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Hausdorff dimension
and the Weil–Petersson extension to quasifuchsian space

MARTIN BRIDGEMAN

We consider a natural nonnegative two-form G on quasifuchsian space that extends
the Weil–Petersson metric on Teichmüller space. We describe completely the positive
definite locus of G , showing that it is a positive definite metric off the fuchsian
diagonal of quasifuchsian space and is only zero on the “pure-bending” tangent
vectors to the fuchsian diagonal. We show that G is equal to the pullback of the
pressure metric from dynamics. We use the properties of G to prove that at any
critical point of the Hausdorff dimension function on quasifuchsian space the Hessian
of the Hausdorff dimension function must be positive definite on at least a half-
dimensional subspace of the tangent space. In particular this implies that Hausdorff
dimension has no local maxima on quasifuchsian space.
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1 Statement of results

Let S be a closed hyperbolic surface and T .S/ be the associated Teichmüller space.
Then the Weil–Petersson metric w is a Riemannian metric on T .S/. For simplicity, we
normalize the Weil–Petersson metric to define the normalized Weil–Petersson metric

g D

�
2

3�j�.S/j

�
w :

If QF.S/ is the quasifuchsian space of S , then by Bers simultaneous uniformization,
QF.S/' T .S/�T . xS/ where xS has opposite orientation to S . This gives the natural
diagonal embedding �W T .S/! T .S/�T . xS/' QF.S/ given by �.X /D .X; xX /.
We let F.S/ D �.T .S// the diagonal in QF.S/. Then F.S/ corresponds to the
subspace of fuchsian elements of QF.S/ and is called the fuchsian subspace. It is a
smooth submanifold of QF.S/ and we have the natural identification T .S/' F.S/

via �.

Quasifuchsian space QF.S/ has a complex structure arising out of identifying the
isometry group IsomC.H3/ with PSL.2;C/ (see Marden [9]). This complex structure
is given by a bundle map J W T .QF.S//! T .QF.S// with J a lift of the identity map
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800 Martin Bridgeman

on QF.S/ and J 2 D�I where I the identity map on T .QF.S//. If v 2 T .QF.S//
we will write J:v D J.v/ for simplicity.

We define hW QF.S/ ! R by setting h.X / equal to the Hausdorff dimension of
the limit set of X . Then by Ruelle [14], h is real-analytic. Also, associated with
each X 2 QF.S/ is the real-analytic length function L�X

W QF.S/! R of the unit
Patterson–Sullivan geodesic current �X of X .

In [6], the author and Taylor showed that the function .hL�X
/ on QF.S/ is minimum

at X . Using this we defined a natural nonnegative two-form G on QF.S/ given by
taking the Hessian of .hL�X

/ at X . Thus

GX D .hL�X
/00.X /:

We showed that G extends the normalized Weil–Petersson metric g on F.S/. Specifi-
cally:

Theorem 1.1 (Bridgeman–Taylor [6]) There exists a continuous nonnegative two-
form G on QF.S/ such that for all X 2 F.S/� QF.S/

hv;wiG D hv;wig for all v;w 2 TX .F.S//� TX .QF.S//:

In this paper we answer the question of whether G is positive-definite on QF.S/. The
answer is that G is “almost” a metric, in particular it is a metric off the fuchsian locus
F.S/. The complete description of the positive-definite locus of G is given by the
following Theorem.

Main Theorem Let v 2 TX .QF.S//, v ¤ 0. Then kvkG D 0 if and only if

(1) X 2 F.S/,

(2) v D J:w where w 2 TX .F.S//.

Although we will not discuss this aspect further, the Main Theorem has a simple
description in terms of the geometry of the associated deformations. If X 2 F.S/�

QF.S/ then the tangent space at X decomposes into TX .QF.S// D TX .F.S//˚

J.TX .F.S/// (see Bonahon [2]). If w 2 TX .F.S// then w corresponds to deforming
X inside the fuchsian subspace F.S/. By the Earthquake Theorem, this deformation
is given by shearing (or twisting) X along a certain measured lamination ˇ (see
Kerckhoff [7]). Thus the vectors in TX .F.S// are called pure shearing vectors. If
v 2 J.TX .F.S/// then v D J:w where w is a pure shearing vector with some
corresponding measured lamination ˇ . It can be shown that v then corresponds to

Geometry & Topology, Volume 14 (2010)
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deforming the structure X by bending along measured lamination ˇ (see Bonahon [2]).
Thus the vectors in J.TX .F.S/// are called pure bending vectors.

Therefore in terms of deformations, the Main Theorem states that the degenerate vectors
for G are exactly the pure bending vectors at fuchsian representations.

The proof of the Main Theorem is via the conformal equivalence of the two-form G

with another two-form W obtained by taking the pullback of the so-called pressure
metric of thermodynamics. Then the proof of positive-definiteness reduces to showing
that the pullback is only trivial for the above tangent vectors. This relation between G

and W was suggested by McMullen in the paper [11].

Using the Main Theorem we study properties of the critical points of h. In particular
if h is critical at X then the Hessian of h at X is a well-defined symmetric bilinear
two-form. Thus the Hessian has a well-defined signature. Applying the Main Theorem
we obtain:

Theorem 1.2 If X 2 QF.S/ is a critical point of hW QF.S/! R then the Hessian
of h at X is positive definite on a subspace of TX .QF.S// of dimension at least 6g�6.
In particular h has no local maxima in QF.S/.

1.1 Background

In [6], the complex structure on QF.S/ was used to define a metric H on Teichmüller
space. If X 2 TX .F.S// the associated two-form at X is given by

hv;wiH D h00.X /.J:v;J:w/

for v;w 2 TX .F.S//� TX .QF.S//:

From the definition of G and the fact that it is nonnegative, we obtain:

Theorem 1.3 (Bridgeman–Taylor [6]) If X 2F.S/ and v2TX .F.S//�TX .QF.S//
then

0� kJ:vk2G D kvk
2
H �kvk

2
g

where g is the normalized Weil–Petersson metric. Thus the two-form H is a positive
definite metric on F.S/ and satisfies

kvkH � kvkg:

In [11], McMullen showed that the Weil–Petersson metric was equivalent to the second
derivative of various well-defined Hausdorff dimension functions at the fuchsian locus.
In particular McMullen proved the following Theorem.

Theorem 1.4 (McMullen [11]) The metrics H and g are equal.
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802 Martin Bridgeman

The results of this paper arise out of combining the methods outlined in the paper [6]
with those of the paper of McMullen [11] and applying them in the nonfuchsian
case. We note that a consequence of the Main Theorem is that kJ:vkG D 0 when
v 2 TX .F.S// which we will show gives a new proof of McMullen’s result above
(Theorem 1.4).
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2 Kleinian groups and geodesic currents

2.1 Kleinian groups

Let IsomC.Hn/n�2 be the space of orientation preserving isometries of Hn: As usual,
we give the space of isometries the topology of uniform convergence on compact sets.
We define a Kleinian group � to be a discrete torsion-free subgroup of IsomC.Hn/. As
such, � acts properly discontinuously on Hn , and the quotient manifold N DHn=�

is a complete Riemannian manifold of constant curvature �1.

A Kleinian group � also acts as a discrete subgroup of conformal automorphisms of the
sphere at infinity Sn�1

1 ; this action partitions Sn�1
1 into two disjoint sets. The regular

set �� is the largest open set in Sn�1
1 on which � acts properly discontinuously, and

the limit set ƒ� is its complement. In the case that ƒ� contains more than 2 points, it
is characterized as being the smallest closed � –invariant subset of Sn�1

1 :

Define the convex hull CH.ƒ�/ of the limit set ƒ� to be the smallest convex subset
of Hn so that all geodesics with both limit points in ƒ� are contained in CH.ƒ�/.
We can take the quotient of CH.ƒ�/ by � (denoted by C.�/); this is the convex core.
It is the smallest convex submanifold of N DHn=� so that the inclusion map is a
homotopy equivalence.

A Kleinian group is convex cocompact if its associated convex core is compact and
it is geometrically finite if the volume of the unit neighborhood of the convex core
is finite (see Thurston [18]). This paper deals specifically with convex cocompact
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Kleinian groups. For the basics in the theory of Kleinian groups we refer the reader to
Maskit [10].

If � is a geometrically finite Kleinian group, we define the space QC.�/ of qua-
siconformal deformations of � as follows; We consider pairs .f0; �0/ such that
f0W S

n�1
1 ! Sn�1

1 is a quasiconformal homeomorphism, conjugating � to Kleinian
group �0 , ie �0 D f � f �1 . The map f0 is called the marking. We define an
equivalence relation by saying .f1; �1/� .f2; �2/ if there exists a conformal map ˛
conjugating �1 to �2 , ie

f2 ı 
 ıf
�1

2 D .˛ ıf1/ ı 
 ı .˛ ıf1/
�1 for all 
 2 �:

Then QC.�/ is the set of equivalence classes under this equivalence relation. For
convenience, we will often suppress the map f0 in describing a point of QC.�/ and
just refer to it by the group.

2.2 Geodesic currents

We can identify a geodesic with its endpoints on Sn�1
1 and therefore we identify the

space of geodesics on Hn by G.Hn/Š .Sn�1
1 �Sn�1

1 � diagonal/=Z2 .

If N is a convex cocompact hyperbolic n–manifold, with N D Hn=� , then each
nontrivial free homotopy class of closed curve corresponds to a unique multiple of a
primitive closed geodesic in N . If ˛ is a primitive closed geodesic in N , we lift ˛
to get a discrete subset of G.Hn/ which is � invariant. In this way we identify every
nontrivial homotopy class of closed curves on Hn=� with a � invariant discrete subset
of G.Hn/ and a certain integral multiplicity. We then obtain a � invariant measure on
G.Hn/ by taking the Dirac measure on this discrete set times the multiplicity. This
measure is the geodesic current associated with the closed curve. We have the following
generalization:

Definition A geodesic current for Kleinian group � is a positive measure on G.Hn/

that is invariant under the action of � and supported on the set of geodesics with
endpoints belonging to limit set ƒ� .

As geodesic currents are Borel � –finite measures, we can add two geodesic currents
and also multiply a geodesic current by a positive constant. A geodesic current which
is a constant multiple of a closed geodesic is called a discrete geodesic current.

If � is a Kleinian group, we let C.�/ be the space of geodesic currents defined for � .
The natural topology on C.�/, via the Radon–Riesz Representation Theorem, is the
weak*-topology on the space of continuous functions with compact support in G.Hn/.
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Below is a basic fact we will need concerning the topology on C.�/. The proof involves
first showing that the geodesic flow on the unit tangent bundle has the specification
property [3; 15], and then applying Theorem 1 in [15].

Theorem 2.1 Let � be a convex cocompact Kleinian group. Then the set of discrete
geodesic currents is dense in C.�/.

We note that if Œf0; �0�2QC.�/ then f0W ƒ�!ƒ�0
is a homeomorphism. Therefore

by pushing forward measures, we obtain a continuous homeomorphism, f0W C.�/!
C.�0/ (see Bridgeman and Taylor [5]). This map is the marking on the geodesic
currents.

2.3 Patterson–Sullivan geodesic current

Fix s 2RC: We define the Poincaré series of a Kleinian group � by

gs.x;y/D
X

2�

e�sd.x;
y/

where x;y 2Hn and d is the hyperbolic metric on Hn . Let

ı.�/D inffs W gs <1gI

then ı.�/ is called the exponent of convergence of the Poincaré series. We refer the
reader to Nicholls [12] for further details on the exponent of convergence.

Following the work of Patterson and Sullivan, a measure can be constructed on Sn�1
1

which is supported on ƒ� . For x;y 2Hn and s > ı.�/, we define a measure �x;s

supported on the orbit of y by

�x;s D
1

gs.y;y/

X

2�

e�sd.x;
y/D.
y/

where D.p/ is Dirac measure at p . The Patterson–Sullivan measure �x is constructed
by taking a limit of these measures as s! ı.�/C . The measure �x can be used to
define a measure zm on .Sn�1

1 �Sn�1
1 � diagonal/ given by

(1) d zmD
d�x.a/d�x.b/

jb� aj2ı.�/
:

We then obtain a geodesic current m by taking the pushforward of zm under the Z2

cover � W .Sn�1
1 �Sn�1

1 � diagonal/! G.Hn/ given by �.a; b/D g where g is the
geodesics with endpoints a; b . This measure mD��. zm/ is � –invariant and supported
on .ƒ� � ƒ� � diagonal/=Z2 . Therefore it is a geodesic current and is called a
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Patterson–Sullivan geodesic current for � . By work of Sullivan [17], for � being
geometrically finite, m is independent of choice of x up to scalar multiple.

2.4 Length functions

If � is convex cocompact Kleinian group then associated to each element 
 2 �
is a natural length function L
 W QC.�/! R given by letting L
 .Œf0; �0�/ be the
translation length of the element f0 ı
 ıf

�1
0
2�0 . This function is naturally a smooth

function on QC.�/. Similarly, if � 2 C.�/ is a discrete geodesic current then � is a
multiple r of a closed geodesic ˛ . We then choose 
 2 � to be a lift of the action ˛
and define L� by letting L� D rL
 .

This can be generalized for geodesic currents to obtain the following result.

Length Function Theorem (Bridgeman–Taylor [6]) Let � be a convex cocompact
Kleinian group acting on H3 . Then there is a continuous function

LW C.�/! C1.QC.�/;R/

such that L.�/DL� for � a discrete geodesic current where C1.QC.�/;R/ is the
space of smooth real-valued functions on QC.�/ with the C1–topology.

Given � 2 C.�/, we define L�W QC.�/! R by L�.X /D L.�;X /. The function
L� is the length function for �.

We note that the continuity of L implies that if �i ! � then L�i
!L� uniformly

on compacts subsets of QC.�/.

2.5 Quasifuchsian space

Recall that a fuchsian group � is a finitely generated Kleinian group which acts
invariantly on an open geometric disk in S2

1 . Identifying S2
1 with the extended

complex plane yC , we consider � as a group of Möbius transformations on yC with
limit set a subset of the extended real line xR such that � preserves each component
of yC� xR. Then the hyperbolic plane H2 with boundary xR is invariant under � and
S DH2=� is a hyperbolic surface.

Let � be convex cocompact and fuchsian, then the quotient manifold H3=� is home-
omorphic to S �R, where S is the closed hyperbolic surface given by H2=� . To
emphasize that we are dealing with a special case, QC.�/ is called the quasifuchsian
space of S and denoted by QF.S/. Also we denote the space of currents C.�/ by
C.S/. Furthermore we will denote the fuchsian elements of QF.S/ by F.S/.
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By Bers simultaneous uniformization we have QF.S/' T .S/�T . xS/ where T .S/ is
the Teichmüller space of S and F.S/ corresponds to the diagonal in T .S/�T . xS/

(see Bers [1]). Thus if �W T .S/! T .S/�T . xS/ is the map �.X /D .X; xX /, then
F.S/' T .S/.

In the quasifuchsian case we have the following extension of the real length function L

to a complex length function L.

Complex Length Theorem (Bridgeman–Taylor [6]) For each � 2 C.S/ there exists
a unique holomorphic function L�W QF.S/!C with real part L� and imaginary part
satisfying Im.L�/D 0 on F.S/. Furthermore the function

LW C.S/! C!.QF.S/;C/

given by L.�/DL� is continuous with respect to the topology of uniform convergence
(on compacta) on the space C!.QF.S/;C/ of holomorphic functions on QF.S/.

Convention If f W X ! Y is a smooth function then we will let f 0.x/ denote the
derivative map f 0.x/W Tx.X /! Tf .x/.Y /. To simplify, if v 2 Tx.X / we will often
write f 0.v/D .f 0.x// .v/. Similarly if f 0.x/D 0 then the Hessian of f is denoted
by f 00.x/ and is the well-defined symmetric bilinear two-form given by

.f 00.x//.v; w/D
@2f

@v@w
:

Once again we will often shorten and write f 00.v; w/D .f 00.x//.v; w/.

3 Weil–Petersson extension G

We now describe the symmetric bilinear form G on QF.S/ given in [6].

Let X D Œf0; �0� 2 QF.S/, then f0 gives a natural homeomorphism f0W C.S/ D
C.�/! C.�0/ between geodesic current spaces coming from the marking. We let
m�0
2 C.�0/ be a Patterson–Sullivan geodesic current and pullback to define mX D

f �1
0
.m�0

/2 C.S/. We normalize to define the unit length Patterson–Sullivan geodesic
current of X by

�X D
mX

L.X;mX /
:

Then this geodesic current has unit length in X .

In [6], we show that the function .hL�X
/W QF.S/ ! R given by .hL�X

/.Y / D

h.Y /L�X
.Y / is minimum at X . Using this we defined G to be the symmetric bilinear

form at X given by
GX D .hL�X

/00.X /:
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Finally we proved Theorem 1.1, showing that G is a natural extension of the normalized
Weil–Petersson metric on F.S/.

4 Thermodynamics and pressure metric

We will now describe the pressure metric for a shift of finite type. This will be a cursory
introduction to the elements of Thermodynamic Formalism needed to state and prove
our results. For a complete description see the book [13] by Parry and Pollicott and the
paper [11] of McMullen.

Let A be a k � k matrix of zeros and ones then we define the associated (one-sided)
shift of finite type by .†; �/ where † is the set of sequences

†D
˚
x D .xn/

1
nD0 W xn 2 f1; : : : ; kg;A.xn;xnC1/D 1

	
and � W †!† is the standard shift where �.x0;x1;x2; : : :/D .x1;x2; : : :/. We give
fi; : : : ; kg the discrete topology and † the associated product topology.

The space C.†/ is the space of continuous real valued functions on †. Two functions
f;g 2C.†/ are cohomologous (f �g ), if there exists a continuous function h2C.†/

such that f .x/�g.x/D h.�.x//� h.x/. If f � 0 then f is a coboundary.

We can metrize the topology on † by choosing any K> 1 and then defining d.x;y/D

K�N where N DN.x;y/Dminfn jxn ¤ yng.

Then given � 2 .0; 1/ we say f 2 F� .†/ if there exists a constant C > 0 such that

jf .x/�f .y/j � C�N.x;y/:

The set F� is the set of Hölder continuous functions with the same Hölder constant,
with respect to the metric d .

F� .†/ is given the norm k � k� by

kf k� D kf .x/k1C sup
x¤y

jf .x/�f .y/j

�N.x;y/
:

Given a map f we can take the iterated sum Snf defined by

.Snf /.x/D

n�1X
kD0

f .�k.x//:

If f � g with f .x/�g.x/D h.�.x//� h.x/ then

Snf .x/�Sng.x/D h.�n.x//� h.x/

Geometry & Topology, Volume 14 (2010)



808 Martin Bridgeman

so shifts of cohomologous functions are cohomologous. Also if f 2F� .†/, the Ruelle
operator Lf W F� .†/! F� .†/ is defined by

.Lf g/.x/D
X

�.y/Dx

ef .y/g.y/:

We note that under iteration of the Ruelle operator we have

.Ln
f g/.x/D

X
�n.y/Dx

eSnf .y/g.y/:

The shift .†; �/ is aperiodic if there exists an n> 0 such that An is all positive entries.
We have the following generalization of the Perron-Frobenius Theorem for matrices.

Theorem 4.1 (Ruelle–Perron–Frobenius [13]) Let f 2 F� .†/ and let .†; �/ be an
aperiodic shift of finite type. Then:

(1) There is a simple maximal positive eigenvalue ˇ for Lf with corresponding
strictly positive eigenvector h.

(2) The remainder of the spectrum of Lf is contained in a disk of radius strictly
smaller than ˇ .

(3) There is a unique probability measure � such that L�
f
�D ˇ :�.

(4) Let h be a maximal eigenvector normalized so that �.h/D 1: Then

Ln
f
.g/

ˇn
�! h

Z
g d� uniformly for all g 2 C.†/:

The pressure P .f / is defined by P .f /D logˇ . If f 2 F� .†/ satisfies P .f /D 0

and h is a maximal normalized eigenvector of Lf then the measure mD h : � is an
ergodic � –invariant probability measure and is called the equilibrium measure of f .

In [13] the properties of the function P W F� .†/! F� .†/ are described in detail. In
particular it is convex and real-analytic and depends only on cohomology class.

Also if P .f /D 0, with equilibrium measure m and g 2 F� .†/ then

P 0.f /.g/D
d

dt
P .f C tg/

ˇ̌̌
tD0
D

Z
g dm:

Also if P 0.f /.g/D 0 then the variance Var.g;m/ is defined by

P 00.f /.g/D
d2

dt2
P .f C tg/

ˇ̌̌
tD0
D Var.g;m/:
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We define T .†/ to be the set of pressure zero, Hölder continuous functions up to
coboundary, that is

T .†/D ff W f 2 F� .†/ for some �;P .f /D 0g =� :

If Œf �2T .†/ and f has equilibrium measure m, then by the formula for the derivative
of pressure P , the tangent space of T .†/ at Œf � can be identified with

TŒf �T .†/D

�
g W

Z
g dmD 0

�.
� :

The pressure metric k � kP on T .†/ is then defined by

(2) kŒg�kP D
Var.g;m/
�
R
f dm

:

By Theorem 4.2 of [13], Var.g;m/D 0 implies that g � 0. Thus kŒg�kP D 0 implies
Œg�D 0 and therefore k � kP is positive definite metric on T .†/.

5 Thermodynamics on QF.S /

Let � be a quasifuchsian group with limit set ƒ� � yC . A conformal Markov map
for � is a piecewise conformal map f W ƒ� !ƒ� such that ƒ� has a partition into
segments J1; : : : ;Jm so that

(1) f jJk
D 
k jJk

for some 
k 2 � ,

(2) for each k , f .Jk/ is the union of various Jl ’s.

A Markov map is expanding if there is an n > 0 such that the n-th iterate f n D

f ıf ı : : : ıf has derivative whose norm in the spherical metric satisfies

j.f n/0.x/j> C > 1

and for any U �L� open, there exists an m> 0 such that f m.U /Dƒ� :

If � has an expanding Markov map f then we can define a matrix A by A.i; j /D 1

if Jj � f .Ji/ and zero otherwise. Then we have an aperiodic shift .†; �/ and we
define � W †!L� by �.x/D z where f i.z/ 2 Jxi

. The map f obviously satisfies
f .�.x// D �.�.x//. The map � is surjective but as the segments Ji may have
boundary points in common, the map � is two to one on a countable set of points P .
If Q is the finite set of endpoints of the Ji ’s then P is precisely

P D

1[
nD0

f �n.Q/:
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The points of P are called bad points and if z 62 P it is called a good point. We note
that if z is a good point, then there is a unique x 2† such that �.x/D z and for any
n> 0, there is unique 
n 2 � such that f n D 
n on an open interval about z .

5.1 Expanding Markov map for quasifuchsian groups

In the following we describe Bowen’s results from [4] on expanding Markov maps for
quasifuchsian groups.

Bowen first considered the cocompact fuchsian group �r obtained by identifying sides
of a regular hyperbolic 4n–gon in the standard way given by the side labelling

x1y1x�1
1 y�1

1 � � �xnynx�1
n y�1

n :

He then described an expanding Markov map f�r
W S1! S1 for �r which we will

describe in detail below.

Then if gW yC! yC is a quasiconformal map conjugating the action of �r to the action
of � , then this gives the map f� W ƒ�!ƒ� by f� D gıf�r

ıg�1 and �� W †!ƒ�
by �� D g ı��r

. Then f� is an expanding Markov map for � with the same shift
space .†; �/.

The function �� W †!R defined by ��.x/D� log jf 0
�
.��.x//j is Hölder continuous.

By the chain rule for differentiation we have

(3) .Sn��/.x/D� log j.f n
� /
0.��.x//j:

Then if h� is the Hausdorff dimension of the limit set ƒ� , Bowen showed that h� is
characterized by the equation

(4) P .h���/D 0:

We now describe the map f�r
in more detail. The group �r has fundamental domain D ,

the regular hyperbolic 4n–gon. We label the sides of D by si ; i D 1; : : : ; 4n. Each si

belongs to a unique geodesic gi with endpoints pi ; qi on S1 . We let Ii be the interval
on S1 with endpoints pi ; qi which is smallest in length. We further define 
i 2 �r to
be the element which identifies si with another side sj of D for some j .

For each 
 2 �r we let D
 D 
 .D/ and say D
 abuts D if D
 \D ¤∅. For each
D
 we define the intervals I
;i D 
 .Ii/. We let R� S1 be the union of the endpoints
of I
;i for D
 abutting D . Then R defines a decomposition of S1 into intervals Jk .
We note that each Jk � Ij for some j , not necessarily unique. We then define

f�r
jJk
D 
j where Jk � Ij :

Geometry & Topology, Volume 14 (2010)



Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space 811

It follows that for any choice of j such that Jk � Ij , the map f�r
is a Markov map

for �r . Bowen makes a specific choice to define f�r
W S1! S1 such that f�r

is an
expanding Markov map and orbit equivalent to the action of �r on S1 (see Bowen [4]).

We say a geodesic g abuts D if it intersects one of the images of D in the tessellation
that abuts D . We now describe an elementary property of the map f�r

that follows
easily from its definition.

Lemma 5.1 Let f�r
W S1!S1 be the expanding map for the �r described above. Let

g be a geodesic with endpoints a; b that abuts D . If f�r
D 
 2 �r at a, then geodesic


 .g/ abuts D .
Ej

Ij

D

D� DC

pj�1

pjC1

qj�1

tj�1

qjC1

tjC1

sj�1

sj

sjC1

Figure 1: Tesselation by regular 4n–gons

Proof We place D with the origin in the center. We label the edges ei of D clock-
wise for i D 1; : : : ; 4n. The edges ei define geodesics gi which given overlapping
intervals Ii . We further define the half-plane given by Ii , Hi (see Figure 1).

Let g be a geodesic with endpoints a; b which abuts D and f�r
D 
 at a. Then


 D 
j for some j and a 2 Ij . We let P be the convex polygon obtained by taking
the union of all domains that abut D . Then by assumption g intersects P .

Geometry & Topology, Volume 14 (2010)



812 Martin Bridgeman

If sj is the side of D corresponding to the side identification 
j , we let P1 be the
collection of domains which intersect sj (ie contain sj as a side or contain an endpoint
of sj as a vertex). As 
j .sj / D sk some other side of D , if g intersects P1 then

j .g/ abuts D . We will now show that if g intersects P then it intersects P1 thereby
proving the result.

Let P2 be the set of domains P \Hj . As Hj \D D sj , then P2 \P1 . As we are
assuming g does not intersect P1 , then g does not intersect P2 . If both endpoints of
g are in Ij then by convexity g �Hj and therefore ∅¤ g\P D g\ .P \Hj /D

g\P2 � g\P1 . Thus if g has both endpoints in Ij then g intersects P1 .

We let D� be the domain that shares the side sj�1 with D and DC be the domain
that shares the side sjC1 with D . Then as sj�1; sjC1 share a vertex with sj then
D�;DC � P1 .

In domain D� we label the opposite side to sj�1 by tj�1 . We let hj�1 be the geodesic
associated to tj�1 and the interval Tj�1 � Ij�1 . The interval Tj�1 does not intersect
with any other interval Ik for k ¤ j �1. Also D� shares a unique side with a domain
of P �P1 (abutting D but not side sj ). We label the geodesic to the side qj�1 and its
unique endpoint pj�1 2 Ij�1 . We define similar quantities for DC . We let Ej be the
interval in S1 with endpoints pj�1;pjC1 and not containing Ij . Then Ej is disjoint
from Tj�1 and TjC1 . If g intersects a domain of P but not of P1 then g must have
an endpoint in Ej . Therefore g separates the geodesics hj�1; hjC1 . Therefore g

must intersect either D�;DC or D . Thus g intersects P1 .

The above Lemma says that the abutting geodesics are an invariant set under the Möbius
map defined by their endpoints.

We now prove an important property of the expanding Markov map f�r
that we will

need later.

If G is a group, then we say g is commensurable to h if there exists k 2 G such
that gn D khmk�1 for some n;m¤ 0. The set of commensurability classes of G is
denoted ŒG�. We note that for � a cocompact Kleinian group, then Œ�� is equivalent to
the set of primitive geodesics in N DHn=� .

Lemma 5.2 Let f�r
W S1! S1 be the expanding Markov map described above. Then

there is a finite set S � Œ�r � of commensurability classes such that if Œ
 � 62 S , then:

(1) If 
 0 2 Œ
 � then the endpoints of the axis of 
 0 are good points of f�r
.

(2) There exists a 
 0 2 Œ
 � whose axis abuts D and has fixed points a; b such that
the expanding fixed point a of 
 0 is a periodic point of f�r

.
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Proof We note that as �r does not contain parabolics, then if two elements 
1; 
2

have a common fixed point, then they share the same axis and are commensurate. Let
D be the fundamental domain for �r given by the regular 4n–gon in the Poincare
disk model with center at 0. We extend the 4n sides of D to complete geodesics gi ,
i D 1; : : : ; 4n, and let P0 be the union of the endpoints of the gi ’s. We then define
P D �r P0 , the orbit of P0 under the group. The set P is precisely the set of bad
points for f�r

. Also as D is the regular 4n–gon, each of the geodesics gi is the axis
for an element of � and we let 
i be the corresponding primitive element. Then we
let S D fŒ
i �g

4n
iD1

. If an element 
 2 �r has a bad endpoint z 2 P , then z D 
1:z0 for
z0 2 P0 then 
�1

1


1 has fixed point z0 . Therefore 
�1

1


1 shares an endpoint with

some 
i . Therefore 
 and 
i are commensurate. Thus we conclude that if Œ
 � 62 S ,
then 
 has good endpoints.

We now let Œ
 � 62 S and choose 
 such that its axis intersects D . As Œ
 � 62 S , then its
axis g has endpoints a0; b0 . We define geodesic gn to have endpoints an D f

n
�r
.a/,

and let bn 2 S1 be the unique point such that the pair .an; bn/ 2 S1�S1 are endpoints
of the axis of a conjugate of 
 . Then by Lemma 5.1, gn also abuts D . By compactness
of the union of domains abutting D , we have there is an � > 0 such that jan� bnj> �

for all n. But if the sequence f.an; bn/g in S1�S1 has an infinite number of values, it
must have a convergent subsequence. As the orbit of the axis g under �r is discrete in
the space of geodesics G.H2/, any convergent subsequence must converge to a point
on the diagonal of S1�S1 contradicting jan�bnj> � . Therefore the sequence takes a
finite set of values and there exists a k > 0 and an n such that .an; bn/D .anCk ; bnCk/

and therefore f k
�r
.an/ D an and an is a periodic point for f�r

. We let 
 0 be the
conjugate of 
 with endpoints .an; bn/, giving the result.

5.2 Pullback of pressure metric

We first define the Hausdorff dimension function hW QF.S/!R by h.Œf0; �0�/D h�0
,

the Hausdorff dimension of the limit set ƒ�0
. This is well-defined, and by Ruelle [14],

h is real-analytic.

We let � be a fuchsian group such that S DH2=� with expanding Markov map f�
as described in the Section 5.1. We let .†; �/ be the associated shift and �� I†! S1

as before. Then for each X 2 QF.S/ we let X D Œg0; �0� where g0 conjugates � to
�0 . Then we define �X D ��0

W †!R and ˆX D h�0
��0

.

Note that if Œg0; �0�D Œg1; �1�, then ��0
; ��1

are cohomologous (see McMullen [11]).
Also, by Equation (4), P .ˆX /D 0. Thus we obtain a well-defined map F W QF.S/!
T .†/ by F.X /D ŒˆX �. We then define W to be the pullback of the pressure metric
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on T .†/. As the pressure metric is positive definite it follows that W is at least
nonnegative.

To obtain a formula for k � kW , given v 2 TX .QF.S//, we choose a smooth curve
˛W .��; �/! QF.S/ with ˛.0/ D X and ˛0.0/ D v . Then let ˛.t/ D Xt D Œgt ; �t �

where gt is a smooth 1–parameter family of quasiconformal maps conjugating �
to �t .

We let ˆt Dˆ˛.t/ and �t D �˛.t/ and define P̂ 0 by

P̂
0.x/D

d

dt

ˇ̌̌
tD0

.ˆt .x//

Then by definition of the pressure metric in Equation (2), kvkW is given by

kvk2W D
Var. P̂ 0;m/

�
R
ˆ0 dm

:

We obtain an alternative definition of k � kW by noting that P .ˆt / D 0 and taking
derivatives with respect to t . Taking first derivatives we obtain

P 0.ˆt /. P̂ t /D 0:

Then taking derivative again we have

P 00.ˆt /. P̂ t /CP 0.ˆt /. R̂ t /D 0:

Evaluating at t D 0 we have

Var. P̂ 0;m/C

Z
R̂

0 dmD 0:

Therefore we have

(5) kvk2W D
Var. P̂ 0;m/

�
R
ˆ0 dm

D

R
R̂

0 dmR
ˆ0 dm

:

6 Conformal equivalence of G and W

The proof that G and W are conformally equivalent follows by generalizing the
argument in [11] of McMullen for the fuchsian subspace F.S/ to all of quasifuchsian
space QF.S/.

Theorem 6.1 The pseudometrics G and W are conformally equivalent with

kvkG D
p

h.X / : kvkW for v 2 TX .QF.S//:
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Proof From Equation (5), we have

kvk2W D

R
R̂

0 dmR
ˆ0 dm

D

d2

dt2

�
h.Xt /

R
�t dm

�ˇ̌
tD0

h.X /
R
�0 dm

D
1

h.X /
.hF /00.v/

F.t/D

R
�t dmR
�0 dm

:where

Therefore the result follows from showing that F.t/DL�X
.X.t// where �X 2 C.S/

is the unit Patterson–Sullivan geodesic current for X .

By the density of discrete geodesic currents (Theorem 2.1), there exists a sequence
of discrete geodesic currents �n such that �n! �X . As �X is unit length in X we
can normalize so that �n are unit length in X . Therefore �n D ˛n= ln where ˛n is a
geodesic current coming from Dirac measure on the lifts of a primitive geodesic (also
labeled ˛n ) and ln is the length of ˛n in X .

We choose as our basepoint for QF.S/ the fuchsian group � D�r described in Section
5.1. By Lemma 5.2 for each ˛n we can choose a lift 
n 2 � such that the axis gn of

n abuts D and has fixed points an; bn with expanding fixed point an being a periodic
point for f� with period pn .

As f pn

�
.an/ D an , then f

pn

�
D 
 2 � in an open neighborhood of an where 


fixes an . Then 
 and 
n both fix an and therefore are commensurate with axes being
equal. As 
n is primitive, it follows that 
 D 
 kn

n for some nonzero integer kn . Letting
X.t/D Œgt ; �t �, then gt .an/ is a fixed point of f pn

�t
. Also if we let 
n;t Dgt ı
nıg

�1
t

then 
n;t has fixed point gt .an/ and f pn

�t
D .
n;t /

kn in an open neighborhood of
gt .an/.

Then for i D 0;pn� 1 we let gn.i/ be the element of the orbit of gn with endpoints
an.i/ and bn.i/, where an.i/D f

i
�
.an/. Since geodesic gn abuts D , then by Lemma

5.1, gn.i/ must also abut D . Therefore by compactness of the finite union of domains
abutting D , there is an � > 0 such that jan.i/� bn.i/j> � for all n; i .

We let mn be the probability measure on S1 obtained by taking 1=pn dirac measure
on the an.i/; i D 0; : : : ;pn�1 .

We have �t W †!R is given by �t .x/D� log jf 0
�t
.�t .x//j where f�t

Dgt ıf� ıg�1
t

and �t D gt ı �� . Therefore �t .x/ D x� t .��.x// where x�W S1 ! R is the map
x� t .z/D� log jf 0

�t
.gt .z//j . Then

mn.x� t /D

Z
S1

x� t .z/ dmn D�
1

pn
log j.f pn

�t
/0.gt .an//j:
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As gt .an/ is a fixed point of f pn

�t
with f pn

�t
D 


kn

t in an open neighborhood of gt .an/

we have

mn.x� t /D

Z
S1

x� t dmn D�
1

pn
log j..
n;t /

kn/0.gt .an//j D �
kn

pn
L
n

.Xt /:

In particular we have

mn.x�0/D�
kn

pn
L
n

.X /D�
knln

pn
:

mn.x� t /

mn.x�0/
D

L
n
.Xt /

L
n
.X /

DL�n
.Xt /:Therefore

We now show that ln=pn is bounded. As the map x�0 is bounded on S1 , there exists a
C such that jx�0j � C . As �n is a probability measure and kn is a nonzero integer,

(6)
ln

pn
�

ˇ̌̌̌
knln

pn

ˇ̌̌̌
�

ˇ̌̌̌Z
x�0 dmn

ˇ̌̌̌
�

Z
jx�0j dmn � C:

Let �n be the probability measure on G.H3/ obtained by taking 1=pn times Dirac
measure on set of geodesics gn.i/ given by the endpoint pair .an.i/; bn.i//. As
jan.i/� bn.i/j> � for all n; i , the measures �n does not accumulate on the diagonal,
therefore the sequence �n has convergent subsequences in the weak� topology on
G.H3/. Let � be a limit with � D limi!1 �ni

.

We will show that � is absolutely continuous with respect to �X . Let A be a set with
�X .A/D 0, then as �n! �X

lim
n!1

�n.A/D �X .A/D 0:

We compare �n and �n . Both are discrete measures and the support of �n is con-
tained in the support of �n and with measures �n; �n having point masses 1=pn; 1= ln
respectively. Therefore by Equation (6)

�n.A/�
ln

pn
�n.A/� C�n.A/:

Thus we have

�.A/D lim
i!1

�ni
.A/� lim

i!1
C�ni

.A/� C�X .A/D 0:

Thus �X .A/ D 0 implies �.A/ D 0. Thus � is absolutely continuous with respect
to �X . We take mni

to be the probability measures corresponding to the convergent
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sequence �ni
. By reducing to subsequence we can assume that �ni

converge to a
probability measure mf on S1 . Then we have that mf satisfies

mf D lim
i!1

mni

mf .x� t /

mf .x�0/
D lim

i!1

mni
.x� t /

mni
.x�0/

D lim
i!1

L�ni
.Xt /DL�X

.Xt /:and

Let g0W S
2! S2 be the quasiconformal homeomorphism conjugating � to �0 . Then

by the definition of the Patterson–Sullivan geodesic current �X (see Equation (1)) we
have

.d�X /.a; b/D ��

�
dmX dmX

jg0.a/�g0.b/j2h.X /

�
:

where mX is the Patterson–Sullivan measure for �0 and � is the Z2 cover � W .S2 �

S2� diagonal/!G.H3/. Therefore �X is absolutely continuous with respect to the
measure ��.mX �mX / on G.H3/.

Now we will show that mf is absolutely continuous with respect to mX . Let mX .A/D

0. If S � S2 � S2 , we let ŒS � D �.S � diagonal/. Then ŒS � is precisely the set of
(unoriented) geodesics in S . Then by definition of mn we have that

mn.A/D �n.ŒA�S2�/:

As mX .A/D 0 then .mX �mX /.A�S2/D .mX �mX /.S
2 �A/D 0. Therefore on

G.H3/ we obtain

��.mX �mX /.ŒA�S2�/DmX �mX .�
�1.ŒA�S2�//

DmX �mX

��
.A�S2/[ .S2

�A/
�
� diagonal

�
� .mX �mX /.A�S2/C .mX �mX /.S

2
�A/D 0:

Therefore ��.mX �mX /.ŒA � S2�/ D 0 and as �X is absolutely continuous with
respect to ��.mX �mX /, then �X .ŒA�S2�/D 0. Then as � is absolutely continuous
with respect to �X we have �.ŒA�S2�/D 0: As mn.A/D �n.ŒA�S2�/ then

mf .A/D lim
i!1

mni
.A/D lim

i!1
�ni
.ŒA�S2�/D �.ŒA�S2�/D 0:

Therefore the limit mf must be absolutely continuous with respect to mX . By Sul-
livan [16], the Patterson–Sullivan measure mX is equal to the Hausdorff measure of
dimension h.X / on the limit set. Also by Bowen the pushforward xmD .��0

/�.m/ of
the equilibrium measure m to S1 is equivalent to the Hausdorff measure of dimension
h.X / on the limit set and therefore equivalent to mX [4, Lemma 10]. Therefore mf is
then absolutely continuous with respect to the measure xm. Also as the mn are invariant
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under f�0
, then the limit mf is invariant under f�0

. As xm is ergodic, then mf is also
ergodic. But by the Ruelle-Perron-Frobenius Theorem (see Theorem 4.1), there is a
unique f�0

invariant ergodic probability measure. Thus mf D xm. As �t D x� t ı�� ,
then m.�t /D xm.x� t / and

F.t/D
m.�t /

m.�0/
D
xm.x� t /

xm.x�0/
D

mf .x� t /

mf .x�0/
DL�X

.Xt /:

7 Positive-definite locus for G

Before we prove the Main Theorem we characterize the zero vectors of G in terms of
derivatives of length functions.

Theorem 7.1 Let v 2 TX .QF.S// then kvkG D 0 if and only if for every 
 2 � , the
associated length function L
 W QF.S/!R satisfies

.hL
 /
0.v/D 0:

Proof We choose our basegroup � to be the fuchsian group described in Lemma 5.2,
ie if S is a genus g surface, then � is generated by the standard identification of the
sides of the regular 4g–gon.

We first prove that kvkG D 0 implies that .hL
 /
0.v/ D 0 for all 
 2 � . As it is

automatically true for v D 0, we assume that v ¤ 0 and choose a smooth curve
˛W .��; �/ ! QF.S/ with ˛.0/ D X and ˛0.0/ D v and ˛.t/ D Xt D Œgt ; �t � as
before. Therefore gt conjugates the action of � to the action of �t .

We will show that .hL�/
0.v/ D 0 for all discrete geodesic currents except for the

finite set S considered in Lemma 5.2. Since these are projectively dense in C.S/, and
.hL�/

0.v/ is a continuous function that is homogeneous under scaling of currents, it
will then follow that .hL�/

0.v/D 0 for all geodesic currents.

We note that if M is a loxodromic möbius transformation then the translation distance
of M is given by log jM 0.z/j where z is the expanding fixed point of M .

Thus if 
 2 � , with expanding fixed point z then we let 
t D gt ı
 ıg�1
t 2 �t . Then


t has expanding fixed point zt D gt .z/ and

(7) L
 .Xt /D log j
 0t .zt /j:

As kvkG D 0, then as G is conformally equivalent to W , kvkW D 0. Therefore
by Equation (5), Var. P̂ 0;m/D 0. But by nondegeneracy of the variance, this gives
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P̂
0 � 0 and is a coboundary. Therefore there is a continuous function uW †!R such

that P̂ 0.x/D u.�.x//�u.x/: Iterating we have

.Sn
P̂

0/.x/D u.�n.x//�u.x/:

In particular if �n.x/D x then .Sn
P̂

0/.x/D 0.

We consider the set of commensurability classes in � given by D D fŒ
 � j; Œ
 � 62 Sg,
where S is the finite set defined in Lemma 5.2. Then the associated set of projective
geodesic currents is dense in the space PC .S/ of projective geodesic currents. We
now show .hL
 /

0.v/D 0 for all Œ
 � 2D .

We let Œ
 � 2 D . Then by Lemma 5.2, there is an element 
 0 2 Œ
 � whose expanding
fixed point z is good and a periodic point of f� . Therefore there is an n such that
f n
�
.z/D z . As z is a good point, we let x 2† be the unique point such that ��.x/D z .

As �� ı � D f� ı�� , we have

��.�
n.x//D f n

� .��.x//D f
n
� .z/D z D ��.x/:

As z is a good point, x is the unique preimage of z under �� . Therefore �n.x/D x .

As f� is an expanding Markov map and z is a good point, there exists a 
z 2 �

with expanding fixed point z such that f n
�
D 
z in an open neighborhood of z . Thus

elements 
 0 and 
z have common fixed point z . As � is cocompact, this implies that

 0 and 
z are commensurate. Therefore by transitivity of commensurability, 
 and 
z

are commensurate.

We let 
z;t D gt ı 
z ı g�1
t 2 �t . By definition �t .x/ D gt .��.x// D gt .z/ and is

therefore the expanding fixed point of 
z;t . Also as f�t
D gt ı f� ı g�1

t we have
f n
�t
D gt ıf

n
�
ıg�1

t and therefore f n
�t
D 
z;t at gt .z/. Thus by the iteration relation

in Equation (3) we have

.Sn�t /.x/D� log j.f n
�t
/0.�t .x//j D � log j
 0z;t .zt /j D �L
z

.Xt /:

Also as ˆt .x/D h.Xt /�t .x/, .Snˆt /.x/D h.Xt /.Sn�t /.x/. Therefore

.Sn
P̂

0/.x/D
d

dt
..Snˆt /.x//

ˇ̌̌
tD0
D

d

dt

�
�h.Xt /L
z

.Xt /
� ˇ̌̌

tD0
D�.hL
z

/0.v/:

As .Sn
P̂

0/.x/ D 0, we have that .hL
z
/0.v/ D 0. Therefore .hL
 /

0.v/ D 0 for all
Œ
 � 2D .

We now prove that if v satisfies .hL
 /
0.v/ D 0 for all 
 2 � then kvkG D 0. As

it is true for v D 0, we assume that v ¤ 0 and as before, choose a smooth curve
˛W .��; �/! QF.S/ with ˛.0/DX and ˛0.0/D v and ˛.t/DXt D Œgt ; �t �.
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A Theorem of Livsic that states f � g if and only if .Snf /.x/D .Sng/.x/ whenever
�n.x/D x [8]. Therefore we let �n.x/D x . Then for zD ��.x/ we have f n

�
.z/D z

and f n
�
D 
z at z for some 
z 2 � . As above we have .Sn�t /.x/D�L
z

.Xt / and

.Sn
P̂

0/.x/D�.hL
z
/0.v/:

By the assumption .hL
z
/0.v/D 0 and therefore .Sn

P̂
0/.x/D 0. Therefore by the

result of Livsic, P̂ 0 � 0 and therefore Var. P̂ 0;m/D 0. It follows that kvkW D 0: As
G is conformally equivalent to W , then kvkG D 0.

Corollary 7.2 If kvkW D 0 then there is a k 2R such that

L0�.v/D kL�.X / for all � 2 C.S/:

Proof This follows immediately with k D�h0.v/=h.X / by applying the product rule
to .hL�/

0.v/D 0.

We now show that pure bending vectors to the fuchsian locus have zero length.

Lemma 7.3 If v D J:w where w 2 TX .F.S// then kvkG D 0.

Proof Let v D J:w where w 2 TX .F.S//. By Theorem 7.1, to show kvkG D 0 we
only need to prove that .hL�/

0.v/D 0 for all � 2 C.S/.

As the complex length functions Lg are holomorphic on QF.S/,

L0g.v/D L0g.J:w/D iL0g.w/:

As w 2 TX .F.S//, L0g.w/ is real and equal L0g.w/ D L0g.w/. Therefore L0g.v/ D
iL0g.w/ is purely imaginary giving

L0g.v/D<.iL
0
g.w//D 0:

Thus L0g.v/D 0 for all g 2 � . As h is minimum on the fuchsian locus F.S/ then
h0.v/D 0 and

.hLg/
0.v/D h0.v/Lg.X /C h.X /L0g.v/D 0:

Therefore by Theorem 7.1, kvkW D 0: As G is conformally equivalent to W we
therefore have kvkG D 0:

To complete the proof of the Main Theorem, we need to prove the converse of the
above Lemma, that pure bending vectors to the fuchsian locus are the only zero length
vectors. We do this by showing that the condition that there exists a k 2R such that
.hL�/

0.v/D kL�.X / for all � 2 C.S/ is sufficient to show that X is fuchsian and
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v is a pure bending vector. This will require a technical analysis of two-generator
subgroups of � .

We let S be a closed hyperbolic surface with S D H2=� as before and let g 2 � .
Given any X D Œf0; �0� 2 QF.S/, then g can be identified to a unique element
g.�0/D f0 ıg ıf �1

0
2 �0 � PSL.2;C/. We can conjugate such that g.�0/ is of the

form

˙

�
�g.X / 0

0 ��1
g .X /

�
2 PSL.2;C/; where j�g.X /j> 1:

We note that �g is well-defined up to sign and �2
g.X / is therefore well-defined.

Therefore the element g.�0/ is conjugate to the fractional linear map f .z/ D c:z ,
where cD�2

g.X /. Therefore we have that the length function LgW QF.S/!R is given
by Lg.X /D 2 log j�g.X /j. Also the holomorphic length function LgW QF.S/!C
satisfies Lg D<.Lg/ and �2

g D eLg .

Let X W .��; �/! QF.S/ be a smooth curve such that X 0.0/ D v . We let X.t/ D

Œft ; �t �. Let �t be a smooth parameterization. Therefore for g 2 �0 , the map

gW .��; �/! PSL.2;C/ defined by 
g.t/ D g.�t / is a smooth function. Also as
g.�t / 2 PSL.2;C/D SL.2;C/=˙ I , we can lift 
g to a smooth map z
gW .��; �/!

SL.2;C/.

We then can define �gW .��; �/!C by letting �g.t/ equal the largest eigenvalue of
z
g.t/. Furthermore we define the trace functions

tg.t/D tr.z
g.t//D �g.t/C�
�1
g .t/:

Lemma 7.4 Let v 2 TX .QF.S//, v ¤ 0. If there exists a k 2R such that

L0g.v/D kLg.X / for all g 2 �

then �2
g and t2

g are both real and

<

�
�0g

�g

�
D 0

for all g 2 � .

Proof As trace functions are holomorphic coordinate function for QF.S/ (see Mar-
den [9]), as v ¤ 0, there exists ˛ 2 � such that t 0˛.0/¤ 0. As

t 0g D �
0
g �

�0g

�2
g

D �0g

�
�2

g � 1

�2
g

�
then �0˛.0/¤ 0.
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As � is nonelementary, we can choose a ˇ 2 � such that ˛; ˇ do not have the same
axis. We note that ˛; ˇ have the same axes if and only if there exist n;m 2 Z, both
nonzero, such that ˛n D ˇm .

By conjugation of �t we can put ˛.�t / in the diagonal form with

A.t/D z
˛.t/D

�
�˛.t/ 0

0 ��1
˛ .t/

�
where j�˛.t/j> 1, and the corresponding matrix for ˇ.�t / is

B.t/D z
ˇ.t/D

�
a.t/ b.t/

c.t/ d.t/

�
where a.t/d.t/� b.t/c.t/D 1:

We consider the two-generator subgroup Gt D hA.t/;B.t/i � SL.2;C/ acting on the
upper half space model of H3 . Then A.t/ fixes 0;1 and preserves the z–axis. Since
˛ and ˇ have different axes and � contains no parabolics, it follows that a.t/; d.t/

are both nonzero.

If kvkW D0, then by Corollary 7.2, L0g.v/DkLg.X / for all g2� . As LgD log j�gj,
we obtain the equation

(8) .log j�gj/
0.v/D k log j�g.X /j:

As we are only interested in derivatives at 0 for X.t/, we will adopt the notation
f 0 D f 0.0/.

Therefore for g D ˛ we have .log j�˛j/0 D k log j�˛j or equivalently

(9) .log j�˛j/0 D
j�˛j

0

j�˛j
D k log j�˛j:

Now we consider the element Cn DAnB with matrix

Cn D

�
�n
˛a �n

˛b

��n
˛ c ��n

˛ d

�
:

Let �n; �
�1
n be the eigenvalues of Cn , with j�nj > 1. Solving for �n we have for

large n that

�n D
�n
˛aC��n

˛ d C
p
.�n
˛aC��n

˛ d/2� 4

2

D �n
˛a

�
1C��2n

˛

�
ad � 1

a2

�
CO.��4n

˛ /

�(10)
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Let gn be the element of � corresponding to Cn ; then we have

log j�gn
j D n log j�˛jC log jajC log

ˇ̌̌̌
1C��2n

˛

�
ad � 1

a2

�
CO.��4n

˛ /

ˇ̌̌̌
:

D n log j�˛jC log jajC<
�
��2n
˛

�
ad � 1

a2

��
CO.j�˛j

�4n/:

Then differentiating and using that .log j�gn
j/0 D k log j�gn

j we obtain

0D n

�
j�˛j

0

j�˛j
� k log j�˛j

�
C

�
jaj0

jaj
� k log jaj

�
C<

�
� 2n��2n�1

˛ �0˛

�
ad � 1

a2

��
C<

�
��2n
˛

��
ad � 1

a2

�0
� k

�
ad � 1

a2

���
CO.j�˛j

�4n/:(11)

The first term in the equation above is zero by Equation (9), and the last two go to zero
as n!1, so taking the limit gives

(12)
jaj0

jaj
D k log jaj:

Therefore Equation (11) becomes a relation between the real parts of the last two terms,
which holds for each n. Multiplying by j�˛j2n=n and taking the limit as n!1 gives

(13) lim
n!1

<

��
�˛

j�˛j

��2n�
�0˛
�˛

��
ad � 1

a2

��
D 0

We let uD

�
�˛

j�˛j

�2

:

As we can always choose a sequence ni such that limi!1 u�ni D 1, we have that

lim
i!1

<

��
�˛

j�˛j

��2ni
�
�0˛
�˛

��
ad � 1

a2

��
D<

��
�0˛
�˛

��
ad � 1

a2

��
D 0:

Therefore we obtain the equation

(14) <

��
�0˛
�˛

��
ad � 1

a2

��
D 0:

Next we will show that �2
˛ is real; suppose on the contrary that u D e�i� for � 2

.0; 2/; � ¤ 1. We will derive a contradiction from this assumption by considering two
cases.
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Case 1 � is irrational.

If � is irrational, then we can choose a sequence mi such that limi!1 u�mi D i: Then

lim
i!1

<

��
�˛

j�˛j

��2mi
�
�0˛
�˛

��
ad � 1

a2

��
D=

��
�0˛
�˛

��
ad � 1

a2

��
D 0:

Thus both the real and imaginary parts are zero giving�
�0˛
�˛

��
ad � 1

a2

�
D 0:

As �0˛ ¤ 0 we have ad D 1. Therefore as ad � bc D 1, we have bc D 0 and either
b D 0 or c D 0. If b D 0, then ˛; ˇ have common fixed point 0 and if c D 0, then
˛; ˇ have common fixed point 1. However ˇ was chosen so that it does not share
any fixed point with ˛ , so this is a contradiction.

Case 2 � is positive rational but not an integer.

We let � D p=q , where q > 1 and p; q have no common divisors. Then uq D 1 and
unqC1 D u. Then let ni D i : q� 1. Then u�ni D u. Thus

lim
i!1

<

��
�˛

j�˛j

��2ni
�
�0˛
�˛

��
ad � 1

a2

��
D<

�
u

�
�0˛
�˛

��
ad � 1

a2

��
D 0:

Let uD xC iy where y ¤ 0. Then

<

�
u

�
�0˛
�˛

��
ad � 1

a2

��
D x<

��
�0˛
�˛

��
ad � 1

a2

��
�y=

��
�0˛
�˛

��
ad � 1

a2

��
D 0:

Therefore by Equation (14), we have

y=

��
�0˛
�˛

��
ad � 1

a2

��
D 0:

As y ¤ 0 we obtain the conclusion that both real and imaginary parts are zero giving�
�0˛
�˛

��
ad � 1

a2

�
D 0:

This leads to the same contradiction as Case 1.

Thus we conclude that �2
˛ is real and �˛ is either purely imaginary or purely real. As

t˛ D �˛ C �
�1
˛ , then t˛ is similarly either purely imaginary or purely real and t2

˛ is
real. Therefore we have shown that if t 0g ¤ 0 then t2

g is real.
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Also as tn D �
n
˛ : aC�

n : d then

t 0n D n�n�1
˛ �0˛aC�n

˛a0� n��n�1
˛ �0˛aC��n

˛ a0:

lim
n!1

�
t 0n

n�n
˛

�
D
�0˛
�˛

aThus

and therefore for large n, t 0n ¤ 0. Choose n0 such that t 0n ¤ 0 for n> n0 .

We let n> n0 . By the above, t2
n is real and

t2
n D .�

n
˛aC��n

˛ d/2 D �2n
˛ a2

C 2ad C��2n
˛ d2:

As t2
n is real and �2

˛ is real, we have

=.t2
n /D 0D �2n

˛ =.a
2/C 2=.ad/C��2n

˛ =.d2/:

Taking limits we have

lim
n!1

=.t2
n /

�2n
˛

D=.a2/D 0:

lim
n!1

=.t2
n /D 2=.ad/D 0Therefore

lim
n!1

.�2n
˛ =.t

2
n //D=.d

2/D 0:and finally

Thus a2; d2; ad are all real. Applying this to Equation (14) we have

<

��
�0˛
�˛

��
ad � 1

a2

��
D

�
ad � 1

a2

�
<

�
�0˛
�˛

�
D 0:

Therefore we have

<

�
�0˛
�˛

�
D 0:

As the only assumption on ˛ was that t 0˛ and therefore �0˛ was nonzero, we have

<

�
�0g

�g

�
D 0 for all g 2 �:

Also as t2
ˇ
D .aC d/2 D a2 C 2ad C d2 , then we have that t2

ˇ
is real. As ˇ was

arbitrarily chosen, we therefore have that t2
g is real for all g 2 � . As t2

g is real, then
�2

g is also real.

Lemma 7.5 If v 2TX .QF.S// and there exists a k 2R such that L0g.v/D k :Lg.X /

then k D 0.
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Proof If v D 0 then L0g.v/D 0 and obviously k D 0. Therefore we assume v ¤ 0.
Let g 2 � , and �g D j�gje

i� . Then

�0g

�g
D
j�gj
0ei� Cj�gje

i� i� 0

j�gjei�
D
j�gj
0

j�gj
C i� 0:

Then by Equation (9) and Lemma 7.4,

0D<

�
�0g

�g

�
D
j�gj
0

j�gj
D k log j�gj:

Thus we have k: log j�gj D 0. As j�gj> 1, log j�gj ¤ 0 and therefore k D 0.

We now are ready to prove the Main Theorem.

Proof of Main Theorem As Lemma 7.3 proves one direction of the Main Theorem,
we only need to prove if v 2 TX .QF.S//; v ¤ 0, and kvkG D 0 then X 2 F.S/ and
v D J:w for some w 2 TX .F.S//.

Let v 2 TX .QF.S//; v ¤ 0, and kvkG D 0. As W is a multiple of G , kvkW D 0.
Then by Corollary 7.2, there is a k 2 R such that L0g.v/ D kLg.X / for all g 2 � .
Then by Lemma 7.5, k D 0 giving L0g.v/D 0 for all g 2 � .

We pick ˛; ˇ as in Lemma 7.4. For the group G0 D hA.0/;B.0/i we have t2
˛ , �2

˛ ,
a2 , ad , d2 are all real. Therefore the fractional linear map given by A is fA.z/D

�2
˛ : z 2 PSL.2;R/.

As ad � bc D 1, we therefore have that bc D ad � 1 is real. Therefore b D rei� and
c D se�i� where r; s are real.

If a; d are both real, we conjugate G0 by rotation R about the axis of A by angle � .
Then as R;A commute, RAR�1 DA and

RBR�1
D

�
e�i�=2 0

0 ei�=2

��
a b

c d

��
ei�=2 0

0 e�i�=2

�
D

�
a r

s d

�
:

Therefore the fractional linear map given by RBR�1 is in PSL.2;R/.

If a; d are both imaginary, we conjugate by a rotation R about the axis of A by angle
� C � . Then

RBR�1
D

�
a i r

is d

�
:

Thus as each entry is imaginary, the fractional linear map is in PSL.2;R/.

Therefore we have conjugated G0 to a subgroup of PSL.2;R/. Thus G0 has limit set
contained in a Euclidean line L0 through the origin and G0 preserves a hyperbolic
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plane H0 containing the axis of A. We conclude that if ˛ 2 �0 has �0˛ ¤ 0 then for
any ˇ 2 �0 , the axes of ˛ and ˇ are contained in the same geometric circle.

If X 62 F.S/ then there is an element 
 2 � such that the associated fractional linear
map C 2�0 does not preserve H0 . Then we have as before that the group G1DhA;C i

can be conjugated to a subgroup of PSL.2;R/. Therefore �1 preserves a line L1 , and
hyperbolic plane H1 containing the axis of A. As by assumption C does not preserve
H0 then H0¤H1 and therefore L1¤L0 . Thus L1\L0D f0;1g. By conjugation,
we assume that L0 is the real axis.

We note that if g; h are loxodromic hyperbolic elements, then the axis of ghg�1 is the
image of the axis of h under g .

Thus we conjugate ˛ by ˇ˛n to get

˛n D .ˇ˛
n/�1˛.ˇ˛n/D ˛�n.ˇ�1˛ˇ/˛n:

Then as ˛n is a conjugate of ˛ we have �0˛n
D�0˛¤ 0. Let AnD .BAn/�1/A.BAn/D

A�n.B�1AB/An2�0 . Then the endpoints of the axes of An and C must be contained
in a geometric circle. Also the axis of An is the image of the axis of BAB�1 under
A�n . Therefore we let a; b be the endpoints of the axis of B�1AB . As A;B are
noncommensurate, their axes do not have common endpoints. Therefore a; b 2 R
and are not equal 0 or 1. Then the endpoint of the axis of An are an; bn where
an DA�n.a/D ��2n

˛ a; bn DA�n.b/D ��2n
˛ b .

Let z; w 2 L1 be the endpoints of the axis of C . As L1 is not the real axis, then
z D rei� ; w D sei� where r; s 2R, and ei� is not real. As the axes of C and An are
on the same geometric circle, the cross ratio .an; zI bn; w/ is real for all n:

.an; zI bn; w/D
.an� bn/.z�w/

.an�w/.z� bn/
D

��2n
˛ .a� b/.r � s/ei�

.��2n
˛ a� sei� /.rei� ���2n

˛ b/

Therefore as =.an; zI bn; w/D 0 and �2
˛ is real then

0D lim
n!1

�2n
˛ :=.an; zI bn; w/D lim

n!1
=

�
.a� b/.r � s/ei�

.��2n
˛ a� sei� /.rei� ���2n

˛ b/

�
D=

�
.a� b/.r � s/ei�

�sre2i�

�
D
.a� b/.r � s/

�rs
=.e�i� /:

Thus =.e�i� /D 0, and therefore ei� is real. But by assumption ei� is not real, which
gives us our contradiction. Thus X 2 F.S/.

Finally as X 2 F.S/, we have the decomposition [6]

TX .QF.S//D TX .F.S//˚J.TX .F.S///:
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If v 2 TX .F.S// then L0˛.v/DL0˛.v/ and is real. Therefore if v 2 TX .QF.S//, then
v D v1CJ:v2 where vi 2 TX .F.S//. Therefore

L0g.v/D<.L0g.v//D<.L0g.v1/CL0g.J:v2//

D<.L0g.v1/C iL0g.v2//D<.L
0
g.v1/C iL0g.v2//DL0g.v1/:

Therefore if L0g.v/D 0 for all g 2 � , then L0g.v/D L0g.v1/D 0 for all g 2 � . But
this implies that v1 D 0 and therefore v D J:v2 . Thus X 2 F.S/ and v D J:w for
some w 2 TX .F.S//.

8 Critical points of Hausdorff dimension

We will now use the description of the positive definite locus of G to obtain information
about the critical points of hW QF.S/!R.

If f W X ! R is a smooth map, then x 2 X is a critical point of the differential
f 0.x/W Tx.X /!R is the trivial linear function.

If x is a critical point of f then the Hessian of f is a well-defined two-form which we
label f 00.x/. Then we can decompose Tx.X /D VC˚V0˚V� where the subspaces
are mutually orthogonal and f 00.x/ is positive-definite (respectively, zero, negative-
definite) on VC (resp. V0;V� ). The positive definite (respectively zero, negative-
definite) dimension of f 00.x/ is the dimension of VC (resp. V0;V� ).

As h� 1 and hD 1 on the fuchsian subspace F.S/ it follows that each h is minimum
(and therefore critical) at each point of F.S/. Thus for X 2F.S/, h00.X / has negative
definite dimension zero and trivial dimension at least dim.F.S// D 6g � 6. In [6],
we show that h00.X / has positive definite dimension 6g� 6. We generalize this to all
critical points of h to prove Theorem 1.2.

Theorem 1.2 If X 2QF.S/ is a critical point of hW QF.S/!R then X has positive
definite dimension at least 6g� 6. In particular h has no local maxima.

Proof As the Theorem is true for X 2F.S/ [6], we assume that X …F.S/. By [5], if
�X is the unit Patterson–Sullivan geodesic current for X 2QF.S/ then the real valued
function Y !h.Y /L�X

.Y / on QF.S/ is minimum at X . Therefore .hL�X
/0.X /D0.

If X is a critical point of h then h0.X /D 0 and therefore by the product rule

h0.X /L�X
.X /C h.X /L0�X

.X /D h.X /L0�X
.X /D 0:
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As h.X /¤ 0 then L0�X
.X /D 0 and therefore L�X

has a critical point at X . We note
that the holomorphic length function L�X

satisfies

<.L�X
/DL�X

:

Therefore as L0�X
.X /D 0, then for all v 2 TX .QF.S//,

<.L0�X
.v//DL0�X

.v/D 0:

Therefore applying this to J:v we have

0D<.L0�X
.J:v//D<.iL0�X

.v//D�=.L0�X
.v//:

Thus L0�X
.v/ has real and imaginary part zero and therefore L0�X

.v/ D 0 for all
v 2 TX .QF.S//. Thus L0�X

.X / D 0 and we have a well-defined complex bilinear
2–form L00�X

.X /:

As the two-form GX is given by GX D .hL�X
/00.X / and both h;L�X

are critical at
X we have

GX D h00.X /L�.X /C 2h0.X /L0�X
.X /C h.X /L00�.X /D h00.X /C h.X /L00�X

.X /:

We write TX .QF.S//D VC˚V0˚V� where L00�X
is positive-definite (respectively,

zero, negative-definite) on VC (resp. V0;V� ). Since L00�X
is the real part of a complex

bilinear form, the complex structure J is an isomorphism from VC to V� , and each
of these has dimension at most .6g� 6/. Therefore dim.V�˚V0/� 6g� 6.

As X … F.S/ then GX is positive definite. As GX D h00.X /C h.X /L00�X
.X /, then

h00.X / must be positive-definite on V0˚V� . Therefore h has positive definite dimen-
sion at least 6g� 6 at X .

We now give a proof of McMullen’s result (Theorem 1.4) that the Weil–Petersson and
Hausdorff norms are equal on J.TF.S//.

Proof If wD J:v for v 2 TX .F.S// then by the Main Theorem we have kwkG D 0.
As h.X /D 1, and by holomorphicity, L00�X

.J:v;J:v/D�L00�X
.v/ we have

0D kwk2G D h00.J:v;J:v/C h.X / :L00�X
.J:v;J:v/D kvk2H �L00�X

.v; v/:

kvk2H DL00�X
.v; v/:Thus

In [19], Wolpert showed that L00�X
.v; v/D kvkg and the Theorem follows.
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