Volume 14, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
On the classification of gradient Ricci solitons

Peter Petersen and William Wylie

Geometry & Topology 14 (2010) 2277–2300
Bibliography
1 P Baird, L Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007) 65 MR2339469
2 A L Besse, Einstein manifolds, 10, Springer (1987) MR867684
3 C Böhm, B Wilking, Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature, Geom. Funct. Anal. 17 (2007) 665 MR2346271
4 C Böhm, B Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008) 1079 MR2415394
5 H W Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925) 119 MR1512246
6 E Calabi, An extension of E Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958) 45 MR0092069
7 H D Cao, Recent progress on Ricci solitons, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, Int. Press (2010) 1 MR2648937
8 X Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007) 425 MR2358764
9 X Cao, B Wang, Z Zhang, On locally conformally flat gradient shrinking Ricci solitons arXiv:0807.0588v3
10 G Catino, C Mantegazza, Evolution of the Weyl tensor under the Ricci flow arXiv:0910.4761v4
11 J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996) 189 MR1405949
12 H Chen, Pointwise 1 4–pinched 4-manifolds, Ann. Global Anal. Geom. 9 (1991) 161 MR1136125
13 X Chen, P Lu, G Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006) 3391 MR2231924
14 B Chow, D Knopf, The Ricci flow : an introduction, 110, Amer. Math. Soc. (2004) MR2061425
15 B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) MR2274812
16 M Eminenti, G La Nave, C Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008) 345 MR2448435
17 R E Greene, H Wu, C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup. (4) 12 (1979) 47 MR532376
18 R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255 MR664497
19 R S Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153 MR862046
20 R S Hamilton, The Ricci flow on surfaces, from: "Mathematics and general relativity (Santa Cruz, CA, 1986)" (editor J A Isenberg), Contemp. Math. 71, Amer. Math. Soc. (1988) 237 MR954419
21 T Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993) 301 MR1249376
22 B Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific J. Math. 236 (2008) 73 MR2398988
23 J Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001) 715 MR1825405
24 A Lichnerowicz, Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geometry 6 (1971) 47 MR0300228
25 J Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007) 627 MR2336062
26 R McOwen, Partial differential equations. Methods and applications, Prentice Hall (1996)
27 F Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005) 853 MR2161354
28 O Munteanu, N Sesum, On gradient Ricci solitons arXiv:0910.1105
29 A Naber, Noncompact shrinking 4–solitons with nonnegative curvature arXiv:0710.5579
30 L Ni, Ancient solutions to Kähler–Ricci flow, Math. Res. Lett. 12 (2005) 633 MR2189227
31 L Ni, N Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008) 941 MR2443993
32 G Perelman, The entropy formula for the Ricci flow and its geometric applications arXiv:math.DG/0211159
33 G Perelman, Ricci flow with surgery on three manifolds arXiv:math.DG/0303109
34 P Petersen, W Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009) 2085 MR2480290
35 P Petersen, W Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009) 329 MR2507581
36 G Wei, W Wylie, Comparison geometry for the Bakry–Emery Ricci tensor, J. Differential Geom. 83 (2009) 377 MR2577473
37 W Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008) 1803 MR2373611
38 S T Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659 MR0417452
39 Z H Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009) 189 MR2525510