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The Maskit embedding of the twice punctured torus

CAROLINE SERIES

The Maskit embedding M of a surface † is the space of geometrically finite groups
on the boundary of quasifuchsian space for which the “top” end is homeomorphic
to † , while the “bottom” end consists of triply punctured spheres, the remains of †
when a set of pants curves have been pinched. As such representations vary in the
character variety, the conformal structure on the top side varies over the Teichmüller
space T .†/ .
We investigate M when † is a twice punctured torus, using the method of pleating
rays. Fix a projective measure class Œ�� supported on closed curves on † . The
pleating ray PŒ�� consists of those groups in M for which the bending measure of
the top component of the convex hull boundary of the associated 3–manifold is in Œ�� .
It is known that P is a real 1–submanifold of M . Our main result is a formula for
the asymptotic direction of P in M as the bending measure tends to zero, in terms
of natural parameters for the complex 2–dimensional representation space R and
the Dehn–Thurston coordinates of the support curves to Œ�� relative to the pinched
curves on the bottom side. This leads to a method of locating M in R .

30F40; 30F60, 57M50

1 Introduction

Pictures of various slices and embeddings of one dimensional Teichmüller spaces
into C have become familiar in recent years. A common feature is the complicated
fractal boundary which has been studied by various authors, for example, Miyachi [24]
and Mumford, Series and Wright [25]. Such examples are always based on the once
punctured torus and its close relatives. This paper presents for the first time a method
which makes viable the prospect of plotting a deformation space associated to a
higher genus surface. The project immediately introduces many difficulties: such
a deformation space will intrinsically have at least 2 complex dimensions and the
underlying combinatorics of the curve complex is not that of the Farey tesselation
associated to the once punctured torus.

The example we choose is the Maskit embedding of the twice punctured torus, in which
the representation variety is smooth of complex dimension 2. The key idea is explicitly
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to locate the pleating rays, that is, the loci in the representation variety along which the
projective class of the bending measure of the convex hull boundary is fixed. These
lines are certain branches of the solution set of a family of equations where traces
of various elements in the group take real values. To explain in more detail, we first
consider the analogous embedding for the once punctured torus †1;1 .

The Maskit embedding of †1;1 was initially explored experimentally by Mumford and
Wright [30; 25]. The detailed study [15] by the author and Linda Keen introduced
the concept of pleating rays which justified these computational results. As explained
in more detail below, these rays were used to plot Figure 1. The lined region, which
repeats periodically with period 2 in both directions, indicates all representations
�W �1.†1;1/! SL.2;C/ whose image G is free and discrete and for which one fixed
essential nonperipheral simple curve 1 2 �1.†1;1/ is accidentally parabolic. The
parameter � 2 C is essentially the trace of another fixed curve 0 which together
with 1 generates �1 . After suitable normalisation, this is enough to determine a
representation � . The resulting hyperbolic 3–manifold H3=G is geometrically finite
and homeomorphic to †1;1 �R. Its end invariants !˙ are both Riemann surfaces,
representing the conformal structures on the quotients of the components of the regular
set by G . One end !� is conformally a triply punctured sphere, corresponding to the
surface †1;1 with the fixed curve 1 pinched. The other end !C is a Riemann surface
homeomorphic to †1;1 and can thus be viewed a point in T .†1;1/. By standard
Ahlfors–Bers theory, each point in T is represented up to conjugation by exactly one
such group G . The Maskit embedding is the map T ! C which takes a surface
to the �–parameter of the group G which represents it. In Figure 1, the parameter
i� D Tr 0 has been chosen so that the embedding is as close to the identity map
T .†1;1/DH2 ,!C as possible. The embedding repeats periodically under translation
� 7! �C 2.

This paper lays the foundation for computing the analogous picture of the Maskit
embedding when †D†1;2 is a twice punctured torus. The relevant component of the
representation variety R.†/ is smooth of complex dimension 2. Thus our eventual
aim is to locate the image M of the Maskit embedding of the Teichmüller space T .†/
in C2 . As for †1;1 , we will do this by locating the pleating rays, which in this case are
real 1–submanifolds of M along which the projective class of the bending measure
of the component @CC=G of the convex hull boundary facing !C is supported on a
fixed pair of disjoint closed curves on †. In general, the pleating ray is a connected
nonsingular branch of the real algebraic variety along which the traces of the support
curves take real values; see Theorem 3.4. The main results of this paper identify the
correct branch by determining its direction as the parameters of the representation tend
to infinity, equivalently as the bending measure tends to zero; see Theorem A. The idea
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Figure 1: The Maskit embedding for the once punctured torus, showing one
period in the upper half �–plane. The image of T .†1;1/ is filled by the
light gray pleating rays. Picture by David Wright, reproduced from [25] with
permission of Cambridge University Press.

is that M can then be plotted by following these real trace branches until one of the
supporting curves becomes parabolic; see Section 5. A start on such a programme has
been made by Austin [1].

Before stating our main theorems, we briefly review our previous results from [15]. As
is well known, the simple closed curves on †1;1 can be enumerated by the rationals
Q[1. Normalize so that the exceptional pinched curve 1 is represented by 1.
There is one ray Pp=q for each p=q 2Q, representing all curves p=q whose images
in M are loxodromic. At any point on this ray, @CC=G is a pleated surface bent along
p=q while the component @C�=G facing !� can be viewed as a copy of † bent
along 1 with bending angle � . If a closed curve p=q is a bending line, then its
complex length is real, so that p=q is purely hyperbolic on Pp=q . The trace, hence
also the complex length, of p=q has no critical points on Pp=q . It follows that Pp=q

is a totally real 1–submanifold embedded in M and that the hyperbolic length lp=q of
p=q is strictly monotonic along Pp=q with range .0;1/. As lp=q ! 0 along Pp=q

we approach the boundary @M, arriving at an algebraic limit which is the doubly
cusped group in which lp=q D 0. As lp=q!1 on the other hand, there is no algebraic
limit and the sequence of representations diverges. One of the main results of [15] is
that Pp=q is asymptotic to the line <�D 2p=q as lp=q!1, identifying it uniquely
among branches of Tr p=q 2R.
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Turning now to the twice punctured torus †D†1;2 , suppose we have a geometrically
finite free and discrete representation for which M D†�R. Fix elements S1;S2 2

�1.†/ corresponding to disjoint nonhomotopic closed curves �1; �2 which form a
maximal pants decomposition of † and neither of which individually disconnects †.
We consider groups for which the conformal end !� is a union of triply punctured
spheres glued across punctures corresponding to �1; �2 , while !C is a marked Riemann
surface homeomorphic to †. In Section 2.2 we give an explicit parameterisation of a
holomorphic family of representations �W �1.†/!G.�1; �2/; .�1; �2/ 2C2 , such that,
for suitable values of the parameters, G.�1; �2/ has the above geometry. The Maskit
embedding is the map which sends a point X 2 T .†1;2/ to the point .�1; �2/ 2 C2

for which the group G.�1; �2/ has !C D X . Denote the image of this map by
MDM.†1;2/.

Given a projective measured lamination Œ�� on †, the pleating ray PŒ�� is the set of
groups in M for which the bending measure ˇ.G/ of @CC=G is in the class Œ��. We
restrict to pleating rays for which Œ�� is rational, that is, supported on closed curves,
and for simplicity write P� in place of PŒ�� , although noting that P� depends only
on Œ��. From general results of Bonahon and Otal [5] (see Theorem 3.1 in Section 3),
for any pants decomposition 1; 2 such that �1; �2; 1; 2 are mutually nonhomotopic
and fill up †, and any pair of angles �i 2 .0; �/, there is a unique group in M for
which the bending measure of @CC=G is

P
1;2 �iıi

. (This extends to the case �i D 0

provided �1; �2; j fill up † (see Section 3), also to the case � D � .) Thus given
� D

P
1;2 aiıi

, there is a unique group G D G�.�/ 2M with bending measure
ˇ.G/D �� for any sufficiently small � > 0.

In contrast to the quasifuchsian situation studied by the author in [28], there is no
algebraic limit along P� as � ! 0; see Corollary 6.5. Intuitively this is because
the groups G�.�/ want to limit on a Fuchsian group, which is however impossible
since the bending angles on the parabolic pinched curves are fixed as � . Our main
result is a formula for the asymptotic direction of P� in M � C2 in terms of the
global linear coordinates for measured laminations on †2;1 set up by Keen, Parker
and the author [14]. These coordinates, called here canonical coordinates, assign to a
measured lamination � a point i.�/D .q1.�/;p1.�/; q2.�/;p2.�// 2 .RC �R/2 ; see
Section 4. (For the extension of these coordinates to arbitrary surfaces, see Maloni
and Series [18].) The coordinates of a simple closed curve are integral; they are
essentially its Dehn–Thurston coordinates relative to �1; �2 and are a close analogue
of the p; q coordinates for curves on †1;1 above. In particular, qi. / D i.; �i/

where i. � ; � / is the usual geometric intersection number. If � D
P

1;2 aiıi
, the

above Bonahon–Otal condition on �1; �2; 1; 2 is equivalent to qi.�/ > 0; i D 1; 2.
We call such laminations admissible; see Section 3. We call a pair of curves 1; 2
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exceptional if q1.1/q2.2/Dq1.2/q2.1/, and we say �D
P

1;2 aiıi
is exceptional

if ai > 0; i D 1; 2 and the pair 1; 2 is exceptional. The main result of this paper is:

Theorem A Suppose that � D
P

1;2 aiıi
is admissible and not exceptional. Then as

the bending measure ˇ.G/ 2 RC� tends to zero, the pleating ray P� approaches the
line

<�i D 2pi.�/=qi.�/; Arg �i D �=2; =�1==�2 D q2.�/=q1.�/:

This theorem is stated more precisely as Theorem 7.3. To actually locate the pleating
rays, note (Lemma 3.3) that Tr �. / is real whenever  is a bending line. We prove:

Theorem B Suppose that � D
P

1;2 aiıi
is admissible and that the pair 1; 2 is not

exceptional. Then any point on the ray P� satisfies the equations =Tr �.i/D0; iD1; 2

and these equations have a unique solution as �i !1 in the direction specified by
Theorem A. If the curve 1 is admissible, then there exists 2 disjoint from 1 such
that the pair 1; 2 is not exceptional, and thus P1

is determined by the above result
applied to � D 1 � ı1

C 0 � ı2
.

In the exceptional case we obtain only partial results detailed in Theorem 7.5. We
believe the above theorems to be still true in this case, but as discussed in Section 7.2,
the result appears to be beyond the scope of this paper. The lack of a complete result
will not affect the plotting of the asymptotic arrangement of pleating rays and planes.

As explained in Section 5, these results in principle enable one to compute M, modulo
the unproven conjecture that the rational pleating rays are dense. We hope to explore
how to actually implement the computations in practice elsewhere.1

Theorems A and B are proved together. The proofs have two main parts. First
(Section 6) we show that asymptotically, the lengths of the geodesic representatives
�C

1
; �C

2
of �1; �2 on @CC=G tend to 0 while at the same time becoming orthogonal to

the bending lines. (This should be compared to the situation in [28], where in the limit
as the bending angles go to zero, the bending lines on @CC=G and @C�=G become
“orthogonal” in the sense that average of the cosine of the angle between them goes
to zero.) From this we deduce (Theorem 6.1) that as � ! 0, �1; �2!1 in such a
way that

Arg �i! �=2; =�1==�2! q2.�/=q1.�/:

1Since this paper was written, A Austin has used Theorem A to compute “wheels” of rays which
correspond to all rational laminations in the link of a given curve; see Austin [1] and the forthcoming
paper of Austin with the author [2].
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Second, we use a formula for trace polynomials from [14]. Note that the trace Tr �. /
is a polynomial on the parameter space C2 . The formula (see Theorem 4.1) expresses
the top terms of this polynomial in terms of its canonical coordinates i. /. We also
make use Thurston’s symplectic form on the space of measured laminations ML , which
turns out to have the standard form relative to our canonical coordinates (Section 4.2).
To complete the proofs of Theorems A and B, in Section 7 we use the asymptotics of
the trace polynomials together with Thurston’s form and some simple linear algebra to
extract the unique possible asymptotic directions of the pleating rays.

One might also ask for the limit of the hyperbolic structure on @CC=G as the bending
measure tends to zero. The following result is an immediate consequence of the first
part of the proof of Theorem A:

Theorem C Let � D
P

1;2 aiıi
be as above. Then as the bending measure ˇ.G/ 2

RC� tends to zero, the induced hyperbolic structure of @CC=G along P� converges to
the barycentre of the laminations �1 and �2 in the Thurston boundary of T .†/.

This should be compared with the result in [28], that the analogous limit through groups
whose bending laminations on the two sides of the convex hull boundary are in the
classes of a fixed pair of laminations Œ�˙�, is a Fuchsian group on the line of minima
of Œ�˙�.

Although this paper is written in the context of the twice punctured torus, the results
of Section 6 and hence also Theorem C should apply to the Maskit embedding of a
general surface. The top terms formula is needed only to determine the asymptotic
value of <�i . Y Chiang obtained an analogous top terms formula for the five times
punctured sphere in [7]. We believe there is a more general result and hope to explore
this elsewhere.2

The plan of the paper is as follows. In Section 2 we describe our holomorphic family
of groups which realise the Maskit embedding and give estimates on the rough shape
of M. In Section 3 we briefly review facts about convex hull boundaries, bending
measures and pleating rays. In Section 4 we review canonical coordinates for simple
curves and the top terms formula from [14], and discuss Thurston’s symplectic form. In
Section 5 we discuss in more detail how Theorem A may be used to compute pleating
rays and illustrate the theorem with some very simple examples which can be computed
by hand. The remaining two sections contain the main work of the paper as described
above. Theorem C is proved at the end of Section 6 and Theorems A and B are proved
in Section 7.

2Since this paper was written, an analogous top terms formula for a general hyperbolisable surface has
indeed been proved by S Maloni and the author [18].
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2 The Maskit embedding and plumbing parameters

Let †D†1;2 be a twice punctured torus. Figure 2 shows a fundamental domain �
for a Fuchsian representation of †, on which some definite hyperbolic metric has been
fixed. The sides of � are identified by hyperbolic isometries S1;S2;T which we can
view as free generators for �1.†/.

T

S1

S2

sS1

sS2

s
S�1

1

s
S�1

2

sT�1

sT

Figure 2: The fundamental domain �

2.1 The Maskit embedding

Let R.†/ be the representation variety of �1.†/, that is, the set of representa-
tions �W �1.†1;2/! SL.2;C/ modulo conjugation in SL.2;C/ (but see for example
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Kapovich [11, page 61]) with the algebraic topology. Let M � R be the subset of
representations � for which:

(i) The image G D �.�1.†1;2// is free and discrete and the images of the loops
around the two punctures S1S�1

2
and TS�1

2
T �1S1 are parabolic.

(ii) The images of Si , i D 1; 2 are parabolic.

(iii) All components of the regular set �.G/ are simply connected and there is exactly
one invariant component �C.G/.

(iv) The quotient �.G/=G has 3 components; �C.G/=G is homeomorphic to †
and the other two components are triply punctured spheres.

In this situation (see for example Marden [19, Section 3.8]), the corresponding 3–
manifold M�DH3=G is topologically †1;2�.0; 1/. Such a group G is a geometrically
finite cusp group on the boundary (in the algebraic topology) of the set of quasifuchsian
representations of �1.†/. The “top” component �C=G of the conformal boundary
may be identified to †� f1g and is homeomorphic to †. On the “bottom” component
��=G , identified to †� f0g, the two curves �1; �2 corresponding to the generators
S1;S2 have been pinched, making ��=G a union of two triply punctured spheres.
The conformal structure on �C=G , together with the pinched curves �1; �2 , are the
end invariants of M in the sense of Minsky’s ending lamination theorem. Since a
triply punctured sphere is rigid, the conformal structure on ��=G is fixed independent
of � . The structure on �C=G varies; it follows from standard Ahlfors–Bers theory
using the measurable Riemann mapping theorem (see again Marden [19, Section 3.8]),
that there is a unique group corresponding to each possible conformal structure on
�C=G . Formally, the Maskit embedding of the Teichmüller space of † is the map

ˆW T .†/!C2

which sends a point X 2 T .†/ to the unique group G 2M for which �C=G has the
marked conformal structure X . By abuse of terminology, we also refer to M as the
Maskit embedding or Maskit slice of †1;2 .

2.2 A concrete realisation of M

Groups in the Maskit slice M may be manufactured by the plumbing construction
of Kra [17]; see Section 2.3 below. Here we simply write down a suitable holomor-
phic family of representations and verify directly that groups thus constructed have
the required properties. Groups in the family depend on two complex parameters
�1; �2 2C .
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To define �W �1.†1;2/! SL.2;C/, it suffices to give the images of the three free
generators S1;S2;T of �1.†/. Following [14], for �1; �2 2C define �D �.�1; �2/ by

�.S1/D

�
1 2

0 1

�
; �.S2/D

�
1 0

2 1

�
; �.T /D

�
1C �1�2 �1

�2 1

�
:

Denote the image of �.�1; �2/ by G.�1; �2/. Note that the holomorphic family G D
fG.�1; �2/W �i 2 Cg has complex dimension 2, the dimension of Teich.†/. Not all
groups G lie in M, in particular any representation with =�i D 0; i D 1; 2 is Fuchsian
and so not in M. We also need to restrict �1; �2 so as to have only one copy of each
group up to conjugation. By abuse of notation, for W 2 �1.†/, we shall use W also
to denote the image �.W / 2G.�1; �2/, and write W DW .�1; �2/ as needed to avoid
confusion. By direct computation (see Appendix 1) we find Tr ŒSi ;T

�1�D �2
j C2 where

j D 1C i mod 2. Thus �2
1
; �2

2
are invariant functions on R, so that the component C2

C

of C2 n f=�i D 0g with =�i > 0; i D 1; 2, consists entirely of nonconjugate groups.

The following propositions from [13] justify our use of the family G .

Proposition 2.1 Let G.�1; �2/ 2 G be as above. If =�i > 1, i D 1; 2 and =�1=�2 > 4

then G.�1; �2/ 2M. Moreover the limit set ƒ.G/ is contained in the two strips
0� =z � 1=2, =�1� 1=2� =z � =�1 , together with the point at 1.

Proof A fundamental domain for G DG.�1; �2/ is shown in Figure 3, in which the
disks B2;B3 have equal radius 1==�2 . The formal proof that G is free and discrete is a
straightforward application of Maskit’s second combination theorem [20, page 160]. To
see that G 2M, one checks from the proof of the combination theorem that the lower
half plane and the half plane above the line =zD=�1 project to the two triply punctured
spheres which together form ��=G , while the simply connected component �C is
contained in the strip 0 < =z < =�1 . The claim about ƒ also follows. For further
details, see Appendix 1.

As explained above, a standard argument using the measurable Riemann mapping
theorem now shows that any group in M can be represented by a group in G . Com-
plementing Proposition 2.1 we have the following result, also proved in Appendix 1.

Proposition 2.2 Suppose that G.�1; �2/ 2 M. Then =�i � 1=2, i D 1; 2 and
=�1=�2 � 1.

We shall mainly do our calculations with G normalised as above, so that S1.z/D zC2.
On occasion it is convenient to normalise S2 in this way, in which case we interchange
the roles of �1 and �2 . More precisely we have:
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�1 0 1

B2

S2

l
S1 S1.l/

S3

B3

�1�1 �1 �1C1

Figure 3: A fundamental domain for G.�1; �2/

Lemma 2.3 The involution K.z/D�1=xz conjugates S1 to S2 . Moreover,

KT .�1; �2/K
�1
D T .�x�2;�x�1/

�1:

To get some further feeling for M, note that the right Dehn twist D�1
around �1

induces the automorphism S1 7! S1;S2 7! S2 and T 7! S1T of �1.†/. Since
S1T .�1; �2/DT .�1C2; �2/, it follows that D�1

induces the map .�1; �2/ 7! .�1C2; �2/

on M, and similarly for D�2
.

By abuse of notation, from now on we use M to denote the set of .�1; �2/ with =�i > 0

and for which the group G.�1; �2/ has properties (i), (ii) and (iii) above. The above
two propositions give rough bounds on the shape of M.

2.3 The plumbing construction

The parameters �i have geometrical meaning as the plumbing parameters of Kra [17].
The idea is to make a projective structure on † by starting from two triply punctured
spheres with punctures identified in pairs. One “plumbs” across the punctures by
identifying punctured disk neighbourhoods D;D0 of the two paired cusps using the
formula zwD� where z; w are holomorphic parameters in D and D0 . In the hyperbolic
metric, this corresponds to identifying the punctured disks by twisting by <� and
scaling by a factor of =� . Making this construction in the above setting, with plumbing
parameter �i across the puncture corresponding to �i , results in the family G . For a
more detailed and general account of plumbing, see also Maloni and Series [18].
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3 Bending lines and pleating rays

Let M DH3=G be a hyperbolic 3–manifold, and let C=G be its convex core, where
C is the convex hull in H3 of the limit set of G ; see Epstein and Marden [10]. If M is
geometrically finite then there is a natural homeomorphism between each component
of @C=G and of �=G . Each component F of @C=G inherits an induced hyperbolic
structure from M . Moreover F is a pleated surface, meaning that it is the isometric
image under a map f W H ! M of a hyperbolic surface H which restricts to an
isometry into M on the leaves of a geodesic lamination L on H , and which is also an
isometry on each complementary component of L. (Strictly, the pleated surface is the
pair .H; f /; this becomes important when considering the induced marking on F .) We
call L the bending lamination of F and the images of the complementary components
of L, the flat pieces of F . The bending lamination carries a transverse measure called
the bending measure which describes the angles between the flat pieces; see Epstein
and Marden [10] for details. By a bending line of F , we will mean any complete
geodesic on @C=G which is either completely contained in L, or in the interior of a
flat part. We also use the term bending line to mean any lift of a bending line of F to a
complete geodesic in H3 .

We shall be interested in manifolds for which the bending lamination is rational,
that is, supported on closed curves. Denote the space of homotopy classes of simple
closed essential loops on F by S.F / and the space of measured laminations on F by
ML.F /. The subset of rational laminations is denoted MLQ and consists of measured
laminations of the form

P
i aiıi

, abbreviated
P

i aii , where the curves i 2 S.F /
are disjoint and nonhomotopic, ai � 0, and ıi

denotes the transverse measure which
gives weight 1 to each intersection with i . If

P
i aii is the bending measure of a

pleated surface F , then ai is the angle between the flat pieces adjacent to i , also
denoted �i

. In particular, �i
D 0 if and only if the flat pieces adjacent to i are in a

common totally geodesic subset of @C=G , equivalently have lifts which lie in the same
hyperbolic plane in H3 .

We take the term pleated surface to include the case in which a closed leaf  of the
bending lamination maps to the fixed point of a rank one parabolic cusp of M . In this
case, the image pleated surface is cut along  and thus may be disconnected. Moreover
the bending angle between the flat pieces adjacent to  is � . This is because for a
geometrically finite group, the punctures on the two components of @C=G are paired
and the associated flat pieces lift to two tangent half planes in H3 ; see eg Marden [19,
Chapter 3] for details.

Geometry & Topology, Volume 14 (2010)



1952 Caroline Series

The key results about the existence of hyperbolic manifolds with prescribed bending
laminations are due to Bonahon and Otal. We need the following special case of their
main theorem:

Theorem 3.1 [5, Theorem 1] Let X be a hyperbolisable surface, possibly with
punctures, and let M be a 3–manifold homeomorphic to X � .0; 1/. Suppose also
that �˙ D

P
i a˙i 

˙
i are rational measured laminations on X . Then there exists

a geometrically finite group G such that M D H3=G and such that the bending
measures on the two components @C˙=G of the convex hull boundary @C=G equal �˙

respectively, if and only if a˙i 2 .0; �� for all i and f˙i ; i D 1; : : : ; ng fill up X ,
equivalently if i.�C;  /C i.��;  / > 0 for every essential simple closed curve  2
S.X /. If such a structure exists, it is unique.

Specialising now to the case of interest to this paper, let �D�.�1; �2/ be a representation
�1.†1;2/! SL.2;C/ in the family G from Section 2, and suppose that the image GD

G.�1; �2/ lies in the Maskit slice M. The boundary of the convex core C=G has three
components, one @CC=G facing �C=G and homeomorphic to †1;2 , and two triply
punctured spheres whose union we denote @C�=G . The induced hyperbolic structures
on the two components of @C�=G are rigid, while the structure on @CC=G varies.
We denote the bending lamination of @CC=G by ˇ.G/ 2 ML.†1;2/. Following the
discussion above, we view @C�=G as a single pleated surface with bending lamination
�.�1C �2/, indicating that two triply punctured spheres are glued across the annuli
whose core curves �1 and �2 correspond to the parabolics Si 2G .

Corollary 3.2 A rational measured lamination � 2MLQ.†1;2/ is the bending measure
of a group G 2M if and only if i.�; �1/; i.�; �2/ > 0. If such a structure exists, it is
unique.

We call � 2MLQ.†1;2/ for which i.�; �1/; i.�; �2/ > 0, admissible.

3.1 Pleating rays

Denote the set of projective measured laminations on †1;2 by PML and the projective
class of � D a11Ca22 2ML by Œ��. The pleating ray P DPŒ�� of � 2ML is the set
of groups G 2M for which ˇ.G/ 2 Œ��. To simplify notation we write P� for PŒ��
and note that P� depends only on the projective class of � , also that P� is nonempty if
and only if � is admissible. In particular, we write P for the ray PŒı � . As is shown
by Choi and the author [9] (see also Bonahon and Otal [5]), as ˇ.G/ increases, P�
eventually limits on a geometrically finite group Gcusp.�/ in the algebraic closure SM
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of M at which at least one of the support curves to � is parabolic. More precisely,
ˇ.G/ increases until the value ˇ.G/D �.a11Ca22/ for which maxf�a1; �˛2gD� .
If �ai D � , we are at a point on @M at which the curve �i is parabolic. We write
SP� D P� [Gcusp.�/.

Likewise for disjoint nonhomotopic curves 1; 2 2 S , we define the pleating plane
P1;2

of 1; 2 to be the set of groups G 2M for which ˇ.G/D
P

aii with ai > 0.
Thus P1;2

is the union of the pleating rays P� with � D
P

aii , ai > 0. The rays
P1

, P2
are clearly contained in the boundary of P1;2

; note that i may not be
admissible even though � D

P
aii is. We call planes for which one or other of the

support curves is not admissible degenerate, as they do not contain the corresponding ray
Pi

. We write SP1;2
D
S
�
SP� where the union is over �D

P
aii with a1; a2 � 0.

The following key lemma is proved in [9, Proposition 4.1]; see also Lemma 4.6 of [16].
The essence is that because the two flat pieces of @C=G on either side of a bending
line are invariant under translation along the bending line, the translation can have no
rotational part.

Lemma 3.3 If the axis of g 2G is a bending line of @C=G , then Tr.g/ 2R.

Notice that the lemma applies even when the bending angle � along  vanishes. Thus
if G 2 SP1;2

we have Tr g 2R; i D 1; 2, for any g 2G whose axis projects to either
curve i .

In order to compute pleating planes, we need the following result which is a special case
of Theorems B and C of Choi and Series [9]; see also Keen and Series [15]. Also recall
that a codimension–p submanifold N ,!Cn is called totally real if it is defined locally
by equations =fi D 0; i D 1; : : : ;p , where fi ; i D 1; : : : ; n are local holomorphic
coordinates for Cn . As usual, if  is a bending line we denote its bending angle by � .
Recall that the complex length cl.A/ of a loxodromic element A 2 SL.2;C/ is defined
by Tr A D 2 cosh cl.A/=2; see eg Series [27] or Choi and Series [9] for details. By
construction, P1;2

�M�R.†/.

Theorem 3.4 The complex lengths cl1; cl2 are local holomorphic coordinates for
R.†/ in a neighbourhood of P1;2

. Moreover P1;2
is connected and is locally

defined as the totally real submanifold =Tr i D 0; i D 1; 2 of R. Any pair .f1; f2/,
where fi is either the hyperbolic length < cl.i/ or the bending angle �i

, are global
coordinates on P1;2

.

This result extends to SP1;2
, except that one has to replace < cl.i/ by Tr i in a neigh-

bourhood of a point for which i is parabolic. In fact as discussed in [9, Section 3.1],
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complex length and traces are interchangeable except at cusps (where traces must be
used) and points where a bending angle vanishes (where complex length must be used).
The parameterisation by lengths or angles extends to SP1;2

.

Notice that the above theorem gives a local characterisation SP1;2
as a subset of the

representation variety R and not just of M. In other words, to locate P , one does not
need to check whether nearby points lie a priori in M; it is enough to check that the
traces remain real and away from 2 and that the bending angle on one or other of �i

does not vanish. As we shall see, this last condition can easily be checked by requiring
that further traces be real valued.

4 Canonical coordinates for simple curves

Our main result Theorem A involves the explicit coordinatisation of the space MLD
ML.†1;2/ of measured laminations on †1;2 introduced in [14]. The coordinates, called
�1;2 –coordinates in [14] and canonical coordinates in this paper, are essentially Dehn–
Thurston coordinates relative to the curves �1; �2 . They are global coordinates for
ML which take values in .RC �R/2 , the sign of a given coordinate in a given chart
being constant. At the same time, they can be viewed as giving a piecewise linear
cone structure to ML, the charts being laminations supported on a particular set of
train tracks on †. Modulo their boundaries, these charts partition ML; which chart
supports a given lamination being determined by simple linear inequalities between
their coordinates. The coordinates are set up so as to maintain as close an analogy as
possible with the once punctured torus †1;1 . The charts are also very closely related
to the �1 –train tracks of [4]. Canonical coordinates are generalised to an arbitrary
hyperbolisable surface in [18], where pi is identified precisely as the twist coordinate
defined in [29].

In more detail, the canonical coordinates

i. /D .q1. /;p1. /; q2. /;p2. // 2 .ZC �Z/2

of a curve  2 S.†1;2/ are defined as follows. We set qi. / D i.; �i/ � 0. Since
�1; �2 together bound a pair of pants we note

(1) q1C q2 Š 0 mod 2:

This equation will be important in Section 7.

The definition of pi. / (which is more complicated and can be omitted at first reading)
is made relative to the fundamental domain � of Section 2.2. The reader may find the
discussion for †1;1 in Appendix 2 enlightening.
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w0

sS1

v0

sS2

w2

p1

B1

s0

�

B2

�Cq2

sT�1

q1�p1

jp2j�q2

sT

p1

�Cq2

�

w1

s
S�1

1

v1

s
S�1

2

w3

Figure 4: Typical configuration for canonical coordinates. The cell shown is
defined by the five inequalities p1 � 0;p2 � 0; q1 � p1; q2 � �p2; q2 � q1 .

Referring to Figure 4, label each side of � by the generator which carries it to a paired
side, so that the bottom side is labelled sT since T carries it to the top side sT�1 ;
similarly the top left side is labelled sS1

since S1 carries it to the right side sS�1
1

; and
the lower left and right sides are labelled sS2

; sS�1
2

respectively. Since each side joins
a puncture to a puncture, the intersection numbers of a curve  2 S with these sides are
well defined. Let s0 be the arc joining the vertices v0; v1 in the middle of the vertical
sides of �, which both project to the puncture S2S�1

1
on †1;2 . This partitions � into

two four sided “boxes” B1;B2 with sides s0; sSi
; s

Si
�1 and sT�1 or sT respectively.

The geodesic representative of  on � intersects each box Bi in a number of pairwise
disjoint arcs, none of which runs from one side of Bi to itself. We observe [14, Lemma
4.1] that in at least one box Bi , there is either no “corner arc” joining s0 to sSi

, or no cor-
ner arc joining s0 to s

Si
�1 . This is because if strands of  included all four corner arcs

in both boxes, the “innermost” such arcs would link to form a loop round the puncture
S2S�1

1
which is the projection to †1;2 of v0 and v1 . This is impossible. In a similar

way, there cannot be corner arcs surrounding all of the four vertices w0; : : : ; w3 marked
in Figure 4, since their innermost strands would link to form a loop round the common
projection of the wi , the puncture S1TS�1

2
T �1 . Using this together with the “switch
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conditions” i.; sSi
/D i.; sS�1

i
/ and i.; sT /D i.; sT�1/, one checks (see Keen,

Parker and Series [14, Section 4]) that also i.s0;  /D i.sT ;  /. It also follows that there
are equal number of arcs joining each pair of diagonally opposite corners of each Bi .

Suppose for definiteness that, as illustrated in Figure 4, the box with missing corner
arcs is B1 . In this situation, it is not hard to see that q1. /D i.; �1/D i.; s0/. In
analogy with the case of †1;1 as described in Appendix 2, we define jp1jD i.; sS1

/D

i.; sS�1
1
/. Since i.; s0/� i.; �2/D q2. /, we have q1 � q2 . Set �D jq2�q1j=2.

(Note that � is integral by (1).) One verifies that q2. /D i.; s0/� 2� � 0 and we
define jp2j D i.; sS2

/� 2�D i.; sS�1
2
/� 2�.

To fix the sign of p1 , take p1 > 0 if there is an arc of  joining sS1
to sT�1 and

p1 � 0 otherwise. Likewise take p2 > 0 if there are w > � arcs of  joining sS2
to

s0 and p2 � 0 otherwise.

Finally, if B2 is the box with missing corner arcs, we have q2 � q1 and we make
similar definitions interchanging the indices 1; 2.

The intuition behind this definition is that we are thinking of each Bi as a fundamental
domain for a once punctured torus †i

1;1
with opposite sides identified. With such an

identification, the arcs of  in Bi would glue up to form a multiple loop on †i
1;1

. As
is well known, closed curves on †1;1 are in bijective correspondence with lines of
rational slope in R2 . The coordinate .qi ;pi/ indicates that the “slope” of  in Bi

is qi=pi ; see Appendix 2. The number � is the number of “corner strands” joining
adjacent sides of Bi which, were the box actually †1;1 , would link to form � copies of
a loop round the puncture. Such corner strands occur in box B2 if and only if q1 > q2 ;
this is why we subtracted � from the B2 –intersection numbers only. Note that, in
contrast to †1;1 , the numbers qi ;pi are no longer in general relatively prime. Up to
the choice of a base point for the twist, pi=qi is the Dehn–Thurston twist coordinate
of  relative to �i ; see either Maloni and Series [18] or Minsky [23, Lemma 3.5] and
Section 6.4 below.

The connection between this definition and the more standard cell decomposition of
ML by weighted train tracks is as follows. Collapse all the arcs of  joining one side
of Bi to another, into a single strand joining the midpoints of the same two sides. The
collapsed strands join across s0 to form a train track on †1;2 , whose branches are the
strands and all of whose switches are at the midpoints of the sides (including s0 ). In [14]
we called these special tracks, �1;2 –train tracks; here we refer to them as canonical.
The nonnegative weights on this collection of train tracks form a cell decomposition of
ML.†1;2/. However the coordinates .qi ; jpi j/ are not in general equal to the actual
weights on these rather complicated configurations of branches. Rather, i. / has global
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meaning. Inequalities among the coefficients of i. / determine which track in the cell
decomposition supports a given curve  . Precisely, there are 32 cells determined by
the inequalities

q1 � q2; q1 � q2 and pi � 0;pi � 0I jpi j � qi ; jpi j � qi for i D 1; 2:

Given the cell, the coefficients determine the weights on the track.

Canonical coordinates extend naturally by linearity and continuity to global coordi-
nates for ML.†1;2/. The cell structure is best understood by referring to Figure 9 in
Appendix 2. This shows the four cells for †1;1 which glue to form PML.†1;1/D S1 .
Each of the four configurations in Figure 9 can occur in either B1 or B2 , and for each
such configuration there are 2 further options for the box in which qi > qj , This makes
in all 32 cells, the images of which in PML glue along their faces to make S3 [14].

An important feature of canonical coordinates is that it is easy to read off the coordinates
of a curve W 2 S represented by a word W in the generators S1;S2;T of �1.†/.
First, write W as a cyclically shortest word e1e2 � � � en and set enC1 D e1 . Draw
arcs on � from sei

to se�1
iC1
; i D 1; : : : ; n. Suppose that W is simple on †. Then

by [14, Theorem 3.1], these arcs can be arranged so as to be pairwise disjoint and the
weighted canonical track they define gives precisely the canonical coordinates of W .
This method, similar to the method of �1 –train tracks developed at length in [4],
was crucial in the proof of the top terms formula below. Some examples are given in
Section 5.

4.1 Top terms formula

Canonical train tracks and coordinates were used in [14] to study matrices �.W / in
the family G of Section 2.2, where W 2 �1.†1;2/ corresponds to W 2 S . The matrix
coefficients and hence the trace Tr W are clearly polynomials in �1; �2 .

Theorem 4.1 [14, Theorem 6.1] Let  be a simple closed curve on the twice
punctured torus †1;2 with canonical coordinates i. / D .q1;p1; q2;p2/. Let  be
represented by W 2 �1.†/. Then if q1; q2 > 0

Tr W D˙2jq2�q1j.�1C 2p1=q1/
q1.�2C 2p2=q2/

q2 CR.q1C q2� 2/

where R.q1C q2� 2/ denotes a polynomial of degree at most q1 in �1 and q2 in �2

and with total degree in �1 and �2 at most q1 C q2 � 2. If q2 D 0 then Tr W is a
polynomial in �1 only, and

Tr W D˙2q1.�1C 2p1=q1/
q1 CR.q1� 2/;

while if q1 D 0 there is a similar expression in �2 .
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Remark 4.2 An analogous formula for an arbitrary hyperbolisable surface is the main
result of [18].

4.2 The Thurston symplectic form

Thurston defined a symplectic form �Th on ML , the symplectic product being defined
for curves carried by a common train track � ; see for example Penner and Harer [26].
By splitting, we can arrange that every switch v of � is trivalent with one incoming
branch and two outgoing ones. Since † is oriented, we can distinguish the right and
left hand outgoing branches, the left hand branch being the one to be followed by
a British driver approaching v from the incoming branch; see Figure 5. If n;n0 are
nonnegative weightings on � (representing points in ML), we denote by bv.n/; cv.n/
the weights of the left hand and right hand outgoing branches at v respectively. The
Thurston product is defined as �Th.n;n0/D 1

2

P
v bv.n/cv.n0/� bv.n0/cv.n/.

cw.n/

bw.n/
w

incoming branch
bv.n/

cv.n/
v

Figure 5: Weighted branches at a switch

Bearing in mind the interpretation of canonical coordinates as weights on train tracks,
we can interpret this definition in terms of canonical coordinates. It is then not hard to
check the following rather remarkable result:

Proposition 4.3 Suppose that loops ;  0 2 S are supported on a common canonical
train track with coordinates i. / D .q1;p1; q2;p2/; i. 0/ D .q0

1
;p0

1
; q0

2
;p0

2
/. Then

�Th.; 
0/D

P
iD1;2.qi jp

0
i j � q0i jpi j/: If ;  0 are disjoint, then �Th.; 

0/D 0.

To check the last statement, note first that disjoint curves are necessarily supported on
the same canonical track. Then check that �Th is invariant under splitting and shifting.
Then split and shift until the two curves are supported on disjoint train tracks.

5 Computation and examples

Before embarking on the proof of Theorem A, we briefly discuss its implications for
computation and then give a few examples which it is possible to work out by hand.
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5.1 Computation

Let us return to the original problem of locating the Maskit slice M. Conjecturally,
the pleating planes are dense in M. (This was proved for M.†1;1/ in [15].) Thus we
concentrate on the problem of locating a given pleating plane P1;2

in the parameter
space H2 �C2 . Let V>2.i/;VD2.i/ denote respectively the real analytic varieties
in H2 on which Tr i 2 R n fŒ�2; 2�g and Tr i D˙2. By Theorem 3.4, P1;2

is a
connected totally real submanifold of V>2.1/\V>2.2/. Its boundary is contained
in VD2.1/ [ VD2.2/ and the two rays P1

and P2
. By Theorem B, as long

as the pair 1; 2 is not exceptional (for which see Lemma 7.4 and Theorem 7.5),
V>2.1/\V>2.2/ is a 2–manifold and has a unique branch near infinity satisfying
the conditions of Theorem A.

The ray P1
may be determined as follows. At points on P1

, the upper component
of the convex hull boundary @CC=G cut along 1 is flat. Therefore the trace of any
curve ı disjoint from 1 lies in the variety V>2.ı/. One can show (see Lemma 7.2)
that among any two admissible curves ı; ı0 disjoint from 1 and distinct from 2 , at
least one will have the property that V>2.ı/[V>2.1/ is transverse to P1;2

, so that
the equations =1;=ı;=ı

0 2R together with the conditions of Theorem A are enough
to determine P1

. Finally, since P1;2
is the union of the rays P� for � with support

1; 2 , it must be the connected component of the unique branch of V>2.1/\V>2.2/

which interpolates between P1
and P2

as �i!1.

This means that in principle, given a means of computing sufficiently many traces,
P1;2

can be determined computationally without needing any further tests to see if G

is discrete. In particular, one can locate the one (real)–dimensional boundary of P1;2

on @M, along which at least one of the elements 1; 2 is parabolic. By [21], such
geometrically finite group cusp groups are dense in @M. In the one dimensional case,
this is exactly the procedure which gives Figure 1. We hope to discuss the practical
implementation of this programme elsewhere; see Austin [1] and Austin and Series [2].

5.2 Examples

Following [13], we will identify pleating rays and planes formed by various combina-
tions of the curves corresponding to the elements W D Si ;T; ŒSi ;T

�1�;S1S�1
2

T �1

and S�1
1

S2T �1 in �1.†/. Let W be the curve corresponding to the element W

and write PW for PW
and Tr W for Tr �.W / with � D �.�1; �2/ defined as in

Section 2.2.

We compute Tr T D 2C �1�2 , Tr ŒSi ;T
�1�D 2C 4�2

j ; j ¤ i (see Appendix 1), and
Tr S1S�1

2
T �1 D .�2 � 2/.�1 C 2/, where Tr S1S�1

2
T �1 can either be computed
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directly or deduced from the fact that the right Dehn twist D�i
about Si induces the

map �i 7! �i C 2; see Section 2.2. Writing the canonical coordinates in the usual form

i.�/D .q1.�/;p1.�/; q2.�/;p2.�//;

we find following the method outlined in Section 4:

i.T /D .1; 0; 1; 0/; i.ŒS1;T
�1�/D .0; 0; 2; 0/; i.ŒS2;T

�1�/D .2; 0; 0; 0/;

i.S1S�1
2 T �1/D .1;�1; 1; 1/; i.S�1

1 S2T �1/D .1; 1; 1;�1/:

The curves S1S�1
2

T �1 and S1T �1S�1
1

T are illustrated in Figure 6.

sS1

sS2

1

1

B1

B2

sT�1

sT

1

1

s
S�1

1

s
S�1

2

sS1

sS2

1

1

1

sT�1

sT

1

1

1

s
S�1

1

s
S�1

2

Figure 6: The curves S1S�1
2

T �1 (left) and S1T �1S�1
1

T (right)

The pleating planes discussed in Examples 1–3a below are shown in the left frame of
Figure 7 and those of Example 4 on the right.

Example 1 (The pleating ray PT ) On PT , the surface †T WD † n T is flat and
hence not only T , but also any curve contained in †T , has real trace. Since T is
disjoint from both ŒS1;T�1� and ŒS2;T�1� , it follows that 2C 4�2

j 2R; i D 1; 2 and
2C �1�2 2 R. We deduce that on PT , <�1 D <�2 D 0. Since T is also disjoint
from S1S�1

2
T�1 , by the same reasoning, �1�2 C 2�2 � 2�1 2 R, from which we

deduce =�1 D=�2 . (Disjointness of curves can be easily checked by drawing disjoint
representatives on the fundamental domain �, taking into account how the arcs link
across the glued sides. In this instance, the curve T is an arc from sT to sT�1 which
is clearly disjoint from both curves illustrated in Figure 6.)
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¯�1 D�x�2

.�2; 2/ 0 .2;�2/<�1

E
S1S�1

2
T

E3 ET

P
S1S�1

2
T PT

P
S�1

1
S2T

P1 P2

O

1

=�2

.1; 4/

.2; 2/

.4; 1/

P3

P4

<�1 D<�2D0

=�1

Figure 7: Pleating planes. Left: Examples 1–3a. Right: Example 4.

The conditions <�1D<�2D0;=�1D=�2 define a line L in C2
C . Moreover jTr T j>2

on L whenever =�1 > 2, and T is parabolic exactly at the point at which =�1 D 2. It
follows from Theorem 3.4 and the discussion above, that PT D L\ f=�1 > 2g. To
compare with Theorem A, since pi.T /=qi.T /D 0; i D 1; 2 and q2.T /=q1.T /D 1,
in this special case, PT is actually equal to the line

<�i D 2pi.T /=qi.T /; Arg �i D �=2; =�1==�2 D q2.T /=q1.T /:

The endpoint point ET D .2i; 2i/ of PT represents the unique group Gcusp.T / for
which S1;S2 and T are all parabolic and the remaining part of @CC=G is totally
geodesic.

In this very special case, it is also possible to verify directly, following the methods
of [15], that groups on L have convex hull boundary which is bent exactly along the
curve T , and that by symmetry the geodesic axis of T meets both the geodesic
representatives of �i D Si

on @CC=G orthogonally.

Example 2 (The pleating ray PS1S�1
2

T�1 ) The easy way to locate this ray is to
note that S1S�1

2
T �1 D D�1

D�1
�2
.T /. Since D�i

is a symmetry of M, it follows
immediately that PS1S�1

2
T�1 is the line <�1 D�2;<�2 D 2;=�1 D=�2;=�1 > 2, in

other words, the line LC 2.�1; 1/ where L is as in Example 1. Since in this case
p1=q1 D�1;p2=q2 D 1 and q2=q1 D 1, this is again in accordance with Theorem A.

The point ES1S�1
2

T�1 D .�2C 2i; 2C 2i/ is the unique group for which S1;S2 and
S1S�1

2
T �1 are all parabolic and the remaining part of @CC=G is totally geodesic.
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Example 3 (The pleating plane P1 D PT;S1S�1
2

T�1 ) By Theorem 3.4 and the dis-
cussion above, P1 is a connected open subset of the plane … defined by �1 D �x�2

whose boundary contains the lines PT and PS1S�1
2

T�1 . To compute the remain-
ing boundary of P1 , note that the conditions jTr T j; jTr S1S�1

2
T �1j > 2 imply

j�1j
2 > 4; j�1� 2j2 > 4. The equations j�1j D 2; j�1� 2j D 2 define two circular arcs

which meet at the point E3 at which <�1 D �1;=�1 D
p

3. Then T is parabolic
along the arc of j�1j D 2 from ET to E3 and S1S�1

2
T �1 is parabolic along the

arc of j�1 � 2j D 2 from ES1S�1
2

T�1 to E3 . At E3 , both T and S1S�1
2

T �1 are
parabolic. Thus E3 represents a double cusp group in which T;S1S�1

2
T �1;S1;S2 are

all parabolic. (There is a unique such group, either by the ending lamination theorem,
or more simply by [12].) It follows from the above discussion that

PT;S1S�1
2

T�1 D f.�1; �2/j �1 D�x�2; j�1j> 2; j�1� 2j> 2; �2<<�1 < 0g;

as illustrated in the left frame of Figure 7.

The next example shows that distinct planes may be contained in the same real trace
variety in C2

C .

Example 3a (The pleating plane P2 D PT;S�1
1

S2T�1 ) Similarly to Example 2, we
compute that PS�1

1
S2T�1 is the line LC2.1;�1/. The same reasoning as in Example 3

shows that PT;S�1
1

S2T�1 is the region contained the same plane …, but bounded by the
lines PT and PS�1

1
S2T�1 and above the arcs j�1j D 2 and j�1C2j D 2. In other words

PT;S�1
1

S2T�1 D f.�1; �2/j �1 D�x�2; j�1j> 2; j�1C 2j> 2; 0<<�1 < 2g:

Thus the two pleating planes P1 and P2 are both contained same plane …�C2
C . They

meet along the line PT contained in the boundary of both; see the left frame of Figure 7.

Our final example is of degenerate pleating planes.

Example 4 (The pleating planes PT;ŒSi ;T�1� ) In Example 3, the curves T and
S1S�1

2
T �1 are themselves are admissible, so that the corresponding pleating rays are

nonempty. By contrast, since q1 D i.ŒS1;T
�1�;S1/D 0, the curve ŒS1;T

�1� by itself
is not admissible so that PŒS1;T�1� D∅.

From Tr T D 2C �1�2 , Tr ŒS1;T
�1�D 2C 4�2

2
we find PT;ŒSi ;T�1� is contained in

the plane …0D f.�1; �2/ 2C2
C W <�1D<�2D 0g. To locate PT;ŒSi ;T�1� , we locate its

boundary curves in …0 . Part of the boundary is the line PT DL of Example 1, along
which =�1 D =�2 . In …0 , the element ŒS1;T

�1� is parabolic along the line �2 D i

and T is parabolic along the hyperbola f=�1=�2 D 4g. These two loci meet exactly
once at the point .4i; i/ which therefore represents the maximally pinched group for
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which S1;S2;T and ŒSi ;T
�1� are all parabolic. We conclude that PT;ŒS1;T�1� is the

region P4 in Figure 7 bounded by the line f.t i; t i/ W t � 2g, the arc A1 of f=�1=�2D 4g

from .2i; 2i/ to .4i; i/ along which T is parabolic; and the line A2 D f.t i; i/W t � 4g

along which ŒS1;T � is parabolic. Along A1 , the bending angle �ŒS1;T�1� increases
from zero to � while �T � � ; along A2 , we have �ŒS1;T�1� � � while �T decreases
from � to the unattainable value 0.

The individual pleating ray P� with � D a1T C a2ŒSi ;T �, is asymptotic to the
line =�2==�1 D q1.�/=q2.�/ D a1=.a1 C a2/; the missing fourth boundary curve
of PT;ŒS1;T�1� would correspond to the nonexistent ray PŒS1;T�1� asymptotic to the
line =�2==�1! q1.ŒS1;T

�1�/=q2.ŒS1;T
�1�/D 0.

A similar argument shows that

PT;ŒS2;T�1� D f.�1; �2/ 2…
0
W 1� =�1 � =�2;=�1=�2 � 4g;

the region P3 in the figure. Thus P3 and P4 are contained in the same plane in C2
C .

Also note that the curves

S1S�1
2

T�1 ; S�1
1

S2T�1 ; ŒS1;T�1�; ŒS2;T �

are all disjoint from T and that the ray PT is the common boundary of all four
pleating planes P1; : : : ;P4 .

6 Behaviour on a pleating variety

The heart of the proof of Theorem A is the geometry of the upper component @CC=G

of the convex hull boundary for groups GDG�.�/ along the pleating ray P� as �! 0.
Let �C D �Ci denote the geodesic representative of �i on @CC=G and let lC� D lC�i

be its hyperbolic length in the hyperbolic structure on @CC=G . We show that lC� ! 0

as � ! 0, while �C becomes asymptotically orthogonal to the bending lines. From
this we deduce results on the asymptotic behaviour of �1; �2 . The main result of this
section will be:

Theorem 6.1 Fix an admissible rational measured lamination � D
P

1;2 aiıi
on the

twice punctured torus †1;2 and let G D G�.�/ be the unique group in the Maskit
slice M with bending measure ˇ.G/D �� . Then the coordinates .�1; �2/ 2M�C2

satisfy

<�i D�2pi.�/=qi.�/CO.1/ and =�i D 4.1CO.c�//=�qi.�/

where .pi.�/; qi.�// are the canonical coordinates of � , c is a constant depending on
q1.�/; q2.�/, and O.1/ denotes a universal bound independent of � , as � ! 0.
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Corollary 6.2 Then

j arg �i ��=2j � c0� and
ˇ̌̌q2.�/

q1.�/
�
=�1

=�2

ˇ̌̌
� c00�

where c0; c00 > 0 are constants depending on � , as � ! 0.

Theorem 6.1 and the Corollary follow immediately from Propositions 6.6, 6.11 and 6.14.
At the end of the section, we also prove Theorem C.

6.1 A note on constants

Throughout this section, we will make many estimates of the form X.�i/ � O.�e/,
where X is some quantity which depends on the curve �i , meaning that X � c�e

as � ! 0 for some constant c > 0, and e is an exponent (usually e D 1; 2 or 1=2).
These estimates all depend on the lamination � , so more precisely one has X � c.�/�e .
However it is easily seen by following through the arguments that the dependence
on � is always of the form X.�i/ � cqi.�/

e�e , where now c is a universal constant
independent of � . The dependence of the constants on � is not important for our final
arguments in Section 7, but we note it as it may be useful elsewhere.

In what follows, X � �O.�/Y means that X � �cY� for some constant c > 0.

6.2 Length estimates on @CC

We begin by estimating the lengths lC�i
of the geodesic representatives �Ci of the

accidental parabolics �i on the upper convex hull boundary @CC=G . We prove two
main results, Propositions 6.4 and 6.6, which relate lC�i

to the bending angle � and the
complex parameter � respectively. The first shows in particular that lC�i

! 0 as �! 0.

We shall several times use the following estimate which is [28, Lemma 5.4] ; see also
Theorem 4.2.10 of [6]. Since the proof is so simple, we repeat it here.

Lemma 6.3 Let � be a piecewise geodesic arc in H3 with endpoints P and P 0 , and
let y� be the H3 geodesic joining P to P 0 . Suppose that for all X 2 � the angle
between PX and � is bounded in modulus by a 2 .0; �=4/. Then ly� � .cos a/l� for
all X 2 �, where l� and ly� are the lengths of � and y� respectively.

Proof Join P to a variable point X on � between P and P 0 (see Figure 3 in [28]). If
PX has length x , the distance from P to X along � is t , and the acute angle between
PX and � at X is  , then at every non–bend point of �, one has the usual variational
formula dx=dt D cos (see Lemma 4.2.12 of [6]).
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Proposition 6.4 Suppose that the rational measured lamination � 2MLQ is admissible.
As usual, let G�.�/ be the unique group in the Maskit slice M with bending measure
ˇ.G/D �� , so that G lies on the pleating ray P� . Then

lC�i
� i.ˇ.G�.�//; �i/.1CO.�2//D � i.�; �i/.1CO.�2//

as � ! 0.

Proof Here and in what follows, we work in the upper half space model of H3 and
let @CC denote the lift of @CC=G to H3 . Using Lemma 2.3 if needed, normalise such
that Si D S W z 7! zC 2. Let zSC D zSCi denote the lift of �Ci to @CC invariant under
translation S . Then zSC is made up of a number of H3 –geodesic segments which
meet at bending points where zSC crosses a bending line of @CC . Choose a bending
point P D P0 , let P0;P1; : : : ;Pk ;PkC1 D P 0 be in order the bending points along
one period of zSC between P0 and PkC1 D S.P0/, and let si be the segment from
Pi�1 to Pi ; see Figure 8.

Let �i denote the exterior angle between the geodesic segments si ; siC1 of zSC which
meet at Pi , measured so that �i � 0 and so that �iD 0 means that si ; siC1 are collinear.
(This will be the case exactly when the bending line containing Pi is contained in the
interior of a flat piece of @CC .) If �i is the bending angle of @CC at Pi , then �i � �i ;
see Appendix 3. Hence

(2)
kX

iD0

�i � i.�; ˇ.G�.�//D � i.�; �/:

Now consider the triangle � with vertices 1;P;P 0 . Since P;P 0 are at the same
Euclidean height above C in H3 , the angles in � at P and P 0 are equal, to w=2
say. Let E be the (nonplanar) polygon bounded by the H3 –geodesic PP 0 and the
segments si of zSC , and let u; v be the interior angles in E at P;P 0 respectively; see
Figure 8. The Euclidean translation S carries the Euclidean configuration at P to that
at P 0 D S.P /. It follows (using the triangle inequality in the spherical metric on the
link of P ) that

(3) �0CuC vCw � �:

Summing over the interior angles of E gives

(4)
kX
1

.� ��i/CuC v < k�:
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=z D 0

P

w=2

u E P 0v

w=2

�0

�1
�i

�k

si

siC1

Pi

Figure 8: The geodesic representative zSC of � on @CC

Combining (2), (4) and (3), we find

(5) � �w <

kX
0

�i � � i.�; �/:

Now the angles in � at P and P 0 are both w=2, so by the angle of parallelism formula,
writing d D dH3.P;P 0/,

sinh d=2D cotw=2;

so that from (5) we find

sinh d=2� � i.�; �/.1CO.�2//=2:

Finally, we claim that
lC� � d.1CO.�2//

for small � , from which the result is immediate. This follows easily from Lemma 6.3.
We have only to see that the angle  between the line PX from P to any point X on
zSC is bounded above by � i.�; �/. This follows since along the interior of any segment
 decreases as x increases, and since at the bend point Pi it increases by at most �i .
This gives d � lC� .1�O.�2// and the result follows.
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Corollary 6.5 Suppose that � 2MLQ is admissible and suppose that G.�1; �2/ is the
unique group G�.�/ in M with ˇ.G/D �� . Then 1==�i �O.�/; i D 1; 2, as � ! 0.
Moreover the groups G�.�/ have no algebraic limit as � ! 0.

Proof As above, we work in the upper half space model and we assume G DG�.�/

normalised so that S D Si is the translation z 7! zC2. Define P;P 0 as before. Let k

be the Euclidean height k of P above C . Then 1=k D sinh dH2.P;P 0/=2 while on
the other hand, dH2.P;P 0/� l�C �O.�/. It follows that 1=k �O.�/.

Now P lies on a bending line � of @CC which is contained in a support plane to
@CC . This plane is a hemisphere H �H3 which meets yC in a circle C . Since the
convex core is contained entirely to one side of H , there are no limit points in one of
the two discs in yC bounded by C . Since the horizontal lines =z D 0 and =z D =�i

are contained in the limit set ƒ, and since the half planes =z < 0 and =z > =�i are
contained in �� , it follows that C is contained in fzW 0�=z �=�ig and hence that its
diameter is at most =�i . We deduce 2==�i � 1=k so that 1==�i �O.�/ as claimed.

To prove that the algebraic limit of a sequence of groups does not exist, it is enough to
show that the trace of some element becomes infinite. The result follows on recalling
from Section 2.2 that Tr ŒT;S�1

i �D �2
j C 2; j ¤ i mod 2.

Now we establish a more precise link between the length lC�i
of �i on @CC and =�i :

Proposition 6.6 Let � 2MLQ be admissible and suppose that G.�1; �2/ is the unique
group G�.�/ 2M with ˇ.G/D �� . Then

=�i.1�O.�//� 4= lC�i
� =�i.1CO.�//

as � ! 0.

Remark 6.7 Kra [17, page 568] gives the estimate =�i � 1 � 2�= l�i
.�C/ � =�i

for the hyperbolic length l�i
.�C/ of the geodesic representative of � on �C=G .

Combining this with Sullivan’s theorem [10], gives an alternative proof of the final
statement of Corollary 6.5. The discrepancy of the �=2 factor with the estimate
in Proposition 6.6 is perhaps somewhat surprising, as one would expect that, since
G becomes asymptotically Fuchsian, the structures on @CC=G and �C=G would
be asymptotically equal. For a quick confirmation of Kra’s estimate, note that �C

contains an S invariant strip of width =� � 1, so that there is an annular collar A

of approximate modulus =�=2 around S on �C . Kra’s estimate follows from the
formula mod AD �= l� .�

C/CO.1/; see for example Minsky [23, page 255].

We begin the proof of Proposition 6.6 with two lemmas.
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Lemma 6.8 Let � 2MLQ be admissible. Normalize G�.�/ so that Si is translation
z 7! z C 2. Let  be a bending line of the pleating lamination � which intersects
�i . Then there is a lift z of  with endpoints ˙ such that j<.C � �/j � 2 and
=�i � 1< j=.C� �/j< =�i .

Proof We continue with the set up of Corollary 6.5. We can choose a lift z of  to be
identified with the bending line � in that proof. The endpoints ˙ of z lie in C \ƒ,
where C is a circle contained in the strip B between the lines =z D 0 and =z D=�i

and as usual ƒ is the limit set of G . By Proposition 2.1, ƒ is contained in the union of
the two strips 0�=z � 1=2 and =�i�1=2�=z �=�i . (This proposition holds on the
hypothesis that =�i > 1, which holds for small � by Corollary 6.5.) Moreover there are
no points of ƒ in the intersection of the two open disks D and S.D/ bounded by C

and S.C / and inside B . We deduce that � either has Euclidean height at most O.1/,
or has endpoints one of which is in the rectangle j<zj< 1; 0�=z � 1=2 and the other
in the rectangle j<zj< 1;=�i�1=2�=z �=�i . Since P 2 z and since the Euclidean
height of P is large by Corollary 6.5, the result follows.

Continuing with the assumption that � 2MLQ is admissible and that G�.�/ is normal-
ized so that Si is translation z 7! zC 2, we call any lift of a bending line satisfying
the conditions of Lemma 6.8, good. Combining with Corollary 6.5 we obtain easily:

Corollary 6.9 Let z be a good lift of a bending line  and set C � � D 2rei˛ ,
where without loss of generality we take =.C��/ > 0. Then r D .1CO.�//=�i=2

and j�=2�˛j DO.�/ as � ! 0.

Lemma 6.10 Let z be a good lift of a bending line of the pleating lamination which
intersects zSCi . Then the complex distance D between z and Si.z / is given by

�
1

r2e2i˛
D sinh2 D=2:

Proof Recall that the complex distance between two axes is d C i where d is the
real perpendicular distance and  is the rotation of one axis relative to the other along
their common perpendicular; see eg Series [27] for details. We use the cross ratio
formula for complex distance. Let z1; z2 and w1; w2 be endpoints of two oriented
geodesics in H3 at complex distance D . We can conjugate so that z1; z2 move to
1;�1 and w1; w2 move to eD ;�eD respectively. Then

Œz1; w1; w2; z2� WD
z1�w2

z1�w1

�
w1� z2

w2� z2

D coth2 D=2:
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Applying this formula to the four endpoints of z , Si.z / which are at points C; �

and CC 2; �C 2 respectively gives

coth2 D=2D ŒC; CC 2; �C 2; ��

which simplifies to the claimed result.

Proof of Proposition 6.6 Pick a good lift z of a bending line, and let P be the point
where z meets zSC . Let Q be the highest point of z and let Q0 D S.Q/, so that the
Euclidean height of both Q;Q0 above C is r . Writing d@C for the induced hyperbolic
metric on @CC , we have

l�C � d@C.Q;Q
0/� dH3.Q;Q0/.1CO.�2//

where the first inequality follows since the curve on @CC from Q to Q0 is in the
homotopy class of zSC , and the final one follows by Lemma 6.3.

Now
sinh dH3.Q;Q0/=2D 1=r

and =� � 1� 2r � =� by Lemma 6.8. Thus

dH3.Q;Q0/=2� 1=r � 2=.=� � 1/

from which we deduce

l�C � 4
.1CO.�2//

=� � 1
D

4

=�
.1CO.1==�//.1CO.�2//D

4

=�
.1CO.�//

by Corollary 6.5. Hence

(6) =�=4� 1= l�C.1CO.�//:

To find an upper bound for 1= l�C , we use Lemma 6.10. Writing D D d C i , note
that since d � l�C it is enough to find an upper bound on 1=d . Comparing real and
imaginary parts in the formula of Lemma 6.10 gives

sinh d=2 cos =2D˙ sin˛=r and cosh d=2 sin =2D˙ cos˛=r:

Since d � l�C �O.�/ we find

2

d
�
.1CO.�2//

sinh d=2
D

r.1CO.�2//

j sin˛j
j cos =2j:

By Corollary 6.9, we have 1=j sin˛j D 1CO.�/. Thus

2=d � r.1CO.�//
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from which

(7) 2= l�C � =�.1CO.�//=2:

Inequalities (6) and (7) together complete the proof.

6.3 Asymptotic orthogonality

Propositions 6.4 and 6.6 are not enough to give the detailed asymptotics of Theorem
6.1. We also need the following more refined comparison:

Proposition 6.11 Along the pleating variety P� , we have

� i.�; �/.1�O.�//� lC� � � i.�; �/.1CO.�2//

as � ! 0.

This result is a direct consequence of the fact that asymptotically, the lift zSC of
the geodesic representative of S on @CC becomes orthogonal to the bending lines;
see Proposition 6.13. The intuition for this is the following. Suppose that zSC were
actually perpendicular to all bending lines. Then each good lift of a bending line cut
by zSC would have Euclidean height between =�=2�1 and =�=2, and in the proof of
Proposition 6.4, Equations (2) and (3) would be equalities. Since E has area O.�2/, in
this situation (5) becomes an equality up to O.�2/. This situation actually pertains in
the case in which there is unique bending line in the class of T (in which case ED∅);
see Example 1 in Section 5.

Lemma 6.12 Let z be a good lift of a bending line and as above, let P;P 0 be the
points at which zSCmeets z and S.z / respectively. If K is the Euclidean centre on C
of the semicircle z , then †PKQDO.

p
�/.

Proof As in Corollary 6.5, let k denote the Euclidean height of P . We have
sinh dH3.P;P 0/=2D 1=k and 1=k <O.�/. Hence dH3.P;P 0/D 2.1CO.�2//=k .
We will estimate k=r D cos†PKQ.

By Lemma 6.3

dH3.P;P 0/� l�C � .1CO.�2//dH3.P;P 0/

and hence
l�C D 2.1CO.�2//=k:

On the other hand, by Proposition 6.6 and Lemma 6.8,

2= l�C D r.1CO.�//:
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Combining these two equations gives

jk=r � 1j DO.�/

so that †PKQ�O.
p
�/ as claimed.

Now we prove our result on asymptotic orthogonality.

Proposition 6.13 Along the pleating variety P� , the curve zSC is asymptotically
orthogonal to the bending lines as � ! 0. More precisely, suppose that zSC meets an
(oriented) bending line z at a point P so that the acute angle between zSC and z is
 .P /. Then j .P /��=2j �O.

p
�/ as � ! 0.

Proof As usual, we may suppose that z is a good lift of a bending line, and we
let P 0 D S.P /. Let � denote the geodesic arc in H3 from P to P 0 . Let u; v;w be
forward pointing unit vectors at P along zSC , � , and z respectively, where �; zSC

are given the same orientation and the orientation of z is from � to C , where
=� < =C . Let ‰.x; y/ denote the angle between the vectors x and y at P , so that
 .P /D‰.u;w/.

From Equation (4) in the proof of Proposition 6.4, we have ‰.u; v/� � i.�; �/. Thus
it will suffice to show that j‰.v;w/� �=2j D O.

p
�/. We prove this by a finding

a sequence of small rotations which, when applied to v and w, results in a pair of
perpendicular vectors.

Let � be the vertical plane containing z and let Z be the footpoint of the perpendicular
from P to C . As in Lemma 6.12, let K be the footpoint of the perpendicular from
the highest point Q on z to C . Let ‚1 be rotation by an angle †PKQ about a line
perpendicular to � through P , so that ‚1.w/ is horizontal (ie parallel to the base
plane C ). By Lemma 6.12, †PKQDO.

p
�/, so that ‚1.w/D wCO.

p
�/.

The vectors w and ‚1.w/ are in the plane � containing  , which is at angle ˛ to the
real axis and hence to the vertical plane … containing P and P 0 . These two planes
intersect in the line ZP . Thus if ‚2 denotes anticlockwise rotation by �=2�˛ about
ZP , then ‚2.‚1.w// is orthogonal to … at P . Since by Lemma 6.8, �=2�˛DO.�/,
we have wD‚2.‚1.w//CO.

p
�/.

Finally, let � be the angle between PZ and the arc � at P , so that sinh dH3.P;P 0/=2D

cot � . Since dH3.P;P 0/ � l�C this gives �=2� � D O.�/. If ‚3 is rotation by an
angle �=2� � about a line perpendicular to … through P , then ‚3.v/ is horizontal
and lies in … and ‚3.v/D vCO.�/.

By construction ‚2.‚1.w// is orthogonal to ‚3.v/ , so that putting these three
estimates together we find j‰.v;w/��=2j DO.

p
�/ as claimed.
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Finally, we can prove Proposition 6.11.

Proof of Proposition 6.11 In view of Proposition 6.4, it will be enough to find a
bound l�C � � i.�; �/.1�O.�// as � ! 0.

We work in the vertical plane … containing P and P 0 . This plane intersects @CC in
a path which is a union of H3 –geodesic segments similar to but not the same as the
geodesic path s0; s1; : : : ; sk of Proposition 6.4. Denote the bending points along this
path P D yP0; yP1; : : : ; yPkC1 where yPkC1 D S.P0/D P 0 , and let ysi be the segment
from yPi�1 to yPi .

Let y�i denote the exterior angle between the segments ysi ; ysiC1 which meet at yPi ,
measured in the same way as � in the proof of Proposition 6.4, and let �i be the
bending angle between the support planes of @CC which meet at yPi . We will prove
below that

(8) y�i=�i D 1CO.�/:

Denote by l.ysi/ the hyperbolic length of ysi . We observe

lC� � dH3.P;P 0/� .1�O.�2//
X

l.ysi/

where the last inequality follows by Lemma 6.3 since from (8) y�iDO.�/ for all i . To es-
timate l.ysi/, join each point yPi to1 in the plane … and let yiD†

yPi�1
yPi1 and xiD

†1 yPi
yPiC1 , so that (since all angles are measured in the plane …), xi Cyi C

y�i D � .
The formula for the length of the finite side of triangle with angles x;y; 0 (see Bear-
don [3, Theorem 7.10.1]) gives

sinh l.ysi/D
cos xi C cos yiC1

sin xi C sin yiC1

:

We also prove below that

(9) j�=2�xi j DO.�/ and j�=2�yi j DO.�/:

This gives
l.ysi/D .� �xi �yiC1/.1CO.�2//

from which
kX
0

l.ysi/D

� kX
0

y�i

�
.1CO.�2//D

� kX
0

�i

�
.1CO.�//

by (8). Hence
lC� � � i.�; �/.1�O.�//

as � ! 0. This completes the proof, modulo the proofs of (8) and (9).

Geometry & Topology, Volume 14 (2010)



The Maskit embedding of the twice punctured torus 1973

Proof of (8) This follows from Appendix A.4 in [10]. Suppose that two planes
J1;J2 meet at an angle � along a line L, so that � is the angle between the lines of
intersection of J1;J2 with the plane H orthogonal to L. Suppose that H 0 is another
plane slightly skewed to H , and let �� be the angle between the lines of intersection
of J1;J2 with H 0 . Setting things up so that H has unit normal .0; 0; 1/ and so that
the bisector of the planes orthogonal to L is the vector .1; 0; 0/, the result of [10]
gives an estimate of ��=� in terms of the unit normal .x1;x2;x3/ to H 0 for small
x1;x2 . In fact if xi DO.�/; i D 1; 2, then we find easily either from the formula for
tan ��=2= tan �=2 in terms of the xi on page 246, or from Theorem A.4.2 on page 247,
that ��=� D 1CO.�2/.

To apply the theorem in our case, we want to find the angle between the support planes
which meet along the bending line at Pi , measured in the plane … which is slightly
skewed to the plane orthogonal to the lift zi of  through yPi . In the above set up, the
unit vector along z at yPi is e3 D .0; 0; 1/, and the line bisecting the planes along  is
e1 D .1; 0; 0/.

Let e03; e
0
1 be unit vectors at yPi orthogonal to …, and in … pointing vertically upwards,

respectively. It will be sufficient to show that e03 D e3CO.
p
�/ and e01 D e1CO.

p
�/.

Now if yPi were replaced by the similar configuration at the point Pi , then the first
result would follow from Corollary 6.9 and Lemma 6.12, while the second would
follow from the proof of Proposition 6.4, since as illustrated in Figure 8, e01 bisects the
angle between si and siC1 up to O.�/.

In the move from Pi to yPi , the estimates for e03; e
0
1 will change by terms on the order

of †PiKi
yPi , the angular distance from Pi to yPi along zi . (Here Ki is the centre of

the Euclidean semicircle zi .) We estimate this as follows. Let di be the perpendicular
distance between the plane … through P parallel to the real axis, and the parallel
plane …i through Pi . Since P is joined to Pi by segments s0; s1; : : : si�1 along zSC ,
and since it follows from (4) in Proposition 6.4 that each segment sj makes an angle
at most O.�/ with the plane Pj�1 , we find

di �

i�1X
0

l.sj /O.�/DO.�2/:

Let Zi ; yZi denote the footpoints in C of the vertical lines through Pi ; yPi . The estimate
on di combined with Corollary 6.9 gives jZi �

yZi j DO.�2/. It follows that the error
in replacing Pi by yPi is of a lower order than those already obtained, and we conclude
that e03 D e3CO.

p
�/ and e01 D e1CO.

p
�/ as claimed.

Proof of (9) Let L be a line from 1 to a variable point X on some segment ysi ,
and let x D x.X / > 0 be the acute angle in the complementary pair † yPi�1X1 and
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†1X yPi . We want to show that j�=2�xj DO.�/. Since P0 and S.P0/ are at the
same Euclidean height, there is certainly some ysi0

containing a point X0 at which the
tangent to ysi0

is horizontal, so x.X0/D �=2. Moving away from this point in either
direction, x.X / decreases according to the formula sinh t D cot x.X.t//, where the
point X.t/ is at distance t from X0 along ysi0

. The change in angle at a bend point
is y�i D �i.1CO.�// by (8), and on the adjacent segment the argument proceeds as
before. Since (using Lemma 6.3 again)

P
i l.ysi/�O.�/, the result follows.

6.4 Twisting

To complete the proof of Theorem 6.1, it remains to bound <�i . We have:

Proposition 6.14 Let � 2MLQ be admissible and suppose that  2 S is contained in
the support of � . Then if .�1; �2/ 2 P� , we have <�i D �2pi. /=qi. /CO.1/ and
hence in particular j arg �i ��=2j DO.�/ as � ! 0.

Since this result holds for any  contained in the support of � we have:

Corollary 6.15 Suppose that ;  0 2S are supported on a common admissible lamina-
tion � . Then jpi. /=qi. /�pi.

0/=qi.
0/j�10, hence <�iD�2pi.�/=qi.�/CO.1/.

The condition that ;  0 are supported on a common admissible lamination is equivalent
to the condition that together with �1; �2 they fill up †. The value 10 is obtained by
following through the constants in the argument below; it could certainly be improved
by more careful inspection.

We prove this result using the concept of the twist of one geodesic around another
following Minsky [23]. Suppose given a hyperbolic metric h on the surface †. The
twist twˇ.; h/ of a curve  about another curve ˇ is defined as follows. Let p

be an intersection point of  with ˇ . Let P be a lift to H2 of p and let z ; ž be
the lifts of ; ˇ through P . Orient z ; ž with positive endpoints Z;W respectively
on @H2 so that the anticlockwise arc from Z to W does not contain the other two
endpoints. Let R be the footpoint of the perpendicular from Z to ž. Let t be the
oriented distance PR, where t > 0 if R follows P in the positive direction along ž

and t � 0 otherwise. One verifies [23, Lemma 3.1] that t= lˇ.h/ is independent up to
an additive error of 1 of the choices made, including the choice of p . Finally, define
twˇ.; h/D 2 inf t= lˇ.h/, where we take the infimum over all possible choices of lifts
as above.

Note that the twist is independent of the orientation of ˇ;  but depends on the choice
of hyperbolic metric h 2 T , where T is the Teichmüller space of †. However:
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Lemma 6.16 ([23, Lemma 3.5]; see also [8, Section 4.3]) For any two 1; 2 2 S ,
the relative twist tw˛.1; h/� tw˛.2; h/ is independent of h 2 T , up to a bounded
additive error of 1.

We define the signed relative twist of 1; 2 with respective to ˇ to be iˇ.1; 2/D

infh2T twˇ.1; h/� twˇ.2; h/. Here is a useful way of computing it:

Lemma 6.17 Let 1; 2 2S and let z1; z2 be lifts of 1; 2 which cut the fixed axis ž

corresponding to ˇ , and let b 2 � be the primitive element whose axis is ž and whose
attracting fixed point is the positive endpoint of B , where � is the Fuchsian group
uniformising h. Then twˇ.1; h/� twˇ.2; h/ is equal in magnitude to the number
of times the images bn.z1/; n 2 Z intersect z2 , up to a bounded additive error of 1.
The sign is negative if b.z1/ follows z1 in the positive direction along z2 and positive
otherwise.

Proof This is clear from the definition in a metric in which z1 is orthogonal to B .
Whether or not two axes intersect, depends only on the relative position of their
endpoints round the boundary at infinity @HDS1 . Since a quasiconformal deformation
of H induces a homeomorphism of @H , we deduce that the relative positions of
endpoints of axes are independent of the metric h, from which the result follows.

We shall prove Proposition 6.14 by computing i�i
.;T / in two different ways, where

as usual i�i
.;T / means i�i

.; T / where T 2 S is the curve corresponding to the
generator T 2 �1.†/. We have:

Lemma 6.18 Suppose that  2 S has canonical coordinates

i. /D .q1. /;p1. /; q2. /;p2. //:

Then i�i
.;T /D�pi. /=qi. /CO.1/.

Proof We work in the fundamental domain � of †1;2 and label the sides as in
Figure 2. We also suppose that p1 � 0. Let zA be a horizontal strip joining sS1

to sS�1
1

, shown shaded in the figure. This projects to an annular neighbourhood A of
�1 on †. We may take our lift z�1 of �1 to be the centre line of zA and the lift zT of
the curve T to be the arc joining the midpoints of sT and sT�1 . This intersects zA in
a single arc � which joins the boundaries @� zA; @C zA of zA. By the previous lemma, to
compute i�1

.;T / we have to examine how many images Sn
1
.zT / cut a fixed lift z

of  , equivalently how many images Sn
1
.z / cut zT .
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The lift z appears as a collection of disjoint arcs joining sides of �, the numbers of arcs
joining particular pairs of sides being determined by the canonical coordinates i. /. It
is not hard to see that the magnitude of the relative intersection number i�i

.;T / is, up
to an additive error of 1, the number of times that a connected component � of  \A

cuts the projection �.�/ of � to †. For convenience, replace � by LD sS1
\ zA. This

changes the intersection number by at most 2.

Denote the lift of � to � by z� . Clearly z� contains at most two “corner arcs” (see
Section 4) of z \�, which can be ignored in our count. If p1 � q1 then z contains
no horizontal strands and i.�;L/� 1.

Now suppose p1 > q1 . In this case z \� contains m > 0 horizontal arcs running
across zA joining L to S1.L/. Thus after entering A across @�A, the component �
travels around A cutting �.L/ either m or mC 1 times before exiting across @CA.
(This is the well known combinatorics of simple curves crossing a cylinder.) The total
number of such connected components is i.�1;  /D q1 . On the other hand, the total
number of strands of z \� which meet L is by definition p1 . Thus mq1 � p1 <

.mC1/q1Cq1 and so mD Œp1=q1�CO.1/. Finally, we check from the definition that
in the obvious metric h0 on � in which z�1 is orthogonal to zT , we have i�1

.; h/ < 0

while i�1
.T ; h/D 0. Thus i�i

.;T /D�pi. /=qi. /CO.1/ as claimed.

The arguments for p1 < 0 and for S2 are similar.

Proof of Proposition 6.14 From Lemma 6.18 we have i�i
.;T /D�pi. /=qi. /C

O.1/. On the other hand we can also compute i�i
.;T / as follows. As usual, after

normalizing suitably let zSC D zSCi be the lift of �i to @CC which is invariant under
Si W z 7! zC2. If z is a good lift of  , then z certainly intersects zSC . Now referring
to Figure 3, let B2;B3 be the circles with equal diameters 2==�i tangent to R at 0,
and RC �i at �i , respectively. It follows from the usual ping-pong theorem methods,
that there is a lift zT of the axis of T to @CC which has one endpoint inside B2 and
one inside B3 . This lift also clearly cuts zSC . By Lemma 6.17, i�i

.;T / is up to sign
the number of images Sn

i .z / of z which cut zT . Since z is a good lift , orienting as
in Lemma 6.17, we see that i�i

.;T /D Œ<�i=2�CO.1/. We deduce that

<�i D�2pi. /=qi. /CO.1/:

and the result follows.

Proof of Theorem C As usual let � 2MLQ be admissible and let G�.�/ be the unique
group for which ˇ.G/D �� . Let h.�/ denote the hyperbolic structure of @CC=G�.�/.
Since lC�i

! 0; i D 1; 2, the limit of the structures h.�/ in PML is in the linear span of
ı�1
; ı�2

. We want to prove that the limit is the barycentre ı�1
C ı�2

.
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Let ı; ı0 2 S . Since �1; �2 are a maximal set of simple curves on †, the thin part of
h.�/ is contained in collars Ai around �i of approximate width log.1= lC�i

/ and the
lengths of ı; ı0 outside the collars Ai are bounded (with a bound depending only on the
combinatorics of ı; ı0 and hence the canonical coordinates i.ı/; i.ı0/). By Proposition
6.14 the twisting around Ai is bounded. We deduce that for any curve transverse to �i

we have

(10) lC
ı
D

X
iD1;2

qi.ı/ log.1= lC�i
/CO.1/

(see for example [23, Lemma 7.2]). By Theorem 6.1 we have lC�1
= lC�2
! q2.�/=q1.�/,

and since � is admissible, q1.�/; q2.�/ > 0. Thus log lC�1
= log lC�2

! 1. Hence

lC
ı
= lC
ı0
!

X
iD1;2

qi.ı/
. X

iD1;2

qi.ı
0/D i.ı; �1C �2/= i.ı0; �1C �2/:

The result follows from the definition of convergence to a point in PML .

Remark 6.19 The above length estimate above coincides with that coming from the
top terms Theorem 4.1. Namely from that formula we have

(11) log Tr ı D
X

iD1;2

qi.ı/ log.�i/CO.1/:

Since lC�i
is small, any transverse curve has definite length. Hence by for example

Proposition 5.1 of [28], lC
ı

is close to the hyperbolic length of the geodesic representa-
tive of ı in H3=G and thus to log Tr ı . Since by Proposition 6.6, lC�i

=�i DO.1/, the
formula (11) is compatible with (10).

7 Asymptotic directions

In this section we prove our main results, Theorems A and B.

Throughout this section, to simplify notation, X DO.�/ will mean X � c� where the
constant c depends on the lamination � and a small number of related curves chosen
during the proofs. With a bit more effort, the dependence could be controlled more
carefully, but this is not needed for our results here. We write Tr  to mean Tr �.W /

where W is a word representing  2 �1.S/.

Suppose that  is a bending line of the upper component @CC=G of the convex hull
boundary for a group G.�1; �2/ lying on a pleating ray P� . The top terms Theorem
4.1, together with the condition Tr  2R of Lemma 3.3, gives asymptotic conditions
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for .�1; �2/ 2 P� , in terms of the canonical coordinates i. / of  . For �1; �2 2 C2
C

set �i D xi C iyi ; �D
p

y2
1
Cy2

2
, and �i D yi=� . Define

E .�1; �2/D .q1x1C 2p1/�2C .q2x2C 2p2/�1;

where as usual i. /D .q1;p1; q2;p2/ and yi > 0; i D 1; 2.

Proposition 7.1 Suppose that � 2MLQ is an admissible lamination, that G.�1; �2/ 2

P� has bending measure ˇ.G/ D �� , and that  is a bending line of � . Then
E .�1; �2/DO.�/ as � ! 0.

Proof Suppose first that qi D qi. / > 0; i D 1; 2 and set ai D �2pi. /=qi. /. By
Theorem 4.1 we have

(12) Tr  D˙2jq2�q1j.�1� a1/
q1.�2� a2/

q2 CR.q1C q2� 2/

where R.q1C q2� 2/ is a polynomial of degree at most qi in �i but with total degree
in �1 and �2 at most q1C q2� 2.

By Proposition 6.14, xi � ai DO.1/ and by Theorem 6.1

(13)
ˇ̌
q2.�/=q1.�/� �1=�2

ˇ̌
DO.�/:

(Notice that the terms in (13) involve qi.�/ as opposed to qi D qi. / in (12).) Hence
arranging the terms of (12) in order of decreasing powers of � , and using Equation (1)
in Section 4, we get

˙Tr 2�jq2�q1j D �q1Cq2�1
q1�2

q2 C i�q1Cq2�1�1
q1�1�2

q2�1.q2�1.x2� a2/

C q1�2.x1� a1//CO.�q1Cq2�2/:

By Lemma 3.3, Tr  2R. We deduce �1
q1�1�2

q2�1E .�1; �2/CO.1=�/D 0 from
which using (13),

q2�1.x2� a2/C q1�2.x1� a1//DO.1=�/:

Since 1=�DO.�/ by Corollary 6.5, this proves the result.

We still have to deal with the case that, say, q2. / D 0. Then Tr  is a polynomial
in �1 only, of the form

(14) Tr �. /D˙2q1.�1� a1/
q1 CR.q1� 2/:

The result then follows easily by similar reasoning to the above.
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7.1 Solving the asymptotic equations

Suppose we want to locate the pleating ray P of  2 S . If G 2P , then @CC=G n

is flat, so that not only  , but also any curve ı 2 wh. /, is a bending line of � , where
wh. / (the wheel of  ) denotes the set of all curves ı 2 S disjoint from  . (By
convention,  … wh. /.) Thus �1; �2 are constrained by the equations

=Tr  D=Tr ı D 0

and hence, by the above proposition,

E .�1; �2/CO.�/D 0 and Eı.�1; �2/CO.�/D 0

for all ı 2 wh. /. Our proof of Theorem A amounts to solving these equations
for �1; �2 .

In order to do this, note that for any curve ! 2 S ,

E!.�1; �2/D i.!/ �u

where i.!/D .q1.!/;p1.!/; q2.!/;p2.!// and

(15) uD .x1�2; 2�2;x2�1; 2�1/

with xi D<�i ; �i D=�i=� as above. Effectively what we will do is use linear algebra
to solve the equations i.ı/ � u D 0 for all ı 2 wh. /. This is done with the aid of
Thurston’s symplectic form �Th introduced in Section 4.2. This induces a map �! ��

of R4 such that
�Th.i. /; i.ı//D i. / � i.ı/�

where � is the usual inner product on R4 : if i. / D .q1;p1; q2;p2/, then i. /� D
.�p1; q1;�p2; q2/. By Proposition 4.3, i. /� is orthogonal not only to i. /, but also
to all curves in wh. /. We need:

Lemma 7.2

(i) Suppose that ; ı 2 S and that ı 2 wh. /. Then  and ı are supported on a
common canonical train track and i. /; i.ı/ are independent vectors in ML .

(ii) Given  2 S , we can find ı; ı0 2 wh. / such that i. /; i.ı/; i.ı0/ are supported
on a common canonical train track and span a subspace of dimension 3 in ML .

Proof (i) That ; ı are supported on a common canonical train track follows imme-
diately since they are disjoint. If i. /; i.ı/ are dependent, since they lie on the same
track all their coefficients are integers which pairwise have the same sign. Thus we
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must have ni. /Dmi.ı/ for some n;m 2N . Since both are connected simple curves,
nDmD 1.

(ii) The surface † WD†n is either a one holed torus and a sphere with two punctures
and a hole; or a sphere with two holes and two punctures. In either case, PML.† /
is a topological circle in which the set of rational laminations supported on a simple
curve is dense. Let � denote the map which associates to a curve ! 2 S the measured
lamination ı! 2 ML.†/, and likewise define the quotient map x�.!/D Œı! � 2 PML.
Then �; x� are injective and x�.wh / is a dense subset of an embedded circle K in
PML.†/.

If (ii) is false, then in particular �.wh. //�ML is contained in a 2–plane whose image
in PML is an affine line L. (Since the canonical coordinates are global coordinates for
ML, there is no need to consider the subdivision of ML into cells.) Since PML.† /
injects into L, it is open and closed in K . Thus K DL, which is impossible. Thus
�.wh. // spans at least a 3–dimensional subspace in ML .

Suppose that �. / is in the linear span of �.ı/; �.ı0/ 2 �.wh. // � ML. Then by
the above we can find ı00 2 wh. / with �.ı00/ not contained in the linear span of
�. /; �.ı/ and �.ı0/ which proves the result.

Theorem 7.3 (Theorem A) Suppose that � D
P

1;2 aii is admissible and not excep-
tional. Let i.�/ D .q1;p2; q2;p2/ and set tan .�/ D q1=q2 . Let L� W Œ0;1/! C2

be the line t 7! .w1.t/; w2.t// where

w1.t/D�2p1=q1C t cos ;w2.t/D�2p2=q2C t sin :

Let .�1.�/; �2.�//2C2 be the point corresponding to the group G�.�/ with ˇ.G/D�� ,
so that the pleating ray P� is the image of the map p� W �! .�1.�/; �2.�// for a suitable
range of � >0. Then P� approaches L� as �!0 in the sense that if t.�/D4Q=�q1q2

with QD
p

q2
1
C q2

2
then

j<�i.�/�<wi.t.�//j DO.�/ and j=�i.�/�=wi.t.�//j DO.1/; i D 1; 2:

Proof As above, write �i.�/D �i D xi C iyi ; �
2 D y2

1
C y2

2
and �i D yi=� , where

the dependence on � is understood. By Theorem 6.1, we have yi � 4=�qi DO.1/.

On the other hand, with t D t.�/ as in the statement of the theorem, we find =w1.t/D

tq2=Q D 4=�q1 and similarly =w2.t/ D 4=�q2 . Thus j=�i.�/ � =wi.t.�//j D

O.1/; i D 1; 2 as � ! 0.

To deal with the coordinates xi D <�i.�/ is more subtle. Consider first the special
case � D  2 S . By Lemma 7.2 we can choose ı; ı0 2wh. / such that i. /; i.ı/; i.ı0/
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span a subspace of dimension 3 in ML . If .�1; �2/ 2 P , the conditions

=Tr  D=Tr ı D=Tr ı0 D 0

must be satisfied. By Proposition 7.1, we can write this as

E�.�1; �2/CO.�/D 0

for � D ; ı; ı0 . With �i D xi C i��i as above, we can as in (15) regard these as
equations in R4 for uD u.�/D .x1�2; 2�2;x2�1; 2�1/,

(16) i.�/ �uDO.�/

for � D ; ı; ı0 . Now we use Thurston’s symplectic form. By Proposition 4.3 we have
�Th.i. /; i.�//D 0 for all � 2 wh. /. Hence

i.�/ � i. /� D 0

for � D ; ı; ı0 . Since i. /; i.ı/; i.ı0/ are independent, it follows that we can write

(17) u.�/D �.�/i. /�C�.�/v.�/

where vD v.�/ is in the linear span of i. /; i.ı/; i.ı0/ and kvkD 1. We find using (16)
that u � vDO.�/ (where the constants depend on i. /; i.ı/; i.ı0/). Then v � i. �/D 0

gives �.�/DO.�/, with the same proviso on the constants. Equating the two sides
of (17) gives

(18)
x1�2 D��p1. /CO.�/; 2�2 D �q1. /CO.�/;

x2�1 D��p2. /CO.�/; 2�1 D �q2. /CO.�/:

Since kuk2 D .x2
1
C 4/�2

2
C .x2

2
C 4/�2

1
� 4 we find

j�.�/j D
ku.�/�O.�/k

ki. /�k
� c

for some constant c > 0. It follows easily that jxi C 2pi=qi j D O.�/, proving
Theorem A in the special case � D  .

Now we turn to the case of a general admissible lamination � D a Caıı 2MLQ . In
this case, if .�1; �2/ 2 P� then  and ı are both bending lines of G.�1; �2/. It follows
as above that

i. / �uDO.�/ and i.ı/ �uDO.�/:

By Lemma 7.2, i. / and i.ı/ are independent and by Proposition 4.3, i. /� and i.ı/�

are orthogonal to both. Thus

(19) uD �i. /�C�i.ı/�C �w
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where w is in the span of i. /; i.ı/, and kwk D 1. Thus u � w D O.�/ and since
w � i. /� D w � i.ı/� D 0 we find � D �kwk D u �wDO.�/.

Now from Theorem 6.1,

(20)
ˇ̌̌y2

y1

�
aq1. /C aıq1.ı/

aq2. /C aıq2.ı/

ˇ̌̌
DO.�/:

On the other hand setting zi D �qi. /C�qi.ı/, we find from (19) that jz1j
2Cjz2j

2 �

c > 0 for some constant c depending only on ; ı . It follows from (19) and (20)
that jz2=z1�y2=y1j DO.�/. Since by hypothesis we are not in the exceptional case
q1. /=q2. / D q1.ı/=q2.ı/, we deduce that

ˇ̌
�=�� a=aı

ˇ̌
D O.�/. Substituting

back in (19) we see u D � i.�/�CO.�/ for some � > 0, and a little bit of algebra
completes the proof.

The following lemma proves the second part of the statement of Theorem B.

Lemma 7.4 Suppose that 1 2 S is admissible. Then there exists 2 2 wh.1/ such
that the pair 1; 2 is not exceptional.

Proof Write X D .X1;X2;X3;X4/ 2 R4 . Then ı 2 wh.1/ implies that i.ı/ is
in the codimension one hyperplane H defined by i.1/

� � X D 0. If the pair 1; ı

is exceptional then i.ı/ is also in the codimension one hyperplane K defined by
q1. /X1� q2. /X3 D 0. Note that i. / is also in H \K .

Now since q1. /; q2. / > 0, the normal vectors

.�p1. /; q1. /;�p2. /; q2. // and .q1. /; 0; q2. /; 0/

to H and K respectively are not collinear. So H \K is two dimensional. However by
Lemma 7.2, we can find ı; ı0 2wh.1/ such that i.ı/; i.ı0/; i.1/ are independent, so at
least one of the pairs i.1/; i.ı/ and i.1/; i.ı0/ must be nonexceptional as claimed.

Proof of Theorem B We need to show that if � D
P

1;2 aiıi
is admissible and if

the pair 1; 2 is not exceptional, then the equations

Tr 1; Tr 2 2R

have a unique solution as �i ! 1 in the direction specified by Theorem A. First
consider the equations

(21) �
q1

1
�

q2

2
; �

q0
1

1
�

q0
2

2
2R;
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as �1; �2 !1, where qi D qi.1/ and q0i D qi.2/. Setting zi D 1=�i we define
GW C2!C2 by

G.z1; z2/D .z
q1

1
z

q2

2
; z

q0
1

1
z

q0
2

2
/;

so that (21) is equivalent to the equation G.z1; z2/ 2 R2 as z1; z2 ! 0. Writing
zi D �ie

i�i ; i D 1; 2 we obtain

(22) ei.q1�1Cq2�2/; ei.q0
1
�1Cq0

2
�2/ 2R;

so that writing
AD

�
q1 q2

q0
1

q0
2

�
;

we must have A.�1; �2/
T D�.n;m/T for n;m2Z. Since A is invertible by hypothesis,

these equations have a discrete set of solutions for .�1; �2/. Since q1Cq2; q
0
1
Cq0

2
22Z,

one of these solutions is �i D �=2; i D 1; 2. It follows that G is a branched covering
C2!C2 in a neighbourhood of 0, and G�1.R2/ is a discrete set of 2–planes meeting
only at 0.

Now consider our actual equations =Tr  D=Tr ı D 0. As above set zi D 1=�i and
define H W C2!C2 by H.z1; z2/D .1=Tr ; 1=Tr ı/. By Theorem 4.1 we have

Tr  D .�1C 2p1=q1/
q1.�2C 2p2=q2/

q2.1CR1/;

Tr ı D .�1C 2p01=q
0
1/

q0
1.�2C 2p02=q

0
2/

q0
2.1CR2/:

(23)

where pi D pi. /; qi D qi. / and p0i D pi.ı/; q
0
i D qi.ı/ and R1;R2 denote polyno-

mials of total order at most q1C q2� 2 in �1; �2 . Hence we can expand H.z1; z2/ as
a Taylor expansion about 0 to obtain

(24) H.z1; z2/D
�
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where yR1; yR2 denote terms of total order at least 2 in z1; z2 and pi D pi. /,
p0i D pi.ı/.

There is clearly a neighbourhood U of 0 such that H is locally injective on U n f0g,
and moreover in which the homotopy GC tH; t 2 Œ0; 1� between G and H is regular
at every point. It follows that H is also a branched covering of C2 near zero, of the
same order as G , and that there is a natural bijective correspondence between the
branches of G�1.R2/ and H�1.R2/. To complete the proof, we need to show that for
.t1; t2/ 2R2 sufficiently near 0, the point H�1.t1; t2/ is arbitrarily close to the point
G�1.t1; t2/ on the corresponding sheet of G�1.R2/.

In a neighbourhood of 0, we view (24) as a perturbation of (21) and use the ideas of
Appendix B in [22]. If gW Cn! Cn is an analytic function with an isolated zero at
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Z0 2Cn , define the multiplicity of g to be the degree of the mapping g=kgkW Sı!S1 ,
where Sı is the sphere radius ı centre Z0 and S1 is the unit sphere. The same proof
as Lemma B.1 of [22] proves “Rouché’s principle” that if r W Cn!Cn with r.0/D 0

and if krk < kgk on Sı , then the degrees of .g C r/=kg C rk and g=kgk on Sı
are equal.

Now take Z0 2 U to be an isolated solution of the equation G.z1; z2/D .t1; t2/ 2R2 .
Choose ı > 0 so that so that Sı.Z0/�U and so that G.z1; z2/D .t1; t2/ has no other
solutions in Sı.Z0/. We can also choose U small enough so that k.H �G/k< kGk

on U . It follows from the above Rouché’s principle that H and G have the same
degree on Sı . Then Lemma B.2 of [22] shows that H has exactly one zero inside Sı
as required.

In particular, there is a unique branch of H�1.R2/ close to the branch zi D �ii; i D 1; 2

of G.z1; z2/2R2 . If �1=�2 is bounded away from 0 and1 and we set �D
p
�2

1
C �2

2
,

we can clearly write points on this branch in the form zi D �iie
i˛i ; i D 1; 2 where

˛i D O.�/ as �! 0. The arguments of Theorem A are then sufficient to show the
solution to the equations in that theorem is unique.

7.2 The exceptional case

Recall a pair of curves 1; 2 is said to be exceptional if q1.1/q2.2/D q1.2/q2.1/.
As an example, the coordinates i.1/D .2; 0; 2; 1/ and i.2/D .2;�1; 2; 2/, or more
generally i.1/ D .aC b; 0; aC b; a/ and i.2/ D .aC b;�1; aC b; aC 1/, can be
easily be checked to represent exceptional pairs of disjoint connected curves.

Theorem 7.5 Suppose that � D
P

1;2 aii is an admissible lamination such that
the pair 1; 2 is exceptional. For s 2 Œ0; 1�, let �.s/ D

P
1;2 sa11 C .1� s/a22 .

Let i.�.s//D .q1.s/;p2.s/; q2.s/;p2.s// and set tan .s/ to equal q1.s/=q2.s/. Let
L1;2

W Œ0; 1�� Œ0;1/!C2 be the map .s; t/ 7! .w1.s; t/; w2.s; t// where

w1.s; t/D 2p1.s/=q1.s/C t cos .s/; w2.s; t/D 2p2.s/=q2.s/C t sin .s/:

Let .�1.s; �/; �2.s; �// 2 C2 be the point corresponding to the group G�.s/.�/ with
ˇ.G/ D ��.s/, so that the (closure of the) pleating plane P1;2

is the image of the
map p1;2

W .s; �/! .�1.�/; �2.�// for s 2 Œ0; 1� and a suitable range of � > 0. Then
P1;2

approaches L1;2
as � ! 0 in the sense that, letting QD

p
.q2

1
.s/C q2

2
.s//,

if t.s; �/D 4Q=�q1.s/q2.s/, then for all sufficiently small � there exists a continuous
function f� W Œ0; 1�! Œ0; 1� such that f� .0/D 0; f� .1/D 1 and

j<�i.s; �/�<wi.f� .s/; t.s; �//j DO.�/;

j=�i.s; �/�=wi.f� .s/; t.s; �//j DO.1/;
(25)
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for i D 1; 2. Moreover every point on L1;2
is close to a point on P1;2

, in the sense
that for all sufficiently small � , for each s there exists s0 2 Œ0; 1� such that

j<�i.s
0; �/�<wi.s; t.s

0; �//j DO.�/;

j=�i.s
0; �/�=wi.s; t.s

0; �//j DO.1/:
(26)

Remark 7.6 The difference between this statement and that of Theorem 7.3 is that in
that theorem, P�.s/ is close to a point on L�.s/ , while here we can only assert closeness
of points on the pleating ray P�.s/ to a point on some line L�.f� .s// where possibly
f� .s/¤ s .

Proof We proceed as in the proof of Theorem 7.3 above, up to (19) which says that
u D u.�/ is close to a convex combination of i.1/

� and i.2/
� . Define f�.s/ by

letting �.f�.s// be the orthogonal projection of u.s; �/ onto the plane spanned by
i. /�; i.ı/� . Then (25) follows as before, while continuity of the path s 7! f� .s/ is
clear. Equation (26) follows choosing s0 such that s D f� .s

0/.

Remark 7.7 One might expect to be able to prove Theorem A in the exceptional case
by a limiting argument with laminations �n! � . However the interaction of the double
limits as n!1 and � ! 0 is quite subtle and we have not been able to extract the
required results by this method.

Remark 7.8 Suppose that the pair 1; 2 is exceptional. Then we claim that it
is not possible to deduce from the top terms Theorem 4.1 alone that the equations
=Tr i D 0; i D 1; 2 have a unique branch at infinity satisfying the conditions arg �i D

�=2;=�1==�2Dq2.�/=q1.�/. To study this question, as above we replace the equations
by equations =f1.z1; z2/D=f2.z1; z2/D 0 in a neighbourhood of 0, where fi W C2!

C2 are analytic functions with lowest order terms zq1.1/
1

zq2.1/
2

and zq1.2/
1

zq2.2/
2

respectively.

To show that many different behaviours are possible, consider the functions f0.z1; z2/D

z1z2; f1.z1; z2/D z1z2.1�z1Cz2Cz1z2/; f2.z1; z2/D z1z2.1�z1�z2Cz1z2/ and
f3.z1; z2/D z1z2.1�z1Cz2Cz2

1
/. We look for solutions to each of the three pairs of

equations =f0 D 0;=fi D 0; i D 1; 2; 3 which satisfy z1 D �ie
i˛; z2 D �ie

�i˛ where
�! 0 and ˛ DO.�/.

As is easily verified, the equations =f0D 0;=f1D 0 are satisfied for arbitrary choices
of ˛ . The equations =f0 D 0;=f2 D 0 have no solutions of the required form near
.0; 0/. Finally the equations =f0 D 0;=f3 D 0 have a unique suitable solution for
each � > 0, namely ˛ D 0.
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Appendix 1

The following proofs are taken from [13].

Proof of Proposition 2.1 Let S3D TS2T �1 , so that S3 is parabolic with fixed point
T .0/D �1 . Let Jj D hSj i for j D 1; 2; 3. We construct fundamental domains Dj for
the Sj as follows.

Referring to Figure 3 in Section 2.2, let l consist of the vertical line below �1C i=2,
the vertical line above �1�1�i=2 and the straight line joining �1Ci=2 to �1�1�i=2.
This last line segment has positive slope because =�1 > 1, from which it follows that
l and S1.l/ do not intersect and hence that the strip D1 between l and S1.l/ is a
fundamental domain for J1 . Fundamental domains for J2 and J3 are

D2 D
˚
z 2 yCW jzC 1=2j> 1=2; jz� 1=2j> 1=2

	
;

D3 D
˚
z 2 yCW jz� �1C 1=2j> 1=2; jz� �1� 1=2j> 1=2

	
:

The hypothesis =�1> 1 implies that the union of the closure of any two of the Dj is the
whole of yC . Moreover the boundaries of the Dj only intersect at parabolic fixed points.
Therefore by a simple application of the first Klein–Maskit combination theorem (see
Maskit [20, page 149] or Beardon [3, page 103]), we see that F0 D hS1;S2;S3i is
discrete with fundamental domain D0 DD1\D2\D3 .

Now let J4DhT i. We will construct a fundamental domain D4 for J4 . Let B2 be the
disk centred at i==�2 with radius 1==�2 and let B3 be the disk centred at �1� i==�2

with radius 1==�2 . One checks that T takes B2 to the complement of B3 . (Note that
T .z/D �1C1=.�2C1=z/ and consider the action of z 7! 1=.�2C1=z/ on B2 .) Thus
the domain D4 exterior to both disks is a fundamental domain for J4 . Since =�2 > 1

and =�1=�2 > 4, it is easy to see that B2 and B3 are contained in the strip D1 , B2

is contained in D3 and B3 is contained in D2 . Moreover Sj .Bj /D Bj for j D 2; 3.
Thus Bj is precisely invariant with respect to Jj for j D 2; 3; that is, W .Bj /D Bj

for W 2 Jj and W .Bj /\Bj D ∅ for W 2 F0 � Jj . Therefore the hypotheses of
the second combination theorem are satisfied and so G0 D hF0;T i is discrete with
domain D DD1\D2\D3\D4 .

Now we verify that G 2M. By construction, D consists of three components. The
first, in the lower half plane H� , is a component of a fundamental domain for the
Fuchsian subgroup F2 D hS1;S2i and H�=F2 is a triply punctured sphere. Similarly
the second, in the half plane H�1 above the horizontal through �1 , is a component of a
fundamental domain for the Fuchsian subgroup F3 D hS1;S3i. Again H�1=F3 is a
triply punctured sphere. Because the components of D in H� and H�1 are disjoint,
F2 and F3 are not conjugate in G .
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Let D� denote the third component D . It is contained in the strip between the horizontal
lines through 0 and �1 . It has eight sides, one pair of sides contained in the boundaries of
each of D1 , D2 , D3 , D4 and identified by S1 , S2 , S3 and T respectively. Performing
these identifications we obtain a torus with two punctures corresponding to S2S �1

1

and S3S �1
1

. Developing D� by G we see that it corresponds to a simply connected
G –invariant component of the regular set of G , and we conclude that G 2M.

Finally, since translates of D by S1 cover the strip 1=2< =z < =�1� 1=2, and since
H�;H�1 are in �.G/, the limit set ƒ is contained in the two strips 0�=z � 1=2 and
=�1� 1=2� =z � =�1 as claimed.

Proof of Proposition 2.2 This is based on a similar result for the Maskit space of the
once punctured torus due to David Wright [30]. Let W 2G �fhS1;S2i [ hS1;S3ig

and let H� be the lower half plane. Then W .H�/ is a disk contained in the strip
f0< =z < =�1g. Let

W D

�
a b

c d

�
with ad � bc D 1 and suppose that the circle C D W .R [1/ has radius r and
centre z0 , so that =z0 � r > 0. Using the fact that the points T �1.z0/;T

�1.1/ are
inverse points with respect to R (see also Mumford, Series and Wright [25, page 91]),
we find that r D i=.c xd �dxc/ and z0 D .axd � bxc/=.c xd �dxc/. The inequality =z0 > 0

gives =c xd > 0 and then =z0 � r simplifies to <.bxc � axd/� 1.

Applying this to T we see that =�1=�2 � 1. Applying it to

ŒS1;T
�1�D

�
1� 2�2C 4�2

2
4�2

2�2
2

1C 2�2

�
we see that =�2 � 1=2, and similarly applying it to ŒT;S �1

2
� we have =�1 � 1=2.

Appendix 2

To shed more light on the definition of canonical coordinates, we recall the familiar
situation for †1;1 ; see Birman and Series [4]. Consider first a Euclidean torus †1;0

viewed as the quotient of C by translations S W z! zC1 and T W z! zC i . The unit
square 0�<z;=z � 1 is a fundamental domain �0 with opposite sides identified by
S and T . Label each side by the translation which carries it to a paired side, so that the
bottom side =z D 0 is labelled sT since T carries it to the top side =z D 1; similarly
the left side <z D 0 is labelled sS since S carries it to the right side <z D 1. Any
closed geodesic  on †1;0 lifts to a line in C . The lifts of  cut �0 in a number of
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pairwise disjoint parallel arcs running from one side of �0 to another: if the line has
slope q=p and we take q � 0, then there are q strands which meet sT and sT�1 , and
jpj strands which meet sS and sS�1 . By collapsing all the strands which join a fixed
pair of sides into one arc we obtain one of the four configurations shown in Figure 9,
which we can view as four train tracks on †1;0 . Note that both the supporting train
track and the weight on each branch is completely determined by the signed slope q=p .
For example, if �1< q=p < 0, there is one branch from sS to sS�1 of weight �p�q

and there are branches joining sS�1 to sT�1 and sT to sS each of weight q , as shown
in the lower left hand quadrant of Figure 9.

p < 0 p > 0

�p

�p
qCp

p

q�p
p

q > �p q > p

�p > q p > q

q

�p�q
q

q

p�q
q

Figure 9: Canonical train tracks for the once punctured torus. In all charts,
the total weight on the vertical sides is jpj and on the horizontal sides is q .

We obtain the canonical coordinates for ML.†1;1/ by viewing �0 as a schematic
representation of a fundamental domain for a hyperbolic once punctured torus †1;1 ,
with the puncture at the vertices. A simple closed curve on †1;0 is also a simple
closed curve on †1;1 , and every simple closed curve on †1;1 can be represented in
this way [4]. (The proof is to eliminate the possibility of nonzero weights on all four
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corner arcs and then use the switch conditions as in Section 4.) Thus any such curve is
supported on one of the four train tracks in Figure 9 and the spaces of weights on these
four tracks are a cell decomposition for ML.†1;1/ in the usual way.

Let q=p 2 S.†1;1/ be the curve associated to the line of slope q=p in C . The
canonical coordinates i.q=p/ D .q;p/ 2 ZC � Z of q=p are the signed weights
obtained as above from the original line in C . We always take q D i.S;  /� 0. We
take p > 0 if the line has positive slope, that is, if it contains an arc from sS to sT�1

and take p < 0 if there is an arc from sS�1 to sT�1 . (If p D 0 the diagonal arcs have
zero weight and we are on the boundary of two cells. The case q D 0 corresponds to
a single horizontal arc, for which we can take p D 1 or p D �1.) It is easy to see
from the above discussion that i.q=p/ determines both a train track on †1;1 and the
weights on that track, thus giving global coordinates for the homotopy classes of simple
closed curves on ML.†1;1/. Note that .q; jpj/ are not in general equal to the weights
on the branches of the track corresponding to q=p . In fact, up to the choice of a base
point for the twist, p=q is the Dehn–Thurston twist coordinate of  . These coordinates
extend naturally by linearity and continuity to global coordinates for ML.†1;1/.

Appendix 3

We give the (presumably well known) formula for the bending angle � between two
consecutive segments of a geodesic s on @CC which crosses a bending line L of @CC
making an angle  with L. Let the bending angle between the two planes …1;…2

which meet along L be � . Let si �…i be the two segments of s which meet at P 2L.
Measure � so that � D � when  D �=2. The formula is

sin�=2D sin sin �=2:

This can be proved by elementary Euclidean trigonometry. Let N be the line perpendic-
ular to L which bisects the angle between …1;…2 . The configuration of L;…1;…2

is invariant under rotation � by � about N . Thus � interchanges s1 and s2 and N

is contained in the plane of s1 and s2 .

Thinking of N as “vertical”, let M be the “horizontal” line through P perpendicular
to L and N . By definition of the bending angle and symmetry, M makes an angle �=2
with …2 . Then the segment s2 makes an angle �=2 with the “horizontal” plane H

spanned by L and M . Choose X to be a point on L at distance 1 from P . Assuming
as we may that  ¤ �=2, let Y 2…2 be the point at which the perpendicular in …2

from X meets s2 and let Z be the foot of the perpendicular from Y to H . Then
sin�=2DjZY j=jPY jD jZY j cos and sin �=2DjZY j=jXY jD jZY j= tan . The
result follows.
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