Volume 14, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Homotopy groups of the moduli space of metrics of positive scalar curvature

Boris Botvinnik, Bernhard Hanke, Thomas Schick and Mark Walsh

Geometry & Topology 14 (2010) 2047–2076
Bibliography
1 K Akutagawa, B Botvinnik, The relative Yamabe invariant, Comm. Anal. Geom. 10 (2002) 935 MR1957657
2 M Belolipetsky, A Lubotzky, Finite groups and hyperbolic manifolds, Invent. Math. 162 (2005) 459 MR2198218
3 A L Besse, Einstein manifolds, 10, Springer (1987) MR867684
4 M Bökstedt, The rational homotopy type of ΩWhDiff(), from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 25 MR764574
5 B Botvinnik, P B Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 MR1339924
6 J P Bourguignon, Une stratification de l’espace des structures riemanniennes, Compositio Math. 30 (1975) 1 MR0418147
7 G E Bredon, Sheaf theory, 170, Springer (1997) MR1481706
8 D G Ebin, The manifold of Riemannian metrics, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 11 MR0267604
9 F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 325 MR520509
10 P Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987) 179 MR962295
11 S Goette, Morse theory and higher torsion invariants I arXiv:math.DG/0111222
12 M Gromov, H B Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980) 423 MR577131
13 M Gromov, H B Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983) MR720933
14 H Herrera, R Herrera, Higher –genera on certain non-spin S1–manifolds, Topology Appl. 157 (2010) 1658 MR2639832
15 N Hitchin, Harmonic spinors, Advances in Math. 14 (1974) 1 MR0358873
16 K Igusa, Higher Franz–Reidemeister torsion, 31, American Mathematical Society (2002) MR1945530
17 K Igusa, Higher complex torsion and the framing principle, Mem. Amer. Math. Soc. 177 (2005) MR2155700
18 K Igusa, Axioms for higher torsion invariants of smooth bundles, J. Topol. 1 (2008) 159 MR2365656
19 A Kriegl, P W Michor, The convenient setting of global analysis, 53, American Mathematical Society (1997) MR1471480
20 H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton University Press (1989) MR1031992
21 E Leichtnam, P Piazza, On higher eta-invariants and metrics of positive scalar curvature, K–Theory 24 (2001) 341 MR1885126
22 J W Milnor, M A Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, from: "Proc Internat. Congress Math. 1958", Cambridge Univ. Press (1960) 454 MR0121801
23 S B Myers, N E Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939) 400 MR1503467
24 P Piazza, T Schick, Bordism, rho-invariants and the Baum–Connes conjecture, J. Noncommut. Geom. 1 (2007) 27 MR2294190
25 J Rosenberg, C–algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983) MR720934
26 T Schick, A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture, Topology 37 (1998) 1165 MR1632971
27 S Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992) 511 MR1189863
28 M Walsh, Metrics of positive scalar curvature and generalised Morse functions, part 1, Mem. Amer. Math. Soc. (2010)
29 M Walsh, Metrics of positive scalar curvature and generalised Morse functions, part 2 arXiv:0910.2114