures, including a natural
generalization of Hempel’s distance to surfaces with topological index � 2 .
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1 Introduction

Let H be a properly embedded, separating surface with no torus components in a
compact, orientable 3–manifold M . Then the disk complex, �.H /, is defined as
follows:

(1) Vertices of �.H / are isotopy classes of compressions for H .

(2) A set of mC1 vertices forms an m–simplex if there are representatives for each
that are pairwise disjoint.

Here we explore what information is contained in the topology of �.H /. To this end,
we define:

Definition 1.1 The homotopy index of a complex � is defined to be 0 if � D∅, and
the smallest n such that �n�1.�/ is non-trivial, otherwise. We say a surface H is
topologically minimal if its disk complex �.H / is either empty or non-contractible.
When H is topologically minimal, we say its topological index is the homotopy index
of �.H /.
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For example, a surface H has topological index 1 if and only if �0.�.H // is non-trivial,
that is, its disk complex is disconnected.

When H is the boundary of a handlebody then the disk complex was first defined by
McCullough in [14], who showed that in this case �.H / is contractible. It follows
that such surfaces are not topologically minimal. The goal of the present paper is
to show that topologically minimal surfaces are a natural generalization of several
well-known classes of surfaces in 3–manifolds, and that the results that hold for each of
these classes also hold true for all topologically minimal surfaces. As an added benefit,
proofs involving the set of all topologically minimal surfaces are often much shorter
than existing proofs involving just, say, index 2 surfaces. This is largely owing to the
inductive nature of the arguments.

By definition, incompressible surfaces have topological index 0. In the next section we
show that the strongly irreducible surfaces of Casson and Gordon [8] are precisely those
that have topological index 1. We also show that critical surfaces, previously defined
by the author in [4] and [5], have topological index 2. One important property shared by
these types of surfaces is that they may always be isotoped to meet an incompressible
surface in a collection of loops that are essential on both. We show here that this is in
fact a corollary of a powerful result about all topologically minimal surfaces. This is
given by Theorem 3.7, which asserts that a topologically minimal surface H and an
incompressible surface F can be isotoped so that H nN.F / is topologically minimal
in M nN.F /.

Section 4 contains corollaries to Theorem 3.7. We show there that if M contains a
topologically minimal Heegaard surface then @M is incompressible. It then follows
that if a closed 3–manifold M contains any topologically minimal surface H then
either it is a Heegaard surface, M is Haken, or H is contained in a ball. (In the final
section we conjecture that this last possibility can not happen.) Finally, we show that
if the disjoint union of surfaces is topologically minimal then so are its components,
and its topological index is the sum of the indices of its components. Combining this
with Theorem 3.7, we find that a surface H with topological index n can be isotoped
to meet an incompressible surface F in such a way so that the sum of the indices of
the components of H nN.F / is at most n. This is a generalization of known results
about topological index 0 and 1 surfaces.

In any new theory, the questions raised are as important as the new results. In the
final section of this paper we list a few tantalizing questions and conjectures about
topologically minimal surfaces. These include conjectures about the possible indices of
topologically minimal surfaces in various kinds of 3–manifolds, a natural generalization
of Hempel’s distance invariant [12] to surfaces of arbitrary topological index, and
conjectures which relate geometric minimal surfaces to topologically minimal surfaces.
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Much of the motivation for this work comes from ideas of Hyam Rubinstein. In the late
1990’s Rubinstein pioneered the viewpoint that strongly irreducible Heegaard splittings
were the right class of surfaces within which to search for unstable (geometrically)
minimal surfaces of index 1, as well as their PL analogues, the so-called “almost
normal” surfaces. One often finds such surfaces by minimax arguments involving 1–
parameter sweepouts. Many of the topological arguments involving strongly irreducible
surfaces also use 1–parameter sweepouts, so it became natural to think about such
surfaces as being “topologically minimal,” in a very imprecise sense. In later work
the author defined critical surfaces as an attempt to find some topological analogue to
geometrically minimal surfaces that have index 2. As one would expect from such an
analogue, arguments involving critical surfaces often involve 2–parameter sweepouts.
In this paper we make precise the idea of topological index, demonstrate its usefulness,
and conjecture its relation to geometric minimal surfaces.

The present work is the first in a sequence of papers on this topic. In [1] we define
a relative version of topological index for surfaces with non-empty boundary. The
main result of that paper is that complicated amalgamating surfaces act as barriers
to low index, low genus, topologically minimal surfaces. This is the key technical
tool necessary for the author’s construction of a counter-example to the Stabilization
Conjecture for Heegaard splittings [2]. Further applications are given in [3], where we
prove several results about amalgamation and isotopy of Heegaard splittings. Finally,
in joint work with Jesse Johnson, we produce examples of 3–manifolds containing
surfaces with high topological index [6].

The author thanks several people for helpful comments during the preparation of this
paper. Jesse Johnson had helpful suggestions regarding the construction of the family
Hx defined in the proof of Theorem 3.2. Cameron Gordon, Daryl Cooper and Andrew
Casson provided advice necessary for the proof of Theorem 4.7. General helpful
comments were made by Martin Scharlemann and Yoav Moriah. Finally, it was Saul
Schleimer and Eric Sedgwick who first brought the index 1 case of Theorem 4.9 to the
attention of the author, which was the beginnings of the paper [7]. In some sense this
work is an extension of the main result of that paper.

2 Low index surfaces

In this section we show that the concept of topological index generalizes several well
known classes of surfaces in 3–manifolds.

Definition 2.1 Let H be a properly embedded surface in a 3–manifold M . A loop
˛ on H is essential if it does not bound a subdisk of H . A disk D is a compression
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for H if D \H D @D is an essential loop on H . The surface H is incompressible
if there are no compressions for it. If D is a compression for H then we construct
the surface H=D as follows. Let M.H / denote the manifold obtained from M by
cutting open along H . Let B denote a neighborhood of D in M.H /. The surface
H=D is obtained from H by removing B \H and replacing it with the frontier of B

in M.H /.

It follows immediately from the definitions that a surface has topological index 0 if
and only if it is incompressible. We now show that surfaces with topological index 1
and 2 are also familiar.

Let V and W denote the sides of a Heegaard surface H , and �V.H / and �W.H /

the subspaces of �.H / spanned by compressions in V and W . McCullough has
called these complexes the disk complexes of V and W . McCullough proved that such
disk complexes are contractible [14]. It follows that the topology of �.H / is entirely
determined by the simplices that connect �V.H / to �W.H /. With this in mind, it is
natural to introduce special terminology when there are no edges connecting �V.H /

to �W.H /. The following definition is due to Casson and Gordon [8].

Definition 2.2 H is strongly irreducible if there are compressions on opposite sides
of H , but each compression on one side meets all compressions on the other.

The main result of [8] is that if the minimal genus Heegaard splitting of a 3–manifold
is not strongly irreducible, then the manifold contains an incompressible surface.

Theorem 2.3 H has topological index 1 if and only if it is strongly irreducible.

Proof By definition, a surface has topological index 1 when �0.�.H // is non-trivial.
Hence, in this case �.H / is disconnected. However, by McCullough’s result �V.H /

and �W.H / are contractible, so the only way for �.H / to be disconnected is if both
�V.H / and �W.H / are non-empty, and there are no edges connecting them. There
are thus compressions on both sides, but any pair of such compressions intersect.

In [4] the author introduced the idea of a critical surface. The main result of that paper
is that if the minimal genus common stabilization of a pair of Heegaard splittings is not
critical, then the manifold contains an incompressible surface. Critical surfaces were
also instrumental in the author’s proof of a conjecture of C Gordon [5].

Definition 2.4 H is critical if the compressions for H can be partitioned into sets
C0 and C1 such that:
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(1) For each i D 0; 1 there is at least one pair of disks Vi ;Wi 2Ci on opposite sides
of H such that Vi \Wi D∅.

(2) If V 2 C0 and W 2 C1 are on opposite sides of H then V \W ¤∅.

Theorem 2.5 H has topological index 2 if and only if it is critical.

Proof We first establish that if H has topological index 2 then it is critical. Let
�VW.H / be the subspace of �.H / consisting of those cells spanned by vertices in
both �V.H / and �W.H /.

Claim 2.6 Any path in �VW.H / which connects two vertices representing disks on
the same side of H is homotopic in �VW.H / to a path in either �V.H / or �W.H /.

Proof of Claim 2.6 Let fDig
n
iD0

be such a path, where D0 and Dn are disks in V ,
and the path contains the fewest possible number of disks in W . Let Di be the first
disk in this path in W . Then Di�1 is in V . There are now two cases, depending on
whether DiC1 in V or W .

Consider first the case that DiC1 � V . We now produce a path fEj gm
jD0

in �VW.H /

from Di�1 to DiC1 that consists entirely of disks in V . By replacing Di with this path,
we get a new path from D0 to Dn which contains fewer disks in W , a contradiction.

First, note that by an innermost disk argument we may assume that each component
of Di�1 \DiC1 is an arc. Now we construct the new path from Di�1 to DiC1 by
induction as follows:

(1) Let E0 DDi�1 .

(2) Assume we have constructed a sequence of disks Ej in �VW.H / of disks that
lie in V , such that for all j , jEj \DiC1j< jE

j�1\DiC1j. If Ej \DiC1D∅
then we let EjC1 DDiC1 and we have produced the desired path. Otherwise,
let ˛ be an arc of Ej \DiC1 that is outermost on DiC1 . The arc ˛ then cuts
off a subdisk disk D0

iC1
of DiC1 whose interior is disjoint from Ej . The arc

˛ also cuts the disk Ej into two subdisks. One of these, together with the disk
D0

iC1
, forms a compressing disk EjC1 which meets DiC1 fewer times than

Ej did.

Note that every disk in the path fEj g is disjoint from Di , a compressing disk in W .
Hence, the entire path fEj g lies in �VW.H /, as desired.

We now move on to the case that DiC1 �W . As the edge .Di ;DiC1/ is in �VW.H /,
it must be part of a simplex � whose vertices represent disks on both sides of H .
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Therefore, there must be a vertex E of � which represents a disk on the opposite side
of H as both Di and DiC1 , that is, a disk in V . Now insert E in the path between
Di and DiC1 , and apply the above argument to again get rid of Di .

Since H has topological index 2 is follows immediately that �1.�.H // is non-trivial.
Since both �V.H / and �W.H / are contractible we conclude there is a non-trivial loop
 in �.H / that passes from �V.H / to �W.H / and back, crossing through �VW.H /

exactly twice. Let .V0;W0/ and .V1;W1/ be the two edges of �VW.H / traversed by
this path, where Vi � V and Wi �W .

Claim 2.7 The edges .V0;W0/ and .V1;W1/ are in different components of �VW.H /.

Proof of Claim 2.7 Suppose not. Then there is a path in �VW.H / connecting V0 to
V1 . By Claim 2.6 there is such a path  0 consisting entirely of disks in V . As �V.H /

is simply connected, the path  \�V.H / is homotopic to  0 .

The edges .V0;W0/ and .V1;W1/, together with  0 , now form a path in �VW.H /

from W0 to W1 . By Claim 2.6 this is homotopic to a path  00 which lies entirely in
�W.H /. We have thus homotoped the original loop  entirely into �W.H /, a simply
connected space, contradicting its non-contractibility.

Claim 2.7 immediately implies that �VW.H / is disconnected. We may therefore
partition its components into two non-empty sets, C0 and C1 , where .Vi ;Wi/� Ci .
Since C0 and C1 are a partition of the components of �VW.H /, there are no edges
.V;W / that connect them, where V 2 C0 and W 2 C1 . The sets C0 and C1 thus
satisfy the conditions of Definition 2.4. (Note that any vertex of �.H / that is not in
�VW.H / can be added to either C0 or C1 , and the conditions of Definition 2.4 will
still be satisfied.)

To complete the proof of the theorem, we must now establish that if H is critical
then it has topological index 2. Let Ci , Vi and Wi be as in Definition 2.4. We must
produce a non-trivial loop in �.H /. Since �V.H / is contractible, there is a path of
compressions in �V.H / from V0 to V1 . Similarly, there is a path from W0 to W1 in
�W.H /. These two paths, together with the edges .Vi ;Wi/, form a loop ˛ in �.H /.
By way of contradiction, suppose ˛ is trivial in �1.�.H //. Then there is a map f of
a disk D into �.H / such that f .@D/D ˛ . For some triangulation T of D , we may
assume f is simplicial. We now assume that all choices have been made so that the
number of 2–simplices in T is minimal.

Let � denote the triangle in T that has .V0;W0/ as one of its edges. Without loss
of generality we assume the third vertex of � represents a compression in V , and
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H
F D

D0

Figure 1: A compression, D , for H and its shadow, D0

denote it as V . Since .V;W0/ is an edge of �, it follows that V \W0 D∅. Hence,
by criticality V 2 C0 . If V is in the interior of D then remove � from D and replace
V0 with V . This increases the combinatorial length of @D , but reduces the number of
2–simplices in T , a contradiction.

The remaining case is when V is in @D . Then the edge .V;W0/ cuts D into two
smaller disks. One of these, D0 , contains the edge .V1;W1/. If we now replace D

with D0 and V0 with V , we again contradict our minimality assumption.

3 Topological index in the complement of a surface

In this section we show that a topologically minimal surface can always be isotoped so
that it meets the complement of an incompressible surface in a topologically minimal
surface.

Definition 3.1 Let H and F be properly embedded surfaces in a 3–manifold M . Let
D be a compression for H . We say D has a shadow (with respect to F ) if there is a
disk D0 where @D0 D @D , D0\F D∅, and the interior of D0 meets H in loops that
are inessential on H . The disk D0 is said to be a shadow of D . See Figure 1.

The main idea behind this paper is to exploit relationships between the homotopy
indices of various complexes that depend on a specific position of H . The first of these
is the disk complex �.H / of H . The complex �F .H / is the subset of �.H / such
that each vertex has a shadow. Later we will encounter a third complex, �.H F /.

The relationship between the homotopy indices of the complexes �.H / and �F .H / is
given presently in Theorem 3.2. Later in this section we will use this theorem to prove
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Figure 2: The surfaces Hi.t/ , for t D 0 , 1
2

and 1

that when H is topologically minimal, then it can be isotoped so that it is topologically
minimal in the complement of F . We then show that many of the standard results
in 3–manifold topology, presently known for surfaces with low topological index,
generalize to surfaces with arbitrary topological index.

Theorem 3.2 Let H and F be properly embedded surfaces in M , where H has
topological index n. Then H may be isotoped so that

(1) H meets F in p points of tangency, for some p�n. Away from these tangencies
H is transverse to F .

(2) The complex �F .H / has homotopy index i � n�p .

Proof When H has topological index 0 the result is immediate, as �F .H /��.H /D

∅. We will assume, then, that H has topological index n � 1. It follows that
�n�1.�.H // is non-trivial, and thus there is a map �W S!�.H / of an .n�1/–sphere
S into the .n� 1/–skeleton of �.H / which is not homotopic to a point. Let B be the
cone on S to a point z . Hence, B is an n–ball.

Our first challenge is to define a continuous family of surfaces Hx in M isotopic to
H , where x 2 B . Let T be a triangulation of S D @B so that the map � is simplicial.
Let fvig denote the set of vertices of �.H / that are contained in �.S/. For each i

choose a representative Di from the isotopy class of disks represented by vi so that
if .vi ; vj / is an edge of �.H /, then Di \Dj D ∅. For each i , let Ni be a small
enough neighborhood of Di in M so that Ni \Nj D∅ whenever .vi ; vj / is an edge
of �.H /, and let fi be a homeomorphism that takes Ni to the standard unit ball
in R3 D f.x1;x2;x3/g. Choose fi so that fi.H \Ni/ is the graph of r D 1 (in
cylindrical coordinates), and fi.Di/ is a disk in the x1x2 –plane. For each disk Di

we now define a family of surfaces Hi.t/ in Ni , parameterized by a variable t 2 Œ0; 1�.
These surfaces are given by the images of the graphs of r D tx2

3
C 1� t , under the

map f �1
i (see Figure 2).

Extend T to a triangulation T 0 on B by coning each simplex of T to the point z .
Suppose fD0; :::;Dn�1g is the image of an .n� 1/–simplex � of T under the map �.
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D0D1D2

t0

t1

t2

H

z

Figure 3: A simplex � of T 0 , and a few of the surfaces Hx for x 2� . The
union of the faces of the cube that do not meet z is a simplex of T .

We now identify the n–simplex of T 0 which is the cone on � with the unit cube in
Rn . Label the axes of Rn with the variables t0; : : : ; tn�1 . Place z at the origin, and
the vertex v of � such that �.v/DDi at the point with ti D 1 and tj D 0 for all j ¤ i .
If p is at the barycenter of a face � of � then place it at the vertex of the cube where
the coordinates corresponding to the vertices of � are 1 and the other coordinates are 0.
We now linearly extend over the entire simplex to complete the identification with the
cube. Now, if x is in this n–simplex then x has coordinates .t0.x/; :::; tn�1.x//. Let
Hx be the surface obtained from H by replacing H \Ni with the surface Hi.ti.x//,
for each i between 0 and n� 1. See Figure 3. Repeating this for each n–simplex of
T 0 gives us the complete family of surfaces Hx .

We assume H is initially transverse to F . For each i , the surface Hi.t/ � Ni is
tangent to F for finitely many values ftj

i g of t . Hence, for each x 2 B the surface
Hx is tangent to F at finitely many points, and each such point is in a distinct ball Ni .
Note also that if ti.x/ D ti.y/, then Hx and Hy agree inside of Ni . Hence, if Hx

is tangent to F in Ni then the surface Hy will also be tangent to F , for all y in the
plane where ti.y/D ti.x/. It follows that each n–simplex of T 0 is cubed by the points
x where Hx is tangent to F . See Figure 4. Hence, B is cubed by the n–simplices of
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t0

t1

t2
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j
0
g

Figure 4: A simplex � of T 0 is cut up by planes into subcubes. Each such
plane is determined by the points x in which Hx is tangent to F in Ni , for
some i .

T 0 , together with this cubing of each such simplex. We denote this cubing of B as †.
It follows that if x is in a codimension p cell of † then the surface Hx is tangent to
F in at most p points.

We now produce a contradiction by defining a continuous map ‰ from B into �.H /.
The map ‰j@B will be equal to � on the barycenters of the .n� 1/–cells of T , which
will in turn imply that ‰ maps S onto �.S/ with the same degree as �. A contradiction
follows as �.S/ is not homotopic to a point.

For each x 2B let Vx D �F .Hx/. If � is a cell of †, then we define V� to be the set
Vx , for any choice of x in the interior of � . Note that if x and y are in the interior of
the same cell � of †, then the pair .Hx;F / is isotopic to .Hy ;F /. Hence Vx D Vy ,
and thus V� is well defined. The map ‰ defined below will take each cell � of † into
V� . First, we establish a few properties of V� .

Claim 3.3 Suppose � is a cell of † which lies on the boundary of a cell � . Then
V� � V� .

Proof of Claim 3.3 Pick x 2 � and y 2 � . If D 2 Vx then D is isotopic to a
compression for Hx that has a shadow D0 . To show D 2 Vy we must show that D

is isotopic to a compression for Hy that has a shadow. Note that Hy \F is obtained
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from Hx \F by resolving some tangency. Hence, any loop of Hx nF is isotopic to
a loop of Hy nF . It follows that since @D D @D0 was a loop on Hx disjoint from
F , then @D D @D0 will be a loop on Hy that is disjoint from F . Furthermore, as the
interior of D0 meets Hx in a collection of loops that are inessential on Hx , it follows
that the interior of D0 meets Hy in a collection of loops that are inessential on Hy . We
conclude D0 is a shadow for D , both as a compression for Hx and as a compression
for Hy . Hence, D 2 �F .Hy/D Vy .

Claim 3.4 For each cell � of †,

�i.V� /D 1 for all i � dim.�/� 1:

Proof of Claim 3.4 Let x be in the interior of a codimension p cell � of †. Then
the dimension dim.�/ is n�p . The surface Hx is tangent to F in at most p points,
and is transverse to Hx elsewhere. Recall Vx D �F .Hx/. Thus, if the theorem is false
then Vx is non-empty, and �i.Vx/D 1 for all i � n�p� 1D dim.�/� 1.

We now define ‰ on the 0–skeleton of †. For each 0–cell x 2†, we will choose a
point in Vx to be ‰.x/. If x is in the interior of B then ‰.x/ may be chosen to be
an arbitrary point of Vx . If x is a point of S D @B then x is contained in (perhaps
more than one) .n� 1/–simplex �x of T . Let �0x denote the face of �x spanned
by the vertices v such that ti.v/ D 1 if ti.x/ D 1, and ti.v/ D 0 otherwise. (Note
that if x was on the boundary of �x , so that it was also contained in some other
.n� 1/–simplex of T , then we still end up with the same simplex �0x of T .) So, for
example, if x is at the barycenter of �x then �0x D �x . By construction, for each
vertex v of �0x the surface Hx is pinched to a point along a disk D in the isotopy
class of �.v/. Hence, for all y near x the disk D is a compression for Hy that is
disjoint from F . It follows that the entire simplex �.�0x/ is contained in Vx , and thus
we may choose the barycenter of �.�0x/ to be the image of ‰.x/. In particular, if x is
the barycenter of �x then ‰.x/D �.x/.

We now proceed to define the rest of the map ‰ by induction. Let � be a d –dimensional
cell of †. By induction, assume ‰ has been defined on the .d � 1/–skeleton of †.
In particular, ‰ has been defined on @� . Suppose � is a face of � . By Claim 3.3
V� � V� . By assumption ‰j� is defined and ‰.�/ � V� . We conclude ‰.�/ � V�
for all � � @� , and thus

(1) ‰.@�/� V� :

Since d D dim.�/ it follows from Claim 3.4 that �.d�1/.V� /D 1. Since d � 1 is the
dimension of @� , we can thus extend ‰ to a map from � into V� .
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�F .H /

�.H F /

�.H /

Compressions for H F that are not compressions for H

Compressions for H contained in M F

Figure 5: Schematic showing how the complexes �.H / , �F .H / and
�.H F / overlap

What remains to be shown is that if � is in S D @B then the extension of ‰ from
@� to � may be done so that ‰.�/ � �.S/. Let �� be the simplex of T whose
interior contains the interior of � . We need only show that ‰.@�/� V� \ �.�� /. Since
V� \ �.�� / will be a subsimplex of �.�� /, it follows that ‰ can be extended over �
to this subsimplex.

By (1), ‰.@�/� V� . So all we must do now is to show ‰.@�/� �.�� /. Let � denote
a face of � , and �� the simplex of T whose interior contains the interior of � . Then
�� is contained in �� . By induction we may assume ‰.�/ � �.�� /. Putting this
together we conclude ‰.�/� �.�� / for each � � @� , and thus ‰.@�/� �.�� /.

Definition 3.5 Let F be a properly embedded surface in a 3–manifold M . Then we
let M F denote the complement of a neighborhood of F in M . For each subset X of
M , let X F DX \M F .

We define the complex �.H F / precisely as above, where the vertices of �.H F / cor-
respond to the compressions for H F in M F . The relationship between the complexes
�.H /, �.H F / and �F .H / is depicted in Figure 5.

We now use Theorem 3.2 to show that when H is topologically minimal and F is
incompressible, then H may be isotoped so that H F is topologically minimal in M F .
In Section 4 we explore the implications of this when H is a Heegaard surface.

Lemma 3.6 Let F be a properly embedded, incompressible surface in an irreducible
3–manifold M . Let H be a properly embedded surface in M which meets F transver-
sally, with the exception of a finite number of center and saddle tangencies, such that
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D

E E

E0 E0H H=D

F
F

D
D�

Figure 6: Since D is not a compression for H , any compression E for
H=D (right figure) is always isotopic to a compression for H (left figure). If
E0 is a shadow for E as a compression for H=D (right figure), then E0 is a
shadow for E as a compression for H (left figure).

�F .H / has well defined homotopy index. Let D be a compression for H F in M F

that is not a compression for H . Then �F .H=D/D �F .H /.

Proof Let M.H / and B be as given in Definition 2.1. Then H=D is obtained from
H by removing B\H from H and replacing it with the frontier D� of B in M.H /.
As D is not a compression for H , @D bounds a subdisk D �H .

We first show �F .H=D/ � �F .H /. Suppose E 2 �F .H=D/. Then @E can be
isotoped off of D� . If E now meets the ball B then it can be further isotoped so that
E \B is a collection of disks parallel to D . But then each component of E \B can
be swapped with a disk parallel to D . The resulting disk has the same boundary as
E , but is disjoint from H . By the irreducibility of M this disk must therefore be
properly isotopic to E . See Figure 6. We conclude that E was a compression for H

that persisted as a compression for H=D . E is therefore a compression for H that is
disjoint from D .

Now let E0 be a shadow for E as a compression for H=D . As @E0 D @E , it follows
that @E0\D� D∅. So, if E0 meets the ball B , then it meets it in disks parallel to D .
The disk E0 thus meets H in loops isotopic to E0\H=D , together with loops parallel
to D\H . It follows that the interior of E0 meets H in inessential loops, and thus E0

is a shadow for E as a compression for H , that is, E 2 �F .H /. See Figure 6.

We now show �F .H /� �F .H=D/. Let E now denote an element of �F .H /. Thus,
@E \F D ∅. We assume E has been chosen so that jE \Dj is minimal. First we
suppose E \D D ∅. If the interior of E meets D then we may surger it off by
a standard innermost disk argument. So in this case we may assume E \D D ∅.
Since E is a compression for H but D is not, it now follows that E is a compression
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H H

D D

D D
D0

E E0 E0
E0

0

Figure 7: Using the disk D0 to obtain E0 and E0
0

from E and E0

for H=D . Any shadow for E as a compression for H will be a shadow for E as a
compression for H=D , and thus E 2 �F .H=D/.

Finally, we consider the case E \D¤∅. Our goal is to isotope E to a compression
E0 2 �F .H / such that jE0\Dj< jE\Dj, contradicting our minimality assumption.

Let  denote an arc of @E \D that is outermost on D . Then  cuts a disk D0 off of
D whose interior does not meet E . We can use the disk D0 to guide an isotopy of both
E and its shadow E0 to a compression E0 for H and a disk E0

0
with @E0 D @E

0
0

.
See Figure 7. Note that jE0\Dj< jE \Dj. If D0\F D∅, then it follows from the
fact that E0 was a shadow of E that E0

0
will be a shadow of E0 . Thus, E0 2 �F .H /

as desired.

If D0 \F ¤ ∅ then the disk E0
0

will not be a shadow for E0 , since E0
0
\F ¤ ∅.

What remains then is to show that nonetheless, E0 has a shadow.

Let N.F / denote a small product neighborhood of F . Since E0
0
\F ¤∅, it follows

that E0
0
\ @N.F /¤∅. Let ı denote a loop of E0

0
\ @N.F / that is outermost on E0

0
.

As F is incompressible, ı bounds a subdisk F� of @N.F /. See Figure 8.

Although F may not be transverse to H , the surface @N.F / will be. Thus, the disk
F� meets H in a collection of loops. We claim these loops are inessential on H , and
thus F� can be used to surger E0

0
to a disk which meets F fewer times. The new disk

will meet H more times, but each new intersection introduced will be inessential on
H . Thus, by repeating this process we transform E0

0
to a shadow for E0 , as desired.

To obtain a contradiction, suppose at least one loop of F�\H is essential on H . Let
˛ be a such loop that is innermost on F� . The loop ˛ bounds a subdisk A0 of F�
whose interior may meet H in inessential loops. See Figure 8. We claim A0 is the
shadow of a compression A for H , and thus A 2 �F .H /.
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E0
0

D

DH

F�

B

A0

ı

˛
ˇ

N.F /

Figure 8: The curves ˛ , ˇ and ı , and the disks A0 , B and F�

Let ˇ denote a loop of A0 \H that is innermost on A0 . As ˇ is inessential on H

it bounds a subdisk B of H . See Figure 8. The disk B can be used to surger A0 ,
lowering jA0\H j. continuing in this way we arrive at a disk A with the same boundary
as A0 but whose interior is disjoint from H . As @A0 D @A is essential on H , we
conclude A is a compression for H . The disk A0 is then a shadow for A, and thus
A 2 �F .H /.

Finally, suppose X is any other element of �F .H /. As @AD @A0 �F� � @N.F / and
@X \F D∅, it follows that @X \ @AD∅. By a standard innermost disk argument
(and the irreducibility of M ) we may isotope X to remove any intersections of its
interior with the interior of A. Thus, we may assume A\X D ∅. The disk X is
therefore connected to the disk A by an edge in �F .H /. As this holds for all disks
X 2 �F .H /, we conclude �F .H / is contractible to A. As �F .H / is not contractible,
we have reached a contradiction.

Theorem 3.7 Let F be a properly embedded, incompressible surface in an irreducible
3–manifold M . Let H be a properly embedded surface in M with topological index
n. Then H may be isotoped so that

(1) H meets F in p saddle tangencies, for some p�n. Away from these tangencies
H is transverse to F .

(2) H F has topological index i , for some i � n�p .
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Proof We begin by isotoping H so as to satisfy the conclusion of Theorem 3.2. Hence,
we assume H is tangent to F in p points, and the homotopy index of �F .H / is at
most n�p .

Let D be a compression for H F that is not a compression for H . Then @D bounds a
subdisk D of H . By Lemma 3.6, �F .H=D/D �F .H /. The surface H=D contains
a component H 0 isotopic to H (by the irreducibility of M ), and a surface isotopic to
D[D . Note that as D\F ¤∅, H 0 meets F fewer times than H did. Thus, we may
repeat the above procedure only finitely many times. Note also that this procedure will
remove all center tangencies of H with F . We arrive at a surface H� isotopic to H

with �F .H�/D �F .H /, such that every compression for H F
� is also a compression

for H� . As such compressions lie in the complement of F , they are their own shadows.
Hence, such compressions are elements of �F .H�/. We conclude �.H F

� /� �F .H�/.
We claim the opposite inclusion is true as well, and thus �.H F

� /D �F .H�/.

Suppose now E 2�F .H�/. Let E0 be a shadow of E . Let ˇ be a loop of E0\H� that
is innermost on E0 . Then ˇ bounds subdisks C �E0 and C 0 �H� . If C 0\F ¤∅,
then C is a compression for H F

� that is not a compression for H� , a contradiction.
We conclude C 0\F D∅. Since E0\F D∅ and C �E0 , we conclude C \F D∅.
The sphere C [ C 0 thus bounds a ball in the complement of F that we can use to
guide an isotopy of C to C 0 . (This may remove other components of E0\C as well.)
We thus transform the disk E0 to a disk E00 such that @E00 D @E , E00\F D∅, and
jE00 \H�j < jE

0 \H�j. Continuing in this way we arrive at a compression for H�
with the same boundary as E , which is disjoint from F . Thus E 2 �.H F

� /.

We have now produced a surface H� , isotopic to H , such that

�.H F
� /D �F .H�/D �F .H /:

Thus, the homotopy index of �.H F
� / is equal to the homotopy index of �F .H /.

Corollary 3.8 Let F be a properly embedded, incompressible surface in an irreducible
3–manifold M . Let H be a properly embedded surface in M with topological index
n. Then H and F may be isotoped so that any loop of H \F is essential on both
surfaces.

When H is a Heegaard surface whose topological index is one this is a well-known
result that has been used extensively in the literature. It first appears in the literature in
the above form as Lemma 6 of [21], although it is implicit in Theorem 1 of [13] and is
directly implied by Theorem 1.1 of [18].
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Proof The first step is to use Theorem 3.7 to isotope H so that H F is topologically
minimal. The manifold M F is obtained from M by removing a submanifold N.F /Š

F � I . Let F1 and F2 denote the copies of F on the boundary of N.F /. Each
component of H \F1 is a loop or arc of @H F . Hence, we must show that every loop
of @H F that is inessential on F1 is inessential on H F .

If there is a loop of @H F that is inessential on F1 then there is such a loop ˛ that
bounds a subdisk C of F1 whose interior is disjoint from H F . If ˛ is essential on
H F then C is a compression for H F . Now suppose D is some other element of
�.H F /. As C � F1 , the disks C and D can be made disjoint in M F , and hence
.D;C / is an edge of �.H F /. We conclude C is connected by an edge to every other
element of �.H F /. It follows that �.H F / is contractible to C , a contradiction.

We conclude that all loops of H \F1 that are inessential on F1 are also inessential
on H . Any such loop thus bounds a disk component of H F that can be isotoped into
N.F /, without affecting �.H F /. By successively performing this operation we thus
arrive at the desired position of H with respect to F1 , a surface isotopic to F .

4 Heegaard surfaces

In this section we give some applications of topological index theory to Heegaard
splittings of 3–manifolds. We also show that the topological index of a surface is the
sum of the topological indices of its components.

Lemma 4.1 Let H be a properly embedded surface which separates M into V and
W . Let HV be a surface obtained from H by a sequence of compressions into V .
Then HV is incompressible in the submanifold cobounded by H and HV .

Proof Let fDig denote the union of the compressions used to obtain HV from H .
Let E denote a compression for HV that lies between H and HV . By an innermost
disk argument, we may surger E off of each disk Di . But the complement of a
neighborhood of

S
Di in this submanifold is a product. As the boundary of a product

does not admit compressions, we have thus reached a contradiction.

Lemma 4.2 Let H be a properly embedded surface which separates M into V and W .
Let HV and HW be surfaces obtained from H by maximal sequences of compressions
into V and W . Let MVW be the submanifold of M cobounded by HV and HW . If
H is topologically minimal in M then H is topologically minimal in MVW .

Geometry & Topology, Volume 14 (2010)



602 David Bachman

Proof It suffices to show that every compression for H in M is isotopic to a com-
pression in MVW . Let D be such a compression, and assume D � V . Isotope D

so that it meets HV minimally. If D \HV D ∅, then the conclusion of the lemma
follows. Hence, we assume there is a subdisk D0 of D , cut off by HV , whose interior
is disjoint from HV . If D0\HV is not essential, then we contradict our assumption
that jD \HV j is minimal. Hence, D0 \HV is essential and we conclude D0 is a
compression for HV .

If D0 lies outside of MVW then we contradict the maximality of the sequence of
compressions used to obtain HV . But if D0 lies in MVW then it is in the submanifold
cobounded by H and HV . This contradicts Lemma 4.1.

Theorem 4.3 Let H be a properly embedded surface which separates M into V and
W . Let HV be a surface obtained from H by a maximal sequence of compressions
into V . If H is topologically minimal then HV is incompressible in M .

Proof Let HW be the surface obtained from H by a maximal sequence of compres-
sions into W , and MVW the submanifold of M cobounded by HV and HW . By
Lemma 4.2 the surface H is topologically minimal in MVW .

We now claim that if either HV or HW is compressible, then there is a compression
for one that misses the other. Assume there is no such compression for HW . Let D be
a compression for HV in M . Isotope D so that it meets HW minimally. If D misses
HW then we establish our claim. Assume then that D meets HW . Let D0 be a subdisk
of D cut off by HW . If @D0 is inessential on HW , then we contradict our assumption
that jD\HW j is minimal. But if @D0 is essential on HW then D0 is a compression
for HW that misses HV , a contradiction. We conclude there is a compression D for
either HV or HW that misses the other. That is, D is a compression for HV [HW .

If D lies outside of MVW then we contradict the minimality of the sequence of
compressions used to obtain HV or HW . Hence, D �MVW . Note that D is itself a
properly embedded, incompressible surface in MVW . We may thus apply Corollary
3.8 to isotope H in MVW to meet D in a collection of loops that are essential on both
surfaces. Since D does not contain any essential loops, we conclude D\H D∅.

The disk D now lies either between H and HV , or between H and HW . In either
case we contradict Lemma 4.1.

Corollary 4.4 Let H be a topologically minimal Heegaard surface in a 3–manifold,
M . Then @M is incompressible.
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In the topological index one case this follows also from a celebrated Lemma of Haken
[10]. In the topological index two case it was established by the author in [5].

Proof Let V , W , HV and HW be as in Theorem 4.3. Since H is a Heegaard surface,
every component of @M is parallel to a component of either HV or HW . The result is
thus an immediate application of Theorem 4.3.

Corollary 4.5 Let H be a closed topologically minimal surface in an irreducible
3–manifold M . Then either

(1) M contains a non-boundary parallel, incompressible surface,

(2) H is a Heegaard surface in M ,

(3) H is contained in a ball, or

(4) H is isotopic into a neighborhood of @M .

In the next section we conjecture that the third possibility does not happen. In particular,
if M is a non-Haken 3–manifold then it would follow that every topologically minimal
surface in M is a Heegaard surface.

Proof Let V , W , HV and HW be as in Theorem 4.3. Suppose first some component
of HV [HW is a sphere. By the irreducibility of M , this sphere bounds a ball. If
the ball contains H , then the result follows. Otherwise, we may remove each such
sphere component from HV [HW . If the resulting surfaces are boundary parallel, then
either H is contained in a neighborhood of some boundary component of M , or H is
a Heegaard splitting of M . If some component of HV [HW is not boundary parallel
then by Theorem 4.3 it is incompressible, and the result follows.

Lemma 4.6 Suppose F and G are disjoint surfaces in an irreducible 3–manifold M ,
and F [G is topologically minimal. Then �.F [G/ is the join of �.F / and �.G/.

Proof Let H D F [G . Let V , W , HV and HW be as in Theorem 4.3. By Theorem
4.3 the surfaces HV and HW are incompressible in M .

If E is a compression for F then, as HV and HW are incompressible, we may isotope
E so that it is disjoint from both of these surfaces. It follows that E is entirely
contained in the component of MVW that contains F . But the surfaces F and G

lie in different components of MVW . Thus, E must be disjoint from the surface G .
Hence, any compression for F is isotopic to a compression for F [G . We conclude
there is a one-to-one correspondence between the vertices of �.H / and the vertices of
�.F /[�.G/. As every compression for F will be disjoint from every compression
for G , we conclude that �.H / is the join of �.F / and �.G/.
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Theorem 4.7 Suppose F and G are disjoint separating surfaces in an irreducible
3–manifold M , and F [G is topologically minimal. Then F and G are topologically
minimal and

ind.F /C ind.G/D ind.F [G/:

Note that the hypothesis that F [G is topologically minimal is extremely important.
For example, let F and G be parallel surfaces in M that each have topological index
one. Then all of the compressing disks for H D F [G are on the same “side” of H .
Hence, by McCullough’s result [14], �.H [G/ is contractible. Thus H does not have
topological index two, as one might expect.

Proof We first show that F and G are topologically minimal. If not, then �.F / (say)
is non-empty and contractible. But the join of a contractible space with any other space
is also contractible. It thus follows from Lemma 4.6 that F [G is not topologically
minimal.

If either F or G has topological index 0 then the result is immediate. We assume, then,
that the topological index of F is n� 1 and the topological index of G is m� 1.

By definition, .n� 1/ is the smallest i such that �i.�.F //¤ 1, and .m� 1/ is the
smallest j such that �j .�.G// ¤ 1. Our goal is to show that .nCm � 1/ is the
smallest k such that �k.�.F [G//¤ 1. By Lemma 4.6, this is equivalent to showing
that .nCm� 1/ is the smallest k such that �k.�.F /��.G//¤ 1.

When nD 2 then �1.�.F //¤ 1. Suppose F separates M into V and W . Let �V.F /
and �W.F / denote the subsets of �.F / spanned by the compressions that lie in V
and W , respectively. By an argument identical to the one given by McCullough in
[14], �V.F / and �W.F / are contractible. If we contract these to points pV and pW ,
then the remaining 1–simplices of �.F / join these two points. The fundamental group
�1.�.F // is generated by these 1–simplices. The remaining 2–simplices have become
bigons that run once over each of two 1–simplices. Hence, each such 2–simplex gives
rise to a relation in �1.�.F // that kills one generator. It follows that �1.�.F // is
free, and hence the non-triviality of �1.�.F // implies H1.�.F // is also non-trivial.
Similarly, if mD 2 we conclude H1.�.G// is non-trivial. For n� 3 the non-triviality
of Hn�1.�.F // follows from the Hurewicz Theorem.

By Lemma 2.1 from [15]:

zHnCm�1.�.F /��.G//Š
X

iCjDnCm�2

zHi.�.F //˝ zHj .�.G//

C

X
iCjDnCm�3

Tor. zHi.�.F //; zHj .�.G///:
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In particular, it follows from the fact that .n�1/ is the smallest i such that Hi.�.F //

is non-trivial, and .m� 1/ is the smallest j such that Hj .�.G// is non-trivial, that
.nCm� 1/ is the smallest k such that Hk.�.F /��.G// is non-trivial.

As an immediate corollary we obtain:

Corollary 4.8 If the topological index of H is n, then the sum of the indices of the
components of H is exactly n.

Combining Theorem 3.2 with Corollary 4.8 implies:

Theorem 4.9 Let F be a properly embedded, incompressible surface in an irreducible
3–manifold M . Let H be a properly embedded surface in M with topological index
n. Then H may be isotoped so that

(1) H meets F in p saddles, for some p � n, and

(2) the sum of the topological indices of the components of H F , plus p , is at most
n.

When H is a Heegaard surface whose topological index is one, this result says that
F cuts H up into incompressible pieces, along with at most one index one piece.
Versions of this result were obtained by Schultens for graph manifolds [22], and the
author, Sedgwick and Schleimer for more general Haken manifolds [7].

Note also the similarity to the classification of almost normal surfaces given by Ru-
binstein. Such surfaces are cut up by the 2–skeleton of a triangulation into triangles
and quadrilaterals, and exactly one “special” piece. Rubinstein [19] and Stocking [23]
proved that topological index 1 surfaces can always be isotoped to be almost normal.
We believe the analogy is not a coincidence; A relative (with respect to the 1–skeleton
of a triangulation) version of Theorem 4.9 should recover the Rubinstein–Stocking
result, and generalize it to arbitrary topological index.

5 Questions

In any new theory, the questions raised are as important as the new results. Here we
compile a list of questions and conjectures that we hope will stimulate further research
on topologically minimal surfaces.

Question 5.1 How does topological index behave under finite covers? Are covers of
topologically minimal surfaces also topologically minimal?
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In [6] we produce a fairly generic family of 3–manifolds fMng such that Mn contains
a Heegaard surface Hn whose topological index is precisely n. The manifold Mn is
the n–fold cover of M1 , and the surface Hn is the lift of H1 .

Question 5.2 Does every manifold have a topologically minimal Heegaard splitting?

Question 5.3 Are there non-Haken 3–manifolds with surfaces that have topological
index � 3?

Conjecture 5.4 Suppose M contains unstabilized Heegaard surfaces F and G that
do not have topological index 1. Suppose further that the minimal genus common
stabilization of F and G does not have topological index 2. Then M contains a surface
that has topological index 3.

By [8] such a manifold would be Haken, and so this conjecture compliments the
question that precedes it.

Question 5.5 Is there a single 3–manifold that has surfaces of arbitrarily high topolog-
ical index?

Conjecture 5.6 S3 and B3 do not contain topologically minimal surfaces.

A corollary would be that handlebodies do not contain closed topologically minimal
surfaces. Note also that this conjecture rules out the third conclusion given by Corollary
4.5.

Conjecture 5.7 Let F be a surface of positive genus. Then the only connected,
topologically minimal surfaces in F � I are a single copy of F and two copies of F

connected by an unknotted tube.

By the argument given in the proof of Corollary 4.5, any topologically minimal surface
in F � I would be a Heegaard surface or would be contained in a ball. The only
incompressible (that is, index 0) surface in F � I is a copy of F . By [20], the only
strongly irreducible (that is, index 1) Heegaard surface is two copies of F connected
by an unknotted tube. So, if Conjecture 5.6 is true, then Conjecture 5.7 is equivalent to
the assertion that F � I contains no topologically minimal surfaces whose index is
larger than one.

Question 5.8 Does the conclusion of Corollary 3.8 hold if F is topologically minimal,
but not incompressible?
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Rubinstein and Scharlemann have shown [17] that Corollary 3.8 holds when H and
F both have topological index 1. This was instrumental in their proof that there is an
upper bound on the smallest genus of a common stabilization of Heegaard surfaces F

and G , in terms of the genera of F and G .

Conjecture 5.9 If H has topological index n then it is isotopic to a geometrically
minimal surface whose index is at most n.

The index 0 case was proved by Freedman, Hass and Scott [9], and the index 1 case
by Pitts and Rubinstein [16]. If true, it would indicate that topologically minimal
surfaces are truly special. One would not expect, for example, a “random” surface in a
3–manifold to be isotopic to a minimal surface.

Question 5.10 Suppose H has topological index n. What information is carried by
rank.Hn�1.�.H //? What about other algebraic invariants of �.H /?

Question 5.11 (Generalized Hempel distance) For each surface H there is a natural
map of �.H / into C.H /, its curve complex, where the image of a compression D is
@D . By [11], C.H / has the homotopy type of a wedge of spheres. It follows that for
low values of n (in relation to the genus of H ), each map f W Sn�1! �.H / can be
extended to a map yf W Bn! C.H /. If we make all choices so that the number d.n/

of n–dimensional simplices in yf .Bn/ is minimal, then we get an interesting invariant
when f .Sn�1/ is not homotopic to a point in �.H /. When H is a Heegaard surface
that has topological index 1, Hempel called the invariant d.1/ the distance of H [12].
Many interesting results have been obtained about Hempel’s distance. What can be said
about the invariant d.n/ for larger values of n?
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