Volume 14, issue 3 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The sutured Floer homology polytope

András Juhász

Geometry & Topology 14 (2010) 1303–1354
Abstract

In this paper, we extend the theory of sutured Floer homology developed by the author. We first prove an adjunction inequality and then define a polytope P(M,γ) in H2(M,M; ) that is spanned by the Spinc–structures which support nonzero Floer homology groups. If (M,γ) (M,γ) is a taut surface decomposition, then an affine map projects P(M,γ) onto a face of P(M,γ); moreover, if H2(M) = 0, then every face of P(M,γ) can be obtained in this way for some surface decomposition. We show that if (M,γ) is reduced, horizontally prime and H2(M) = 0, then P(M,γ) is maximal dimensional in H2(M,M; ). This implies that if rk(SFH(M,γ)) < 2k+1, then (M,γ) has depth at most 2k. Moreover, SFH acts as a complexity for balanced sutured manifolds. In particular, the rank of the top term of knot Floer homology bounds the topological complexity of the knot complement, in addition to simply detecting fibred knots.

Keywords
sutured manifold, Heegaard Floer homology, knot theory
Mathematical Subject Classification 2000
Primary: 57M27
Secondary: 57R58
References
Publication
Received: 16 February 2010
Revised: 2 April 2010
Accepted: 3 May 2010
Published: 31 May 2010
Proposed: David Gabai
Seconded: Peter Ozsváth, Tom Mrowka
Authors
András Juhász
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UK