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Affine deformations of a three-holed sphere

VIRGINIE CHARETTE

TODD A DRUMM

WILLIAM M GOLDMAN

Associated to every complete affine 3–manifold M with nonsolvable fundamental
group is a noncompact hyperbolic surface † . We classify these complete affine struc-
tures when † is homeomorphic to a three-holed sphere. In particular, for every such
complete hyperbolic surface † , the deformation space identifies with two opposite
octants in R3 . Furthermore every M admits a fundamental polyhedron bounded
by crooked planes. Therefore M is homeomorphic to an open solid handlebody
of genus two. As an explicit application of this theory, we construct proper affine
deformations of an arithmetic Fuchsian group inside Sp.4;Z/ .

57M05; 20H10, 30F60

Introduction

A complete affine manifold is a quotient

M D E=�

where E is an affine space and � � Aff.E/ is a discrete group of affine transformations
of E acting properly and freely on E. When dim E D 3, Fried–Goldman [19] and
Mess [29] imply that either

� � is solvable, or

� � is virtually free.

When � is solvable, M admits a finite covering homeomorphic to the total space of
a fibration composed of cells, circles, annuli and tori. The classification of structures
in this case is straightforward [19]. When � is virtually free, the classification is
considerably more interesting. In the early 1980’s Margulis [27; 28] discovered the
existence of such structures, answering a question posed by Milnor [30].

Tameness Conjecture Suppose M 3 is a 3–dimensional complete affine manifold
with free fundamental group. Then M is homeomorphic to an open solid handlebody.
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This is the analog of Marden’s Tameness Conjecture, recently proved by Agol [2] and
Calegari–Gabai [4].

By Fried–Goldman [19], the linear holonomy homomorphism

Aff.E3/
L
��! GL.3;R/

embeds � as a discrete subgroup of GL.3;R/ conjugate to the orthogonal group O.2; 1/.
Thus M admits a complete flat Lorentz metric and is a (geodesically) complete flat
Lorentz 3–manifold. We henceforth restrict our attention to the case when E is a
3–dimensional Lorentzian affine space E3

1
. A Lorentzian affine space is a simply

connected geodesically complete flat Lorentz 3–manifold, and is unique up to isometry.

Furthermore L.�/ is a Fuchsian group acting properly and freely on the hyperbolic
plane H2 . We model H2 on a component of the two-sheeted hyperboloid˚

v 2R3
1

ˇ̌
v � v D �1

	
;

or equivalently its projectivization in P.R3
1
/. (Compare Goldman [21].) The quotient

† WDH2=L.�/

is a complete hyperbolic surface homotopy-equivalent to M , naturally associated to
the Lorentz manifold M .

We prove the Tameness Conjecture in the first nontrivial case, that is, when the surface
† is homeomorphic to a three-holed sphere.

Let �0 � O.2; 1/ be a Fuchsian group. Denote the corresponding embedding

�0W �0 ,! O.2; 1/� GL.3;R/:

Let G� Aff.E3
1
/ denote the group of affine isometries of E3

1
. An affine deformation of

�0 is a representation

�0

�
�! G

satisfying L ı �D �0 . We refer to the image � of � as an affine deformation as well.

An affine deformation is proper if the affine action of �0 on E3
1

defined by � is a
proper action.

Margulis [27; 28] discovered proper actions by bounding from below the Euclidean
distance that elements of � displace points. Our more geometric approach constructs
fundamental polyhedra for affine deformations in the spirit of Poincaré’s theorem on
fundamental polyhedra for hyperbolic manifolds.
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This approach began with Drumm [14], who constructed fundamental polyhedra from
crooked planes to show that certain affine deformations � act properly on all of E3

1
. A

crooked plane is a polyhedron in E3
1

with four infinite faces, adapted to the invariant
Lorentzian geometry of E3

1
. Specifically, representing the hyperbolic surface † as

an identification space of a fundamental polygon for the generalized Schottky group
L.�/�O.2; 1/, we construct a fundamental polyhedron for certain affine deformations
� bounded by crooked planes [14]. We call such a fundamental polyhedron a crooked
fundamental polyhedron.

Crooked Plane Conjecture Suppose � � G is a discrete group acting properly on
E3

1
. Suppose � is not solvable. Then some finite-index subgroup of � admits a crooked

fundamental polyhedron.

Clearly an affine deformation � for which a finite-index subgroup admits a crooked
fundamental polyhedron is proper, and the quotient is an open solid handlebody. Thus
the Crooked Plane Conjecture implies the Tameness Conjecture. We prove the Crooked
Plane Conjecture when † is homeomorphic to a three-holed sphere.

Theorem (Drumm) Every free discrete Fuchsian group �0�O.2; 1/ admits a proper
affine deformation.

Actions of free groups by Lorentz isometries are the only cases to consider. Fried–
Goldman [19] reduces the problem to when �0 is a Fuchsian group, and Mess [29]
implies �0 cannot be cocompact. (See Goldman–Margulis [23] and Labourie [26] for
alternate proofs.) Thus, after passing to a finite-index subgroup, we may assume that
�0 is free.

The linear representation �0 is itself an affine deformation, by composing it with the
embedding

GL.3;R/ ,! Aff.E3
1/:

Slightly abusing notation, denote this composition by �0 as well. Two affine deforma-
tions are translationally equivalent if they are conjugate by a translation in E3

1
. An

affine deformation is trivial (or radiant) if and only if it is translationally equivalent to
the affine deformation �0 constructed above. In other words an affine deformation is
trivial if it fixes a point in the affine space E3

1
.

Let R3
1

denote the vector space underlying the affine space E3
1

, considered as a �0 –
module via the linear representation �0 . The space of translational equivalence classes
of affine deformations of �0 identifies with the cohomology group H1.�0;R

3
1
/. For
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each g 2 �0 , define the translational part u.g/ of �.g/, as the unique translation
taking the origin to its image under �.g/. That is, u.g/D �.g/.0/, and

x
�.g/
7�! �0.g/.x/Cu.g/:

The map �0
u
�! R3

1
is a cocycle in Z1.�0;R

3
1
/, and conjugating � by a translation

changes u by adding a coboundary.

The classification of complete affine structures in dimension 3 therefore reduces to de-
termining, for a given free Fuchsian group �0 , the subset of H1.�0;R

3
1
/ corresponding

to translational equivalence classes of proper affine deformations.

Margulis [27; 28] introduced an invariant of the affine deformation � , defined for
elements 
 2 � whose linear part L.
 / is hyperbolic. Namely, 
 preserves a unique
affine line C
 upon which it acts by translation. Furthermore C
 inherits a canonical
orientation. As C
 is spacelike, the Lorentz metric and the canonical orientation
determines a unique orientation-preserving isometry

R
j

���! C
 :

The Margulis invariant ˛.
 / 2 R is the displacement of the translation 
 jC
 as
measured by j
 :

j
 .t/


7�! j
 .t C˛.
 /

�
for t 2R.

Margulis’s invariant ˛ is a class function on �0 which completely determines the
translational equivalence class of the affine deformation (see Drumm–Goldman [18] and
Charette–Drumm [9]). Charette–Drumm [8] extended Margulis’s invariant to parabolic
transformations. However, only its sign is well defined for parabolic transformations.
To obtain a precise numerical value one requires a decoration of �0 , that is, a choice
of horocycle at each cusp of †.

If � is an affine deformation of �0 with translational part u 2 Z1.�0;R
3
1
/, then we

indicate the dependence of ˛ on the cohomology class Œu� 2 H1.�0;R
3
1
/ by writing

˛ D ˛Œu� .

Let �0 be a Fuchsian group whose corresponding hyperbolic surface † is homeo-
morphic to a three-holed sphere. Denote the generators of �0 corresponding to the
three ends of @† by g1;g2;g3 . Choose a decoration so that the generalized Margulis
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invariant defines an isomorphism

H1.�0;R
3
1/ �!R3

Œu� 7�!

24�1.Œu�/

�2.Œu�/

�3.Œu�/

35 WD
24˛Œu�.g1/

˛Œu�.g2/

˛Œu�.g3/

35 :
Theorem A Let �0; †; �1; �2; �3 be as above. Then Œu� 2 H1.�0;R

3
1
/ corresponds

to a proper affine deformation if and only if

�1.Œu�/; �2.Œu�/; �3.Œu�/

all have the same sign. Furthermore in this case � admits a crooked fundamental
polyhedron and M is homeomorphic to an open solid handlebody of genus two.

For purely hyperbolic �0 , Theorem A was proved by Jones in her doctoral thesis [25],
using a different method.

In the case that † is a three-holed sphere, Theorem A gives a complete description
of the deformation space and the topological type. As three-holed spheres are the
building blocks of hyperbolic surfaces, the present paper plays a fundamental role in
our investigation of affine deformations of hyperbolic surfaces of arbitrary topological
type. Except in a few other conjectural cases, for example when † is homeomorphic to
a two-holed projective plane (or cross-surface) or one-holed Klein bottle, the situation
is more complicated as the deformation space will be defined by infinitely many
inequalities. When † supports irrational measured geodesic laminations, as on the
one-holed torus, the deformation space may be a convex domain with fractal boundary
(see Goldman–Margulis–Minsky [24]).

Margulis’s opposite sign lemma [27; 28] (see Abels [1] for a beautiful exposition)
states that uniform positivity (or negativity) of ˛.
 / is necessary for properness of an
affine deformation. In Goldman–Margulis [23] and Goldman [20] uniform positivity or
negativity of ˛.
 / was conjectured to be equivalent to properness. Theorem A implies
this conjecture when † is a three-holed sphere with geodesic boundary. In that case
only the three 
 corresponding to @† need to be checked. However, when † has at
least one cusp, Theorem A provides counterexamples to the original conjecture. If
the generalized Margulis invariant of that cusp is zero, and those of the other ends are
positive, then ˛.
 / > 0 for all hyperbolic elements 
 2 � . Other counterexamples are
given in Goldman–Margulis–Minsky [24].

For some surfaces more complicated than the 3–holed sphere, positivity of ˛.
 / for
finitely many elements 
 will be insufficient to guarantee properness of the action.
(See Charette [6; 7] for specific examples.)
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We apply Theorem A to construct a proper affine deformation of an arithmetic group in
SL.2;Z/ inside Sp.4;Z/. Here G is represented as the subgroup of Sp.4;R/ stabilizing
the Lagrangian plane R2˚0 in a symplectic vector space R4 defined over Z. The set
of Lagrangian 2–planes in R4 transverse to R2˚ 0 is naturally a model for E3

1
and

� acts by affine Lorentz isometries. This model of Minkowski space embeds in the
conformal compactification of E3

1
, the Einstein universe (see Barbot et al [3]) upon

which Sp.4;R/ acts transitively.

Example For iD1; 2; 3 choose three positive integers �1; �2; �3 . Then the subgroup
� of Sp.4;Z/ generated by2664

�1 �2 �1C�2��3 0

0 �1 2�1 ��1

0 0 �1 0

0 0 2 �1

3775 ;
2664
�1 0 ��2 �2�2

2 �1 0 0

0 0 �1 �2

0 0 0 �1

3775
acts properly and freely, with quotient manifold homeomorphic to a solid open handle-
body of genus two.

Our result complements recent work of Goldman–Labourie–Margulis [22]. When the
hyperbolic surface † is convex cocompact, the space of proper affine deformations
identifies with an open convex cone in H1.�0;R

3
1
/ defined by the nonvanishing of a

generalization of the Margulis invariant to geodesic currents on †.

This cone is the interior of the intersection of half-spaces defined by the functionals

H1.�0;R
3
1/ �!R

Œu� 7�! ˛Œu�.g/

for g2�0 . In general we expect this cone to be the union of open regions corresponding
to combinatorial configurations realized by crooked planes, thereby giving a crooked
fundamental polyhedron for each proper affine deformation. Jones [25] used standard
Schottky fundamental domains to fill the open cone with such regions. In the present
paper, we decompose † into two ideal triangles, obtaining a single combinatorial
configuration which applies to all proper affine deformations.

The presentation in this paper focuses on the case of uniformly positive Margulis
invariants. While the arguments for negative invariants boil down to sign changes,
including them is unnecessarily cumbersome. Occasionally, we will mention how to
modify the approach in that case.

Geometry & Topology, Volume 14 (2010)



Affine deformations of a three-holed sphere 1361

Acknowledgements We are grateful to Ian Agol, Francis Bonahon, Dick Canary,
David Gabai, Ryan Hoban, Cathy Jones, François Labourie, Misha Kapovich, Grisha
Margulis, Yair Minsky, and Anna Wienhard for helpful discussions. We also wish to
thank the Institute for Advanced Study for their hospitality. We thank the anonymous
referee for numerous helpful suggestions.

Charette gratefully acknowledges partial support from the Natural Sciences and Engi-
neering Research Council of Canada and from the Fonds québécois de la recherche sur
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1 Lorentzian geometry

This section summarizes needed technical background on the geometry of Minkowski
.2C1/–spacetime, its isometries, and Margulis’s invariant of hyperbolic and parabolic
isometries. For details, variants, and proofs, see Abels [1], Charette [5], Charette–
Drumm [8; 9], Charette–Drumm–Goldman–Morrill [11], Drumm [13], Goldman [20]
and Drumm–Goldman [16; 18].

Let E3
1

denote Minkowski .2C1/–spacetime, that is, a simply connected complete
three-dimensional flat Lorentzian manifold. Alternatively E3

1
is an affine space whose

underlying vector space R3
1

of translations is a Lorentzian inner vector space, a vector
space with an inner product

R3
1 �R3

1 �!R

.v;w/ 7�! v �w

of signature .2; 1/.

A vector x 2R3
1

is

� null if x � xD 0;

� timelike if x � x< 0;

� spacelike if x � x> 0.

A spacelike vector x is unit spacelike if x � xD 1. A null vector is future-pointing if its
third coordinate is positive – this corresponds to choosing a connected component of
the set of timelike vectors, or a time-orientation.
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Define the Lorentzian cross-product as follows. Choose an orientation on R3
1

. Let

R3
1 �R3

1 �R3
1

Det
���!R

denote the standard determinant on the three-dimensional real vector space. The
Lorentzian cross-product is the unique bilinear map

R3
1 �R3

1

�
��!R3

1

satisfying
u � .v�w/ D Det.u; v;w/:

The following facts are well known (see for example Ratcliffe [31]):

Lemma 1.1 Let u; v; x; y 2R3
1

. Then

u � .x� y/D x � .y� u/;

.u� v/ � .x� y/D .u � y/.v � x/� .u � x/.v � y/:

For a spacelike vector v , define its Lorentz-orthogonal plane to be

v? D fx j x � vD 0g:

It is an indefinite plane, since the Lorentzian inner product restricts to an inner product
of signature .1; 1/. In particular, v? contains two null lines. The two future-pointing
linearly independent vectors of Euclidean length 1 in this set are denoted v� and vC

and are chosen so that .v�; vC; v/ is a positively oriented basis for R3
1

.

Lemma 1.2 Let v 2R3
1

be a unit spacelike vector. Then

v� vC D vC and v�� vD v�:

The lemma follows immediately from Lemma 1.1 (see Charette–Drumm [9]).

Recall that G is the group of all affine transformations that preserve the Lorentzian
scalar product on the space of directions; G is isomorphic to O.2; 1/ËR3

1
. We shall

restrict our attention to those transformations whose linear parts are in the identity
component SO.2; 1/0 of O.2; 1/, thus preserving orientation and time-orientation. As
above, L denotes the projection onto the linear part of an affine transformation.

Suppose g 2 SO.2; 1/0 and g ¤ I .

� g is hyperbolic if it has three distinct real eigenvalues;

� g is parabolic if its only eigenvalue is 1;
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� g is elliptic if it has no real eigenvalues.

Denote the set of hyperbolic elements in SO.2; 1/0 by Hyp0 and the set of parabolic
elements by Par0 .

We also call 
 2 G hyperbolic (respectively parabolic, elliptic) if its linear part L.
 / is
hyperbolic (respectively parabolic, elliptic). Denote the set of hyperbolic elements in
G by Hyp and the set of parabolic transformations by Par .

Let 
 2 Hyp[Par . The eigenspace Fix.L.
 // is one-dimensional. Let v 2 Fix
�
L.
 /

�
be a non-zero vector and x 2 E3

1
. Define

z̨v.
 / WD .
 .x/�x/ � v:

The following facts are proved in Abels [1], Charette–Drumm [8; 9], Goldman [20],
Drumm–Goldman [18] and Goldman–Margulis [23]:

� z̨v.
 / is independent of x ;

� z̨v.
 / is identically zero if and only if 
 fixes a point;

� For any � 2 G,
z̨h.v/.�
�

�1/ D z̨v.
 /

where v 2 Fix.g/ and hD L.�/;

� For any n 2 Z,
z̨v.


n/ D jnjz̨v.
 /:

A linear transformation g induces a natural orientation on Fix.g/ as follows.

Definition 1.3 Let g 2 Hyp0 [Par0 . A vector v 2 Fix.g/ is positive relative to g if
and only if

.v; x;gx/

is a positively oriented basis, where x is any null or timelike vector which is not an
eigenvector of g .

The sign of 
 is the sign of z̨v.
 /, where v is any positive vector in Fix.g/. For n< 0

the orientation of Fix.gn/ reverses, so 
 and 
�1 have equal sign.

Lemma 1.4 (Margulis [27; 28], Charette–Drumm [8]) Let 
1 , 
2 2 Hyp[Par and
suppose 
1 and 
2 have opposite signs. Then h
1; 
2i does not act properly on E3

1
.
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Let �0 � O.2; 1/ be a subgroup and � an affine deformation of �0 ,

(1) �.g/.x/D g.x/Cu.g/

where x 2R3
1

. Then �0
u
�!R3

1
is a cocycle of �0 with coefficients in the �0 –module

R3
1

corresponding to the linear action of �0 . As affine deformations of �0 correspond
to cocycles in Z1.�0;R

3
1
/, translational equivalence classes of affine deformations

comprise the cohomology group H1.�0;R
3
1
/.

If g 2 Hyp0 , set x0
g to be the unique positive vector in Fix.g/ such that x0

g � x
0
g D 1. If

g 2 Par0 , choose a positive vector in Fix.g/ and call it x0
g .

Let u 2 Z1.�0;R
3
1
/. Reinterpreting the Margulis invariant as a linear functional on the

space of cocycles Z1.�0;R
3
1
/, set

�0

˛Œu�
��!R

g 7�! z̨x0
g
.
 /;

where 
 D �.g/ is the affine deformation corresponding to u.g/. As the notation
indicates, ˛Œu� only depends on the cohomology class of u, since z̨x0

g
is a class function.

2 Hyperbolic geometry and the three-holed sphere

Let † denote a complete hyperbolic surface homeomorphic to a three-holed sphere.
Each of the three ends can either flare out (that is, have infinite area) or end in a cusp.
In the former case, a loop going around the end will have hyperbolic holonomy, and
parabolic holonomy in the latter case. We consider certain geodesic laminations on the
surface from which we will construct crooked fundamental polyhedra.

Fixing some arbitrary basepoint in †, let �0 denote the image under the holonomy
representation of the fundamental group of †. We may thus identify † with H2=�0 .

The fundamental group of † is free of rank two and admits a presentation

(2) �0 D hg1;g2;g3 j g1g2g3 D Ii;

where the gi correspond to the components of @† and may be hyperbolic or parabolic.

For the rest of the paper, the gi and their affine deformations 
i are indexed by
i D 1; 2; 3 with addition in Z=3Z.

If gi is hyperbolic, it admits a unique invariant axis li �H2 which projects to an end
of the three-holed sphere. For gi parabolic, we think of this invariant line as shrunk to
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a point on the ideal boundary. Since �0 is discrete, the li ’s are pairwise disjoint, as in
Figure 1.

For hyperbolic gi , set xCi , x�i to be its attracting and repelling fixed points, respectively;
if gi is parabolic, set xCi D x�i to be its unique fixed point.

l1

l2

l3

Figure 1: The invariant lines for g1;g2;g3 , with direction indicated by the arrows

The three arcs in H2 respectively joining xCi to xC
i�1

project to a geodesic lamination
of † as drawn in Figures 2 and 3.
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��
��
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��
��

�
�
�
�

�
�
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�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

xC1

xC
2

xC
3

x�1

x�
2

x�
3

Figure 2: Three lines in H2 joining endpoints of the invariant axes li . On
the right, the induced lamination of † .

We shall adapt the Kleinian model for H2 to the affine Lorentzian setting, as follows.
A future-pointing timelike ray is a ray qCRCw , where q 2 E3

1
is a point and w 2R3

1

is a future-pointing timelike vector. Parallelism defines an equivalence relation on

Geometry & Topology, Volume 14 (2010)



1366 Virginie Charette, Todd A Drumm and William M Goldman

����

�
�
�
�

�
�
�
�

����

��
��
��
��

x�
2
D xC

2

x�
1

x�
3

xC
3

xC
1

Figure 3: Three lines in H2 joining endpoints of li , with g2 parabolic and
l2 an ideal point

future-pointing timelike rays, and points of H2 identify with equivalence classes of
future-pointing timelike rays.

Denote by ŒqCRCw� the point in H2 corresponding to the equivalence class of the
ray qCRCw .

Geodesics in H2 naturally identify with parallelism classes of indefinite affine planes.
A point ŒqCRCw� 2 H2 is incident to a geodesic if and only if w is parallel to the
geodesic’s corresponding plane. A half-space H in E3

1
bounded by an indefinite affine

plane determines a half-plane H�H2 . A point ŒqCRCw� in H2 lies in H if and only
if qCRCw intersects H in a ray, that is, qC tw 2H for t >> 0.

Geodesics in H2 correspond dually to spacelike lines, since the Lorentz-perpendicular
plane of a spacelike vector is indefinite. In the notation of (2), Rx0

gi
is dual to li and

the null vectors .x0
gi
/
˙

respectively project to the ideal points x˙i .

Furthermore spacelike vectors correspond to oriented geodesics, or equivalently to
half-planes in H2 . A spacelike vector spans a unique spacelike ray, which contains a
unique unit spacelike vector v . The corresponding half-plane is

H.v/ WD
˚
ŒqCRCw� 2H2

ˇ̌
w � v � 0

	
:

The geodesics @H.u/ and @H.v/�H2 are respectively dual to u and v . We distinguish
three exclusive possibilities:

� @H.u/ and @H.v/ intersect at a point inside H2 if u� v is timelike;
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� @H.u/ and @H.v/ share an endpoint on @H2 if u� v is lightlike;

� @H.u/ and @H.v/ neither intersect nor share an endpoint if u� v is spacelike.

Extending terminology from H2 to R3
1

, say that two spacelike vectors u; v 2R3
1

are

� ultraparallel if u� v is spacelike,

� asymptotic if u� v is null, and

� crossing if u� v is lightlike.

3 Crooked planes and half-spaces

Crooked planes are Lorentzian analogs of equidistant surfaces. We will associate a
triple of crooked planes to the lamination introduced in the previous section. We will see
how to get pairwise disjoint crooked plane triples, yielding proper affine deformations
of the linear holonomy. In this section, we define crooked planes.

Here is a somewhat technical, yet important, point. What we call crooked planes and
half-spaces should really be called positively oriented crooked planes and half-spaces.
We require crooked planes to be positively oriented when the signs of the Margulis
invariants are positive. But for the case of negative Margulis invariants, we must use
negatively oriented crooked planes. The arguments are essentially the same up to a
change in sign – the curious reader should consult Drumm–Goldman [17].

Given a null vector x 2R3
1

, set P.x/ to be the set of (spacelike) vectors w such that
wC is parallel to x. This half-plane in the Lorentz-orthogonal plane x? is a connected
component of x? n hxi. If v is a spacelike vector, then

v 2 P.vC/ and � v 2 P.v�/:

Let p 2 E3
1

be a point and v 2 R3
1

a spacelike vector. Define the crooked plane
C.v;p/� E3

1
with vertex p and direction vector v to be the union of two wings

pCP.vC/ and pCP.v�/

and a stem
pC fx 2R3

1 j v � xD 0; x � x� 0g:

Each wing is a half-plane, and the stem is the union of two quadrants in an indefinite
plane. The crooked plane itself is a piecewise linear submanifold, which stratifies
into four connected open subsets of planes (two wings and the two components of the
interior of the stem), four null rays, and a vertex.
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Definition 3.1 Let v be a spacelike vector and p 2 E3
1

. The crooked half-space
determined by v and p , denoted H.v;p/, consists of all q 2 E3

1
such that

� .q�p/ � vC � 0 if .q�p/ � v � 0,

� .q�p/ � v� � 0 if .q�p/ � v � 0, and

� either condition must hold for q�p 2 v? .

Observe that C.v;p/ D C.�v;p/. In contrast, the crooked half-spaces H.v;p/ and
H.�v;p/ are distinct spaces. Their union and intersection are, respectively,

H.v;p/ [ H.�v;p/D E3
1

H.v;p/ \ H.�v;p/D C.v;p/D C.�v;p/:

Crooked half-spaces in E3
1

determine half-planes in H2 as follows. As in the preceding
section, a point in H2 corresponds to the equivalence class of a future-pointing timelike
ray.

Lemma 3.2 Let p; q 2 E3
1

and v;w 2 R3
1

such that v is spacelike and w is timelike
and future-pointing. Suppose that H.v;p/ is a crooked half-space and that w � v¤ 0.
Then qC tw 2 int .H.v;p// for t >> 0 if and only if ŒqC tw� 2 int .H.v//.

Proof It suffices to consider the case that p D 0 and

vD
h

1
0
0

i
;

that is,

H.v;p/ D
nh

x
y
z

i ˇ̌̌
yC z � 0 if x � 0 or y � z � 0 if x � 0

o
:

By applying an automorphism preserving H.v;p/, we may assume

q D
h x0

y0
z0

i
; wD

h
d
0
1

i
:

where jd j< 1.

Set q.t/ WD q C tw . For any value of d , q.t/ eventually satisfies both y C z D

y0C z0C t > 0 and y � z < 0 for t >> 0.

Thus q.t/ 2 H.v;p/ if and only if d > 0. On the other hand, the point ŒqC tw� lies in
int .H.v// if and only if d > 0. The result follows.
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4 Disjointness of crooked half-spaces

This section discusses criteria for the disjointness of crooked half-spaces. Lemma 4.2
reduces disjointness of crooked half-spaces to disjointness of crooked planes. We need
only consider pairs of crooked half-spaces in the case of ultraparallel or asymptotic
vectors: when u and v are crossing C.u;p/ and C.v;p/ always intersect (see Drumm–
Goldman [17]). Theorem 4.3 and Theorem 4.5 provide criteria for disjointness for
crooked planes, and were established in [17]. Corollary 4.6 explicitly describes the set
of disjoint crooked planes for a pair of asymptotic direction vectors.

Definition 4.1 Spacelike vectors v1; : : : ; vn 2R3
1

are consistently oriented if and only
if, whenever i ¤ j ,
� vi � vj < 0;
� vi � vj

˙ � 0.

The second requirement implies that the vi are pairwise ultraparallel or asymptotic.
Equivalently, vi ; vj ; i ¤ j are consistently oriented if and only if the interiors of the
half-planes H.vi/ and H.vj / are pairwise disjoint. (See Goldman [21, Section 4.2.1]
for details.)

Lemma 4.2 Suppose u; v are consistently oriented spacelike vectors, p 2E3
1

, and w is
a vector such that C.u;p/ and C.v;pCw/ are disjoint. Then C.v;pCw/� H.�u;p/.

Proof Because

E3
1 n C.v;p/ D int .H.u;p// [ int .H.�u;p// ;

either C.v;pCw/� H.u;p/ or C.v;pCw/� H.�u;p/.

Suppose that C.v;pCw/� H.u;p/. The future-pointing timelike rays on C.v;pCw/

lie on the stem of C.v;pCw/ and correspond to the geodesic @H.v/.

Since a future-pointing timelike ray on C.v;pCw/ lies entirely in H.u;p/, Lemma
3.2 implies that

@H.v/� H.u/:

Since u; v are consistently oriented, the half-spaces H.u/ and H.v/ are disjoint, and
H.v/� H.�u/, a contradiction. Thus C.v;pCw/� H.�u;p/ as desired.

Theorem 4.3 Let v1 and v2 be consistently oriented, ultraparallel, unit spacelike
vectors and p1;p2 2 E3

1
. The crooked planes C.v1;p1/ and C.v2;p2/ are disjoint if

and only if

(3) .p2�p1/ � .v1� v2/ > j.p2�p1/ � v2jC j.p2�p1/ � v1j:
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Corollary 4.4 Let v1; v2 2R3
1

be consistently oriented, ultraparallel vectors. Suppose

pi D aivi
�
� bivi

C;

for ai ; bi > 0, i D 1; 2. Then C.v1;p1/ and C.v2;p2/ are disjoint.

Proof Rescaling if necessary, assume that v1; v2 are unit spacelike. Lemmas 1.1
and 1.2 imply that for i ¤ j

vi
C
� .vi � vj / D vi

C
� vj

vi
�
� .vi � vj / D �vi

�
� vj :

Consequently

.p2�p1/ � .v1� v2/ D �.a2v2
�
C b2v2

C/ � v1 � .a1v1
�
C b1v1

C/ � v2

D �a2v2
�
� v1 � b2v2

C
� v1 � a1v1

�
� v2 � b1v1

C
� v2

> j.a2v2
�
� b2v2

C/ � v1j C j.a1v1
�
� b1v1

C/ � v2j:

The above inequality follows because each term in the previous expression is positive
since v1; v2 are consistently oriented. Finally

j.p2�p1/ � v2j D j.a1v1
�
� b1v1

C/ � v2j

and j.p2�p1/ � v1j D j.a2v2
�
� b2v2

C/ � v1j;

which completes the proof.

Alternatively, C.v1;p1/ and C.v2;p2/ are disjoint if and only if p2 �p1 lies in the
cone spanned by the four vectors

v2
�; �v2

C; �v1
�; v1

C:

Theorem 4.5 Let v1 and v2 be consistently oriented, asymptotic vectors such that
v1
�D v2

C , and p1;p2 2E3
1

. The crooked planes C.v1;p1/ and C.v2;p2/ are disjoint
if and only if

(4)

.p2�p1/ � v1 < 0;

.p2�p1/ � v2 < 0;

.p2�p1/ � .v1
C� v2

�/ > 0:

If any of the above inequalities is an equality, the crooked planes intersect, but in such a
way that C.v1;p1/� H.�v2;p2/ and vice versa.
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Corollary 4.6 Let v1; v2 2R3
1

be consistently oriented, asymptotic vectors such that
v1
� D v2

C . Suppose
pi D aivi

�
� bivi

C;

where ai ; bi > 0 for i D 1; 2. Then C.v1;p1/ and C.v2;p2/ are disjoint.

Proof Set
vi
�� vi

C
D �2

i vi ;

for i D 1; 2. Then

.p2�p1/ � v1 D a2v2
�
� v1 < 0

.p2�p1/ � v2 D b1v1
C
� v2 < 0

and

.p2�p1/ �
�
v1
C� v2

�
�
D �b2v2

C
�
�
v1
C� v2

�
�
� a1v2

C
�
�
v1
C� v2

�
�

D �b2�
2
2 .v1

�
� v2/ � a1�

2
2

�
v1
C
� v2

�
> 0:(5)

This completes the proof.

Keeping the notation in the statement in Corollary 4.6, we thus obtain disjoint crooked
planes if and only if p2�p1 lies in a cone spanned by three vectors

v1
C; v1

�
D v2

C; v2
�:

In (5), we allow b2D 0 or a1D 0. If a2D 0, b1D 0 or a1D b2D 0, then the crooked
planes intersect, but in a nice way, by the second part of Theorem 4.5.

5 Crooked fundamental polyhedra

Now look at how collections of pairwise disjoint crooked planes correspond to groups
acting properly on E3

1
. Let v , v0 2R3

1
be two spacelike vectors. Suppose 
 2 G and

p;p0 2 E3
1

satisfy

 .C.v;p//D C.v0;p0/:

Then 
 .p/D p0 and L.
 /.v/ is a scalar multiple of v0 . In particular, 

�
H.v;p/

�
is

one of the two crooked half-spaces bounded by C.v0;p0/.
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Theorem 5.1 Suppose that H.vi ;pi/ are 2n pairwise disjoint crooked half-spaces and

1; : : : 
n 2 Hyp[Par are such that for all i ,


i .H.v�i ;p�i// D E3
1 n int .H.vi ;pi// :

Then � D h
1; : : : 
ni acts freely and properly on E3
1

with fundamental polyhedron

�D E3
1 n

[
�n�i�n

int .H.vi ;pi// :

Proof Here is an outline of the proof, given in Drumm [14; 15]. (See also Charette–
Goldman [12].)

In order to show that
S

2� 
 .�/ D E3

1
, suppose on the contrary that p 2 E3

1
is

such that p …
S

2� 
 .�/. Then p lies in a sequence of nested crooked half-spaces.

Taking a � –translate of p if necessary, we may assume that this sequence contains a
subsequence of crooked half-spaces corresponding to hyperbolic elements of � .

However, hyperbolic elements in such a nested sequence are subject to a lower bound
on the amount of compression they induce on a weak unstable plane. Consequently,
the crooked planes bounding the crooked half-spaces lie a minimal distance away from
each other, contradicting the existence of p .

Theorem 5.1 allows considerable flexibility in our choice of fundamental domains, in
comparison to the standard construction (as in [15]). A crooked fundamental polyhedron
� in E3

1
for � determines a polygon D in H2 for L.�/; the stems of @� define lines

in H2 bounding D. However, while � �� D E3
1

, the union L.�/ �D may only be a
proper open subset of H2 . In the present case, this is the universal covering of the
interior of the convex core of †. The convex core is an incomplete hyperbolic surface
bounded by three closed geodesics. In contrast, the flat Lorentz manifold E3

1
=� is

complete. While the hyperbolic fundamental polyhedra L.
 /.D/ only fill a proper
subset of H2 , the crooked fundamental polyhedra 
 .�/ fill all of E3

1
.

Theorem 5.1 extends to the case when two of the crooked planes intersect in a single
point.

Lemma 5.2 (Kissing Lemma) Let u1; u2; v1; v2 2 R3
1

be pairwise consistently ori-
ented vectors and suppose q;p1;p2 2 E3

1
satisfy

C.v1;p1/ \ C.v2;p2/D ∅
C.v1;p1/ \ C.u1; q/D C.v1;p1/ \ C.u2; q/D ∅
C.v2;p2/ \ C.u1; q/D C.v1;p1/ \ C.u2; q/D ∅:

Geometry & Topology, Volume 14 (2010)



Affine deformations of a three-holed sphere 1373

Let 
1; 
2 2G such that 
i.H.ui ; q//DH.�vi ;pi/. Then there exist q1; q2 2E3
1

such
that the crooked planes

C.u1; q1/; C.u2; q2/; C.v1; 
1.q1//; C.v2; 
2.q2//

are pairwise disjoint.

Proof We will prove the lemma for the case where u1 and u2 are asymptotic, as it is
the only case used in this paper. (The ultraparallel case is not much harder.)

Relabeling if necessary, assume that u1
� D u2

C . Let v0 be the unit spacelike vector
that is a positive multiple of u2

�� u1
C . Corollaries 4.4, 4.6 imply that

C.v0; q/\ C.v1;p1/D C.v0; q/\ C.v2;p2/D∅:

Thus by Lemma 3.2, H.v0; q/ contains both H.u1; q/ and H.u2; q/ and furthermore,
its complement contains C.v1;p1/ and C.v2;p2/. By openness of the disjointness
conditions in Theorems 4.3 and 4.5, there exist �1; �2 2 R such that, for any p0i in
an �i –neighborhood of pi , i D 1; 2, the three crooked planes C.v1;p

0
1
/, C.v2;p

0
2
/,

C.v0; q/ remain disjoint.

Set
q1 D ıu1

�
� ı0u1

C;

where ı; ı0 > 0 are small enough so that 
1.q1/ lies in the �1 –neighborhood of p1 .
Corollary 4.6 implies that C.u1; q1/\H.v0; q/D∅ and by Lemma 4.2, C.u1; q1/�

H.v0; q/.

Next, set q2 D ı00u2
� , where ı00 > 0 is small enough so that 
2.q2/ lies in the

�2 –neighborhood of p2 . Then C.u2; q2/� H.v0; q/.

Finally, q1; q2 satisfy the condition in Corollary 4.6 and thus C.u1; q1/\C.u2; q2/D∅.

6 The space of proper affine deformations

We parametrize the space of translational equivalence classes H1.�0;R
3
1
/ of affine

deformations of �0 by Margulis invariants corresponding to g1 , g2 , g3 . Positivity of
the three signs will guarantee a triple of crooked planes arising from the lamination
described in Section 2. Alternatively, if the signs are all negative, use negatively
oriented crooked planes (see Drumm–Goldman [17]) as mentioned in Section 3. The
existence of such a crooked polyhedron thereby completes the proof of Theorem A.

We begin with the parametrization of H1.�0;R
3
1
/.
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Lemma 6.1 Let � denote a free group of rank two with presentation

hA1;A2;A3 jA1A2A3 D Ii:

Let �
�0
�!SO.2; 1/0 be a homomorphism such that �0.Ai/2Hyp0[Par0 for iD1; 2; 3.

Suppose that �0.�/ is not solvable. For each i choose a vector xi 2 Fix
�
�0.Ai/

�
positive with respect to �0.Ai/ and define

H1.�0;R
3
1/

�i
�!R

Œu� 7�! z̨xi
.�.Ai// D u.Ai/ � xi

where � is the affine deformation corresponding to u. Then

H1.�0;R
3
1/

�
��!R3

�W Œu� 7�!

24�1.Œu�/

�2.Œu�/

�3.Œu�/

35
is a linear isomorphism of vector spaces.

Of course, this lemma is much more general than our specific application. In our
application �0 is an isomorphism of � D �1.†/ onto the discrete subgroup �0 �

SO.2; 1/0 , and corresponds to a complete hyperbolic three-holed sphere int.†/. The
generators A1;A2;A3 correspond to the three components of @†:

The proof of Lemma 6.1 is postponed to Appendix A.

Conclusion of proof of Theorem A In the presentation of �0

�0 D hg1;g2;g3 j g1g2g3 D Ii

relabel, if necessary, to assume that the invariant axes are ordered as in Figures 1 and 4.
As in Section 1, choose a positive vector x0

i WD x0
gi
2 Fix.gi/, further requiring that x0

i

be unit spacelike when gi is hyperbolic. The assumption on the invariant axes implies
that the vectors x0

i are pairwise consistently oriented. With this fixed choice of positive
vectors

�i.Œu�/ D ˛Œu�.gi/:

We will now show that every positive cocycle .�1; �2; �3/ 2 Z1.�0;R
3
1
/ corresponds

to a triple of mutually disjoint crooked planes arising from the geodesic lamination
described in Section 2.
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By a slight abuse of notation, set xCi D .x
0
i /
C

and xCi D x0
i when gi is parabolic. The

three consistently oriented unit spacelike vectors

vi D
�1

xCi � x
C

iC1

xC
iC1
� xCi

correspond to the arcs joining xC
iC1

to xCi in H2 .

For i D 1; 2; 3, choose ai ; bi > 0. Then set

pi D aixC
iC1
� bixCi :

By Corollary 4.6, the crooked planes C.vi ;pi/ are pairwise disjoint, since vi
� D xC

iC1

and vi
C D xCi .

Let u be the cocycle such that, for i D 1; 2; 3, the affine deformation 
i of gi satisfies


i.pi/D pi�1:

Then


�1
1 .C.v3;p3//D C.g�1

1 .v3/;p1/


2.C.v2;p2//D C.g2.v2/;p1/:

Since g�1
1
.xC

3
/ is parallel to g2.x

C

3
/, the vectors g�1

1
.v3/ and g2.v2/ are ultraparallel.

Furthermore
C.�g�1

1 .v3/;p1/; C.�g2.v2/;p1/� H.v1;p1/:

See Figure 4. We can thus apply the Kissing Lemma 5.2 to obtain a crooked fundamental
polyhedron for the cocycle u, so that Theorem 5.1 holds.

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

z

x�1

x�
2

x�3

xC1

xC2

xC
3

Figure 4: The template for a crooked fundamental polyhedron. Here z D

g�1
1 .xC3 / jj g2.x

C

3 / .
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Every positive cocycle arises in this way. Indeed, compute the Margulis invariants for
the cocycle u:

�i D .pi�1�pi/ � x
0
i

D .ai�1xCi � bi�1xC
i�1
� aixC

iC1
C bixCi / � x

0
i

D .�aixC
iC1
� bi�1xC

i�1
/ � x0

i

Every product ˇi;j D�xCi � x
0
j is positive, because the vectors x0

j are pairwise consis-
tently oriented. In matrix form

24�1

�2

�3

35D
24ˇ2;1 0 0 0 0 ˇ3;1

0 ˇ1;2 ˇ3;2 0 0 0

0 0 0 ˇ2;3 ˇ1;3 0

35
266666664

a1

b1

a2

b2

a3

b3

377777775
and every positive triple of values .�1; �2; �3/ may be realized by choosing appropriate
positive values of ai ; bi . Explicitly, for i D 1; 2; 3, choose pi ; qi > 0 with piCqi D 1,
and define 266666664

a1

b1

a2

b2

a3

b3

377777775
D

266666664

p1�1=ˇ2;1

q2�2=ˇ1;2

p2�2=ˇ3;2

q3�3=ˇ2;3

p3�3=ˇ1;3

q1�1=ˇ3;1

377777775
:

The proof of Theorem A is complete.

7 Embedding in an arithmetic group

As an application, we construct examples of proper affine deformations of a Fuchsian
group as subgroups of the symplectic group Sp.4;R/.

Give R4 the symplectic form defined by the matrix

J WD

2664
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3775 :
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Let Sp.4;R/ denote the group of linear symplectomorphisms of R4 with this symplectic
form.

Let e1; e2; e3; e4 denote the standard basis. Then the planes L WD he1; e2i and L0 WD

he3; e4i are Lagrangian with R4DL˚L0 . The symplectic form defines a dual pairing

L�L0 �!R

and every linear automorphism L
g
�!L extends to a linear symplectomorphism g˚

.g|/�1 of R4 . Let G0 denote the corresponding embedding GL.2;R/ ,! Sp.4;R/.

Let S2 be the vector space of 2�2 symmetric matrices, with a Lorentzian inner product
defined by the negative of the determinant. This vector group embeds in Sp.4;R/ as
the unipotent subgroup U consisting of all block matrices�

I S

0 I

�
where S 2 S2 . This subgroup comprises all linear symplectomorphisms of R4 which
act identically both on L and on the quotient space R4=L. A model for Minkowski
space E3

1
is the set A of all Lagrangian planes in R4 which are transverse to L. The

unipotent group U acts simply transitively on A, and we regard this as the group of
translations of E3

1
. Under the identification of A with E3

1
, the subgroup generated by

U and G0 acts as the group of orientation-preserving isometries. G0 corresponds to
the subgroup of linear isometries, where L0 corresponds to the origin.

We construct subgroups of Sp.4;Z/ which act properly on the S2 model of E3
1

. The
linear parts and translational parts of Lorentzian transformations of S2 are associated
with elements of Sp.4;Z/. The level two congruence subgroup �0 of SL.2;Z/ is
generated by

g1 WD �

�
1 2

0 1

�
; g2 WD �

�
1 0

�2 1

�
; g3 WD

�
1 �2

2 �3

�
:

subject to the relation g1g2g3 D I . It is freely generated by g1 and g2 . All three gi

are parabolic and the quotient hyperbolic surface † D H2=�0 is a three-punctured
sphere. The symmetric matrices

x1 WD

�
�1 0

0 0

�
; x2 WD

�
0 0

0 �1

�
; x3 WD

�
�1 �1

�1 �1

�
define positive fixed vectors with respect to g1 , g2 and g3 . The triple .x1; x2; x3/

defines a decoration of †.
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An affine deformation of �0 is defined by two arbitrary vectors u1;u2 2 S2 as transla-
tional parts

u1 WD

�
a1 b1

b1 c1

�
and u2 WD

�
a2 b2

b2 c2

�
Thus the affine transformations with linear part gi and translational part ui are


1 WD

2664
1 0 a1 b1

0 1 b1 c1

0 0 1 0

0 0 0 1

3775
2664
�1 �2 0 0

0 �1 0 0

0 0 �1 0

0 0 2 �1

3775

and 
2 WD

2664
1 0 a2 b2

0 1 b2 c2

0 0 1 0

0 0 0 1

3775
2664
�1 0 0 0

2 �1 0 0

0 0 �1 �2

0 0 0 �1

3775 :
The corresponding Margulis invariants, taken with respect to x1; x2; x3 , are

�1 D c1;

�2 D a2;

�3 D c1C c2� 2b1C 2b2C a1C a2:

By Theorem A, the affine deformation � WD h
1; 
2i acts properly with crooked
fundamental polyhedron whenever

�1 > 0

�2 > 0

�3 > 0:

Furthermore, taking a1; b1; c1; a2; b2; c2 2 Z implies � � Sp.4;Z/.

Here are some explicit examples. Consider the slice for translational equivalence
defined by b1 D b2 D c2 D 0. Choose three positive integers �1; �2; �3 . Take

a1 D �3��1��2

c1 D �1

a2 D �2;

that is, let


1 WD

2664
1 0 �3��1��2 0

0 1 0 �1

0 0 1 0

0 0 0 1

3775
2664
�1 �2 0 0

0 �1 0 0

0 0 �1 0

0 0 2 �1

3775
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and


2 WD

2664
1 0 �2 0

0 1 0 0

0 0 1 0

0 0 0 1

3775
2664
�1 0 0 0

2 �1 0 0

0 0 �1 �2

0 0 0 �1

3775 :

Appendix A Proof of Lemma 6.1

Recall the statement of the lemma:

Lemma Let � denote a free group of rank two with presentation

hA1;A2;A3 jA1A2A3 D Ii:

Let �
�0
��!SO.2; 1/0 be a homomorphism such that �0.Ai/2Hyp0[Par0 for iD1; 2; 3.

Suppose that �0.�/ is not solvable. For each i choose a vector xi 2 Fix
�
�0.Ai/

�
positive with respect to �0.Ai/ and let

H1.�0;R
3
1/

�i
�!R

Œu� 7�! z̨xi
.�.Ai// D u.Ai/ � xi

where � is the affine deformation corresponding to u. Then

�W Œu� 7�!

24�1.Œu�/

�2.Œu�/

�3.Œu�/

35
is an isomorphism between the vector spaces H1.�0;R

3
1
/ and R3 .

Proof First lift �0 to a representation �
z�0
��!SL.2;R/ under the double covering

SL.2;R/ 7�! SO.2; 1/0 . The condition that �0.�/ is not solvable implies that the
representation z�0 on R2 is irreducible. By a well-known classic theorem (see, for
example, Goldman [21]), such a representation is determined up to conjugacy by the
three traces

ai WD tr
�
z�0.Ai/

�
:

and, choosing b3 such that b3C1=b3D a3 , we may conjugate z�0 to the representation
defined by

z�0.A1/D

�
a1 �1

1 0

�
; z�0.A2/D

�
0 �b3

1=b3 a2

�
; z�0.A2/D

�
b3 �a1c3C a2

0 1=b3

�
:(6)
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Since � is freely generated by A1;A2 , a cocycle �
u
�!R3

1
is completely determined

by two values u.A1/;u.A2/ 2 R3
1

. Furthermore, since �0.�/ is nonsolvable, the
coboundary map

R3
1

@
�! Z1.�0;R

3
1/

is injective. Therefore the vector space H1.�0;R
3
1
/ has dimension three.

To show that the linear map � is an isomorphism, it suffices to show that � is onto. To
this end, it suffices to show that for each i D 1; 2; 3 there is a cocycle u 2 Z1.�0;R

3
1
/

such that u.Ai/¤ 0 and u.Aj /D 0 for j ¤ i . By cyclic symmetry it is only necessary
to do this for i D 1.

Under the local isomorphism SL.2;R/ 7�! SO.2; 1/0 , the Lie algebra sl.2;R/ maps
to the Lie algebra so.2; 1/ which in turn maps isomorphically to the Lorentzian vector
space R3

1
. (Compare Goldman–Margulis [23], Goldman [20] and Charette–Drumm–

Goldman [10].) If g 2 SL.2;R/ is hyperbolic or parabolic, then a neutral eigenvector
x0

g is a nonzero multiple of the traceless projection

yg WD g�
tr.g/

2
I:

Define a cocycle for the representation z�0 defined in (6) by

u.A1/ WD

�
1 0

0 0

�
; u.A2/ WD

�
0 0

0 0

�
; u.A3/ WD

�
0 0

�1=c 0

�
:

Then �1.u/ ¤ 0 but �2.u/ D �3.u/ D 0 as claimed. The proof of Lemma 6.1 is
complete.
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