Volume 14, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The $h$–principle for broken Lefschetz fibrations

Jonathan Williams

Geometry & Topology 14 (2010) 1015–1061
Bibliography
1 S Akbulut, Ç Karakurt, Every $4$–manifold is BLF, J. Gökova Geom. Topol. GGT 2 (2008) 83 MR2466002
2 Y Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985) 471 MR792988
3 Y Ando, On local structures of the singularities $A_k\;D_k$ and $E_k$ of smooth maps, Trans. Amer. Math. Soc. 331 (1992) 639 MR1055564
4 V I Arnold, Catastrophe theory, Springer (1992) MR1178935
5 V I Arnold, S M Guseĭn-Zade, A N Varchenko, Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts, Monogr. in Math. 82, Birkhäuser (1985) MR777682
6 D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 MR2140998
7 R İ Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. (2008) MR2439543
8 R İ Baykur, Handlebody argument for modifying achiral singularities (appendix to \citeL1), Geom. Topol. 13 (2009) 312
9 R İ Baykur, Topology of broken Lefschetz fibrations and near-symplectic four-manifolds, Pacific J. Math. 240 (2009) 201 MR2485463
10 S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743 MR1958528
11 Y Eliashberg, N M Mishachev, Wrinkling of smooth mappings and its applications. I, Invent. Math. 130 (1997) 345 MR1474161
12 Y Eliashberg, N Mishachev, Introduction to the $h$–principle, Graduate Studies in Math. 48, Amer. Math. Soc. (2002) MR1909245
13 D T Gay, R Kirby, Constructing Lefschetz-type fibrations on four-manifolds, Geom. Topol. 11 (2007) 2075 MR2350472
14 R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999) MR1707327
15 Y Lekili, Heegaard Floer homology of broken fibrations over the circle, Preprint (2009)
16 Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 MR2469519
17 H I Levine, Elimination of cusps, Topology 3 (1965) 263 MR0176484
18 P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 MR2222356
19 T Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007) 759 MR2302502
20 O Saeki, Elimination of definite fold, Kyushu J. Math. 60 (2006) 363 MR2268242
21 C H Taubes, Counting pseudo-holomorphic submanifolds in dimension $4$, J. Differential Geom. 44 (1996) 818 MR1438194
22 M Usher, The Gromov invariant and the Donaldson–Smith standard surface count, Geom. Topol. 8 (2004) 565 MR2057774
23 G Wassermann, Stability of unfoldings in space and time, Acta Math. 135 (1975) 57 MR0433497