Volume 14, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 27
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Some remarks on the size of tubular neighborhoods in contact topology and fillability

Klaus Niederkrüger and Francisco Presas

Geometry & Topology 14 (2010) 719–754
Bibliography
1 L Bates, G Peschke, A remarkable symplectic structure, J. Differential Geom. 32 (1990) 533 MR1072917
2 F Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. (2002) 1571 MR1912277
3 F Bourgeois, O van Koert, Contact homology of left-handed stabilizations and plumbing of open books arXiv:0803.0391
4 Y Chekanov, O van Koert, F Schlenk, Minimal atlases of closed contact manifolds, from: "New perspectives and challenges in symplectic field theory", CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 73 MR2555934
5 Y Eliashberg, Three lectures on symplectic topology in Cala Gonone. Basic notions, problems and some methods, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988) 27 MR1122856
6 Y Eliashberg, New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc. 4 (1991) 513 MR1102580
7 Y Eliashberg, Classification of contact structures on $\mathbb{R}^3$, Internat. Math. Res. Notices (1993) 87 MR1208828
8 Y Eliashberg, S S Kim, L Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635 MR2284048
9 Y Eliashberg, N Mishachev, Introduction to the $h$–principle, Graduate Studies in Mathematics 48, American Mathematical Society (2002) MR1909245
10 J B Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255 MR2126827
11 J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. $(2)$ 162 (2005) 1305 MR2179731
12 H Geiges, Contact geometry, from: "Handbook of differential geometry Vol II", Elsevier/North-Holland, Amsterdam (2006) 315 MR2194671
13 H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008) MR2397738
14 D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer (2001) MR1814364
15 M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
16 M Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986) MR864505
17 S Ivashkovich, V Shevchishin, Reflection principle and $J$–complex curves with boundary on totally real immersions, Commun. Contemp. Math. 4 (2002) 65 MR1890078
18 E Lerman, Contact fiber bundles, J. Geom. Phys. 49 (2004) 52 MR2077244
19 D McDuff, D Salamon, $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004) MR2045629
20 A Mori, Global models of contact forms, J. Math. Sci. Univ. Tokyo 11 (2004) 447 MR2110923
21 M P Muller, Une structure symplectique sur $\mathbb{R}^6$ avec une sphère lagrangienne plongée et un champ de Liouville complet, Comment. Math. Helv. 65 (1990) 623 MR1078102
22 K Niederkrüger, The plastikstufe – a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473 MR2286033
23 K Niederkrüger, O van Koert, Every contact manifolds can be given a nonfillable contact structure, Int. Math. Res. Not. (2007) MR2380008
24 F Presas, A class of non-fillable contact structures, Geom. Topol. 11 (2007) 2203 MR2372846