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Action minimizing properties and distances
on the group of Hamiltonian diffeomorphisms

ALFONSO SORRENTINO

CLAUDE VITERBO

In this article we prove that for a smooth fiberwise convex Hamiltonian, the asymptotic
Hofer distance from the identity gives a strict upper bound to the value at 0 of Mather’s
ˇ function, thus providing a negative answer to a question asked by Siburg [15].
However, we show that equality holds if one considers the asymptotic distance defined
by Viterbo [20].

37J05, 37J50; 53D35

1 Introduction

The relationship between Aubry–Mather theory and the new tools of symplectic topol-
ogy has attracted quite a bit of attention over the last years. These two approaches
correspond to two different ways of looking at Hamiltonian systems. While the former
investigates the dynamics of the system in the phase space, the latter takes a more
global look at the topology of the path that the Hamiltonian flow describes in the group
of Hamiltonian diffeomorphisms. Trying to relate and combine these “internal” and
“external” information is a very intriguing task.

In this article we shall concentrate on the relation between the action minimizing
properties of the flow of a convex Hamiltonian and its “asymptotic distance” from the
identity.

Given a Tonelli Hamiltonian H and its corresponding Lagrangian L (obtained by Le-
gendre duality), Aubry–Mather theory associates the so-called ˇ–function (or effective
Lagrangian). Roughly speaking, the value of such a function represents the minimal
average Lagrangian action needed to carry out motions with a prescribed “rotation
vector”. The Legendre dual of the ˇ–function is what is called the ˛–function (or
effective Hamiltonian). See Section 4 for precise definitions.

On the other hand the corresponding Hamiltonian flow 't
H

determines a curve in the
group of Hamiltonian diffeomorphisms. Recall that there are several natural metrics
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that can be defined on this group, in particular the so-called Hofer distance [10] and
the 
 –distance, sometimes called Viterbo distance [20]; see Section 2.

Studying the connection between these objects arises quite naturally and has indeed
been studied by several authors in the last years.

One question, for instance, concerns the relationship between ˇH .0/, associated to
a Tonelli Hamiltonian H , and the asymptotic Hofer distance from the identity of its
time-one flow map '1

H
. Observe that the definitions need to be adjusted since '1

H

is not compactly supported, while the Hofer distance is only defined for compactly
supported Hamiltonians.

In [15] Siburg proves, in the case of Hamiltonian diffeomorphisms on the cotangent
disc bundle generated by a convex Hamiltonian H , that the asymptotic Hofer distance
yields an upper bound for ˇH .0/ (see Proposition 5.3) and asks whether or not equality
holds. In this paper we show that Siburg’s question has a negative answer (Corollary
5.6), by constructing examples of convex Hamiltonian diffeomorphisms for which the
asymptotic Hofer distance from the identity is strictly greater than the asymptotic 
 –
distance (Theorem 5.5). However, Siburg’s question has a positive answer, provided the
asymptotic Hofer distance is replaced by the asymptotic 
 –distance (Proposition 5.3).
Moreover, we extend these results to the case of general Hamiltonian diffeomorphisms
generated by autonomous Tonelli Hamiltonians (Theorem 5.1 and Corollary 5.2).

Our proof uses the theory of symplectic homogenization, for which we refer to Section 3
for a short presentation and to Viterbo [19] for more details. Observe that Corollary
5.6 is also stated in Cui [6]. However, as the author kindly confirmed to us, there is
a gap in the proof of [6, Proposition 7]. Although our proof goes along completely
different lines, we are grateful to Cui for drawing our attention to this problem.

Acknowledgements We thank the anonymous referee for the highly appreciated com-
ments and suggestions. Alfonso Sorrentino would also like to acknowledge the supports
of Fondation des Sciences Mathématiques de Paris, Herchel-Smith foundation and
Agence Nationale de la Recherche project “Hamilton–Jacobi et théorie KAM faible”.
Claude Viterbo was also supported by Agence Nationale de la Recherche projects
“Symplexe” and “Floer Power”.

2 Metric structures on the group of Hamiltonian diffeomor-
phisms

We first define the group of Hamiltonian diffeomorphisms and two metrics on this
group: Hofer distance and 
 –distance.
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Let k � k denote the standard metric on the n–dimensional torus Tn ' Rn=Zn and
! D �d� the canonical symplectic structure on T�Tn , where � D

Pn
jD1 pj dqj is

the Liouville form on T�Tn . We denote by H0 the set of admissible time-dependent
Hamiltonians H 2 C 2.T�Tn � T / such that Ht .q;p/ WD H.q;p; t/ has compact
support. For each H 2 H0 we consider the corresponding Hamiltonian flow 't

H

and denote by 'H WD '
1
H

its time-one map. The group of Hamiltonian diffeomor-
phisms Ham0.T�Tn/ WDHam0.T�Tn; !/ is the set of all Hamiltonian diffeomorphisms
'W T�Tn �! T�Tn that are obtained as time-one maps of elements in H0 , ie ' D 'H

for some H 2H0 .

We shall now define the Hofer and 
 –distances for elements in Ham0.T�Tn/.

2.1 The Hofer distance

This first metric structure on the group of compactly supported Hamiltonian diffeo-
morphisms was defined by Hofer [10]. Consider a path in the group of compactly
supported Hamiltonian diffeomorphisms, given by an admissible Hamiltonian H . One
first defines the length `.H / of this Hamiltonian path, by setting

`.H / WD

Z
T

Osc Ht dt;

where OscHt WDmaxT�Tn Ht �minT�Tn Ht denotes the oscillation of Ht .

Definition 2.1 (Hofer distance) The Hofer distance from the identity (or energy) of
an element ' 2 Ham0.T�Tn/ is given by

dH .id; '/ WD inff`.H / WH 2H0 and ' D 'H g:

This extends to a distance on Ham0.T�Tn/: if '; 2Ham0.T�Tn/, then dH .';  / WD

dH .id;  ı'�1/.

It is easy to verify that if H;K 2H0 , then

dH .'1
H ; '

1
K /� kH �KkC 0 :

Observe that this definition only considers the flow of a given Hamiltonian at time t D 1.
In the study of the dynamics, however, one is interested in the long time behaviour of
the system and it would be more relevant to get global information, such as, for instance,
the asymptotic Hofer distance from the identity introduced by Bialy and Polterovich [3].
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Definition 2.2 (Asymptotic Hofer distance) Let ' be a Hamiltonian diffeomorphism
in Ham0.T�Tn/. The asymptotic Hofer distance from the identity is

dH
1 .id; '/ WD lim

k!C1

dH .id; 'k/

k
:

It follows from the triangle inequality that the above limit exists and that dH
1 � dH .

2.2 The 
 –distance

One can also introduce another metric on Ham0.T�Tn/, commonly referred to as 
 –
distance. First of all, let us recall the following construction (see Viterbo [20] for more
details). Let L0 denote the set of Lagrangian submanifolds ƒ of T�Tn , which are
Hamiltonianly isotopic to the zero section OTn , ie there exists a Hamiltonian isotopy
't such that ƒD '1.OTn/. Consider ƒ2L0 and let SƒW T

n�Rk �!R to be a gen-
erating function quadratic at infinity (GFQI) for ƒ (see Viterbo [20] for the definition).
Since ƒ is Hamiltonianly isotopic to OTn , then Sƒ is unique up to some elementary
operations. Moreover, if we denote by S�

ƒ
WD f.qI �/ 2 Tn�Rk W Sƒ.qI �/� �g, then

for sufficiently large c 2 R we have that H�.Sc
ƒ
;S�c
ƒ
/' H�.Tn/˝H�.D�; @D�/,

where D� is the unit disc of the negative eigenspace of the quadratic form B associated
to Sƒ . Therefore to each cohomology class ˛ 2 H�.Tn/ n f0g, one can associate the
image ˛ ˝ T (T is a chosen generator of H�.D�; @D�/ ' Z) and, by min-max
methods, a critical level c.˛;Sƒ/ (see Viterbo [20, pages 690–693] for more details).

Let us now consider ' 2 Ham0.T�Tn/. Recall that its graph

�.'/D f.z; '.z// W z 2 T�Tn
g

is a Lagrangian submanifold of T�Tn �T�Tn , where T�Tn denotes T�Tn with the
symplectic form �! (see for example Cannas da Silva [17]). Since T�Tn � T�Tn

is covered by T�.�T�Tn/, where �T�Tn is the diagonal, we may lift �.'/ to z�.'/,
which is still a Lagrangian submanifold in T�.�T�Tn/. Moreover, since ' has com-
pact support, we can compactify both z�.'/ and �T�Tn and we obtain a Lagrangian
submanifold x�.'/ in T�.Sn�Tn/. In Viterbo [20, page 697 and page 706] the author
defined the following distance from the identity.

Definition 2.3 (
 –Distance) Let ' 2 Ham0.T�Tn/. The 
 –distance of ' from the
identity is given by


 .id; '/ WD c.�Tn ˝�Sn ; x�.'//� c.1˝ 1; x�.'//:
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In particular, this can be easily extended to a distance on the all group: if '; 2
Ham0.T�Tn/, then 
 .';  / WD 
 .id;  ı'�1/.

cC.'/ WD c.�Tn ˝�Sn ; x�.'//;We also define

c�.'/ WD c.1˝ 1; x�.'//

so that 
 .id; '/D cC.'/� c�.'/.

It is possible to show again that 
 .'1
H
; '1

K
/� kH �KkC 0 for all H;K 2 H0 , and

more precisely that 
 .'1
H
; '1

K
/� dH .'1

H
; '1

K
/ (see Proposition 2.5).

Analogously to what we have already seen for Hofer distance, one can introduce the
asymptotic 
 –distance from the identity:

Definition 2.4 (Asymptotic 
 –distance) Let ' be a Hamiltonian diffeomorphism in
Ham0.T�Tn/. The asymptotic 
 –distance from the identity is


1.id; '/ WD lim
k!C1


 .id; 'k/

k
:

c˙;1.'/D lim
k!C1

c˙.'
k/

k
:Similarly,

Proposition 2.5 For all ' 2 Ham0.T�Tn/, 
 .id; '/ � dH .id; '/. In particular,

1.id; '/� dH

1 .id; '/.

This is an immediate consequence of Viterbo [20, Proposition 4.6] and it was explicitly
stated for example in Viterbo [21, Proposition 2.15] or in Humilière [11, Proposi-
tion 1.52].

3 Symplectic homogenization

In this section we want to provide a brief presentation of the theory of Symplectic
Homogenization, developed in Viterbo [19]. The main goal of this theory is to define
a notion of “homogenization” for Hamiltonian diffeomorphisms of T�Tn . More
specifically, it provides an answer to the following question. Given a Hamiltonian
H.q;p; t/, supported in a compact subset of .q;p/ 2 T�Tn and 1–periodic in t ,
one would like to study whether or not the sequence of “rescaled” Hamiltonians
Hk.q;p; t/ WDH.k � q;p; kt/ “converges” to some Hamiltonian xH , for some suitable
topology.
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The first problem is represented by what one means by “convergence”. A plausible
interpretation would be as convergence of the time-one flows of Hk to the time-one
flow of xH . However, since the C 0 –convergence of the flows does not hold in general,
then the chosen topology must be rather weak. In the following we shall consider
the topology induced by the 
 –distance defined in Section 2.2. Observe that the
convergence in this metric does not imply any sort of pointwise or almost everywhere
convergence.

Theorem 3.1 (Viterbo [19, Theorem 4.2]) There exists a projection operator

AW C 2
0 .T
�Tn
�T ;R/ �! C 0

0 .R
n/

H 7�! xH

such that the sequence Hk 
 –converges to A.H / D xH , ie the associated time-one
flows of Hk 
 –converge to the time-one flow1 of xH . In particular, A extends by

 –continuity to a map AW C 0

0
.T�Tn � T ;R/ �! C 0

0
.Rn/. Moreover, the map A

satisfies the following properties:

(1) It is monotone, ie if H1 �H2 , then A.H1/�A.H2/.

(2) It is invariant by Hamiltonian symplectomorphisms, ie A.H ı /DA.H / for
all  2 Ham.T�Tn/.

(3) We have A.�H /DA.H /.

(4) The map A extends to characteristic functions of subsets, hence induces a map
(still denoted by A) between P.T�Tn/, the set of subsets of T�Tn , to P.Rn/,
the set of subsets of Rn . This map is bounded by the symplectic shape of
Sikorav [16], ie

shape.U /D fp0 2Rn
W 9 2 Ham0.T�Tn/;  .Tn

� fp0g/� U g �A.U /:

(5) If ƒ is a Lagrangian submanifold Hamiltonianly isotopic to ƒp0
D Tn � fp0g

and H jƒ � h (resp. � h), then A.H /.p0/� h (resp. � h).

(6) We have the equalities

lim
k!C1

1

k
cC.'

k
H /D sup

p2Rn

xH .p/;

lim
k!�1

1

k
c�.'

k
H /D inf

p2Rn

xH .p/:

1Although xH is in general only continuous, one can nevertheless define its “time-one flow” as an
element of bHam0.T�Tn/ , ie the completion of Ham0.T�Tn/ with respect to 
 . See Humilière [12] for
more details about this space.
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(7) Given any measure � on Rn , the map

�.H / WD

Z
Rn

A.H /.p/ d�.p/

is a symplectic quasi-state (see Entov and Polterovich [8]). In particular we
have A.H CK/ D A.H /C A.K/, whenever H and K Poisson-commute
(ie fH;Kg D 0).

We refer to Viterbo [19, Section 6] for a proof of this theorem. Observe that property (6),
which will play a crucial role in our proofs, can be deduced from the fact that c˙ are
continuous with respect to the 
 –topology (see Viterbo [20]) and that .1=k/c˙.'

k
H
/D

c˙.�
�1
k
'k

H
�k/, where �k.q;p/ WD .k � q;p/.

Remark 3.2 (i) As a result of (5), if u is a smooth subsolution of the stationary
Hamilton–Jacobi equation, that is H.q;pCdu.q//� h, then xH .p/� h. Similarly, if
u is a smooth supersolution, that is H.q;pC du.q//� h, then xH .p/� h.

(ii) From (5) we also get the following statement. Let

ECc D fp0 2Rn
W 9ƒ Lag. subman. Hamilton. isotopic to ƒp0

; H jƒ � cg;

E�c D fp0 2Rn
W 9ƒ Lag. subman. Hamilton. isotopic to ƒp0

; H jƒ � cg:

If p 2ECc \E�c , then xH .p/D c .

So far we have considered compactly supported Hamiltonians. Actually the whole
theory can be also extended to the noncompact case, but one needs to impose some
conditions on the “growth” of the Hamiltonian. We shall say that a Hamiltonian H is
coercive if

lim
kpk!C1

H.q;p; t/DC1:

Let us describe the autonomous case, which we shall use in the sequel. Given
H W T�Tn �! R a coercive Hamiltonian, the basic idea consists in considering a
truncation of the Hamiltonian HA.q;p/ WD �A.kpk/H.q;p/, where �AW R �! R
is supported on Œ�2A; 2A� and �A.s/ � 1 on Œ�A;A�. For any A > 0, this new
Hamiltonian satisfies the hypotheses of Theorem 3.1 and one can therefore define its
homogenization xHA . We then define xH WD limA!C1

xHA . It is possible to check (see
Viterbo [19, Section 9.1]) that this function is well defined up to a constant. Hence:

Proposition 3.3 (Viterbo [19, Proposition 9.3]) The map A extends to a map defined
on the set of autonomous coercive Hamiltonians.
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For nonautonomous coercive Hamiltonians H.q;p; t/, one can reduce to the au-
tonomous case by considering the new Hamiltonian on T�TnC1 given by

K.q;p; t; �/ WD � CH.q;p; t/:

We refer the reader to Viterbo [19, Section 9.3] for more details.

4 Action minimizing properties of convex Hamiltonians

In this section we want to recall some notions of Mather’s theory of minimal action.
In order to do this, we need to restrict our analysis to a special class of Hamiltonians
H W T�Tn �T �!R, which are C 2 , strictly convex and superlinear in the fibers and
have complete flows. These Hamiltonians, which are also called Tonelli Hamiltonians,
play an important role in the study of classical mechanics and provide the setting in
which Mather’s theory and Fathi’s Weak KAM theory have been developed (see for
instance Mather [14], Fathi [9] or Sorrentino [18]).

Let H be a Tonelli Hamiltonian. Consider the associated Lagrangian LW TTn�T�!R,
which is defined by Legendre duality by the formula

L.q; v; t/D supfhp; vi �H.q;p; t/ j p 2Rn
g:

Recall that the associated Euler–Lagrange flow 't
L

is obtained as the solution of the
equation

d

dt

@L

@v
.q; v; t/D

@L

@q
.q; v; t/

and it is conjugated, via the Legendre transform

.q; v; t/ 7�!

�
q;
@L

@v
.q; v; t/; t

�
;

to the Hamiltonian flow 't
H

. Let � be a probability measure on TTn �T , which
is invariant under the Euler–Lagrange flow (ie .'t

L
/��D �). We define its average

action as

AL.�/ WD

Z
TTn�T

L.q; v; t/ d�:

Let us denote by M.L/ the space of invariant probability measures on TTn � T ,
with finite average action. Given any � 2M.L/ we can define its rotation vector or
Schwartzman’s asymptotic cycle as the unique �.�/ 2 H1.T

nIR/ that satisfiesZ
TTn�T

�.q; t/ � .v; 1/ d�D h�.�/; Œ��TniC Œ��T
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for any closed 1–form � on Tn �T , where Œ��D .Œ��Tn ; Œ��T / 2 H1.T
n �T IR/'

H1.T
nIR/�R is the de-Rham cohomology of �. It is possible to show (see Mather [14])

that the map � WM.L/ �! H1.T
nIR/ is surjective and hence there exist invariant

probability measures for each rotation vector. Let us consider the minimal value of the
average action AL over the set of probability measures with a given rotation vector.
This minimum exists because of the lower semicontinuity of the action functional on
the set M.L/ for the weak–� topology (see Mather [14]):

ˇH W H1.T
n
IR/ �!R

h 7�! min
�2M.L/W�.�/Dh

AL.�/:

This function ˇH is what is generally known as ˇ–function or effective Lagrangian.
A measure � 2M.L/ realizing such a minimum amongst all invariant probability
measures with the same rotation vector, ie AL.�/ D ˇ.�.�//, is called an action
minimizing measure with rotation vector �.�/. The ˇ–function is convex and so one
can consider its conjugate function (given by Fenchel duality) ˛H W H1.TnIR/ �!R
defined by

˛H .c/ WD max
h2H1.TnIR/

.hc; hi �ˇH .h// :

This function is generally called ˛–function or effective Hamiltonian. See Mather [14]
for more details.

It turns out that ˛H coincides with xH , ie the symplectic homogenization of H intro-
duced in Section 3. More precisely:

Proposition 4.1 (Viterbo [19, Proposition 10.3]) If H W T�Tn�T �!R is a Tonelli
Hamiltonian, then ˛H D

xH .

Remark 4.2 (i) Observe that a Tonelli Hamiltonian is of course coercive (since it is
superlinear), therefore xH is defined as in Proposition 3.3. Moreover, in the autonomous
case we simply have xH .p/ D ˛H .p/, while for nonautonomous Hamiltonians, we
first reduce to the autonomous case by setting K.q;p; t; �/D � CH.q;p; t/ and then
observe that xK.p; �/ is well defined and equal to �C xH .p/ for some function xH . For
this function, we have again xH .p/D ˛H .p/. See Viterbo [19, Section 10.1].

(ii) It follows from this result and Theorem 3.1 (2) that Mather’s ˛ function is
invariant under Hamiltonian symplectomorphisms. This property had already been
proved for general symplectomorphisms by Patrick Bernard [2] (see also Sorrentino
[18, Section 4.A]).
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5 Main results

In this section we want to study the connection between the Hofer and 
 –distance on
one hand, and Mather’s theory of minimal action on the other hand. We shall then state
our main results. Let us start by observing that Tonelli Hamiltonians clearly do not
belong to H0 , since they lack compact support, and hence their time-one maps are not
element of Ham0.T�Tn/. Therefore, we need to restrict them to compact subsets of
T�Tn and, as done by Siburg in [15], consider “nice” compactly supported extensions
such that the Hofer and 
 - metrics are independent of the choice of the extension. In
the autonomous case this can be achieved by using the conservation of energy to obtain
well-defined “truncated” flows and then smooth them out. We shall then see how the
same proof extends to the setting considered in Siburg [15].

Let us consider H.q;p/ an autonomous Tonelli Hamiltonian on T�Tn . Then, for
each r and each sufficiently small " > 0, let us consider functions fr;" such that

� fr;".s/D s for s � r ;

� fr;".s/� r C " for all s 2R and fr;".s/� r for s � r C ";

� jf 0r;".s/j � 1 for all s 2R (this assumption will only be used in Section 5.3 to
define the Calabi invariant).

Now, we can define new Hamiltonians, given by Hr;" D fr;".H /. If we denote by
Sr WD f.q;p/ 2 T�Tn W H.q;p/ � rg, then our new Hamiltonians will satisfy the
following conditions:

� Hr;"� r is supported in SrC" .

� Hr;" coincides with H on Sr .

� Hr;" is bounded everywhere by rC" and satisfies the condition kdpHr;"k �C ,
where C D supSrC"

kdpHk.

We shall denote the set of all these possible extensions by Hr;".H /. We can now define
Hofer and 
 –distances from the identity.

Hofer distance We set

dH .id; 'ISr / WD lim
"!0

dH .id; 'Hr;"
/:

The above limit is well defined since if Hr;" and Kr;" are two different extensions
of H in Hr;".H /, then kHr;"�Kr;"kC 0 � 2".
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Action minimizing properties and distances on Hamiltonian diffeomorphisms 2393

Note that dH .id; 'ISr / only depends on Sr and ' , and not on H . We could also
take a nonautonomous Hamiltonian, possibly nonconvex, generating ' , provided it
coincides with H near Sr . Indeed, the time one flow of

't
Hr;"
D '

tf 0r;".H /
H

is determined by the knowledge of ' inside Sr and of 't
H

in SrC" n Sr . But the
latter is determined by the hypersurfaces @Ss for r � s � r C ". In any case we have
the following lower bound: if ' ¤ id there is a ball in Sr such that '.B/\B D ∅
and then dH .id; 'ISr /� c.B/ > 0, where c.B/ is the Ekeland–Hofer capacity of B

(cf [7]).


 –Distance It can be defined as


 .id; 'ISr / WD lim
"!0


 .id; 'Hr;"
/:

Also this limit is well defined, for the same reasons as above. In fact, if Hr;" and Kr;"

are two different extensions of H in Hr;".H /, then


 .'1
Hr;"

; '1
Kr;"

/� kHr;"�Kr;"kC 0 � 2":

Similarly, c˙.'ISr / WD lim"!0 c˙.'Hr;"
/.

The same argument as before shows that 
 .id; 'ISr / depends only on Sr and ' ,
and we have the same lower bound as for dH . Analogously one can also define the
associated asymptotic quantities dH

1 , 
1 and c˙;1 .

We can now state our first result.

Theorem 5.1 Let ' be the flow of an autonomous Tonelli Hamiltonian H W T�Tn�!R
and let Sr � f.q;p/ 2 T�Tn WH.q;p/� rg. Then, for each r > infp2Rn ˛H .p/,


1.id; 'ISr /D r CˇH .0/:

More precisely, c�;1.'ISr /D infp2R
xH .p/D�ˇH .0/ and cC;1.'ISr /D r:

Observe now that using Proposition 2.5, we obtain the following result.

Corollary 5.2 Let ' be a Hamiltonian diffeomorphism generated by a Tonelli Hamil-
tonian H W T�Tn �!R. Then, for each r > infp2Rn ˛H .p/,

dH
1 .id; 'ISr /� r CˇH .0/:

Geometry & Topology, Volume 14 (2010)



2394 Alfonso Sorrentino and Claude Viterbo

The method used to prove Theorem 5.1 allows us to provide a new proof of Siburg’s re-
sult in [15] (see also Iturriaga and Sanchez [13] for a generalization to general cotangent
bundles). Let B�Tn denote the unit ball cotangent bundle of Tn , ie B�Tn WD f.x;p/ W

kpk � 1g. Siburg considered the set of admissible Hamiltonians HS consisting of
all smooth convex Hamiltonians H W B�Tn �T �!R that satisfy the following two
conditions:

(S1) H vanishes on the boundary of B�Tn , ie H.q;p; t/D 0 if kpk D 1.

(S2) H admits a smooth extension KH W T�Tn�T �!R that is of Tonelli type and
depends only on t and kpk2 outside B�Tn �T .

Then, he defined the following group:

HamS .B
�Tn/ WD f' W B�Tn

�! B�Tn
j ' D '1

H for some H 2HSg:

Observe that we cannot apply directly Theorem 5.1 in this setting, since these Hamil-
tonian diffeomorphisms are not necessarily generated by autonomous Hamiltonians.
However, due to the special form of the Hamiltonians, the above results remain true.

Proposition 5.3 Let ' 2 HamS .B
�Tn/. Then

dH
1 .id; '/� 
1.id; '/D ˇH .0/:

More precisely, c�;1.'/D infp2R H .p/D�ˇH .0/ and cC;1.'/D 0:

Remark 5.4 (i) The fact that ˇH .0/ is independent of the extension KH , has been
proven in Siburg [15, Lemma 4.1]. Therefore, we define ˇH .0/ WD ˇKH

.0/. Observe
that the independence could be also deduced from the above proposition and the fact
that the 
 –distance depends only on ' .

(ii) The inequality

dH
1 .id; '/� ˇH .0/(1)

is due to Siburg [15, Theorem 5.1].

This lower bound (1) induced Siburg to ask the following question:

Question [15, page 94] Does equality hold in (1)?

We shall construct examples of convex Hamiltonian diffeomorphisms for which the
asymptotic Hofer distance from the identity is strictly greater than the asymptotic

 –distance.
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Theorem 5.5 There exists ' 2 HamS .B
�Tn/ such that


1.id; '/ < dH
1 .id; '/:

An easy consequence of Theorem 5.5 and Proposition 5.3 is that the above question
has a negative answer.

Corollary 5.6 There exists ' 2 HamS .B
�Tn/ generated by convex Hamiltonian H

such that
dH
1 .id; '/ > ˇH .0/:

5.1 Proof of Theorem 5.1

Using Theorem 3.1 (6), we obtain

c�;1.'H ISr /D lim
"!0

c�;1.'
1
Hr;"

/

D lim
"!0

inf
p2Rn

xHr;".p/:

cC;1.'H ISr /D lim
"!0

cC;1.'
1
Hr;"

/Similarly,

D lim
"!0

sup
p2Rn

xHr;".p/:

Let Hr WDminfH; rg. Observe that since kHr;"�HrkC 0 � ", then lim"!0
xHr;"D

xHr

uniformly. We want to prove that infp2Rn H r .p/D infp2Rn xH .p/. Clearly we have
infp xHr .p/ � infp xH .p/, since Hr � H . We thus have to prove that infp xHr .p/ �

infp xH .p/.

We shall need the following lemmata.

Lemma 5.7 Let fr;" be a function such that fr;".x/ D x for jxj � r . Consider a
Hamiltonian H W T�Tn�!R and set Hr;"Dfr;".H /. If there exists a Lagrangian sub-
manifold ƒp of cohomology class p such that maxƒp

H � r , then xHr;".p/D xH .p/.

Proof Since clearly the Poisson bracket of Hr;" and H vanishes, we have

Hr;"�H D xHr;"�
xH

(see Theorem 3.1 (7)). It is thus enough to prove that Hr;"�H .p/ D 0. In other
words, let K be a Hamiltonian vanishing on ƒp , we must show that xK.p/D 0. But
this follows immediately from Remark 3.2 (ii).

Lemma 5.8 Let f be a function in C 0.R;R/ and H W T�Tn �!R a convex super-
linear Hamiltonian. Then, f .H /D f . xH /.
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Proof Let us first consider the case in which f is smooth, convex and strictly increas-
ing. Then, f .H / is smooth, convex and superlinear and, using the characterization of
the ˛–function given in Contreras, Iturriaga and Paternain [5] and Proposition 3.3, we
obtain

f .H /.p/D inf
u2C1.Tn/

sup
q2Tn

f .H.q;pC du.q///:

But this clearly coincides with f .infu2C1.Tn/ supq2Tn H.q;pCdu.q//D f .H .p//.
Now because f .H / and g.H / commute for any f and g , we have f .H /�g.H /D

f .H /�g.H / (see Theorem 3.1 (7)). Since the set of differences of convex increasing
functions contains the set of C 2 functions, and these form a dense subset among
continuous functions2, this concludes our proof.

As a result, we have that Hr DminfH; rg Dminf xH ; rg, hence infp xHrD infpf xH ; rgD

infp xH .p/, provided r > inf xH .p/. By the same argument, we have that supp
xHr D

supp minf xH ; rg D r since limkpk!1 xH .p/ D C1. This concludes the proof of
Theorem 5.1.

5.2 Proof of Proposition 5.3

Before entering into the details of the proof, let us observe that also in this case
' 2HamS .B

�Tn/ is not necessarily compactly supported, therefore we need to define
compactly supported extensions. Let us denote B�r Tn WD f.q;p/ W kpk � rg. If H

is a generating Hamiltonian for ' , for each " sufficiently small we can consider new
compactly supported Hamiltonians H" D f0;".KH / supported in a neighborhood of
B�Tn �T . The Hamiltonian H" has the following properties (see Section 5 for the
properties of f0;" ):

(1) H" coincides with H in B�Tn �T .

(2) H" is nonnegative and bounded by " outside B�Tn�T and satisfies kdpH"k�C

outside B�Tn �T , for some constant C depending only on H .

(3) H" depends only on kpk2 and t outside B�Tn �T .

We denote the set of all these Hamiltonians by H".H /. As before, we set

dH .id; '/ WD lim
"!0

dH .id; 'H"
/;


 .id; '/ WD lim
"!0


 .id; 'H"
/;

c˙.'/ WD lim
"!0

c˙.'H"
/:

2Indeed we may also write f .x/D .f .x/C cx2/� cx2 , and for c sufficiently large both terms are
convex.
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For the same reasons as before, these definitions are independent of the chosen H" and
one can define analogously the associated asymptotic quantities.

Proof of Proposition 5.3 Note first that the left-hand side inequality is just Proposition
2.5. Let ' 2 HamS .B

�Tn/ be generated by a convex Hamiltonian H and let KH

denote its smooth extension to T�Tn �T , given by condition (S2) in the definition
of HS . Then,

ˇH .0/ WD ˇKH
.0/D sup

c2H1.TnIR/

�
hc; 0i �˛KH

.c/
�
D� inf

c2H1.TnIR/
˛KH

.c/

D � inf
p2Rn

xKH .p/;(2)

where in the last equality we used that ˛KH
coincides with the symplectic homoge-

nization xKH .

Let B1 denote the closed unit ball in Rn with the standard norm. First, we want to
prove that xKH � 0 on @B1 . Then, using the convexity of B1 , it follows easily that
xKH � 0 in B1 and that

max
B1

xKH D 0 and min
B1

xKH D min
p2Rn

xKH :

In order to prove that xKH vanishes on @B1 , observe that for each p0 2 @B1 , KH

vanishes on the Lagrangian submanifold ƒp0
WD Tn � fp0g. The claim then follows

from Theorem 3.1 (5).

The proof of Proposition 5.3 can now be obtained applying Theorem 3.1 (6).


1.id; '/D lim
"!0


1.id; 'H"
/In fact,

D lim
"!0

cC;1.'H"
/� lim

"!0
c�;1.'H"

/

D lim
"!0

sup
p2Rn

xH".p/� lim
"!0

inf
p2Rn

xH".p/:(3)

Using the fact that KH and H" coincide on B�Tn and proceeding as in Lemma
5.7, one can deduce that xH".p/D xKH .p/ for each p 2 B1 . Moreover, since H" is
bounded by ", we obtain

0D sup
p2B1

xKH .p/D sup
p2B1

xH".p/� lim
"!0

sup
p2Rn

xH".p/� lim
"!0

"D 0:

Similarly for the infimum of xH" , we have

0� inf
p2B1

xKH .p/D inf
p2B1

xH".p/D lim
"!0

inf
p2B1

xH".p/;
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using for the last equality the fact that the left-hand side is independent of ". Now we
use the fact that H" � 0 on Tn � fpg for any p 2 Rn nB1 and Theorem 3.1 (5), to
conclude that xH".p/� for p 2Rn nB1 , and hence infp2Rn xH".p/D infp2B1

xH".p/.

Therefore, substituting in (3) and using (2) we can conclude


1.id; '/D lim
"!0

sup
Rn

xH".p/� lim
"!0

inf
Rn

xH".p/

D� inf
p2B1

xKH .p/D ˇH .0/:

5.3 Proof of Theorem 5.5

In this section we shall construct examples of ' 2HamS .B
�Tn/ generated by a convex

Hamiltonian H such that 
1.id; '/ < dH
1 .id; '/:

Proof of Theorem 5.5 The basic observation is that in the compactly supported case
the Hofer distance can be bounded from below in terms of the so-called Calabi invariant
(see Calabi [4] and Banyaga [1]):

Cal.'/ WD
Z 1

0

Z
T�Tn

H.q;p; t/ !n dt:

This invariant only depends on ' and not on the path defined by H . Indeed, let us
consider the Liouville form �D

Pn
jD1 pj dqj on T�Tn . Then '����D df' , and in

the compactly supported case, an easy computation (see Banyaga [1] for instance, or
Calabi [4] where this is used as the original definition) shows that

(4) Cal.'/D
1

nC 1

Z
T�Tn

f' !
n:

Let us adapt this to the case of HamS .B
�Tn/. In our situation we set again

Cal.'/D
Z 1

0

Z
B�Tn

H.q;p; t/ !n dt:

However it is not obvious that Cal.'/ as defined only depends on ' , and not on the
choice of the path defined by H . To prove this, notice that if H" is a compactly
supported extension of H (as defined in Section 5.2), we have

lim
"!0

Cal.'H"
/D Cal.'/:(5)

Indeed, let us denote by B��."/T
n a disc bundle of radius �."/ that contains the support

of H" � " (ie contains K�1
H
."/), and notice that since dpKH .q;p; t/ �p is nonzero
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near @B�Tn we have that �."/�1DO."/. Applying formula (4) to 'H"
instead of ' ,

we get

(6) Cal.'H"
/D

1

nC 1

Z
B�Tn

f' C
1

nC 1

Z
B��."/T

nnB�Tn

f'H"
;

but on B��."/T
n nB�Tn , f'H"

is given by hdpH".q;p; t/;pi�H".q;p; t/. It is thus
enough to check that the integral of this quantity on .B��."/T

n nB�Tn/�T goes to
zero as " goes to zero, or else that

"khdH".q;p; t/;pi �H".q;p; t/kC 0
"!0
���! 0:

Since kH"kC 0 and "kdpH".q;p; t/kC 0 go to zero on .B�
�."/

Tn nB�Tn/�T , this
clearly holds.

We now compare the Hofer distance with the Calabi invariant.

Lemma 5.9 Let ' 2 HamS .B
�Tn/. Then,

dH
1 .id; '/�

1

Vol.B�Tn/
jCal.'/j:

Proof Let ' 2HamS .B
�Tn/ and H.q;p; t/ be a (not necessarily convex) generating

Hamiltonian. Recall from the definition of HamS .B
�Tn/ that H.q;p; t/ D 0 on

kpkD 1 and that it admits a smooth extension H"W T�Tn�T �!R in H".H /, which
is a function only of t and kpk2 outside B�Tn�T and which is bounded by " outside
B�Tn �T (see Section 5.2).

Now, denoting by '" the time-one flow '1
H"

, we may write

dH .id; '"/D
Z 1

0

OscB��."/T
n.H";t / dt

D
1

Vol.B��."/Tn/

Z 1

0

Z
T�Tn

OscT�Tn.H";t / !
n dt

�
1

Vol.B��."/Tn/

ˇ̌̌̌ Z 1

0

Z
T�Tn

H".q;p; t/ !
n dt

ˇ̌̌̌
D

1

Vol.B��."/Tn/
jCal.'"/j:
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Hence, using (5), we obtain

dH .id; '/D lim
"!0

dH .id; '"/

� lim
"!0

1

Vol.B��."/Tn/
jCal.'"/j

D
1

Vol.B�Tn/
jCal.'/j :

Since H.q;p; t C 1/DH.q;p; t/, we can conclude that

dH
1 .id; '/�

1

Vol.B�Tn/
lim

k!C1

�
1

k
jCal.'k

H /j

�
D

1

Vol.B�Tn/

ˇ̌̌̌ Z 1

0

Z
B�Tn

H.t; q;p/ !n dt

ˇ̌̌̌
D

1

Vol.B�Tn/
jCal.'/j:

In order to find our example of ' 2 HamS .B
�Tn/ such that 
1.id; '/ < dH

1 .id; '/,
it is sufficient to find ' such that


1.id; '/ <
1

Vol.B�Tn/
jCal.'/j:

Let Uı D Œ.1� ı/=2; .1C ı/=2�
n be a cube of side ı < 1=3 contained in Tn . Let H

be a negative convex Hamiltonian of the form H.q;p/D 
 .q/.kpk2 � 1/ such that

 .q/� 0 and


 .q/D

(
C on Uı;

c on Tn nU2ı;

where c� C .

Observe that

jCal.'1
H /j WD lim

"!0
jCal.'1

H"
/j �

�
ınC C c.1� 2nın/

� Z
fkpj�1g

.1�kpk2/ dp:

If we set k WD
R
fkpj�1g.1�kpk

2/ dp , then

jCal.'1
H /j �

�
ınC C c.1� 2nın/

�
k:

In order to conclude the proof, it is sufficient to prove that

lim
"!0
j xH".p/j<

ınC k

Vol.B�Tn/
for all p;

Geometry & Topology, Volume 14 (2010)



Action minimizing properties and distances on Hamiltonian diffeomorphisms 2401

where as usual xH" denotes the symplectic homogenization of H" . Then, applying
Proposition 5.3 and Lemma 5.9, it follows that


1.id; '/ <
1

Vol.B�Tn/
jCal.'/j � dH

1 .'; id/:

In order to prove this, we use the fact that if there exists a Lagrangian submanifold ƒpD

 .Tn � fpg/, where  2 Ham.T�Tn/ such that �H"

ˇ̌
ƒp < A, then � xH".p/ � A;

see Viterbo [19, Theorem 3.2]. We look for ƒp in the form

ƒp D f.q;pC df .q// W q 2 Tn
g;

with f satisfying the condition kpC df .q/k D 1 on U2ı .

Lemma 5.10 For all vectors p in Rn there exists a smooth function f on Tn such
that kdf .q/Cpk D 1 on U2ı .

Proof We must find a vector field u.q/ of norm 1 on U2ı such that df .q/D u.q/�p

on U2ı . Take u to be constant on U2ı , then f .q/D hu�p; qi and extend this to a
smooth function on Tn .

Then, we have that

�H".q;pC df .q//D 0 on U2ı .because kdf .q/Cpk D 1/;

�"� �H".q;pC df .q//� c on Tn
nU2ı:

Hence � xH .p/D j xH .p/j D lim"!0 j
xH".p/j � c for all p . Therefore, we proved that


1.'; id/D lim
"!0

Osc. xH"/� lim
"!0

sup
p2Rn

j xH".p/j � c:

Provided we choose our constants to satisfy c < ınC k=Vol.B�Tn/; this concludes
the proof of Theorem 5.5.

Remark 5.11 The truncation of the Hamiltonian H at level 0 gives an example of a
compact supported Hamiltonian map on the unit cotangent ball B�Tn for which the
Hofer and 
 –distance differ.
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