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Embedded contact homology
and Seiberg–Witten Floer cohomology I

CLIFFORD HENRY TAUBES

This is the first of five papers that construct an isomorphism between the embedded
contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold
with a given contact 1–form. This paper describes what is involved in the construc-
tion.

57R17; 57R57

1 Introduction

The purpose of this article is to describe an isomorphism between the Seiberg–Witten
Floer cohomology of a compact, oriented 3–manifold and the embedded contact
homology as defined by a given contact 1–form on the 3–manifold. What follows
momentarily is a very brief description of how these cohomology/homology groups
are defined. A more detailed description is provided for both later in the article.

Consider first the Seiberg–Witten side of the story. Let M denote the 3–manifold
in question. The Seiberg–Witten Floer homology/cohomology is defined with the
choice of a SpinC structure on M . With a Riemannian metric chosen, the latter is an
equivalence class of lifts of the oriented, orthonormal frame bundle to a principal SpinC

bundle. Each SpinC structure has an associated cohomology class in H 2.M IZ/; this
is its first Chern class. Let p 2 f2; 4; : : :g denote the divisibility of this class. (It is
always divisible by 2.) Each SpinC structure with nontorsion first Chern class defines
Z=pZ graded homology and cohomology groups. These are the associated Seiberg–
Witten Floer homology and cohomology. These groups are always finitely generated.
When the first Chern class is torsion, the associated Seiberg–Witten Floer homology and
cohomology is Z graded. The Seiberg–Witten Floer homology in this case is finitely
generated in each degree. As explained by Kronheimer and Mrowka [16], the degrees
in which the Seiberg–Witten Floer homology is nonzero are bounded from above, but
never from below. This group is designated by bHM� [16]. There is a corresponding
Seiberg–Witten Floer cohomology group as well; this is designated by HSW , or when
reference to the chain complex is relevant, by H.CSW/. In all cases, the generators of
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these homology and cohomology groups are the solutions to certain versions of the
Seiberg–Witten equations on M ; and the differentials are defined via a weighted count
of certain sorts of solutions to the Seiberg–Witten equations on R�M . (The book
[16] is taken here to be the reference bible for the Seiberg–Witten side of the story.)

Consider next the contact homology story. Embedded contact homology was invented
by Michael Hutchings (see Hutchings and Sullivan [12] and Hutchings and Taubes [13]).
The definition requires first the choice of a contact 1–form a on M that is compatible
with the orientation. Thus, the form a is such that a^ da is nowhere zero and orients
the 3–manifold. A (suitably generic) contact form of this sort defines a version of
embedded contact homology and its associated cohomology for each SpinC structure
on M . These groups have Z=pZ grading when the first Chern class is not torsion,
and they are Z graded otherwise. The generators for these groups consist of finite sets
where any given element is a pair that consists of a closed integral curve of the vector
field that generates the kernel of da and a positive integer. Note that closed orbits with
hyperbolic return map are paired only with the integer 1. The differential in each case
is defined via a weighted count of certain embedded, pseudoholomorphic curves in the
symplectization, R�M , of M .

The theorem that follows states formally what is said in the opening paragraph.

Theorem 1 Let M denote a compact, oriented three dimensional manifold and let
a denote a suitably generic contact 1–form on M that gives the chosen orientation.
Fix a SpinC structure on M . Then there is an isomorphism between the associated
embedded contact homology and the Seiberg–Witten Floer cohomology that reverses
the sign of the relative Z=pZ grading.

Note that this theorem implies two conjectures by Michael Hutchings: The embedded
contact homology does not depend on the contact 1–form; and the embedded contact
homology is finitely generated in each degree.

There are circumstances where both the Seiberg–Witten Floer cohomology and em-
bedded contact homology have additional structure. This additional structure is not
discussed further until the fifth paper [29] in this series, except for the remark that the
isomorphism that is described here is compatible with these additional structures.

Theorem 1 can be viewed as the 3–manifold analog of the equivalence proved by the
author in [21; 22] between the Seiberg–Witten invariants of a compact symplectic
manifold and certain of the Gromov invariants that are computed by counting its
pseudoholomorphic curves. Theorem 1 can also be viewed as a generalization of the
author’s papers [24; 25], which use the existence of certain nontrivial Seiberg–Witten
Floer homology classes to find closed orbits of the vector field that generates the kernel
of da.
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The proof of Theorem 1 occupies Section 4 of this article plus its three immediate
sequels [26; 27; 28]. The proof uses many of the constructions and observations that are
used in [22]. These parts of the argument are summarized by Theorems 4.2 and 4.3 to
come. The subsequent papers in this series contain the proofs of Theorems 4.2 and 4.3.
Ideas from [24; 25] also play a central role to the proof of Theorem 1. Theorems 4.4
and 4.5 contain most of the input to Theorem 1 from [24; 25]. These last two theorems
are proved below in Section 4.h.

What follows is a table of contents for the remaining parts of this article.

Section 2 gives the definition of embedded contact homology. Also stated here is
Proposition 2.5; this very useful proposition asserts that any given contact 1–form has
a suitable deformation to one with properties that very much simplify the subsequent
analysis.

Section 3 introduces the Seiberg–Witten equations and then the Seiberg–Witten Floer
cohomology. It also describes the special versions of the Seiberg–Witten equations that
can be defined with the help of a contact 1–form.

Section 4 proves Theorem 1 modulo two technical results, Theorems 4.2 and 4.3. The
various parts of Theorems 4.2 and 4.3 are proved in the sequels [26; 27; 28].

Section 5 is meant to give a very rough picture of two key maps that are supplied by
Theorems 4.2 and 4.3. This section also indicates how the proof of Theorem 1 would
proceed without the approximation result from Proposition 2.5.

The Appendix contains the proof of Proposition 2.5.

Acknowledgements Before continuing, the author hereby acknowledges the immense
debt owed to Michael Hutchings, Peter Kronheimer and Tom Mrowka for sharing their
thoughts and knowledge about the subject matter in this paper. In particular, Michael
Hutchings made many cogent suggestions for improving and clarifying an earlier
version of what follows.

This work was supported in part by the National Science Foundation.

2 Embedded contact homology

The purpose of this section is to give the definition of embedded contact homology. As
noted in the introduction, this homology theory was introduced by Michael Hutchings.
Most of what follows here paraphrases parts of the accounts in [12] and [13].
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2.a Reeb orbits

Use v in what follows to denote the vector field on M that generates the kernel of da

and pairs with a so as to equal 1. It is traditional to call v the Reeb vector field. A Reeb
orbit denotes here an embedded circle with tangent v , thus a closed integral curve of v .
A Reeb orbit is implicitly oriented by v .

Let 
 denote a Reeb orbit. The integral of the contact 1–form along 
 is denoted
by `
 . This integral, a positive number, is called the symplectic action of 
 . The set
of Reeb orbits whose symplectic action is bounded by any given positive number is a
compact subset in C1.S1IM /.

Fix an almost complex structure, J , on the kernel of a so that da. � ;J. � // defines
a Riemannian metric on the kernel of a. A Reeb orbit 
 has a neighborhood that is
parametrized by the product of S1 and a disk D�C about the origin by an embedding
'W S1 �D!M which makes a, da, and the Reeb vector field v appear as

2�

`

'�aD .1� 2�jzj2��xz2

� x�z2/dt C
i

2
.z dxz�xz dz/C � � � ;

2�

`

'�daD i dz ^ dxz� 2.�zC�xz/ dxz ^ dt � 2.�xzC x�z/ dz ^ dt C � � � ;

`


2�
.'�1/�v D

@

@t
C 2i.�zC�xz/

@

@z
� 2i.�xzC x�z/

@

@xz
C � � � :

(2-1)

Here, � and � are respectively real and complex valued functions on S1 . The unwritten
terms in the top equation are O.jzj3/ and those in the lower two equations are O.jzj2/.
In (2-1) and in what follows, the circle S1 is implicitly identified with R=.2�Z/ and
t 2R=.2�Z/ is used to denote its affine coordinate. These coordinates are such that the
vector field @=@z at z D 0 pushes forward via ' so as to generate the Ci eigenspace
of J on kernel.a/.

It follows as a consequence of (2-1) that the integral curves of v appear in this coordinate
chart as the graphs of maps from an interval in R to D that obey an equation of the
form

(2-2)
i

2

d

dt
zC �zC�xz D r;

where r is a smooth function of t and z with jrj � c0jzj
2 and jdrj � c0jzj.

The left hand side of (2-2) defines a first order, R–linear symmetric operator on
C1.RIC/, this is the operator that takes a function t ! z.t/ to

(2-3) Lz D
i

2

d

dt
zC �zC�xz:
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Such an operator is defined given any pair .�; �/2C1.S1IR˚C/. When z is written
in terms of real functions x and y as z D xC iy and then any function in the kernel
of (2-3) can be written as

(2-4)
�

x.t/

y.t/

�
D U

�
x.0/

y.0/

�
; where U jt 2 SL.2IR/ for each t 2R:

As t varies in Œ0; 2��, the map t ! U jt defines a path in SL.2 WR/ from the identity.
(The matrix U j2� is the linearization of the Reeb flow on kernel.a/ along the Reeb
orbit.)

A pair of functions .�; �/ is said to be nondegenerate when the corresponding matrix U

has trace.U j2�/¤ 2. The pair is deemed to be elliptic when jtrace.U j2�/j < 2 and
hyperbolic when jtrace.U j2�/j > 2. Note that when .�; �/ is hyperbolic, then the
k –th power of U j2� does not have eigenvalue 1 for any k . Such is the case because
U j2� in this case has two real eigenvalues, one with absolute value greater than 1 and
the other of the same sign with absolute value less than 1. When elliptic, the pair .�; �/
is said to be n–elliptic when the k –th power of U j2� does not have eigenvalue 1 for
all k � n. Note that a matrix in SL.2IR/ whose trace has absolute value less than 2
has two complex eigenvalues; these are on the unit circle and one is the conjugate
of the other. A Reeb orbit 
 is said to be respectively nondegenerate, hyperbolic, or
n–elliptic when such is the case for the functions .�; �/ that come from (2-2). Note
that the labeling of 
 as either hyperbolic or n–elliptic is an intrinsic property of 
 ; it
does not depend on the choice of ' or the almost complex structure on the kernel of a.

The notion of hyperbolic or n–elliptic can be viewed as a condition on the operator L

in (2-3). In particular, L has trivial kernel on the space of maps from S1 to C if and
only if .�; �/ is nondegenerate. If .�; �/ is hyperbolic, then L has trivial kernel on
the space of 2�k –periodic maps from R to C for any positive integer k . Meanwhile,
if .�; �/ is n–elliptic, then L has trivial kernel on the space of 2�k periodic maps
from R to C for all k 2 f1; 2; : : : ; ng.

A complex valued function on R is said to be an eigenvector of L if L sends the
function to a constant, real multiple of itself. The constant in question is called the
eigenvalue. An eigenvector is said to be 2�k –periodic for a given integer k > 1 if it is
2�k –periodic but not 2�k 0 periodic for any positive integer k 0 < k . Two nontrivial
eigenvectors can have the same eigenvalue only if they have the same periodicity and
the same degree as a map from S1 to C�f0g. (A nontrivial eigenvector is nowhere
zero.)

The definition of embedded contact homology requires the Reeb orbits to be nondegen-
erate, and the elliptic ones to be n–elliptic for all n. The following lemma asserts a
well known fact that there exist such contact forms.
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Lemma 2.1 There exists a residual set of contact forms in C1.M IT �M / whose
associated Reeb orbits are either hyperbolic or else are n–elliptic for all positive
integers n. In fact, given a positive integer n, and L� 1, there is a dense open subset
of contact forms in C1.M IT �M / with the following property: If 
 is an associated
Reeb orbit with `
 �L, then 
 is hyperbolic or n–elliptic.

A nondegenerate Reeb orbit is isolated in the following sense: There is an open,
concentric disk D0 �D such that there are no Reeb orbits in '.S1 �D0/ except 

that generate the homology of '.S1 �D0/. Hyperbolic Reeb orbits have a stronger
isolation property: There are no Reeb orbits except 
 in '.S1�D0/. In the case when

 is n–elliptic, then the following is true: But for multiple covers of 
 , there are no
Reeb orbits that generate the class of k
 in H1.'.S

1�D0/IZ/ for any k 2 f1; : : : ; ng.

The residual set of contact forms given in Lemma 2.1 is denoted by NM .

2.b Pseudoholomorphic subvarieties

The manifold R�M has a family of almost complex structures that it inherits from
the contact geometry of M . These almost complex structures are characterized by the
following properties: They are invariant with respect to translations along the R factor
of R�M ; they map the generator, @=@s , of these translations to v ; and they preserve
the kernel of a. Such an almost complex structure endows M with a metric that sets
the Hodge star of da equal to 2a and gives v norm 1. Almost complex structures of
this sort are said to be compatible with a. These are the only ones used in this article.

Let J now denote an a–compatible, almost complex structure. An irreducible, pseudo-
holomorphic subvariety in R�M is defined to be a closed subset with the following two
properties: First, the complement of a finite set of points is a connected, 2-dimensional
submanifold whose tangent space is J –invariant. Second, the integral of da over this
submanifold is finite. A pseudoholomorphic subvariety is defined to be a finite union
of irreducible, pseudoholomorphic subvarieties. What follows describes some of the
salient properties of irreducible, pseudoholomorphic subvarieties R�M . The basic
story on such curves is presented in a series of seminal papers of Hofer [4; 5; 6; 7] and
Hofer, Wysocki and Zehnder [9; 8; 10].

Agree to use s in what follows to denote the Euclidean coordinate on the R factor of
R�M . The first point to note is that these subvarieties are well behaved where jsj
is large. To say more, suppose for the moment that the contact form comes from the
residual subset that is described in Lemma 2.1. With an almost complex structure fixed,
let † denote a given pseudoholomorphic subvariety. Then there exists s0 > 1 such
that the jsj � s0 portion of † is a disjoint union of properly embedded cylinders to
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which the function s restricts without critical points. Each such cylinder is called an
end of †. The ends on which s � s0 are called the positive side ends, and those where
s � �s0 are called the negative side ends.

The subvariety † may contain irreducible components of the form R� 
 with 
 a
Reeb orbit. Such cylinders are the only R–invariant pseudoholomorphic subvarieties
where R is understood to act on R�M as the constant translations along the R factor.

Let E denote an end of † that is not in an R–invariant cylinder. Then there is a
Reeb orbit, 
 D 
E , and a positive integer qE such that the following is true: Each
constant s slice of E , thus E js�M , is a braid in the S1�D tubular neighborhood of 

that projects as a qE –to-1 covering map to the central circle. Moreover, as jsj !1,
these braids converge pointwise to 
 .

To say more about this, note that a tubular neighborhood map 'W S1 �D!M for 

can be chosen so as to have the following additional properties: First, the vector field
@=@z along D pushes forward to define a type .1; 0/ tangent vector along R� 
 in
R�M with length 2�1=2 . Second, the C–valued 1–form

(2-5) dz� 2i.�zC�xz/ dt

differs from the '–pull back of a 1–form in T 1;0.R�M / by O.jzj2/ dt;O.jzj2/ dz

and O.jzj/ dxz . Note that it follows from the second equation of (2-1) that this form
has length .4�=`
 /1=2 to O.jzj2/. Henceforth, all tubular neighborhood maps are
assumed to be of this sort.

Now, suppose that E denotes an s��1 end of † that is not part of an R–invariant
cylinder. Let 
 D 
E and qE be as described above. The end E can be viewed using
the tubular neighborhood map as a subvariety in R� .S1 �D/, this the image of a
map from .�1;�s0��R=.2�qEZ/ into R� .S1 �D/ that sends any given .s; t/ to
the point .s; t; z.s; t// where z is a certain C–valued function. To say more about
z. � /, introduce �qE to denote the least negative of the eigenvalues of the set of 2�qE
periodic eigenvectors of (2-3). Next, denote by divE � f1; 2; : : : ; qEg the subset with
the following two properties: First, any given q0 2divE is a divisor of qE . Second, there
is a 2�q0 periodic eigenvector of (2-3) with eigenvalue �q0 such that 0> �q0 � �qE .
The function z. � / is given in terms of this data as

(2-6) z.s; t/D
X

q02divE

.&q0.t/C rq0/e
�2�q0s;

where &q0 is a 2�q0 periodic eigenvector of (2-3) with eigenvalue �q0 ; and where
rq0 is 2�q0 periodic and its norms and that of its derivative are bounded by e�"jsj

with " a positive constant. Note in this regard that &q0 D 0 is allowed, but if &qE = 0,
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then rqE ¤ 0. A positive end of † is described by (2-6) but with �qE > 0 the least
positive eigenvalue of the set of 2�qE eigenvectors; and with the eigenvalue condition
on membership in divE now reading �qE � �q0 > 0. Equation (2-6) can be derived
from what is done, for example, in Siefring [19].

The set, M, of irreducible, pseudoholomorphic subvarieties has nice properties also.
To say more, endow M with the topology whereby the neighborhoods of a given
element †2M are generated by sets of the following sort: A given basis set is labeled
by " > 0 and it consists of the subvarieties †0�M with the following two properties:

(2-7)

� supz2† dist.z; †0/C supz02†0 dist.†; z0/ < ".

� If $ is a compactly supported 2–form on R�M , then
ˇ̌R
†$ �

R
†0$

ˇ̌
�

" supR�M j$ j.

What follows is the basic structure theorem for M.

Lemma 2.2 Fix †�M with the following property: Let E be any given end of †
and let 
 denote the Reeb orbit that is approached by the jsj ! 1 limit of the
constant s slices of E . Then 
 is either hyperbolic or qE –elliptic. Assuming that †
has these properties, there exists a Fredholm operator, D† , a ball B � kernel.D†/, a
smooth map f W B! cokernel.D†/ and a homeomorphism from f �1.0/ to a neighbor-
hood of † in M. Here, f .0/D 0 and the homeomorphism sends 0 to †. Furthermore:

� Let Mreg �M denote the set that consists of those † with cokernel.D†/D 0.
This set Mreg is open and it has the structure of a smooth manifold.

� Let † 2Mreg . Then the just described homeomorphism from B � kernel.D†/
into M gives a smooth coordinate chart for a neighborhood of †.

� If the contact form comes from Lemma 2.1’s residual set, then there is a residual
set of compatible almost complex structures for which Mreg DM.

To say more about D† , remember that an irreducible, pseudoholomorphic subvariety,
C , has a model curve; this a complex curve, C0 , together with an almost everywhere
1–1 pseudoholomorphic map �W C0!R�M whose image is C . Assuming that C has
only immersion singularities, there is a well-defined pullback normal bundle over C0 .
This is the bundle, N ! C0 , whose fiber at any given point is the normal 2–plane
in T .R�M / at the point’s �–image to an embedded disk in C . The composition
of an exponential map with a section of a suitable disk sub-bundle of N defines a
deformation of C in R �M . Here, an exponential map is a smooth map from a
uniform radius disk subbundle in N to R�M that restricts as � to the zero section
and has surjective differential along the zero section.
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The almost complex structure gives N a complex bundle structure, and the induced
metric from R�M gives N a hermitian structure and thus the structure of a holomor-
phic line bundle. As such, there is an associated d-bar operator that maps sections of N

to those of N˝ T 1;0C0 . This d-bar operator enters the story in the following manner:
A deformation of C that preserves to first order the pseudoholomorphic condition is
the image via an exponential map of a section of N that is annihilated by an operator
that can be viewed as the d-bar operator with an extra, R–linear, zero–th order term. It
can be identified as the operator that sends a section � to

(2-8) DC � D x@�C �C �C�C
x�;

where �C is a section of T 0;1 C0 and where �C is one of N 2˝T 0;1C0 . Note that the
parametrization given in (2-6) for any given end of C induces a trivialization of N and
T C0 on such an end with the following property: When written using this trivialization,
the pair .�C ; �C / converges as jsj !1 on the end to the pair .�; �/ that appears in
the associated version of (2-1).

The operator DC defines a bounded, R–linear Fredholm map from the Sobolev space
L2

1
.C0IN / to L2.C0IN ˝T 0;1C0/ if the following is true: The constant s slices of

each end of C limit as jsj !1 as some integer q–fold cover of a Reeb orbit that is
either hyperbolic or q–elliptic.

A more complicated version of this R–linear operator defines DC in the cases when C

has nonimmersion singularities. The operator D† is DC if †DC . If each irreducible
component of † is an immersed curve of the sort just described, then D† is the
direct sum of the corresponding operators with domain and range the direct sum of the
corresponding Sobolev spaces.

2.c Embedded contact homology

The following definition of Hutchings’ embedded contact homology is taken from
Section 11 in [12]. To set the stage for the definition, note that each class in H1.M IZ/
labels a version of this homology. This understood, fix a class � . Assume that the
contact form a is from Lemma 2.1’s residual set NM .

The chain complex The chain complex for � ’s version of embedded contact homol-
ogy is the free Z module that is generated by equivalence classes of pairs .‚; o/ where
‚ and o are as follows. First ‚ is a finite set of pairs of the form .
;m/ where 
 is a
Reeb orbit and m is a positive integer subject to three constraints. First, no two pairs
have the same Reeb orbit. Second, mD 1 when 
 is hyperbolic. Third, the formal
sum Œ‚�D

P
.
;m/2‚ m
 should define a closed cycle that generates the class � in
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H1.M IZ/. Note that the empty set ‚D∅ defines a generator in the case when � is
the trivial class.

Meanwhile, o is an ordering of the pairs in ‚ whose Reeb orbit component is hyperbolic
and whose version of (2-4) has matrix U with trace.U j2�/ > 2. The equivalence
relation identifies .‚; o/ with ˙.‚; o0/ where the ˙ factor is the image in f˙1g of
the permutation that takes o to o0 .

The free Z module so generated is denoted by Cech in what follows. Keep in mind that
it depends on � . In most of what follows, the pair .‚; o/ will be denoted as ‚ with
the presence of the ordering o implicit.

The grading Let K�1 � TM denote the 2–plane bundle given by the kernel of a.
Orient this bundle using da, and let �yeK 2 H 2.M IZ/ denote its Euler class. Let
P .�/ 2H 2.M IZ/ denote the Poincaré dual of � and let p denote the divisibility of
�yeK C 2P .�/. The Z module Cech has a relative Z=pZ grading whose definition is
given in the five steps that follow.

Step 1 The path U W Œ0; 2��!SL.2IR/ can be used to assign a rotation number to any
hyperbolic or n–elliptic path .�; �/. This rotation number is defined as follows: When
the pair .�; �/ is hyperbolic, there is a homotopy of U through a 1–parameter family
of paths such that the t D 2� element of each path on this family has jtrace. � /j � 2,
and so that the end member path is a path of pure rotations. As such, the end member
path rotates C by a total of �k radians for some k 2 Z. This integer k is the rotation
number for .�; �/. In the case when .�; �/ is n–elliptic, there is a similar homotopy
of U , now through a family of paths such that each path in this family has its t D 2�

point conjugate to U.2�/. The end-member of this homotopy is again a path of
rotations, this time rotating C by an angle 2�R . This angle R is the rotation number.
Note in this regard that the n–elliptic condition means that 2kR is not in Z when
k 2 f1; : : : ; ng. The numbers k or R depend on ' , but not k mod .2/ or R mod .Z/.

Suppose that the pair .�; �/ is defined from a given Reeb orbit 
 and coordinate
map ' . Use z
;1 to denote the rotation number k 2Z when 
 is hyperbolic. When 

is m–elliptic and q 2 f1; : : : ;mg, use z
;q to denote 1 plus twice the greatest integer
less than qR .

Step 2 Let ‚� and ‚C define generators in Cech . Fix a tubular neighborhood
embedding as described above for each Reeb orbit from the pairs that comprise ‚�
and ‚C . As ‚� and ‚C define the class � in the manner just described, there is
a smooth, oriented, properly immersed surface Z � R �M with transversal self-
intersections that has the following properties: The jsj � 1 portion of this surface
is a disjoint union of embedded cylinders on which s restricts as a function with no
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critical points. The cylinders that sit where s � 1 are distinguished in part by the
elements in ‚C . In particular, a given pair .
;m/ labels m such cylinders. Given 
 ’s
tubular neighborhood map ' , then each of the m cylinders sits in R�'.S1 �D/ as
the image of the graph over R�S1 of the function that sends .s; t/ to e�2�sCix 2C
where � > 0 and x 2R=.2�Z/. However, if C and C 0 are two such cylinders, then
the corresponding points x and x0 must define distinct points in the circle. There is
an analogous correspondence between the cylinders that sit where s��1 with the
elements in ‚� . The only difference is that � is now required to be negative.

Step 3 Let Z denote a surface as described in Step 2. Then Z has a relative self-
intersection number defined to be its intersection number with a deformation, Z0 ,
whose restriction to any given jsj � 1 cylinder deforms the latter so as to change the
parameter x to x C " with " > 0 but very small. With Z denoting the surface in
question, QZ is used to denote this self-intersection number.

Step 4 The surface Z also has a well-defined pairing with the Euler class of the
bundle K�1 . This pairing is defined by the usual count of the zeros of a section of
this bundle over the surface with the proviso that the section should restrict to each
jsj� 1 cylinder so as to be nonzero, and to be constant with respect to the trivialization
of K on '.S1 �D/ that is given by the coordinate vector field @=@z on D . Note in
this regard that K and the tangent space to D agree along S1 � f0g. This pairing is
denoted here by �hc1;Zi.

Step 5 With † chosen as in Step 2, introduce the integer

(2-9) I.‚�; ‚CIZ/D�hc1;ZiCQZC

X
.
 ;m/2‚C

X
1�q�m

z
;q�
X

.
;m/2‚�

X
1�q�m

z
;q:

Although the various tubular neighborhood embeddings of S1�D are needed to make
sense of the terms in (2-9), the value of I.‚�; ‚CIZ/ does not, in fact, depend on
them. Moreover, the image of I in Z=pZ depends only on the ordered pair .‚�; ‚C/.
This is proved by Hutchings in [11]; see also Hutchings and Sullivan [12]. Hutchings
also proves that this image in Z=pZ obeys the sum rule I.‚1; ‚2/C I.‚2; ‚3/D

I.‚1; ‚3/. The relative Z=pZ degree assignments to the generators of Cech are made
so that I.‚�; ‚C/D degree.‚�/� degree.‚C/.

The differential The differential that is used by Hutchings decreases the Z=pZ
grading by 1. Its definition is given in the three steps that follow.

Step 1 The almost complex structure should be chosen so as to be generic in the sense
given in Lemma 2.2. Suppose that ‚� and ‚C are generators of Cech . Introduce
M1.‚� , ‚C/ to denote the set whose elements are finite sets of pairs of the form
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.C;m/ where C is a pseudoholomorphic subvariety and m is a positive integer. The
elements in this set are constrained as follows: First, mD 1 unless C DR� 
 with 

a closed Reeb orbit. Second, if .C;m/ and .C 0;m0/ are distinct pairs, then C is not a
translate of C 0 along the R factor of R�M . To state the third constraint, let �M denote
the projection from R�M to M . Here is the third constraint: A given element † 2
M1.‚�; ‚C/ defines the formal sum

P
.C;m/2† m�M .C /, here viewed as a 2–cycle.

The boundary of this 2–cycle must be
P
.
 ;m/2‚C

m
 �
P
.
 ;m/2‚�

m
 . To state
the fourth constraint, let H2.M; ‚�; ‚C/ denote the set that consists of the relative
homology classes of 2–chains z �M with @z D

P
.
 ;m/2‚C

m
 �
P
.
 ;m/2‚�

m
 .
To be more explicit, chains z and z0 define the same class in H2.M; ‚�; ‚C/ when
the closed cycle z� z0 is the boundary of a 3–cycle in M . Thus, H2.M; ‚�; ‚C/ is
an affine space modeled on H2.M IZ/. Let Z �R�M denote a surface as described
above that can be used to define the invariant I.‚�; ‚C; �/, but one such that �M .Z/

and
P
.C;m/2† m�M .C / define the same element in H2.M; ‚�; ‚C/. Here is the

fourth constraint: I.‚�; ‚C;Z/ D 1. Note in this regard that I.‚�; ‚C; � / takes
identical values on surfaces Z and Z0 that give the same element in H2.M; ‚�; ‚C/.
Take M1.‚�; ‚C/D∅ when I.‚�; ‚C/¤ 1.

The set M1.‚�; ‚C/ inherits a topology and a local structure of the sort described by
Lemma 2.2 using its tautological embedding into a disjoint union of products of M.

Define M�0.‚�; ‚C/ by copying the preceding definition but with the condition that
Z D

P
.C;m/2† m�M .C / is such that I.‚�; ‚C;Z/� 0.

Step 2 As noted by Hutchings, there exists a residual set of almost complex structures
for which the resulting version of M1.‚�; ‚C/ has the following properties:

(2-10)

(1) If † 2M1.‚�; ‚C/, then
S
.C;m/2† C is an embedded, pseudoholo-

morphic subvariety. Meanwhile, M�0.‚�; ‚C/D∅ unless ‚� D‚C ,
in which case it contains precisely one element, and each subvariety from
this element is an R–invariant cylinder.

(2) The space M1.‚�; ‚C/ has a finite set of components and each compo-
nent is a smooth, 1–dimensional manifold.

(3) The R action on R�M induces a free R action on each component. As
a consequence, each element in M1.‚�; ‚C/ consists of a disjoint union
of R–invariant cylinders with integer weights and one pseudoholomorphic
submanifold that is not R–invariant.

(4) Let †�M1.‚�; ‚C/ and let E �† denote an end. Let qE ; divE and
&qE denote the data that appear in E ’s version of (2-6). Then divE D fqEg
and &qE ¤ 0.
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(5) Let † �M1.‚�; ‚C/ and let E and E 0 denote distinct pairs of either
positive or negative ends of † with 
E D 
E 0 and qE D qE 0 . Let &qE and
&qE0 denote the 2�q–periodic eigenvector that appears in the respective
E and E 0 versions of (2-6). Then &qE jt ¤ &qE0 jtC2�k for any t 2 S1 and
k 2 Z.

Properties (1)–(3) are proved by Hutchings [11]; see also Hutchings and Sullivan [12].
Properties (4) and (5) follow from what is done in Section 3 of Hutchings and
Taubes [14]. Property (4) also needs some facts that can be derived from what is
said in Section 11 of [11] and its Remark 1.

Let J 0a denote the residual set of a–compatible almost complex structures that have
the properties listed in (2-10) and lie in Lemma 2.2’s residual set. Fix an almost
complex structure from J 0a . Let ‚� and ‚C denote generators of the embedded
contact homology chain complex. Hutchings uses constructions of Bourgeois and
Mohnke [1] to associate a sign, ˙1, to each component of M1.‚�; ‚C/. The full
details of this are given in Section 9 and especially Section 9.5 of [14]. Let �.‚�; ‚C/
denote the sum of these signs when M1.‚�; ‚C/ is nonempty, and 0 otherwise.

To say a wee bit more about these signs, note that the sign that is associated to any given
component of M1.‚� , ‚C/ is obtained by comparing two natural orientations. The
first is that induced by the generator of the R action. The second is defined using ideas
of Quillen [18] about determinant line bundles of parametrized families of Fredholm
operators. As noted by Hutchings and explained in Section 9.5 of [14], these ideas of
Quillen can be used along lines explained in [1] so as to define a second orientation to
each component of M1.‚�; ‚C/. (The respective parts of ‚� and ‚C that involve
the ordering of their even rotation number hyperbolic Reeb orbits is needed solely to
define this second orientation of M1.‚�; ‚C/.)

Step 3 The differential, ı , on Cech is defined on any given generator ‚ by the formula
ı‚D

P
‚02Cech

�.‚0; ‚/ ‚0 . The proof that ı2 D 0 appears in [13; 14]. The proof
requires that the almost complex structure come from a certain residual subset of J 0a .
This last residual set is denoted by Ja in what follows. Almost complex structures will
always be chosen from Ja unless explicitly noted otherwise.

The embedded contact homology for the class � is defined to be the homology of ı
on Cech . As defined, ı decreases the Z=pZ degree by 1 so this homology is Z=pZ
graded. The homology defined here is denoted in what follows by Hech , where it is
understood that the class � is fixed in advance and not subsequently changed.

The filtration As noted in Section 2.a, the set of Reeb orbits with an a priori symplectic
action bound is compact. If all such orbits are nondegenerate, then there are but a
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finite set with symplectic action less than any given amount. Granted this last point, fix
L> 0 and let CL

ech � Cech denote the submodule that is generated by elements ‚ that
obey

P
.
;m/2‚ m`
 <L. This is a finitely generated chain complex.

If †�M1.‚;‚
0/, then

P
.
;m/2‚ m`
 �

P
.
;m/2‚0 m`
 . As a result, the differen-

tial on Cech maps CL
ech to itself. This understood, let HL

ech denote the homology that is
defined by ı on CL

ech . Then Hech D dir limL!1HL
ech , where the homomorphisms for

this direct limit are induced by the L and L0 >L versions of the submodule inclusion
homomorphism from CL

ech into CL0

ech .

2.d Changing the contact structure

As it turns out, the proof of Theorem 1 is considerably shorter when the contact structure
is approximated by one which has a canonical form near some of its Reeb orbits. The
following lemma describes these canonical forms.

Lemma 2.3 Suppose that .�; �/ 2 C1.S1IR˚C/.

The elliptic case Suppose that .�; �/ is elliptic with rotation angle R 2R. There is a
homotopy of .�; �/ through elliptic pairs with rotation angle R to the pair .1

2
R; 0/.

The hyperbolic case Suppose that .�; �/ is hyperbolic with rotation number k . If
" > 0 is small, there is a homotopy of .�; �/ through hyperbolic pairs to the pair
.1

4
k; i"eikt /.

Proof of Lemma 2.3 The statement in the elliptic case is straightforward; it follows
readily from the geometry of SL.2IR/ that any two elliptic pairs with the same rotation
number are homotopic through a family of constant rotation number elliptic pairs. In
the hyperbolic case, remark first that any two hyperbolic pairs with the same rotation
number are homotopic through hyperbolic pairs. As a consequence, it is enough to
verify that the pair .1

2
k; i"e�ikt / is hyperbolic with rotation number k when " is

sufficiently small. The calculation is straightforward and left to the reader.

Assume that the contact structure a is from Lemma 2.1’s residual set and the almost
complex structure, J , is from Ja . Fix L � 1 and ı > 0. A pair .ya; yJ / of contact
structure on M and compatible almost complex structure on R�M is said to be a
.ı;L/–approximation for .a;J / when the following is true: There is a smooth, 1–
parameter family f.a� ;J� /g�2Œ0;1� of pairs of contact structure and compatible almost
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complex structure with .a0;J0/D .a;J / and .a1;J1/D .ya; yJ /; and such that

(2-11)

(1) For each � 2 Œ0; 1�, the respective sets of a and a� Reeb orbits with
symplectic action less than L are identical.

(2) Let 
 denote a Reeb orbit for a with `
 <L. If 
 is elliptic or hyperbolic
as defined using a, then it is respectively elliptic or hyperbolic as defined
using any � 2 Œ0; 1� version of a� and the rotation number is independent
of � .

(3) Let ‚� and ‚C denote generators of CL
ech . For each � 2 Œ0; 1�, there is a

1–1 correspondence between the components of the respective J and J�
versions of M1.‚�; ‚C/. The correspondence between the respective
versions of M1.‚�; ‚C/ is such that partnered components contribute
the same sign to the respective J and J� versions of �.‚�; ‚C/.
Meanwhile, the space M�0.‚�; ‚C/ is empty unless ‚� ¤ ‚C , and
in this case, it contains but one element, and each subvariety from the
latter is an R–invariant cylinder.

(4) Let 
 denote a Reeb orbit with `
 <L. There is a coordinate embedding
'W S1�D!M of the sort described in the preceding with the following
property: If 
 is hyperbolic with rotation number k , then the ya–version
of the pair .�; �/ is equal to .1

2
k; i"e�ikt / for some " 2 .0; ı/. If 
 is

elliptic with rotation number R , then

(i) .2�=`
 /'
�
yaD .1� Rjzj2/ dt C

i

2
.z dxz�xz dz/.

(ii) The '�–pullback of the yJ –version of T 1;0.R�M / is spanned by
the forms

dsC iya and
`


2�
.dz� i Rz dt/:

(5) The contact structure ya comes from Lemma 2.1’s residual set and the
almost complex structure yJ comes from the set Jya .

The next subsection gives a first indication as to why pairs .ya; yJ / as just described are
easy to work with.

The proposition that follows asserts that the homology of CL
� as defined by a pair

.a;J / is isomorphic to that defined by a .ı;L/ approximation.

Proposition 2.4 Let a denote a contact 1–form from the residual set given in Lemma
2.1 and let J denote a complex structure from Ja . Fix L � 1 such that there is no
generator ‚ of Cech with

P
.
;m/2‚ m`
 D L. Fix also ı > 0. Let .ya; yJ / denote a

.ı;L/ approximation to the given pair .a;J /. Then the identification provided by the
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first item in (2-11) between the Reeb orbits with symplectic action less than L induces
a degree preserving isomorphism between the a and ya versions of CL

ech that intertwines
the respective differentials. Thus, it induces an isomorphism between the respective
.a;J / and .ya; yJ / versions of HL

ech .

Proof of Proposition 2.4 The fact that the isomorphism preserves degree follows
from the third item in (2-11). The fact that it intertwines the differential follows from
the fourth item in (2-11).

The final proposition asserts that there are in all cases .ı;L/ approximations.

Proposition 2.5 Let a denote a contact form from Lemma 2.1’s residual set and let
J 2 Ja . Fix L� 1 such that there is no generator ‚ 2 Cech with

P
.
;m/2‚ m`
 DL.

Given ı > 0, there exist .ı;L/ approximations to .a;J /. In fact, there exists � > 1 that
depends only on .a;J / and has the following significance: Fix � > 0 and there exists
a .ı;L/ approximation to .a;J / that is the end member of a family f.a� ;J� /g�2Œ0;1�
which has initial member .a;J /, and is such that each � 2 Œ0; 1� member obeys
� .a� ;J� /D .a;J / on the complement of the radius � tubular neighborhoods of

the Reeb orbits with length less than L.
� a� � a has C 1 –norm less than � and C 2 –norm less than � .
� J� �J has C 0 –norm less than � and C 1 –norm less than � .

This proposition is proved in the Appendix to this article.

2.e Pseudoholomorphic subvarieties for .ı;L/ approximating pairs

This last subsection is an aside of sorts whose purpose is to say something about the
pseudoholomorphic curves for a pair .a;J / of contact form on S1�C and compatible
almost complex structure on R�S1 �C where

(2-12) aD
`

2�

�
.1� Rjzj2/ dt C

i

2
.z dxz�xz dz/

�
;

and where T 1;0.R�S1 �C/ is spanned by dsC ia and dz � i Rz dt . Here, ` > 0

and R are constant. A straightforward calculation verifies the following: Let w D
.2�=`/s� .1=2/jzj2 . Then

(2-13)

� dwC idt 2 T 1;0.R�M /; thus the constant .w; t/ planes are pseudo-
holomorphic.

� Subvarieties z D f .w; t/ are pseudoholomorphic if and only if�
@

@w
C i

@

@t
C R

�
f D 0:
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Note that the complex structure in this case is integrable. Local holomorphic coordinates
are uD wC i t and x D eRwz .

3 Seiberg–Witten Floer (co)homology

The purpose of this section is to say more about the relevant versions of Seiberg–Witten
Floer homology and cohomology. As a complete treatment of the subject is given
by Kronheimer and Mrowka in [16], what follows focuses for the most part on those
aspects of the story that are relevant to the case when M comes with a contact 1–form.
In any event, much of what is said below paraphrases the definitions and discussion in
Kronheimer and Mrowka’s book [16].

3.a The Seiberg–Witten equations on M and R�M

Fix a Riemannian metric on M so as to define the bundle of oriented, orthonormal
frames for TM . Let Fr!M denote this principal SO.3/ bundle. A SpinC lift of
this bundle denotes here a principal U.2/ bundle, F !M such that F=U.1/D Fr.
Such a lift is called a SpinC structure. Two lifts, F and F 0 , are deemed equivalent if
there is a bundle isomorphism from F to F 0 that covers the projections to Fr. The
set of equivalence classes of lifts can be put in 1–1 correspondence with elements in
H 2.M IZ/.

Let F!M denote now a SpinC structure. Use S to denote the associated C2 bundle
F �U.2/C2 . Use det.S/ in what follows to denote the complex hermitian line bundle
F �U.1/C . Having fixed a SpinC structure, the associated Seiberg–Witten equations
constitute a system of equations for a pair .A;  / where A here denotes a connection
on det.S/ and  denotes a section of S .

To say more about these equations, introduce the Clifford multiplication homomor-
phism clW T �M ! End.S/. This homomorphism is such that cl.b/| D � cl.b/ and
cl.b/ cl.b0/D� cl.�.b^b0//�hb; b0i. Here, h ; i denotes the metric inner product and
� denotes the associated Hodge star. The Seiberg–Witten equations involve two related
homomorphisms. The first, ycW S˝ T �M ! S , is defined so as to send any given
decomposable element �˝ b to cl.b/�. The second is a quadratic, bundle preserving
map from S to iT �M . The image of any given � 2 S under the latter map is written
in what follows as �|��. It is defined by the rule hb; �|��i D �| cl.b/�.

Let A now denote a connection on det.S/. In what follows, the Hodge star of its
curvature 2–form is denoted by BA , this being a section of iT �M . The connection A
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and the Levi-Civita connection on TM define a Hermitian connection on S . The asso-
ciated covariant derivative is denoted in what follows by rA . This covariant derivative
is used to define the Dirac operator, DA D yc.rA/ W C

1.M IS/! C1.M IS/.

A pair .A;  / of connection on det.S/ and section  of S obeys the simplest version
of the Seiberg–Witten equations when

(3-1) BA� 
|� D 0 and DA D 0:

A rigorous definition of the Seiberg–Witten Floer homology involves solutions to
perturbed versions of the equations in (3-1). The description of these perturbed equations
requires a brief digression to set the stage.

To start the digression, remark that the equations in (3-1) are gauge invariant in the fol-
lowing sense: If u is a smooth map from M to U.1/, then the pair .A� 2u�1du;u /

solves (3-1) if and only if .A;  / does. A function, g, of pairs consisting of a connection
on det.S/ and a section of S is deemed gauge invariant when g.A� 2u�1du;u /D

g.A;  / for all u 2 C1.M IU.1//. The allowed sorts of functions form what Kron-
heimer and Mrowka call a large, separable Banach space of tame perturbations. Such a
Banach space is described in Chapter 11 of [16]. Somewhat more is said below about
this. This Banach space of tame perturbations that is used here is denoted by P . If
g2P , then the differential of g at any given .A;  / defines section .Tj.A; /;Sj.A; //
of iT �M ˚S by writing d

dt
g.AC tb;  C t�/jtD0 as

R
M .b ^�T�1

2
.�|SCS|�//.

Each g 2 P gives the equation

(3-2) BA� 
|� �T.A; / D 0 and DA �Sj.A; / D 0:

Note that if u is a smooth map from M to U.1/, then .A�2u�1du;u / solves (3-2)
if and only if .A;  / does. Pairs of connection and section that are related in this way
are said to be gauge equivalent.

There are corresponding Seiberg–Witten equations on R�M that constitute a system
of equations for a pair dD .A;  /, where A now denotes a map from R into the space
of Hermitian connections on det.S/ and  denotes a map from R into the space of
sections of S!M . With s 2R denoting the Euclidean coordinate, these equations
read

(3-3)
�

@
@s

ACBA� 
|�k �T.A;  /D 0.

�
@
@s
 CDA �S.A;  /D 0.

Of particular interest here are instanton solutions. An instanton is a solution to (3-3)
with s!C1 limit and s!�1 limit, each a solution to (3-1). If u is a smooth map
from M to U.1/ and .A;  / is a solution to (3-3), then so is .A� 2u�1du;u /.
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3.b An overview of Seiberg–Witten Floer homology/cohomology

This subsection very briefly summarizes the story from [16]. To start, Kronheimer and
Mrowka prove that (3-2) has but a finite set of solutions up to gauge equivalence if g
is chosen from a certain residual subset in the Banach space P . With one caveat, these
equivalence classes form a basis for the chain complex that defines the Seiberg–Witten
Floer homology. The caveat concerns the case when the first Chern class of det.S/
is a torsion class. The situation here is more complicated by virtue of the fact that
(3-2) admits solutions with  identically zero when c1.det.S// is torsion. These
 D 0 solutions are deemed to be reducible, and those with  somewhere nonzero are
deemed to be irreducible. Here is the salient distinction: The group C1.M IU.1//

acts with trivial stabilizer on any pair .A;  / with  somewhere nonzero, but it acts
with stabilizer U.1/ on any .A; 0/. Here, U.1/ � C1.M IU.1// is identified with
the constant maps. This distinction makes for a chain complex when c1.det.S// is
torsion wtih one generator for each gauge equivalence class of irreducible solution to
(3-2), and a countable set of generators for each gauge equivalence class of reducible
solution to (3-2). The chain complex for the Seiberg–Witten Floer homology is denoted
in what follows by CSW . This Z module is finite when c1.det.S// is not torsion, but
not finitely generated otherwise.

The complex CSW has a natural, relative Z=pZ grading, where p here denotes the
divisibility of the class c1.det.S// in H 2.M IZ//torsion. The complex is Z graded
when c1.det.S// is torsion. This grading is described in some detail momentarily.
Suffice it to say for now that the relative grading between two irreducible generators is
defined to be minus the spectral flow for a certain 1–parameter family of unbounded,
self-adjoint, operators (with compact resolvent) on L2.M I iT �M ˚S˚ iR/. This
family is constructed from a path, parametrized by Œ0; 1�, of pairs .A;  / with A a
connection on det.S/ and  a section of S . This path starts at the first irreducible
solution, and ends at the second. Meanwhile, the operator that is parametrized by any
such pair .A;  / is a self map of C1.M I iT �M ˚S˚ iR/; it is defined from the
linearization of (3-2) at .A;  /.

In the case where c1.det.S// is torsion, the countable set of cycles that correspond to
any given reducible solution can be labeled by a set of the form fk; k � 2; : : :g, where
k 2 Z. The relative grading between cycles k � 2j and k � 2j 0 is 2.j � j 0/. The
integer k can be fixed once a fiducial, irreducible configuration is chosen to define
the zero point for the grading. Given such a choice, k is then minus the spectral flow
for a family of self-adjoint differential operators that starts at a certain operator that is
parametrized by the fiducial configuration and ends at one parametrized by a suitable
irreducible configuration lying very near the given reducible solution. In the case when
c1.det.S// is torsion, the Z–module CSW is finitely generated in each degree.
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The differential that defines the Seiberg–Witten Floer homology is defined using an
algebraic count of instanton solutions to (3-3) as defined by any g from a certain
residual subset in P . The differential decreases that Z=pZ degree by 1. To say more
about the differential, note that Kronheimer and Mrowka prove the following: Let
c� and cC denote pairs of irreducible solutions to (3-2) and introduce M.c�; cC/ to
denote the set of instanton solutions to (3-3) with s ! �1 limit equal to c� and
with s!1 limit equal to u � cC with u 2 C1.M IS1/. This set depends only on
the gauge equivalence classes of c� and cC in the following sense: Suppose that
u 2 C1.M IU.1//. Let d D .A;  / 2M.c�; cC/; then u � d 2M.u � c�; cC/ where
u � .A;  / is shorthand for .A� 2u�1du;u /.

Given that g comes from a certain residual subset of P , this M.c�; cC/ has the structure
of a smooth, finite dimensional manifold. There is one zero dimensional component
if c� is gauge equivalent to cC ; and in this case, M.c�; cC/ consists of the constant
map s! c� . There are no zero dimensional components otherwise. Meanwhile, there
is a finite set of 1–dimensional components of M.c�; cC/; and each component is an
orbit of the R action that is induced by translation along the R factor of R�M . Such
1–dimensional components exist only in the case where the degree of cC is one less
than that of c� . Use M1.c�; cC/ in what follows to denote the space of 1–dimensional
components of M.c�; cC/.

Each component of M1.c�; cC/ has a corresponding sign. This sign is obtained by
comparing the orientation given by the generator of the R action with an orientation
that is defined using Quillen’s ideas about determinant line bundles. Somewhat more is
said about this below, but in any event, the full story is given in [16]. Let �.c�; cC/
denote the sum of these signs when M1.c�; cC/ is nonempty, or zero when it is. In the
case when c1.det.S// is not torsion, the differential that defines the Seiberg–Witten
Floer homology acts on any given generator c as ıcD

P
c02CSW

�.c; c0/c0 . In the case
when c1.det.S// is torsion, what is written here defines the part of the differential
that involves the irreducible generators. Only this part is needed for the proofs of the
theorems in the introduction. This being the case, the reader can consult [16] to see
how the rest of the differential is defined.

The homology of this differential on CSW is denoted by �H� in [16], and so denoted
by �H� here. This homology is finitely generated in the case when c1.det.S// is not
torsion. In the case when this class is torsion, �H� is finitely generated in each degree;
and the set of degrees where it is nonzero is bounded from above but unbounded from
below.

The Seiberg–Witten Floer cohomology is defined by the dual differential on the Z–
module CSW D Hom.CSW;Z/. This differential, ı� , acts on any given cocycle C by
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.ı�C /. � /DC.ı. � //. Note that the basis described above for CSW supplies a canonical
dual basis for CSW and a Z=pZ grading. This differential sends any given basis
element c of CSW to

(3-4) ı�cD
X

c02CSW

�.c0; c/c0:

Note that it increases the Z=pZ degree by 1. The resulting cohomology groups are
denoted in what follows by HSW .

Keep in mind that the definition of these groups requires the choice of a function from
a certain residual subset in P . However, two such functions give isomorphic versions
of Seiberg–Witten homology and cohomology. Section 3.d says more about the criteria
for admission in this residual set. Section 3.h, an appendix to Section 3, says more
about these isomorphisms.

3.c Contact forms and Seiberg–Witten equations

Suppose now that a is a given contact 1–form on M . Fix a metric on M for which
�daD 2a and jaj D 1. Note that such a metric on TM is neither more nor less than an
almost complex structure, J , on kernel.a/ such da. � ;J. � // is a metric on the kernel
of a. In particular, a pair .a;J / of contact form and almost complex structure in Ja

supplies M with a canonical metric.

With the metric fixed, let F !M denote a SpinC structure. The endomorphism cl.a/
on S has square �1 and so its eigenspaces in each fiber define a splitting of S as the
orthogonal, direct sum of two complex, Hermitian line bundles. This direct sum is
written in what follows as E˚EK�1 where E! S and K! S are complex line
bundles. The convention has cl.a/ act as i on the first summand and �i on the second.
The bundle K�1! S is isomorphic as an SO.2/ bundle to the kernel of a in TM

with the orientation defined by da. Note that any given equivalence class of complex
line bundles can arise in this manner from some SpinC structure on M . Moreover,
two SpinC structures have isomorphic versions of E if and only if they are equivalent.

The contact form a determines a canonical SpinC structure, the SpinC structure for
which the spinor bundle decomposes as SDSI D IC˚K�1 , where IC!M denotes
the trivial complex line bundle. Fix a unit norm section 1C of IC . Such a section
defines a canonical connection on K�1 D det.SI /. This is the unique connection
for which the section  I D .1C; 0/ of SI is annihilated by the corresponding Dirac
operator. This canonical connection is written as AK .

Let S D E˚EK�1 now denote the spinor bundle for some other SpinC structure.
Any given connection on det.S/DE2K�1 can be written as AK C 2A where A is a
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connection on E . With A a connection on E , the symbol DA is used to denote the
operator DAKC2A that appears in (3-1)–(3-3). Conn.E/ is used in what follows to
denote the Fréchet space of smooth, Hermitian connections on E .

With the splitting SDE˚EK�1 given, the corresponding components of any given
section  of S are written as .˛; ˇ/. Thus, ˛ is a section of E and ˇ one of EK�1 .

The contact form is also used to define a certain family of perturbations for use in (3-2)
and (3-3). This family is parametrized by Œ1;1/. To set the stage, view P now as a
Banach space of functions on Conn.E/�C1.M IS/. Any given r 2 Œ1;1/ version
of these equations requires the choice of a function g from P . These equations, viewed
now as equations for a pair .A;  / from Conn.E/�C1.M IS/, read

(3-5)
� BA� r. |� � ia/�Tj.A; /C

1
2
BAK

D 0.

� DA �Sj.A; / D 0.

Here, T and S are defined from g as before. Meanwhile, �BAK
is the curvature

2–form for the connection AK . The associated version of (3-3) for a map s! .A;  /

from R to Conn.E/�C1.M IS/ is

(3-6)
�

@
@s

ACBA� r. |� � ia/�Tj.A; /C
1
2
BAK

D 0.

�
@
@s
 CDA �Sj.A; / D 0.

Equations (3-5) and (3-6) can be made to look like (3-2) and (3-3) by replacing  in
the latter by r1=2 . It is left to the reader to derive the relation between the respective
versions of what is denoted by g.

3.d The Banach space P

As noted in Section 3.b, the Seiberg–Witten Floer homology and cohomology can be
defined only after choosing a function g from a certain residual subset of P . There are
two criteria for membership in this set when the first Chern class of E is not torsion
and three criteria when it is. The first concerns the linearized version of (3-5). To say
more, fix any pair cD .A;  / 2 Conn.E/�C1.M IS/. Define an operator Lc with
domain and range C1.M I iT �M ˚ S˚ iR/ as follows: It sends any given triple
.b; �; �/ in its domain to the section of iT �M ˚S˚ iR whose three components are

(3-7)

� �db� d� � 2�1=2r1=2. |��C �|� /� t.A; /.b; �/,

� DA�C 21=2r1=2.cl.b/ C� /� s.A; /.b; �/,

� �d�b� 2�1=2r1=2.�| � |�/,
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where the pair .t.A; /; s.A; // denotes the operator on C1.M I iT �M ˚ S/ that
sends a given section .b; �/ to . d

dt
T.AC tb;  C t�/, d

dt
S.AC tb;  C t�//jtD0 .

The operator Lc is symmetric and extends to L2.M I iT �M˚S˚iR/ as an unbounded,
self-adjoint operator with dense domain L2

1
.M I iT �M ˚ S˚ iR/. As such, it has

pure point spectrum and each eigenvalue has finite multiplicity. Moreover, the spectrum
is unbounded from above and from below. Finally, every eigenvector is smooth.

A function g from P can be used to define the Seiberg–Witten Floer homology only
when the following criterion is met:

(3-8)
Criterion 1 If c is an irreducible solution to (3-5), then the operator Lc

has trivial kernel. If c is a reducible solution to (3-5), then kernel.Lc/

consists of the constant sections of the iR summand of iT �M ˚S˚ iR.

A solution that satisfies this criterion is said to be nondegenerate.

The second required property for g involves the operator on R�M that arises from the
linearized version of (3-6). To elaborate, suppose that s! d.s/D .A;  / is a smooth
map from R into Conn.E/�C1.M IS/ that has s!˙1 limits. Let c˙ denote the
latter. Now define the operator Dd from C1.R�M I iT �M ˚S˚ iR/ to itself as
follows: It sends a triple .b; �; �/ to the section whose respective three components
are

(3-9)

�
@
@s

bC�db� d� � 2�1=2r1=2. |��C �|� /� t.A; /.b; �/,

�
@
@s
�CDA�C 21=2r1=2.cl.b/ C� /� s.A; /.b; �/,

�
@
@s
�C�d�b� 2�1=2r1=2.�| � |�/.

This operator extends to define a bounded operator from L2
1
.R�M I iT �M ˚S˚ iR/

to L2.R�M I iT �M ˚S˚ iR/. If both cC and c� are irreducible and if both the
cD cC and cD c� versions of Lc have trivial kernel, then this extended version of Dd

is a Fredholm operator. This understood, what follows is the second requirement on g

for its use to define the Seiberg–Witten Floer homology and cohomology.

(3-10)
Criterion 2 Let s! d.s/ denote an instanton solution to (3-6) such that
both jsj ! 1 limits are irreducible and such that their corresponding
versions of Lc have trivial kernel. Then Dd has trivial kernel.

An instanton that satisfies this criterion is also said to be nondegenerate.

The third requirement on g for its use in defining the Seiberg–Witten Floer homology
and cohomology concerns the operator Dd when s! d.s/ is an instanton solution to
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(3-6) with at least one jsj !1 limit reducible. As these solutions play no essential
role in what follows, this third criterion will not be stated explicitly. The reader can
refer instead to [16].

A perturbation that satisfies the aforementioned Criteria (3-8) and (3-10) is said to be
suitable. The upcoming Section 3.h says more about perturbations.

The space P has the following property: Let g 2 P . Just as the first derivatives of g at
any given .A; /2Conn.E/�C1.M IS/ define the smooth section .Tj.A; /;Sj.A; //
of the bundle iT �M ˚S , so the derivatives of g to order k � 1 at .A;  / define a
smooth section of

N
k.iT

�M ˚S/. Let gk j.A; / denote the latter. The derivatives
of this section to any given order are bounded by an appropriate .A;  /–dependent
multiple of kgkP . Here, k � kP denotes the Banach space norm on P . For example,
bounds of this sort appear in Theorem 11.6.1 of [16]. See also Proposition 2.5 in [24].

What follows describes some of the simplest nonconstant functions in P . To start, let
� denote a smooth, coclosed 1–form on M . Thus, d��D 0. Use e� to denote the
function on Conn.E/ whose value on any given connection A is

(3-11) e�.A/D i

Z
M

�^�BA:

View e� as a function on Conn.E/�C1.M IS/ that is independent of the second
factor. Viewed in this light, e� is a candidate for a function from P ; and this is the case
if � comes from a certain Banach space of coclosed 1–forms. To say more, let �0

denote the vector space of finite linear combinations of coclosed eigenfunctions of the
operator �d , here sending C1.M IT �M / to itself. Then P contains the linear space
fe� W � 2�0g. Moreover, the following is true: For each k � 0, there is a constant ck

such that the C k norm of any given � 2�0 is bounded by ckke�kP .

Note that these norm bounds imply that the function �!ke�kP defines a norm on
�0 ; and they imply that the completion of �0 with respect to this norm is a subspace
of C1.M IT �M /. Use � in what follows to denote this completion. This norm on
� is called the “P norm” in what follows.

The perturbations of particular interest in what follows have the from e�C p where
� 2 � and p 2 P with kpkP very much smaller than ke�kP and with ke�kP � 1.
Note that with gD e� , the pair .T;S/ in (3-6) is .TD i�d�;SD 0/. In this case,
the terms t and s are absent in (3-7).
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3.e Degrees and signs

This subsection has two parts. The first elaborates on the Z=pZ degree assignments
to the generators of CSW , and the second elaborates on the signs that are used to define
the differential on CSW .

Part 1 As mentioned above, the relative Z=pZ degree between two generators of the
Seiberg–Witten Floer complex is defined using the spectral flow for a 1–parameter
family of unbounded, self-adjoint operators on L2.M I iT �M ˚S˚ iR/. To elaborate
on the relevant case, suppose that c� and cC are irreducible solutions to some r and
g version of (3-5) and are such that the respective cD c� and cD cC versions of Lc

have trivial cokernel. Fix a path s! d.s/ 2 Conn.E/�C1.M IS/ parametrized by
Œ0; 1� such that d.0/D c� and d.1/D cC . If the chosen path s! d.s/ is sufficiently
generic, then there will be at most one eigenvalue very near 0 at any s 2 Œ0; 1�. Such an
eigenvalue will have multiplicity 1 and vary smoothly as the parameter s is changed as
long as the eigenvalue is sufficiently close to 0. Moreover, if it changes sign as s varies,
the eigenvalue crosses zero with nonzero derivative. This understood, the spectral flow
for the path is equal to the number of points in .0; 1/ where an eigenvalue crosses
zero with positive derivative, minus the number where it crosses zero with negative
derivative. (See, for example, the author’s paper [23].) This spectral flow is denoted
in what follows by f .c�; cC/. Although a particular path must be chosen to compute
this number, the number itself does not depend on the path. However, only the Z=pZ
reduction of f .c�; cC/ is gauge invariant. Granted the preceding, now view c� and
cC as generators of CSW . Then

(3-12) degree.cC/� degree.c�/D�f .c�; cC/ mod .p/:

When c1.det.S// is torsion, there will be reducible solutions to (3-5). As noted above,
the countable set of cycles that correspond to any given reducible generator can be
labeled by a set of the form fk; k�2; : : :g where k 2Z. The relative grading between
cycles k � 2j and k � 2j 0 is 2.j � j 0/. Let c 2 Conn.E/ � C1.M IS/ denote a
pair where Lc has trivial kernel. Then the relative degree difference, k � degree.c/, is
defined to be minus the spectral flow for the family fLd.s/gs2Œ0;1� where dW Œ0; 1�!

Conn.E/�C1.M IS/ is a path that starts at c and ends at an irreducible configuration
that is very near the reducible one.

Part 2 The signs that appear in (3-4) are also defined using families of operators;
in this case the operators that appear in (3-9). A digression is needed first to say
more about how this is done (See Chapter 20 of [16]). To start the digression, fix r

and g. Let c� and cC denote elements in Conn.E/ � C1.M IS/ where L. � / has
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trivial kernel. Introduce PDP.c�; cC/ to denote the space of piecewise differentiable
maps from R to Conn.E/ � C1.M IS/ that have s ! �1 limit which is gauge
equivalent to c� and s!1 limit which is gauge equivalent to cC . Each d 2P has
its corresponding version of Dd as given in (3-9); here viewed as a Fredholm operator
from L2

1
.R�M I iT �M ˚S˚ iR/ to L2.R�M I iT �M ˚S˚ iR/. Quillen [18]

explained how such a family of operators can be used to construct a real line bundle,
det.D/! P. The fiber of det.D/ at a given d 2 P is canonically identified withVmax

.kernel.Dd//˝R .
Vmax cokernel.Dd//

� if either the kernel or cokernel of Dd is
nontrivial. As explained in [16], this real line bundle is suitably gauge invariant and has
gauge invariant orientation. Use ƒ.c�; cC/ to denote the 2–element set of orientations
for det.D/!P; viewed here as a nontrivial Z=2Z module.

Collectively, the modules ƒ. � ; �/ have the following three important features: To state
the first, let c�; c0 and cC denote elements in Conn.E/�C1.M IS/ where L. � / has
trivial kernel. There is in this case the composition law ƒ.c�; c0/˝Z=2Zƒ.c0; cC/D

ƒ.c�; cC/. Second, ƒ.c�; cC/�Dƒ.cC; c�/. Note that these last two properties imply
that ƒ.c�; cC/ can be written as ƒ.c�/˝Z=2Zƒ.cC/

� where ƒ. � / is a Z=2Z module
that is assigned to each gauge equivalence class of pairs c 2 Conn.E/�C1.M IS/
where Lc has trivial kernel.

To state the final salient property, assume now that both c� and cC are irreducible
solutions to (3-5) and that both the c D c� and c D cC versions of Lc have trivial
kernel. Assume that each d 2M.c�; cC/ version of Dd has trivial cokernel. Then
the restriction of ƒ.c�; cC/ to M.c�; cC/ is canonically isomorphic to the latter’s
orientation sheaf.

With the digression now over, assume now that r and g obey Criteria (3-8) and (3-10).
What follows explains how the signs for the differential on CSW are determined. Assign
to each gauge equivalence class of irreducible solutions to (3-5) an element, o. � /,
in the corresponding version of ƒ. � /. Suppose next that c� and cC are irreducible
solutions to (3-5). Then o.c�/o.cC/ 2ƒ.c�; cC/ and so defines an orientation for each
component of M.c�; cC/. Meanwhile, each 1–dimensional component of this space
is oriented by the generator of the R action that is induced by translation along the R
factor of R�M . This understood, a given 1–dimensional component contributes C1

to �.c�; cC/ when these two orientations agree; and it contributes �1 to �.c�; cC/
when these two orientations disagree.

3.f Other functions on Conn.E/�C 1.M IS/

Various functions on Conn.E/�C1.M IS/ play a central role in subsequent parts of
the story. The first of these is the gauge invariant function, E , on Conn.E/ with value
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on A 2 Conn.E/ given by

(3-13) E.A/D i

Z
M

a^�BA:

The second function, the Chern–Simons function, is a function on Conn.E/. Its
definition requires first a choice, AE , of a fiducial connection on E . It proves useful
to choose the latter to be a connection whose curvature 2–form is harmonic. With AE

chosen once and for all, the value of the Chern–Simons function on A 2 Conn.E/ is
given as follows: Write ADAE CyaA . Then

(3-14) cs.A/D�

Z
M

yaA ^�dyaA� 2

Z
M

yaA ^�
�
BE C

1
2
BAK

�
;

where �BE is the curvature of AE and �BAK
is that of AK . Note that cs is fully

gauge invariant only in the case where c1.det.S// is a torsion class.

The third of the four functions is denoted by a. Its critical points are the solutions to
(3-5) and the maps that solve (3-6) parametrize the integral curves of its gradient vector
field. This function is given by

(3-15) aD 1
2
.cs� r E/C gC r

Z
M

 |DA :

The definition of the fourth of these functions requires first the choice of a section
 E 2C1.M IS/ such that the rD1, gD0 and cD .AE ;  E/ version of Lc has trivial
kernel. With this done, the fourth function, f , is a locally constant function defined off
of a codimension 1 subvariety in Conn.E/�C1.M IS/. Its value on any given .A;  /
is the spectral flow for the path of operators fLsgs2Œ0;1� with Ls denoting the version
of (3-7) that has r s in lieu of r , sg in lieu of g, and .AE C syaA;  E C s. � E//

in lieu of .A;  /.

The respective values of cs, a, and f on any given pair .A;  / are identical to those
on .A�u�1du;u / if u 2 C1.M IS1 is homotopically trivial or if c1.det.S// is a
torsion class. However, the functions

(3-16) csf D cs� 4�2f and af D a� 2�2f

are fully gauge invariant. This is to say that their values on any given .A;  / are
identical to those on .A�u�1du;u / for all u 2 C1.M IS1/. Note, however, that
csf and af are only defined on the complement of the codimension 1 subvariety that
consists of the elements c 2Conn.E/�C1.M IS1/ where Lc has a nontrivial kernel.
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3.g Special cases

Of principal interest in what follows are the cases of (3-5) and (3-6) where the metric
is such that jaj D 1 and �da D 2a. Thus, the metric comes via an almost complex
structure J on the kernel of a such that da. � ;J. � // is a metric on kernel.a/. Assume
as well that the function g has the form e� with e� as in (3-11) as defined using a
given 1–form � 2�. In this case, the equations in (3-5) read

(3-17)
� BA� r. |� � ia/� i�d�C 1

2
BAK

D 0.

� DA D 0.

With � 2 � fixed, and r � 1 chosen, Mr henceforth denotes the space of gauge
equivalence classes of solutions to (3-17).

In this case, the equations in (3-6) for instantons are

(3-18)
�

@
@s

ACBA� r. |� � ia/� i�d�C 1
2
BAK

D 0.

�
@
@s
 CDA D 0.

As noted above, the equations in (3-18) assert that .A;  / is a critical point of the
function

(3-19) aD
1

2
.cs� rE/C e�C r

Z
M

 |DA I

and the equations in (3-19) assert that the path s! .A;  /js is an integral curve of
minus the gradient of a.

3.h Isomorphisms and perturbations

What follows here is an appendix to Section 3 whose purpose is to compare the
respective Seiberg–Witten Floer cochain complexes as defined by distinct pairs of
metric on M and perturbation. The discussion that follows has five parts.

Part 1 Any given metric on M and suitable perturbation from P can be used to
define a chain complex using solutions to (3-2) and differential using solutions to (3-3).
Both the differential and chain complex depend on the chosen metric and perturbation.
To say that the resulting cohomology group does not depend on these choices means
the following: Suppose that (g0; g0/ and (g1; g1/ are the relevant pairs of metric on
TM and suitable perturbation. Let H0 and H1 denote the corresponding versions of
the cohomology that is defined by the respective (g0; g0/ and (g1; g1/ versions of (3-2)
and (3-3). As explained in [16], there is a canonical isomorphism from H1 to H0 .
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This isomorphism is denoted in what follows by I0;1 . Note that I0;1 preserves the
Z=pZ gradings of these Z–modules. More is said about I0;1 in Part 2 immediately
below. The Z–modules H0 and H1 are said in what follows to be realizations of the
Seiberg–Witten Floer cohomology.

Let H0 denote a given realization of the Seiberg–Witten Floer cohomology. Suppose
that h is a given Z–module and let �0W h! H0 denote a homomorphism. Given
that any two realizations of the Seiberg–Witten Floer cohomology are canonically
isomorphic, this homomorphism �0 defines a homomorphism from h to HSW . To say
more about what this means, let H1 denote a second realization of the Seiberg–Witten
Floer cohomology and let �1W h!H1 denote some homomorphism. Then �1 also
defines a homomorphism from h1 into HSW . These two homomorphisms from h

into HSW agree if and only if �0 D I0;1�1 .

Part 2 The isomorphism I0;1 between realizations H0 and H1 is obtained via a
homomorphism, yI0;1 , between the corresponding cochain complexes that intertwines
the respective differentials. To construct yI0;1 , first fix a smooth, 1–parameter family of
metrics x! gx parametrized by x 2 Œ0; 1� such that gx = g0 for x � 1

8
, and gx D g1

for x � 7
8

. Define a family of metrics fgsgs2R so that gs D g0 for s < 0, gs D gx

for x 2 Œ0; 1� and gs D g1 for s > 1. Each gx has a corresponding Banach space of
perturbations for use in defining (3-2) and (3-3). These can be viewed as defining a
smooth Banach space bundle over the space of metrics. The bundle is denoted by P .
A perturbation chosen for a given metric is understood to come from its fiber over P .
This understood, the fiber over any given metric is also denoted by P . Granted this
sloppy notation, fix an analogous, but generic path x ! gx 2 P with gx D g0 for
x � 1

8
and gx D g1 for x � 7

8
, and likewise extend this to a family fgsgs2R . Be

forewarned that a path fgxgx2Œ0;1� can be used to construct the desired isomorphism
only if certain criteria are met. The latter are much like the ones in Section 3.d. In any
event, a reasonably generic path will suffice. A path with the desired properties is said
to be suitable.

Use the data f.gs; gs/gs2R to define an s–dependent version of (3-3) where the metric
on any given constant s slice of R�M is given by gs , and where the perturbation
terms have s–dependence; thus .T;S/ at s 2R is obtained from gs . The instanton
solution to the resulting version of (3-3) with s–dependent parameters is said to be
a cobordism instanton. The homomorphism yI0;1 is defined by using an algebraic
count of the equivalence classes of cobordism instantons whose corresponding version
of (3-9) has Fredholm index equal to zero. For example, in the case when g0 D g1

and g0 D g1 , one can take the constant family x! .g0; g0/. The set of contributing

Geometry & Topology, Volume 14 (2010)



2526 Clifford Henry Taubes

instantons in this case consists of the set of R–invariant instantons, and the equivalence
class of each such instanton contributes C1 to the count.

Kronheimer and Mrowka, in Chapters 23 and 24 of [16], give the details of the construc-
tion of this homomorphism yI0;1 . They explain why it intertwines the corresponding
differentials, why the induced homomorphism I0;1 between the respective cohomology
modules is an isomorphism, and why this I0;1 does not depend on the choice of the
interpolating data set.

Part 3 A point to note with regards to these cobordism isomorphisms concerns their
behavior with respect to composition. To set the context, suppose that .g0; g0 ) and
.g1; g1/ are two data sets that are suitable for defining the Seiberg–Witten Floer
cohomology. Suppose, in addition that x! .gx; gx ) is a suitable path of data sets
that is parametrized by x 2 Œ0; 1�, and in particular is a path that can be used to
construct the canonical identification I0;1 between the respective .g0; g0/ and .g1; g1 )
versions of Seiberg–Witten Floer cohomology via a cobordism homomorphism between
their cochain complexes. Now consider a finite set of points 0 D x0 < x1 < � � � <

xN�1 < xN D 1 such that each x D xN version of .gx; gx/ is suitable for defining
the Seiberg–Witten Floer cochain complex and its differential. Note that if the family
fx! .gx; gx/gx2Œ0;1� is sufficiently generic, there is a residual set of points in Œ0; 1�
with this property. In any event, given this set, there exists for each k 2 f1; : : : ;N g a
cobordism isomorphism between the respective Seiberg–Witten Floer cohomology as
defined by the x D xk and x D xk�1 versions of .gx; gx/. Let Ik denote the latter.
Then the canonical isomorphism I0;1 is obtained by composing in the reverse order
the isomorphisms in the set fIkg1�k�N .

Part 4 This part of the digression concerns small changes in the data set. Suppose that
.g; g/ are suitable for defining the cochain complex and differential using the solutions
to the corresponding versions of (3-2) and (3-3). Suppose in addition that an integer k

has been given in the case when c1.det.S// is a torsion class, and that all solutions to
(3-2) with degree k or greater are irreducible. The three points that follow should be
kept in mind. To set the stage, remark that there is a natural way to identify respective
spinor bundles for different metrics by viewing any given metric’s orthonormal frame
bundles as a submanifold inside the Gl.3IR/ bundle of oriented frames in TM . This
leads to a natural way to discuss the manner in which solutions to versions of (3-17)
(and also (3-18)) vary as the metric on M is varied.

To state the first point, suppose that .g0; g0/ is chosen from a suitable neighborhood of
.g; g/. Then there is a 1–1 correspondence between the respective .g; g/ and .g0; g0/
solutions to (3-2), at least between those with degree k or greater if c1.det.S// is
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torsion. This correspondence pairs solutions with the same spectral flow. There is also
a 1–1 correspondence between the respective sets of .g; g/ and .g0; g0/ instantons that
are used to define the differential on the corresponding sets of generators (in degree k

or greater if c1.det.S// is torsion). The latter correspondence pairs instantons with the
same sign contribution to the respective differentials.

The second point elaborates on the first: The first point alludes to correspondences
with the following property: Corresponding solutions vary smoothly over the given
neighborhood of .g; g/.

To set the stage for the third point, fix .g0; g0/ from this neighborhood of .g; g/. The
correspondences between solutions of (3-2) and (3-3) extends by linearity to give an
isomorphism between the respective cochain complexes that intertwines the respective
differentials (in degree k or greater if c1.det.S// is torsion.) With this understood,
what follows is the third point: The latter isomorphism is realized by a cobordism
isomorphism of the sort described in Part 2 of this digression.

Part 5 The relevant metrics for the proof of Theorem 1 are defined by pairs .a;J / of
contact 1–form and suitable almost complex structure. The perturbations in question
are those of the sort to give (3-5) and (3-6). (In this regard, it is assumed in what
follows that the function E from (3-13) is always an element in P .) In general, it is
not possible to make do only with the simpler (3-17) and (3-18), at least with regards
to the differential. Even so, (3-17) and (3-18) play the prominent role. The three points
that follow indicate why (3-17) is sufficient for most purposes.

The first point concerns a partial version of what is said in Part 4. To set the stage, fix
r > 0 and a 1–form � for use in (3-17). Suppose that Z is a finite set of distinct, gauge
equivalence classes of solution to the .a;J /, r , and � version of (3-17). Suppose
in addition that each element in Z is represented by an irreducible, nondegenerate
solution. Let g denote the metric defined by the pair .a;J /. Then there exists a
neighborhood of the pair .g; gD e�/ with the following significance: Suppose that
.g0; g0/ comes from this neighborhood. Then there is a 1–1 correspondence between
the equivalence classes that comprise Z and a set of equivalence classes of irreducible,
nondegenerate solution to the .g0; g0/ version of (3-5). This equivalence lifts to an
equivalence between corresponding sets of solutions, and the latter pairs solutions with
the same spectral flow. This last correspondence is such that .g0; g0/ solutions vary
smoothly as .g0; g0/ is varied.

The second point concerns .g0; g0/ instantons when the .g; g/ instantons that interpolate
between elements in Z are nondegenerate. Make the following assumption: Let d
denote a .g; g/ instanton whose version of (3-9) has index 1 and has s!˙1 limits
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in Z . Then d is nondegenerate. Assume also that there exist but a finite set of such
instantons. If this is the case, there exists perturbations very near g with the following
property: First, the perturbation, with g , is suitable for defining the generators of the
Seiberg–Witten Floer cochain complex and its differential. Second, the perturbation is
zero to any given order at each element in Z ; and it is zero to any given order on the
path in Conn.E/�C1.M IS/ that is defined by any .g; g/ instanton of the sort just
described.

The third point says more about instantons: Suppose that .g0; g0/ is sufficiently close
to .g; g/. Then, there is a 1–1 correspondence between the set of instantons described
in the preceding paragraph and a subset of the .g0; g0/ instantons. Each instanton in
this subset defines a path between .g0; g0/ solutions to (3-5) that correspond to the
.g; g/ solutions from Z . The correspondence here has the same properties as its analog
in Part 4.

4 Proof of Theorem 1

The purpose of this section is to explain how Theorem 1 follows from a collection of
theorems about the large r versions of (3-17) and (3-18). The proof itself is given in
the final subsection; the intervening subsections supply the necessary tools.

To set the stage, note that the definition of embedded contact homology requires the
choice of a suitable pair .a;J / of contact 1–form from Lemma 2.1’s residual set and
almost complex structure from Ja . Two different choices can, in principle, define
different complexes and/or different differentials. (As noted above, Mike Hutchings
conjectured that the resulting homology groups are isomorphic.) Likewise, the definition
of the Seiberg–Witten Floer cohomology or homology requires choices. Such choices
in this case consist of a 4–tuple .ya; yJ ; r; g/ where ya is a suitably chosen contact form
and yJ is an almost complex structure from Jya . These are used to define the metric
on M ; and then ya is used as the contact 1–form in the corresponding versions of (3-17)
and (3-18). Meanwhile r � 1 is a real number and g 2 P is a suitable perturbation
term. The choice of this data determines the chain complex and the differential. These
can and will differ with differing choices of .ya; yJ /; r; g.

As noted in Section 3.h, any two such choices give isomorphic realizations of the
Seiberg–Witten Floer cohomology. In any event, the set of generators can be defined by
using only solutions to (3-17). Given what is said in Part 5 of Section 3.h, this follows
from:

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology I 2529

Proposition 4.1 Suppose that .a;J / is a given pair of contact 1–form and almost
complex structure. Use the latter to define the metric, g , on M . If c1.det.S// is torsion,
then fix an integer k . There exists rk > 0 with the following significance:

� Fix r > rk and a 1–form � with P –norm less than 1. Then all solutions to
the corresponding version of (3-17) are irreducible if c1.det.S// is not torsion.
If c1.det.S// is torsion, then all solutions to (3-17) with degree k or less are
irreducible.

� Fix r > rk . If a form � with P –norm less than 1 is chosen from an appropriate
residual set, then all of the aforementioned solutions to (3-17) are nondegenerate.

� The form � can be chosen with P norm less than 1 from an appropriate residual
set so that the following is true: There is a nonaccumulating, discrete set U 2
Œrk ;1/Q such that if r > rk is not in U , then all irreducible solutions to the r

and � version of (3-17) are nondegenerate.

Proof of Proposition 4.1 This summarizes results from Section 3 in [24] and Section 4
in [25].

Granted this proposition, it follows from the observations of Part 5 in Section 3.h that
there are suitable perturbations of the form g D e� C p where p has the following
properties: First, it comes from any given neighborhood of 0 in P . Second, it vanishes
to any desired order on the irreducible solutions to the .a;J /, r and � version of
(3-17).

4.a From Reeb orbits to Seiberg–Witten solutions on M

Suppose that .ya; yJ / is a pair of contact structure from Lemma 2.1’s residual set and
almost complex structure in Jya . Fix L. The chain complex CL

ech has generators that
are equivalence classes of pairs of the form .‚; o/ where ‚ is a set whose typical
element is a pair of Reeb orbit and positive integer subject to various constraints. It
proves useful to introduce now ZL

ech to denote the set of such ‚. Assume now the
following:

Suppose that ya is a contact structure on M that defines the given orientation. Given
L� 1, say that ya is L–nondegenerate when two requirements are met. These require-
ments refer to finite sets of the following sort: Let ‚ denote the set in question. This
is a finite collection of pairs whose elements have the form .
;m/ where 
 is a Reeb
orbit and m is a positive integer. Moreover, no two pairs share the same Reeb orbit.
The first requirement on ‚ demands that

P
.
;m/2‚ m`
 ¤ L. To state the second

requirement, assume that this last sum is less than L. Require that all Reeb orbits that
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appear in a pair from ‚ are nondegenerate; and that if .
;m/ 2‚ with 
 elliptic, then

 is m–elliptic.

It proves useful to introduce ZL
ech to denote the collection of sets ‚ of the sort just

described, and with
P
.
;m/2‚ m`
 < L. With L � 1 chosen, suppose that .ya; yJ /

is such that ya is an L–nondegenerate contact form and that yJ is an almost complex
structure on the kernel of ya such that dya. � ; yJ � / is positive definite. Assume now the
following:

(4-1)

� There is no element ‚ 2 ZL
ech with

P
.
;m/2‚ m`
 DL.

� Suppose that 
 is a Reeb orbit with `
 < L. Then 
 has a tubular
neighborhood map 'W S1�D!M as described in Section 2.a such that
if 
 is hyperbolic with rotation number k , then .�; �/ D .1

4
k; i"eikt /

with " > 0 but very small. Meanwhile, if 
 is elliptic, then its rotation
number R is irrational. Furthermore:
(i) The pair .�; �/D .1

2
R; 0/.

(ii) The '�–pull back of T 1;0.R �M / is spanned by ds C ia and
`

2�
.dz� i Rz dt/.

Moreover, these two forms are orthogonal and have norm
p

2.

Fix a large value for r and a 1–form � from the .ya; yJ / version of � with P norm
less than 1. Use Mr to denote the set of equivalence classes of solutions to the
corresponding version of (3-17).

The theorem that follows asserts the existence of a map from ZL
ech into the version of

Mr that is defined using .ya; yJ /, �, and a sufficiently large r , This map is used to
define the isomorphism for Theorem 1.

Theorem 4.2 Fix L� 1 and a pair .ya; yJ / as described above that obeys (4-1). There
exists � � 1 with the following significance: Define Mr using r � � and a 1–form
� 2� with P norm bounded by 1. There exists a map ˆr W ZL

ech!Mr with the three
properties listed below.

� ˆr is a bijection onto the subset in Mr of elements cD .A;  / with E.A/ <

2�L.

� If c 2Mr is in the image of ˆr , then the operator Lc has trivial kernel.

� Let ‚ and ‚0 denote any two elements in ZL
ech and let z and z0 denote their

respective Z=pZ degrees. Meanwhile, let x and x0 denote the respective Z=pZ
degrees of ˆr .‚/ and ˆr .‚0/. Then x�x0 D�.z� z0/ modulo pZ.
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The image of any given element ‚ 2 ZL
ech via the map ˆr can be characterized in part

as follows: Let 
 2M denote a Reeb orbit with `
 < L and let D �M denote a
transverse disk of the sort described by (4-1). Let .A;  / denote a solution to (3-17)
that defines the equivalence class ˆr .‚/. Then the integral of .i=2�/�BA over the
concentric disk in D with radius r�1=4 is bounded in absolute value by �r�1=2 unless

 comes from a pair .
;m/ 2‚. In this case, the integral differs from m by at most
�r�1=2 .

The upcoming Section 5 says more about what ˆr looks like. The actual construction
of ˆr is in Paper II of this series [26]. The assertion that it defines a bijection as
described by the Theorem’s first bullet is proved in Paper IV of the series [28]. The
assertions of the second and third bullets are proved in Paper III of the series [23].

A rather more complicated version of Theorem 4.2 holds when the second item in (4-1)
is not invoked. In the latter case, each ‚ 2 ZL

ech parametrizes a subset of Mr such
that the collection of these subsets elements cD .A;  / with E.A/ < 2�L. More is
said in Section 5 about this more general version of Theorem 4.2.

4.b From pseudoholomorphic curves to Seiberg–Witten solutions on
R�M

Fix L� 1. Suppose that .ya; yJ / and � 2� are suitable input for Theorem 4.2. Any
given large r version of Theorem 4.2’s map ˆr identifies ZL

ech with a subset in Mr .
Define CL

ech from the elements ZL
ech as in Section 2.c. The map ˆr can be used to

define a monomorphism from CL
ech into the Seiberg–Witten cochain complex. This is

done as follows: Let ‚ 2 ZL
ech . Order the subset of pairs .
; 1/ 2 ‚ for which 
 is

hyperbolic with even rotation number. Doing so for all such ‚ identifies ZL
ech with

a set of generators of CL
ech . The image of ZL

ech via ˆr defines a set of generators of
CSW . Extend this map of generators in a Z–linear fashion. The monomorphism so
constructed is canonical up to precomposing by an isomorphism from CL

ech to itself
that changes the sign of some of the generators. A monomorphism that is obtained
from ˆr in this way is denoted by Tˆ .

The next theorem asserts in part that there is a choice for Tˆ that intertwines the
embedded contact homology differential with the Seiberg–Witten Floer cohomology
differential. This theorem reintroduces the space M1.‚�; ‚C/ from Section 2.c and
the space M1.c�; cC/ from Section 3.b. Note that both spaces admit a canonical R–
action, this induced by the action of R on R�M as the group of constant translations
of the R factor in R�M .

The upcoming Theorem 4.3 is used subsequently to prove that there are suitable pairs
.ya; yJ / with a version of Tˆ that intertwines the embedded contact homology differential
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with the Seiberg–Witten Floer cohomology differential. What follows directly sets the
stage.

To start, the theorem assumes implicitly that ya is suitably generic, which is to say
ya 2 NM . It also assumes implicitly that yJ 2 Ja . Needless to say, it assumes (4-1).
Granted the preceding assumptions, introduce the space M1.‚�; ‚C/ from Section
2.c as defined for pairs .‚�; ‚C/ 2 ZL

ech .

Theorem 4.3 uses .ya; yJ /, a 1–form � 2� with P –norm less than 1, and a specified
value for r to define the space Mr and Theorem 4.2’s map ˆr . Theorem 4.3 then
reintroduces the space M1.c�; cC/ from Section 3.b as defined for solutions c� and
cC of (3-17) that define the respective equivalence classes ˆr .‚�/ and ˆr .‚C/.
Recall that this is the space of instanton solutions to ..ya; yJ /; r; �/ version of (3-18)
with s!�1 limit equal to c� , with s!1 limit cC , and with (3-9) defining an
index 1 Fredholm operator.

The theorem also discusses certain perturbed versions of M1.c�; cC/. The perturbed
version is defined using a suitable, small element p 2 P that vanishes to second order
on c� and cC . This perturbed version is denoted by M1;p.c�; cC/. An element in
d 2M1;p.c�; cC/ is an instanton solution to the g D e� C p version of (3-6) with
s!�1 limit c� , with s!1 limit gauge equivalent to cC , and with (3-9) again
defining a Fredholm operator with index 1. As per what is said in Part 5 of Section 3.h,
there exists a residual set of such perturbations that make the data .ya; yJ / with r , and
gD e�C p suitable for defining the Seiberg–Witten Floer cochain complex.

Keep in mind that M1.‚�; ‚C/ and any p 2 P version of M1;p.c�; cC/ admits a
canonical R–action, which is induced by the action of R on R�M as the group of
constant translations of the R factor in R�M .

Theorem 4.3 Fix L� 1 and a pair .ya; yJ / as described above that obeys (4-1). There
exists � � 1 with the following significance: Define the space Mr using the pair
.ya; yJ /, a 1–form � 2� with P norm bounded by 1, and r � � .

� Let ‚� and ‚C denote any two elements in ZL
ech . Use c� and cC to denote

solutions to (3-17) whose gauge equivalence classes are the respective images in
Mr of ‚� and ‚C via Theorem 4.2’s map ˆr .
(i) The space M1.c�; cC/ has a finite set of components, and each component

is an orbit of the canonical R action. In addition, if d 2M1.c�; cC/, then
the corresponding gD e� version of (3-9) has trivial cokernel.

(ii) There is an R–equivariant diffeomorphism, ‰r , from M1.‚�; ‚C/ to
M1.c�; cC/.
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(iii) Let p 2 P denote a sufficiently small element that vanishes to second order
on the image of ˆr . Define M1;p.c�; cC/ as above. There is also an
R–equivariant diffeomorphism from M1.‚�; ‚C/ to M1;p.c�; cC/.

� Let p2P be as described in item (iii) above, and such that the data .ya; yJ /, r and
gD e�C p is suitable for defining the Seiberg–Witten Floer cochain complex.
There is a choice for Tˆ such that if ‚� and ‚C now denote any given pair of
generators of CL

ech , then the contribution, C1 or �1, of any given component in
M1.‚�; ‚C/ to the embedded contact homology differential is the same as the
contribution of its image via item (ii)’s diffeomorphism to the Seiberg–Witten
Floer cohomology differential.

A rough picture of ‰r is given in Section 5. The full construction is in Paper II of
this series [26]. The proof that ‰r is an R–equivariant embedding onto an open set is
given in Paper III [24]. The assertion that ‰r is a surjection is given as Theorem 1.2
in Paper IV [28] and proved in the latter’s Sections 3–7. The proof of item (iii) is
in Section 8 of [28]. The proof of the assertion in the theorem’s second bullet is in
Paper III. With regards to the second bullet, Paper III discusses only the case for ‰r .
Given what is said in Part 4 of Section 3.h and given the first bullet of the theorem,
the assertion for the general case follows directly from the assertion for the special
case of ‰r . Moreover, given items (i) and (ii) of the first bullet, it follows from what
is said in Part 5 of Section 3.h that it is sufficient with regards to the second bullet to
consider elements p 2 P that vanish to second order along the image of all paths in
Conn.E/�C1.M IS/ of the form fs! d.s/gs2R where d is an instanton solution to
(3-18) from the set M1.c�; cC/. If this is assumed, then M1;p.c�; cC/DM1.c�; cC/

and item (iii)’s diffeomorphism is item (ii)’s map ‰r .

Theorem 4.3 has a replacement of sorts when the second item in (4-1) is not present.
The latter is vastly more complicated to state, let alone prove. More is said on this
score in Section 5.

The next theorem asserts that Tˆ can be chosen so that any sufficiently large r version
of Tˆ.CL

ech/ is mapped to itself by the Seiberg–Witten Floer cohomology differential.
Of course, the definition of this differential may require a perturbation term. The latter
is taken to have the form g D e�C p with p 2 P very small. As noted in Part 5 of
Section 3.h, it is permissible to choose p so as to vanish to second order on the image
of any given large r version of ˆr . As noted in the preceding paragraph, it is likewise
permissible to choose p to vanish along the image of all paths in Conn.E/�C1.M IS/
of the form fs! d.s/gs2R where d is an instanton solution to (3-18) taken from the
set fM1.c�; cC/ W cC and c� are in the image of ˆr g. This constraint is not strictly
necessary; it is imposed implicitly in what follows only to simplify the presentation.
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Theorem 4.4 Fix L� 1 and a pair .ya; yJ / as above for use in Theorem 4.2. This is to
say that ya is L–nondegenerate and the pair obeys (4-1). There exists � � 1 with the
following significance: Define Mr using r � � and a 1–form � 2� with P norm
bounded by 1. Fix a very small normed element p 2 P with the properties described
above. Assume that ..ya; yJ /; r; gD e�C p/ is suitable for defining the Seiberg–Witten
Floer cochain complex and its differential. Let CSW denote this cochain complex.

� Let d denote a ..ya; yJ /; r; e�Cp/ instanton with s!1 limit in the image of ˆr .
Then the s!�1 limit of d is also in ˆr .

� Assume in addition that ya 2 NM and that yJ 2 Ja so that the conditions for
Theorem 4.3 are met. Then the monomorphism Tˆ can be chosen so as to
intertwine the action of the boundary operator on CL

ech with the action of the
differential on CSW .

Theorem 4.4 implies that when .ya; yJ / is suitable for Theorem 4.3 and r is large,
then there is a version of the monomorphism Tˆ that intertwines the embedded
contact homology differential with the differential that defines the Seiberg–Witten Floer
cohomology. As such, this Tˆ identifies CL

ech as a subcomplex in the Seiberg–Witten
Floer cochain complex.

Theorem 4.4 is proved in the upcoming Section 4.h.

4.c The image of Tˆ in HSW

Fix a pair .a;J / of contact 1–form from Lemma 2.1’s residual set and almost complex
structure from Ja . Use this data to define the embedded contact homology chain
Z–module Cech and its differential. The latter has a filtration fCL

echgL�1 with the
corresponding homology groups. Fix L� 1 such that the top item in (4-1) holds for
the pair .a;J /. Fix small ı > 0 and Proposition 2.5 supplies a .ı;L/ approximation,
.ya; yJ /, to .a;J /. The latter defines the analogous set of Z–modules fyCL0

echgL0�1 and
corresponding homology groups. Let yZL

ech denote the yCL
ech analog of ZL

ech . In this
regard, the elements in yZL

ech are geometrically identical to those in ZL
ech . As noted in

Proposition 2.4, the corresponding versions of HL
ech are canonically isomorphic.

The upcoming Theorem 4.5 refers to classes in the realization of the Seiberg–Witten
Floer cohomology as defined .ya; yJ /, a 1–form � with P –norm bounded by 1, a very
large r , and a suitable perturbation of the form gD e�C p/, with p having very small
norm. Theorem 4.5 assumes implicitly that r is large enough to invoke Theorems
4.2–4.4. As in Theorem 4.4, it proves convenient to require p to vanish to second order
on the image of the approximation, .ya; yJ /, r and � version of ˆr . Given what is said
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in Theorem 4.4 and Part 5 of Section 3.h, it is also permissible to choose p to vanish
along the image of all paths in Conn.E/ � C1.M IS/ of the form fs ! d.s/gs2R

where d is an instanton solution to (3-18) from the set fM1. � ; cC/ W cC is in the image
of ˆr g. This constraint is also assumed implicitly, again to simplify the presentation.

Theorem 4.5 Fix a pair .a;J / where a is a contact 1–form from Lemma 2.1’s residual
set, and where J 2 Ja . Also, fix k 2Z when c1.det.S// is a torsion class. There exist
constants �����1 with the following significance: Fix L���� and there exists L��

such that the .a;J / and L version of the first item in (4-1) holds. Fix ı 2 .0; ��1/; then
choose a .ı;L/ approximation, .ya; yJ /, to the pair .a;J /. Choose a 1–form � 2 �

with P norm bounded by 1 as described in Proposition 4.1. Take r very large and
fix a suitable perturbation of the form described above with p very small, and so that
the data .ya; yJ /, r and gD e�C p are suitable for defining the Seiberg–Witten Floer
cochain complex and differential. Use CSW to denote this cochain complex, and use
TˆW yCL

ech! CSW to denote the monomorphism given by the third bullet in Theorem 4.4.

� Let � denote any Seiberg–Witten Floer cohomology class, but of degree k or
more if c1.det.S// is a torsion class. The class � has a representative cocycle
in Tˆ.yCL�

ech/.

� Suppose that � 2 yCL�
ech and that Tˆ.�/ is a coboundary. If c1.det.S// is a torsion

class, also assume that � has degree k or less. Then � is a boundary in yCL
ech .

This theorem is also proved in Section 4.h.

4.d Filtrations of the Seiberg–Witten Floer cohomology

This section and Sections 4.e–4.g supply the background material that is used subse-
quently to prove Theorems 4.4 and 4.5. To begin, let .a;J / denote a pair consisting of
a contact 1–form and compatible almost complex structure. Fix � 2� with P norm
less than 1, fix r very large and choose a very small normed element p 2 P so that
the data .ya; yJ /, r and gD e�C p are suitable for defining the Seiberg–Witten Floer
cochain complex. Use CSW in what follows to denote this cochain complex, and use
ı� to denote the differential. Use g also to define the function a in (3-15) and the
function af in (3-16). Suppose that A 2R is such that the following is true:

(4-2)

� If c1.det.S// is a torsion class, then (3-5) has no solutions with aD rA.

� If c1.det.S// is not torsion, then (3-5) has no solutions with af 2

ŒrA� 1; rA�.
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Given that ı� increases a and af , this cochain complex has as a subcomplex the set
CSW;A that is generated by the elements in Mr with af > rA or a> rA as the case
may be. The short exact sequence

(4-3) 0! CSW;A
! CSW

! CSW=CSW;A
! 0

induces a corresponding long exact sequence in cohomology, thus

(4-4) � � � !H�.CSW;A/!H�.CSW/!H�.CSW=CSW;A/!H�.CSW;A/! � � � :

The exact sequence in (4-4) is also stable with respect to certain relatively large changes
in the data set. To elaborate, suppose that f.ax;Jx/gx2Œ0;1� is a smoothly parametrized
family with each term consisting of a contact 1–form and compatible almost contact
structure. Fix a smoothly parametrized family frxgx2Œ0;1� with all members very large.
Let f�xgx2Œ0;1� denote a smoothly parametrized family of forms in � with P norm
less than 1. Assume that (4-2) holds for the version of (3-17) that is defined by each of
the data sets from the family f..ax;Jx/; rx; gx D e�x

/gx2Œ0;1� . Now let fpxgx2Œ0;1�

denote a family in P with very small norm. Note that if each x 2 Œ0; 1� version of
px has sufficiently small norm, then (4-2) will also hold when (3-5) is defined by any
x 2 Œ0; 1� version of ..ax;Jx/; rx; gx D e�x

C px/. This constraint on the norms is
assumed implicitly in what follows. Assume that ..a0;J0/; r0; g0 D e�0

C p0/ and
..a1;J1/; r1; g1D e�1

Cp1/ are suitable for defining the Seiberg–Witten Floer cochain
complex and differential.

Granted these assumptions, there are corresponding versions of (4-3) and also (4-4) for
the data sets ..a0;J0/; r0; g0 D e�0

C p0/ and ..a1;J1/; r1; g1 D e�1
C p1/.

Lemma 4.6 Suppose that the family of data sets

fDx D ..ax;Jx/; rx; gx D e�x
/C pxgx2Œ0;1�

has all of the properties just described.
� If each rx is sufficiently large, and each px is sufficiently small and suitably

generic, then the resulting cobordism homomorphism between the respective
x D 0 and x D 1 realizations of the Seiberg–Witten Floer cochain complex
preserves (4-3) and induces an isomorphism between the respective x D 0 and
x D 1 terms in (4-4) that intertwines the arrows.

� The isomorphisms described in the preceding bullet between the respective terms
in (4-4) are invariant under homotopies in the following sense: Assume that
(i) The families

fD0
xgx2Œ0;1� and fD1

xgx2Œ0;1�

are 1–parameter families of data sets of the sort considered above.
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(ii) The family˚
y! fD.x;y/ D ..a.x;y/;J.x;y//; r.x;y/; g.x;y/ D e�.x;y/ C p.x;y//gx2Œ0;1�

	
y2Œ0;1�

is a two parameter family of data sets with respective y D 0 and y D 1

members fD0
xgx2Œ0;1� and fD1

xgx2Œ0;1� , and such that both fD.0;y/gy2Œ0;1�
and fD.1;y/gy2Œ0;1� are constant. Require that (4-2) holds when (3-5) is
defined by each .x;y/ 2 �2Œ0; 1� version of D.x;y/ .

Then the respective isomorphisms between the terms in (4-4) that are defined by
fD0

xgx2Œ0;1� and fD1
xgx2Œ0;1� agree.

Remark that the assertion in the second bullet is not used in what follows.

Proof of Lemma 4.6 The proof has nine steps. Steps 1–6 prove the first bullet and
Steps 7–9 prove the second bullet.

Step 1 Given what is said in Part 2 of Section 3.h, the family fDxgx2Œ0;1� defines a
version of the data needed to define a cochain homomorphism, yI0;1 , from the x D 1

realization of the Seiberg–Witten cochain complex to the x D 0 realization. With what
is said in Part 3 of Section 3.h in mind, choose fpxgx2.0;1/ in a suitably generic fashion
so as to make the following construction: Fix some very large integer, N , and break
up the interval Œ0; 1� into N intervals of length at most 2=N to factor the canonical
isomorphism as the concatenation of a sequence of isomorphisms fIkg1�k�N , this
as described in Part 3 of Section 3.h. By way of reminder, the interval is broken
into segments fŒxk�1;xk �g1�k�N with x0 D 0 and x1 D 1, and then any given
k 2 f1; : : : ;N g version of Ik is constructed as described in Part 2 of Section 3.h
from a corresponding cochain homomorphism, yIk , from the x D xk realization of
the Seiberg–Witten Floer cochain complex to the x D xk�1 realization. Note that the
points fxkg1�k�N are chosen so that each x 2 fxkg1�k�N version of Dx is suitable
for defining the Seiberg–Witten Floer cochain complex. In particular, each defines a
version of (4-4).

Step 2 Recall that each yIk is defined using the cobordism instantons for the x 2

Œxk�1;xk � portion of Œ0; 1�. In particular, the definition uses only cobordism instantons
whose version of (3-9) has Fredholm index zero. If N is large, then the following is
true: Let d denote a cobordism instanton that contributes to yIk . Let c� and cC denote
the respective s ! �1 and s !1 limits of d. If the x D xk�1 version of a on
c� is less than that of the x D xk version of a on cC , then their difference will be
very small in absolute value. That this is so follows by considering the alternative, and
constructing a suitable limit as N !1 from a sequence of cobordism instantons on
shorter and shorter intervals with a uniformly negative change in a. The latter will
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converge in a suitable fashion to what Kronheimer and Mrowka refer to as a broken
trajectory for some fixed x 2 Œ0; 1� data set. Each segment of such a broken trajectory
corresponds to an instanton for this data set, and instantons do not decrease a. However
the sum of the decreases in a over the broken trajectory will be bounded away from
zero due to the initial assumption. This contradiction proves the point in question.

Step 3 As noted above, yIk is defined using cobordism instantons that define index
zero versions of (3-9). Given this fact, and given what is said in Step 2, it follows that
yIk can only decrease the corresponding versions of af a small amount if N is large.
This and (4-2) have the following consequence: Each yIk intertwines the respective k

and k � 1 versions of (4-3) and so defines a homomorphism between the respective
versions of H�.CSW;A/ and between respective versions of H�.CSW=CSW;A/. This
last observation implies that I0;1 defines a homomorphism between the respective
x D 0 and x D 1 versions of H�.CSW;A/, and between the respective versions of
H�.CSW=CSW;A/.

Step 4 This step explains why the homomorphism that I0;1 defines between the
x D 0 and x D 1 versions of H�.CSW;A/ is an isomorphism. Lemma 4.6 follows from
this fact given that I0;1 defines an isomorphism between the respective versions of
H�.CSW/. Use I0;1� to denote this restriction of I0;1 to H�.CSW;A/.

Given that I0;1 can be factored as in Steps 2 and 3, it is sufficient to consider I0;1� in
the case when D0 and D1 are nearly identical. This assumption enters momentarily.
In any case, define now a 2–parameter family of data sets fD.x;y/g.x;y/2Œ0;1��Œ0;1� as
follows: For x 2 Œ0; 1

2
�, set D.x;y/D D2yx . For x 2 Œ1

2
; 1�, set D.x;y/D D2y.1�x/ . Each

y 2 Œ0; 1� version of D.x;y/ starts and ends at D0 as x increases in Œ0; 1�. Meanwhile,
the y D 0 member is D0 for all x , and the y D 1 starts at D0 when x D 0, runs to D1

at x D 1
2

, and returns to D0 at x D 1.

If D1 is close to D0 , then each y 2 Œ0; 1� family fD.x;y/gx2Œ0;1� defines a version of
yI that preserves the D0 version of (4-3). Thus, each defines an endomorphism of
the D0 version of H�.CSW;A/. Denote the latter by Iy . The y D 0 version is the
identity endomorphism. Meanwhile, the y D 1 family fD.x;1/gx2Œ0;1� is such that I .1/

factors on H�.CSW;A/ as I 0 ı I0;1� . It follows that I0;1� is an isomorphism if I .1/ is.
Meanwhile, the latter follows if there is a chain homotopy between yI .1/ and yI .0/ . As
explained in Step 5, such a chain homotopy is obtained from a certain chain homotopy
between the identity endomorphism of CSW and the endomorphism that is defined by
the data set fD.x;1/gx2Œ0;1� . Let yoW CSW! CSW denote the desired chain homotopy.
Then yo defines a chain homotopy between yI .1/ and yI .0/ if yo maps CSW;A to itself.

Step 5 This step provides some background for Steps 6 and 7. To set the stage,
suppose that

˚
y ! fD.x;y/gx2Œ0;1�

	
y2Œ0;1� is a 2–parameter family of data sets as
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described by the second bullet of the lemma. The family from Step 4 gives one
example. By assumption, both the yD 0 and yD 1 members are suitable for defining a
homomorphism between the respective realizations of the Seiberg–Witten Floer cochain
complex that induces the canonical isomorphism between their cohomologies. Let yI0

and yI1 these homomorphisms. Chapters 23 and 24 of [16] explain how to construct a
chain homotopy yI0 and yI1 from the 2–parameter family

˚
y! fD.x;y/gx2Œ0;1�

	
y2Œ0;1� .

The construction requires first choosing a very small normed and sufficiently generic
map qW �2Œ0; 1�! P that vanishes on the boundary of the square �2Œ0; 1�. If q is
sufficiently generic, then a chain homotopy is defined using an algebraic count of
the number of cobordism instantons of the following sort: For each .x;y/ 2 �2Œ0; 1�,
let D

q
.x;y/

denote the data set that is obtained from D.x;y/ by replacing p.x;y/ by
p.x;y/C q.x;y/ . The instantons in question are defined by a y 2 Œ0; 1� version of the
data set fDq

.x;y/
gx2Œ0;1� , and they are such that the corresponding version of (3-9) has

Fredholm index equal to �1. Let c denote a given irreducible generator of the x D 0

version of the Seiberg–Witten chain complex. If q is sufficiently generic, there will be
but a finite number of such instantons whose s!1 limit gives c.

Let yo denote the chain homotopy. To say a sentence more about its definition, let c
again denote a given irreducible generator of the x D 0 version of the Seiberg–Witten
Floer cochain complex. Then yo.c/ is a suitably weighted sum of those generators of
the x D 1 cochain complex that are the s!�1 limit of some cobordism instanton
of the sort just described whose s!1 limit gives c.

Step 6 Consider what is said in Step 5 in the context of the family fD.x;y/gx;y2Œ0;1�
from Step 4. The respective x D 0 and x D 1 realizations of the Seiberg–Witten Floer
cochain complexes are the same, which is to say CSW . To say more, let yo denote the
chain homotopy. Let c denote an irreducible generator of CSW , and let d denote a
cobordism instanton that contributes to yo.c/. Let c0 denote the s!�1 limit of d.
Given that D1 is very close to D0 , then a.c0/� a.c/ can be negative only by a very
small amount. Meanwhile, d decreases the spectral flow function by 1. This being the
case, it follows that af .c0/� af .c/C 1 can be negative only by a very small amount.
In particular if af .c/ > rA, af .c0/ > rA� 1, and so (4-2) requires that af .c0/ > rA.
As a consequence, yo maps CSW;A to itself.

Step 7 To prove the second bullet, consider first the case where the family of˚
fD.x;y/gx2Œ0;1�

	
y2Œ0;1� is such that for any fixed y 2 Œ0; 1�, the change in the data set

fD.x;y/gx2.0;1/ is very small. To be precise about this, suppose that ı > 0 is given such
that the following strong form of (4-2) holds: If x 2 Œ0; 1�, then there is no solution to
the D.x;0/ version of (3-5) with af 2 ŒrA� ı; rAC ı� or af 2 ŒrA� 1� ı; rAC ı�.
Let c denote a generator of the x D 1 version of CSW;A and let d denote a cobordism
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instanton that is defined using some y 2 Œ0; 1� version of the data set fDq
.x;y/
gx2Œ0;1�

whose s!1 limit gives c and whose version of (3-7) has Fredholm index �1. Let
c0 denote the s!�1 limit of d. With ı fixed, if the data that defines each x 2 Œ0; 1�

version of D.x;y/ is sufficiently close to the data defining D.x;0/ , and if each x 2 Œ0; 1�

version of q.x;y/ has sufficiently small norm, then
smashfaf .c0/� af .c/C 1 can be no less than �1

2
ı . As d has Fredholm index �1,

this implies c0 is a generator of the x D 0 version of CSW;A . It follows that the chain
map yo restricts to the x D 1 version of CSW;A so as to map the latter to the x D 0

version of CSW;A . This implies that the respective y D 0 and y D 1 versions of
the isomorphism from the x D 1 realization of H�.CSW;A/ to the x D 0 version of
H�.CSW;A/ are identical.

Step 8 What is said in Step 7 is exploited by breaking Lemma 4.6’s version of the
family

˚
fD.x;y/gx2Œ0;1�

	
y2Œ0;1� into a set of “small” homotopies of the sort considered

in Step 7. This can be done as follows: Fix a very large, odd integer N , and a partition
of the interval Œ0; 1� as 0 D x1 < x2 < � � � < xN D 1 with jxk � xk�1j < 2N�1

for all k . For odd k 2 f1; : : : ;N � 1g, let fAk
�g�2Œ0;1� denote the path in the square

�2Œ0; 1� that starts at .xk ; 0/, increases the y –coordinate to 1 with xD xk , then keeps
y D 1 and increases x to xkC1. For even k 2 f1; : : : ;N �1g, let fAk

�g�2Œ0;1� denote
the path in the square that starts at .xk ; 1/, increases the x–coordinate to xkC1 with
y fixed at 1, then fixes x at xkC1 and decreases the y coordinate so as to end at
.xkC1; 0/. If the points fp0

xgx2Œ0;1� and fp1
xgx2Œ0;1� are suitably generic, and if the

points fxkgkD1;:::;N are suitably generic, and if q is suitably generic, then each path
fAkgkD1;2;:::;N�1 is suitable for defining a cobordism homomorphism between the
respective Seiberg–Witten Floer cochain complexes that are defined by its endpoints.
Let f yIk

A gkD1;:::;N�1 denote these homomorphisms, and let fIk
A gkD1;:::;N�1 denote the

resulting canonical isomorphisms between the respective realizations of the Seiberg–
Witten Floer cohomologies. Let I1 denote the isomorphism that is defined by the data
set fD1

xgx2Œ0;1� . The factorization property of the canonical isomorphism with respect
to compositions (as explained in Part 3 of Section 3.h) implies that I1

A ı� � �ıI
N�1
A D I1 .

Define next a second set of paths
˚
fBk
�g�2Œ0;1�

	
kD1;:::;N�1 as follows: For odd k ,

the path Bk starts at .xk ; 0/, then increases the x coordinate with y D 0 to reach
.xkC1; 0/, then keeps the x coordinate fixed and increases y so as to end at .xkC1; 1/.
For even k , the path starts at .xk ; 1/, decreases the y coordinate with x fixed to
reach .xk ; 0/, and then keeps y at 0 as x increases so as to end at .xkC1; 0/. Given
suitable genericity assumptions, this set of paths also defines a corresponding set of
cobordism homomorphisms f yIk

B gkD1;:::;N�1 and a resulting set of canonical isomor-
phisms fIk

B gkD1;:::;N�1 . Let I0 denote the isomorphism that is defined by the data set
fD0

xgx2Œ0;1� . The composition of the latter is such that I1
B ı � � � ı IN�1

B D I0 .
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Step 9 For any given k 2 f1; : : : ;N �1g, the paths Ak and Bk have the same starting
and ending points. Thus, the corresponding yIk

A and yIk
B are homomorphisms between

the same pair of cochain complexes. This understood, it follows from the composition
identities given above that it is enough to prove that the conclusions of the second
bullet hold with roles of fD0

xgx2Œ0;1� and fD1
xgx2Œ0;1� played respectively by a suitable

parametrization of each k 2 f1; : : : ;N � 1g version of Ak and Bk . The role of the
family

˚
fD.x;y/gx2Œ0;1�

	
y2Œ0;1� is played by a suitable parametrization of the following

family of paths: Let z 2 Œ0; 1� denote this parameter. If k is odd, then the z D 0 path
is Ak and the z D 1 path is Bk . In general, any given z 2 Œ0; 1� path starts at .xk ; 0/,
increases xk to equal xk C z.xkC1 � xk/ with y held at 0, then holds x fixed and
increases y to y D 1, then with y fixed, it increases x to xkC1 . If k is even, the
z D 0 path is Bk and the z D 1 path is Ak . Any given z 2 Œ0; 1� path starts at .xk ; 1/,
increases x to xk C z.xkC1 � xk/ with y held at 1, then decreases y to 0 with x

fixed, and finally increases x to xkC1 with y held at 0. If N is large, a suitable
reparametrization of such a family as

˚
f�.w;z/gw2Œ0;1�

	
z2Œ0;1� is such that for any fixed

z , the data that defines the path f�.w;z/gw2Œ0;1� is very close to the data that defines
the f�.w;0/gw2Œ0;1� . In particular, the observations in Step 6 apply if N is large to this
family and so prove what is needed to complete the proof of Lemma 4.6.

4.e Min-max

This section introduces various additional notions that were used in [24; 25]. Minor
modifications are made on these in preparation for their use in the upcoming proof of
Theorem 4.5. The upcoming Proposition 4.7 and Proposition 4.8 supply these notions.

To set the stage, fix a pair .a;J / of contact 1–form and compatible almost complex
structure. If c1.det.S// is torsion, also fix an integer k . Let � 2� denote a 1–form
with P norm less than 1. Suppose that a small element p 2 P has been chosen so that
the data ..a;J /; r; e�C p/ is suitable for defining the Seiberg–Witten Floer cochain
complex.

Let � be a nonzero Seiberg–Witten Floer cohomology class in a given degree, this k or
greater if c1.det.S// is torsion. Let nD

P
c Zcc denote a representative of this class in

the Seiberg–Witten Floer cochain complex. Here, Zc 2Z and c 2Mr . Define af Œn; r �

to be the minimum of the values of af on the set fc W Zc ¤ 0g. Set af
�
Œr � to denote the

maximum of faf Œn; r � W n represents �g. Note that af
�
Œ � � is defined by first taking a

minimum and then a maximum; and that this is opposite to the order used in [24; 25].
The order is switched because � is a cohomology class rather than a homology class. If
c is a given generator from Mr , then a generator c0 appears on the right hand side of
(3-4)’s definition of ı�c only if M1.c

0; c/¤. As such, ı�c is a sum of generators on
which af . � / > af .c/.
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Proposition 4.7 Fix a pair .a;J /, and fix k 2Z if c1.det.S// is a torsion class. There
is a residual set in � such that if � is from this set, then there exists rk > 1 and a
nonaccumulating, discrete set U 2 Œrk ;1/ such that the following is true:

� Take r 2 Œrk ;1/ � U. All solutions to the corresponding version of (3-17)
are irreducible and nondegenerate if c1.det.S// is not torsion. If c1.det.S//
is torsion, all solutions to (3-17) with degree k or more are irreducible and
nondegenerate.

� For r 2 Œrk ;1/�U, use the data .a;J /, � and r to define the generators for the
Seiberg–Witten Floer cochain complex, but in degrees k or greater if c1.det.S//
is torsion. Fix a decreasing map � W Œrk ;1/! .0; 1/ with limit zero. Let r! pr

denote a map from Œrk ;1/�U to P such that
(i) Any given version of pr has norm less than �.r/.

(ii) pr vanishes to order two on all solutions (with degree k or greater if
c1.det.S// is torsion) to the .a;J /, � and r version of (3-17). If the map
r ! pr is suitably generic subject to these last constraints, then
(a) The data ..a;J /; r; e�C pr / is suitable for defining the differential for

the Seiberg–Witten Floer cochain complex if r 2 Œrk ;1/�U is chosen
from a discrete set, V, that accumulates only on the points in U.

(b) The various r 2 Œrk ;1/� .U[V/ versions of the Seiberg–Witten Floer
cohomology groups (in degrees k or greater when c1.det.S// is torsion)
can be identified so that the following is true: If � is any given nonzero
cohomology class, then the assignment r ! af

�
Œr � is the restriction of a

continuous, piecewise differentiable function on the half line Œrk ;1/.

Proof of Proposition 4.7 Except for the ordering change with regards to “min” and
“max”, the argument is the same as that used to prove Proposition 4.2 in [24] when
c1.det.S// is torsion. But for this same ordering change, the argument is essentially
that used for Proposition 2.5 in [25] when c1.det.S// is not torsion.

Now fix A 2 R and assume that (4-2) holds. A similar min-max construction can
be done for classes in H�.CSW;A/ and also for those in H�.CSW=CSW;A/. To say
more, suppose again that � 2� has P norm less than 1 and that p 2 P is small and
such that ..a;J /; r; e�C p/ is suitable for defining the Seiberg–Witten Floer cochain
complex. Assume that p is such that (4-2) also holds for the corresponding solutions
to (3-5). Let � denote a nonzero class in either H�.CSW;A/ or H�.CSW=CSW;A/.
Assume that � has degree k or greater in the case when c1.det.S// is torsion. Given
a cocycle n that represents � , define af Œn; r � to be the minimum of af . � / on the
generators that represent � . Then define af

�
Œr � to be the maximum of the elements in

faf Œn; r � W n represents �g. The analog of Proposition 4.7 in this new context is given
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by the next proposition. Its proof is essentially the same as that for Proposition 4.7 so
the details are left to the reader.

Proposition 4.8 The conclusions of Proposition 4.7 can be augmented with the follow-
ing: As r varies in Œrk ;1/� .U[V/, the corresponding versions of the Z–modules
in (4-4) can be identified (in degrees k or greater when c1.det.S// is torsion) so
that if � denotes any given cohomology class in any of the three cohomologies, then
the assignment r ! af

�
Œr � is the restriction of a continuous, piecewise differentiable

function on the half line Œrk ;1/.

The continuity and piecewise differentiability of af
�
Œ � � is exploited in the coming

subsections.

4.f Bounds on E from af and vice versa

The next proposition plays one of the key roles in the proof of Theorem 4.5. To set
the terminology, suppose that .a;J / is given to define the metric on M . Fix � 2�
with P norm less than 1 and a map r ! pr as described in Proposition 4.8. Suppose
in addition that A 2 R has been specified and that (4-2) holds. In what follows, the
various r 2 Œrk ;1/� .U[V/ versions of (4-4) are implicitly identified using one
of the identifications provided by Proposition 4.8. Such an identification should be
understood when reference is made to a class in one of the groups in (4-4) with no
reference to the precise value of r .

Proposition 4.9 Fix a pair .a;J /, and if c1.det.S// is torsion, fix an integer k .
Choose � as described in Proposition 4.7 and Proposition 4.8. Fix A 2R and suppose
that (4-2) holds. There exists K� 1 with the following significance: Fix a map r ! pr

as described in Proposition 4.8 and such that each pr has very small norm. Suppose that
� is a nonzero cohomology class of fixed degree (k or greater if c1.det.S// is torsion)
in any of the cohomology groups that appear in (4-4). There exists an increasing,
unbounded sequence frigiD1;2;::: in Œrk ;1/� .U[V/ such that the r D ri version
of the class � has a representative cocycle with E. � / � 2�K on each generator that
appears with a nonzero coefficient.

The proof of this last proposition makes use of the following restatement of results
from [24; 25].

Proposition 4.10 Let .a;J / denote a pair consisting of a contact 1–form and compat-
ible almost complex structure. There exists � � 1 such that the following is true: Fix
� 2� with P norm bounded by 1. Suppose that cD .A;  / is a solution to the .a;J /,
� and r version of (3-17). Then
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� jcsf j< �r31=16 .

� If c1.det.S// is torsion, then jcsj � �r2=3.1CjEj4=3/.

� If c1.det.S// is not torsion, then jcsf j � �r2=3.ln r/�.1CjEj4=3/.

Proof of Proposition 4.9 But for notation, the arguments in the case c1.det.S// is
torsion are those used in Propositions 4.6 and Corollary 4.7 in [24] with Propositions 4.8
and 4.10 added. In the case that c1.det.S// is not torsion, the arguments are the same
but for notation as those used in Section 2.3 of [25] but with Propositions 4.8 and 4.10
added.

Proof of Proposition 4.10 The bound in the first bullet follows from Proposition 5.1
in [24] in the case when c1.det.S// is torsion, and Proposition 1.10 of [25] when
c1.det.S// is not torsion. The bound in the second bullet follows from (4-2) in [24] and
Lemma 2.4 in [24]. The bound in the third bullet restates Proposition 1.9 of [25].

Proposition 4.10 has an additional very important corollary:

Proposition 4.11 Let .a;J / denote a pair consisting of a contact 1–form and com-
patible almost complex structure. There exists � � 1 with following significance: Fix
� 2� with P norm bounded by 1. Take r � � and suppose that c is a solution to the
.a;J /, � and r version of (3-17) with af .c/ > ��r31=16 . Then

� j2r�1af .c/C E.c/j � r�1=50.1CjE.c/j/.

� In addition, if c1.det.S// is torsion, j2r�1a.c/C E.c/j � r�1=50.1CjE.c/j/.

The proof of this proposition introduces a convention that is used throughout this paper
and its sequels: In all appearances, c0 denotes a constant greater than 1 whose value is
independent of r , �, and any given .A;  /. Subsequent appearances of c0 are allowed
to have different values, but these can be assumed to increase from one appearance to
the next.

Proof of Proposition 4.11 Since jcsf j � c0r31=16 , and since it is assumed that af

is greater than �c0r31=16 , it follows that E � c0r15=16 . Hold this last bound for the
moment. Use the third bullet in Proposition 4.10 to see that jcsf j � c0r2=3E4=3.ln r/c0 .
These bounds and the bound just derived for E imply that jcsj or jcsf j is no greater
than c0r�1=50.r E/. The latter bound implies the assertion of the first bullet. The
argument for the second bullet is identical but for an appeal now to the second bullet in
Proposition 4.10.
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4.g Bounds on E and af for families

The next result asserts a parametrized version of what is proved in Section 6d of [24].
To set things up, suppose that f.a� ;J� /g�2Œ0;1� is a smoothly parametrized family of
pairs consisting of a contact 1–form and compatible almost complex structure. This
family is assumed now to have one additional attribute. Suppose that L� 1 has been
specified such that the following condition holds for each � 2 Œ0; 1�:

Let ‚ denote a set of pairs of the form .
;m/ with 
 a Reeb orbit as
defined by a� and m a positive integer. Assume that distinct pairs have
distinct Reeb orbit component. Then

(4-5)
X

.
;m/2‚

m`
 ¤L:

Let f��g�2Œ0;1� denote a corresponding family of 1–forms, each in � and each with
P norm bounded by 1.

Proposition 4.12 Given the data f.a� ;J� /; ��g�2Œ0;1� and L, there exists � with the
following significance: Fix � 2 Œ0; 1�. Suppose that r � � and that c D .A;  / is a
solution to the version of (3-17) that is defined by the data .a� ;J� /, �� and r . Assume
in addition that E.A/� 2�LC ��1 . Then E.A/ < 2�L� ��1 .

This last proposition leads to the following important observation.

Proposition 4.13 Fix the data f.a� ;J� /, ��g�2Œ0;1� and L. There exists � � 100

with the following significance: Fix � 2 Œ0; 1� and r � � . Suppose that cD .A;  / is a
solution to the version of (3-17) that is defined by .a� ;J� /, �� and r . Then

af .c/ …
�
��L.1� ��1/r; ��L.1C ��1/r

�
:

Proof of Proposition 4.12 In what follows, the spinor bundle S is written as E˚

EK�1 , and corresponding components of a given section  are denoted by .˛; ˇ/.

To start the proof, suppose that the proposition is not true. Then there exists an
unbounded sequence frngnD1;2;:::� Œ1;1/, a convergent sequence f�ngnD1;2;:::� Œ0; 1�,
and a corresponding sequence f.An;  n/gnD1;2;::: where any given .An;  n/ obeys
(3-17) as defined using r D rn and the � D �n version of .a� ;J� / and �� . Let � 2 Œ0; 1�
denote the limit point of the sequence f�ngnD1;2;::: . The four steps that follow explain
why the existence of such a sequence leads to nonsense and so proves the lemma.
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Step 1 The arguments used in Section 6d of [24] can be repeated with only cosmetic
changes to find a possibly empty set, ‚, of the following sort: First, the typical
element in ‚ is a pair .
;m/ where 
 is an a� Reeb orbit and m is a positive integer.
Moreover, distinct pairs have distinct Reeb orbit components. Finally, there exists
some subsequence of f.An;  n D .˛n; ˇn//gnD1;2;::: , hence renumbered consecutively
from 1, and there is a sequence f"ngnD1;2;::: � .0;

1
100
� with limit zero such that

(4-6)

� j˛nj
2 � 1� "n at all points with distance "n or greater from

S
.
;m/2‚ 
 .

� Fix .
;m/ 2‚ and let 'W S1 �D!M denote a coordinate chart for a
tubular neighborhood of 
 of the sort depicted in (2-1). Assume that the
closure of the image of ' is disjoint from all other Reeb orbits from ‚.
Then ˛n vanishes on any given constant t 2 S1 slice of '.S1 �D/ with
degree m.

Step 2 Fix a smooth function �W R! Œ0; 1� such that �D 1 on .�1; 5
16
� and �D 0

on Œ 7
16
;1/. Given a pair .A; ˛/ of connection on E and section of E , introduce the

connection

(4-7) yADA� 1
2
.1��.j˛j2//j˛j�2.x̨rA˛�˛rA x̨/:

Note that yA is flat where j˛j2 > 1
2

; and here ˛=j˛j is covariantly constant. Use yAn in
what follows to denote the .An; ˛n/ version of yA. It follows from the first item in (4-6)
that yAn is flat at all points in M with distance "n or greater from

S
.
;m/2‚ 
 . Let

.
;m/ 2‚. Let 'W S1 �D!M denote the coordinate chart map from the second
item of (4-6). It is a consequence of this second item that

(4-8) i

Z
S1�D

dt ^'�.�B yAn
/D 2�m:

What with (2-1) and Lemma 2.2 in [24], the equality in (4-8) implies that

(4-9) i

Z
M

a� ^�B yAn
D 2�

X
.
;m/2‚

m`
 C e;

where jej � c0"n.1CjE.An/j/. Given that the sequence f�ngnD1;2;::: converges to � ,
a second appeal to Lemma 2.2 in [24] now applied to (4-9) finds

(4-10) i

Z
M

a�n
^�B yAn

D 2�
X

.
;m/2‚

m`
 C en;

where jenj � c0ın.1CL/ with fıng 2 .0; 1/ a sequence with limit zero as n!1.
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Step 3 Integrate by parts to see that

(4-11)

ˇ̌̌̌Z
M

a�n
^ .�B yAn

��BAn
/

ˇ̌̌̌
D

ˇ̌̌̌Z
M

da�n
^ .1��.j˛nj

2//j˛nj
�2.x̨nrAn

˛n�˛nrAn
x̨n/

ˇ̌̌̌
:

To bound the right hand side of (4-11), first define the function g on the domain Œ0;1/
by setting the rule

(4-12) g.t/D�

Z 2

t

.1��.s//s�1ds:

Since
.1��.j˛j2//j˛j�2.x̨rA˛C˛rA x̨/D d.g.j˛j2/;

an integration by parts on the right hand side of (4-1) identifies the latter with

(4-13) 2

ˇ̌̌̌Z
M

da�n
^ .1��.j˛nj

2//j˛nj
�2˛nrAn

x̨n

ˇ̌̌̌
:

Next, use the Dirac equation to identify the covariant derivative of ˛n along the Reeb
vector field for a�n

with derivatives of ˇn . Make this identification, and then use
Hölder’s inequality to bound (4-13) by krAn

ˇnk2 , where the subscript indicates the
L2 norm.

To complete the bound on the right hand side of (4-11), integrate both sides of what is
written in the second line of Equation (6.4) in [24] over M and use the latter’s Lemma
2.2 again to bound the L2 norm of rAn

ˇn by c0r
�1=2
n .

Step 4 Given that the right hand side of (4-11) is bounded by c0r
�1=2
n , it thus follows

from (4-10) that E.An/� 2�†.
;m/2‚m`
 C c0ın
0 where fın0gnD1;2;::: is a sequence

with limit zero as n!1. However, this then implies that E.An/ < 2�L for all n

sufficiently large. Given the assumptions, this is nonsense.

Proof of Proposition 4.13 Suppose for the moment that the constant � that appears
in Proposition 4.11 can be chosen so that Proposition 4.11’s conclusions hold with
the same constant � for all � 2 Œ0; 1� versions of .a� ;J� /. Suppose that there exists
� 2 Œ0; 1�, � > 0 and a solution to (3-17) as defined with the data .a� ;J� /, �� and r

such that af lies in the interval
�
��L.1� �/r; ��L.1C �/r

�
. Appeal to Proposition

4.11 to conclude that the value of E on this solution obeys E � 2�.LC �/C c0r�1=50 .
If � < c�1

0
, then a further appeal to Proposition 4.12 finds that E< 2�L�c�1

0
if r � c0 .

Another look at Proposition 4.11 finds that af � ��.L� c�1
0
/r .
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The constant � that appears in Proposition 4.11 comes from the version that appears
in Proposition 4.10. The value of � that makes the first item of Proposition 4.10 true
comes from Proposition 5.1 in [24] and Proposition 1.10 in [25]. A look at the proofs
of Proposition 5.1 in [24] and Proposition 1.10 in [25] finds that the latter version of �
can be chosen so as to hold for every � 2 Œ0; 1� version of .a� ;J� / and �� .

The value of � that makes the second item in Proposition 4.10 true comes from
Lemma 2.4 in [24]; and the value of � that makes the third item true comes via
Proposition 1.9 in [25]. A close look at the proofs of both of these propositions shows
that their contributions to � can be assumed to be � independent.

4.h Proofs of Theorems 4.4 and 4.5

The preceding three subsections supply all of the heavy machinery for the proof. It
remains only to put the machinery to use.

Proof of Theorem 4.4 Define a as in (3-15) and af as in (3-16) using gD e�C p.
Note that all solutions to (3-5) are solutions to (3-17) and vice-versa. Meanwhile, if
c is a solution to (3-17), then both a.c/ and af .c/ are given by the version of (3-15)
with gD e� . Also keep in mind that E < 2�L on ˆr .ZL

ech/.

To prove the assertion in the first bullet, use the first item in Proposition 4.10 and
Proposition 4.11 to see that af � �.�L � c�1

0
/r on ˆr .ZL

ech/ if r � c0 . Now
let d denote an instanton solution to the relevant version of (3-6). The assignment
s! a.d.s// defines a decreasing function on R, and so a.c�/ > ��Lr . Since d’s
version of (3-9) has Fredholm index 1, so f .c�/ D f .cC/� 1. As a consequence,
af .c�/ > af .cC/ > ��Lr . This understood, Proposition 4.11 implies that E.c�/ <

2�L if r � c0 . According to Theorem 4.2, this implies that c� 2ˆr .ZL
ech/.

The assertion in the second bullet is an immediate consequence of the first bullet and
Theorem 4.3.

Proof of Theorem 4.5 The proof has three parts.

Part 1 The lemma that follows summarizes the contribution from this part. The lemma
refers to notation that is introduced in Propositions 4.7–4.9.

Lemma 4.14 Let .a;J / be a pair of contact 1–form from Lemma 2.1’s residual set
and almost complex structure from Ja . Fix k 2 Z when c1.det.S// is torsion. Then
there exists � > 1 and K � 1 with the following significance: Fix �0 2 � with P
norm less than 1 as described in Proposition 4.7–4.9 and likewise a map r ! pr from
Œrk ;1/�U to P with very small norm. Use .a;J /, � and r 2 Œrk C �;1/� .U[V/

to define Mr and the Seiberg–Witten Floer cochain complex.
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� Let � denote a nonzero class in H�.CSW/, but with degree k or greater if
c1.det.S// is torsion. Then � has a representative cocycle with af greater
than ��Kr and with E < 2�K on each generator that appears with nonzero
coefficient.

� Let AD��K . There exists rA � 1 such that (4-2) holds when r > rA .

� Let � denote a nonzero class in H�.CSW;A/, but with degree k or greater if
c1.det.S// is torsion. Then � has a representative cocycle with af > ���Kr

and with E < 2��K on each generator that appears with nonzero coefficient.

� There exists r�A such that (4-2) holds using �A in lieu of A when r > rA .

Proof of Lemma 4.14 Let � denote a nonzero class in H�.CSW/, but of degree k or
greater when c1.det.S// is torsion. It follows from Proposition 4.9 that there exists
K � 1 and an unbounded set frigiD1;2;::: 2 Œrk ;1/� .U [V/ such that when r D ri ,
then � has a cocycle representative, n, with E � 2�K on each generator. Given that
the cohomology with degree greater than any given integer is finitely generated, the
constant K can be taken so as to be independent of the choice for � . Note that K can
be chosen so that (4-5) holds with LDK .

Fix ri and let n denote the cocycle representative described above. It follows from
Proposition 4.12 that E < 2�K� c�1

0
on each generator that appears in n. The second

and third items of Proposition 4.10 then find that jcsf j � c0r�1=50
i ri.1CjEj/ on each

generator that appears in n. This implies that af
�
>�2�.K� c�1

0
/ri . Given that af

�
Œ � �

is a continuous function, it follows from Proposition 4.13 that af
�
Œr � >��K for r > c0 .

It then follows from Propositions 4.11 and 4.12 that each r > c0 version of � has a
cocycle representative with the property that af > ��K and E < 2�K� c�1

0
on each

generator.

Proposition 4.13 implies what is asserted by the second bullet of the lemma. To obtain
the third bullet’s assertion, let � denote a nonzero class in H�.CSW;A/, but of degree k

or greater when c1.det.S// is torsion. Repeat the arguments for the first bullet using
this class � to find c0 > 1 such that af > ��c0K and E < 2�c0K� c�1

0
. The final

bullet again follows from Proposition 4.13.

Part 2 Let K denote the constant given in Lemma 4.14 and set AD��K . It follows
from Proposition 4.13 that (4-2) holds if r > c0 , and so (4-3) and (4-4) are well defined.
Lemma 4.14 implies that the homomorphism Hj .CSW;A/!Hj .CSW/ is surjective, at
least if j < k in the case when c1.det.S// is torsion.

Set L D K and fix some very small, but positive ı . Let .ya; yJ / denote a .ı;L)
approximation to .a;J /. Fix �2� with P norm less than 1 as described in the .ya; yJ /
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version of Proposition 4.1. It follows from Proposition 4.13 that (4-2) is also obeyed
by .ya; yJ / and �. Let yCSW;A and yCSW denote the Z modules that appear in the latter’s
version of (4-3). It is a consequence of Lemma 4.6 that Hj .yCSW;A/�Hj .CSW;A/, at
least for j > k when c1.det.S// is torsion. Meanwhile, the .ya; yJ / and � versions
of Propositions 4.11 and 4.12 imply that E < 2�L� c�1

0
on all generators of yCSW;A

when r > c0 . Conversely, any generator of yCSW with E < 2�LC c�1
0

is a generator
of yCSW;A . This follows from the second and third bullets in Proposition 4.10.

Granted the preceding, the .ya; yJ / and � versions of Theorems 4.2–4.4 identify
Hj .yCSW;A/ � H�j .yCL

ech/, at least for j > k when c1.det.S// is torsion. This is
what is claimed in the first bullet of Theorem 4.5.

Part 3 To address the second bullet of Theorem 4.5, let Tˆ denote the monomorphism
given by the .ya; yJ / version of Theorem 4.3. Suppose that � 2 yCL�

ech is such that
Tˆ.�/ is a coboundary. Let A� D��L� . Given that Tˆ identifies Hj .yCSW;A�/ with
H�j .yCL�

ech/, it is sufficient to assume that the class y� 2H�.yCSW;A�/ represented by
Tˆ.�/ is the image by the connecting homomorphism of (4-4) of a nonzero class in
Hj�1.yCSW=yCSW;A�/. It follows from Lemma 4.6 that this class corresponds to one in
Hj�1.CSW=CSW;A�/. Let � denote the latter. If r � c0 , Propositions 4.12 and 4.13
find K� � 1 and a representative cocycle with E < 2�K� and af > ��K� on each
generator. If L is such that L>K� , then it follows that � is represented by a cocycle
in CSW;A . Meanwhile, y� corresponds via the isomorphism from Lemma 4.6 to a class
� 2Hj .CSW;A�/. The fact that � is represented by a cocycle in CSW;A implies that �
is zero in Hj .CSW;A/. This implies (again via the isomorphism from Lemma 4.6) that
y� is zero in Hj .yCSW;A/. Given the identification of the latter with H�j .yCL

ech/, this
means that � is a boundary in yCL

ech .

4.i Proof of Theorem 1

The proof has three parts.

Part 1 This part returns to the notation and conventions of Section 3.h. To set the stage
for what is to come, suppose g0 and g1 are given metrics on M , and that g0 and g1

are respective elements in the g0 and g1 versions of P and such that both .g0; g0/

and .g1; g1/ are suitable for defining realizations of the Seiberg–Witten Floer complex.
Suppose that f.gx; gx/gx2Œ0;1� is a given suitable path of data sets as described in Part 2
of Section 3.h; thus a path that can be used to construct the canonical isomorphism
from the .g1; g1/ realization of the Seiberg–Witten Floer cohomology to the .g0; g0/

realization. Recall that this isomorphism, I0;1 , is induced by a homomorphism, yI0;1

from the .g1; g1/ version of the Seiberg–Witten chain complex to that defined by
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.g0; g0/. For each x 2 Œ0; 1�, let Zx denote a finite set of generators for the .gx; gx/

version of the Seiberg–Witten Floer cochain complex. Suppose that each generator in
Zx is irreducible and nondegenerate. In addition, suppose the following: Let d denote
an instanton solution to the .gx; gx/ version of (3-3) whose s!1 limit in R�M is
an element in Zx . Then

(4-14)
� The s!�1 limit of d is also in Zx .

� The Fredholm index of d’s version of (3-9) is nonnegative.

What follows is a final constraint, this concerning the variation with x of the family
fZxgx2Œ0;1� : Require that these sets be identified one with the other as x varies between
0 and 1. Here, the identification between Zx and Zx0 for x near x0 is that described
in Part 5 of Section 3.h.

The following comment concerns the requirement in the second bullet of (4-14): The
Smale–Sard theorem can be used (as, for example in [24, Section 7]) to find a residual set
of suitable paths such that the second bullet is obeyed at each x 2 Œ0; 1� by all instantons
that interpolate between irreducible, nondegenerate solutions of the corresponding
version of (3-6). This understood, the constraint given by the second bullet is easy to
satisfy.

Introduce CZx to denote the linear span of Zx . The assumptions about the family
fZxgx2Œ0;1� have consequences with regards to fCZxgx2Œ0;1� , which are stated in the
upcoming lemma. This lemma refers to the isomorphism �W CZ1! CZ0 that is induced
by the identification between the respective generating sets Z0 and Z1 that comes by
varying x from 0 to 1.

Lemma 4.15 Given the preceding assumptions, the following is true:

� CZx is mapped to itself by the Seiberg–Witten differential.

� The homomorphism yI0;1 maps CZ1 to CZ0 .

� The homomorphism yI0;1 restricts to CZ1 as �CK where K has the following
property: Introduce the function af from (3-16). Let c2Z0 denote any generator.
Then K.c/ can be written as a sum of elements in CZ1 on which af is strictly
greater than af .c/.

Proof of Lemma 4.15 The first bullet follows from the assumption concerning the
instantons with s!1 limit in gx . To prove the second, assume the contrary. Fix
N large and break the interval Œ0; 1� as in Part 3 of Section 3.h into subintervals
using break points 0 D x0 < x1 < � � � < xN D 1 with jxk � xk�1j < 2N�1 for
each k 2 f1; : : : ;N g so as to factor the isomorphism I0;1 as a suitable product of
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isomorphisms fIkg1�k�N . By way of reminder, the part of the path f.gx; gx/gx2Œ0;1�
with x 2 Œxk ;xk�1� supplies the data for defining the canonical isomorphism, Ik , from
the realization of the Seiberg–Witten Floer cohomology defined by the xD xk member
of the path to that defined by the x D xk�1 member. Let yIk denote the corresponding
homomorphism between the relevant cochain complexes. Given what was said about
compositions in Part 3 of Section 3.h, there exists k 2 f1; : : : ;N g such that yIk maps
some element in Zxk

, the x D xk version of Zx , to some element in the x D xk�1

Seiberg–Witten Floer cochain complex that is not CZxk�1
in the latter’s version of

CZx . Taking a suitable limit of an N !1 subsequence of the relevant instantons
that define the cochain homomorphisms supplies x 2 Œ0; 1� and a .gx; gx/ instanton
whose s!1 limit on R�M is in Zx and whose x!�1 limit is not in Zx . That
this is so follows from what is said about limits in Chapter 24.6 of [16]. This event is
precluded by the assumptions.

The same sort of limiting argument proves the third assertion using two additional
observations. What follows is the first. Let d denote a given .gx; gx/ instanton and
let c� and cC denote the respective s ! �1 and s ! C1 limits of d.s/. Then
a.c�/� a.cC/ with equality if and only if c� D cC and d is R–invariant. Meanwhile,
the spectral flow function, f , is such that f .cC/�f .c�/� 0. Indeed, this difference is
the Fredholm index of d’s version of (3-9), and this index is nonnegative by assumption.
Thus, af .c�/� af .cC/ unless c�D cC and d is R–invariant. The subset of .gx; gx/

instantons that increase af account for what is denoted by K in the third bullet
of (4-14).

What follows is the second observation. The appearance of � in the third bullet of (4-14)
can be seen using perturbation theory. To elaborate, perturbation theory with what
is said in Chapter 24 of [16] can be used to prove the following: If N is sufficiently
large and if k 2 f1; : : : ;N g, then any given R–invariant instanton that is defined by an
element in Zxk

defines a cobordism instanton whose limit as the R parameter tends
to 1 in R�M is the given element and whose limit as this parameter tends to �1
is the canonical partner in Zxk�1

. In addition, this cobordism instanton is the only one
that interpolates between these two generators. Finally, the sign contribution from this
cobordism instanton is C1.

Part 2 Fix a pair .a;J / of contact 1–form and almost complex structure suitable
for defining fHL

echgL � 1. The values of L that are realized as
P
.m;
 /2‚ m`
 with

‚ a generator of the embedded contact homology chain complex form a discrete set
with no accumulation points. Let ƒech denote this set. Choose an increasing sequence
fLkgkD1;2;::: � Œ1;1/ so that no member is in ƒech and so that each interval of the
form ŒLk ;LkC1� contains precisely one member of ƒech . Use  k in what follows to
denote the direct limit homomorphism from HLk

ech to Hech .
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For each k 2 f1; 2; : : : g, fix a preferred, .ı;Lk/ approximation to .a;J /. Denote
the latter by .yak ; yJk/. Preferred .ı;L/ approximations are described in Proposition
B.1 of the Appendix. Fix an increasing sequence frkgkD1;2;::: � Œ1;1/, a sequence
f�kgkD1;2;::: of 1–forms, and a sequence fpkgkD1;2;:::�P so that the following is true
for each k : The data .yak ; yJk/, �k and pk is suitable for defining the Seiberg–Witten
cochain complex. Assume in addition that Theorems 4.2–4.4 can be invoked using rk ,
with the data .yak ; yJk/, �k and pk . Further constraints on these sequences will be
described momentarily.

If c1.det.S// is not torsion, then HSW is a finitely generated Z–module. If c1.det.S//
is torsion, then any fixed degree summand in HSW is finitely generated. This understood,
let H denote either the whole of HSW if c1.det.S// is torsion, or a fixed degree
summand of HSW if c1.det.S// is a torsion class. Use Hk to denote the realization
of HSW that is defined using the data .yak ; yJk/; rk , �k and pk . Use Ck to denote the
corresponding free Z–module of cochains.

Fix k 2 f1; 2; : : : g and define Tk to be the .yak ; yJk/ version of the injective homo-
morphism Tˆ as defined in Section 4.b. Thus, Tk maps CLk

ech to the ..yak ; yJk/; r; �k/

version of the Seiberg–Witten cochain complex, Ck . This homomorphism Tk induces
a homomorphism, also denoted by Tk , from Hech

Lk to Hk . Since Hk is finitely
generated, it follows from what is said by the first bullet of Theorem 4.5 that Tk is
surjective if k is sufficiently large. Fix such k and denote it by k� . Fix k�� > k� so
that the conclusions of the second bullet in Theorem 4.5 hold with L�DLk� and with
LDLk�� .

Note for future reference that any given k � k�� and sufficiently large r version of
Hk comes with a filtration,

(4-15) Hk
1
� � � � �Hk

k� DHk ;

where a given k 0 2 f1; : : : ; k�g submodule consists of elements that are represented by
cochains from the image via Tk of HLk0

ech . Here is another way to say this: An element
in Hk

k0 is represented by a sum of generators that are given by equivalence classes of
the ..yak ; yJk/; rk ; �k/ version of (3-17) on which the function E from (3-13) is less
than 2�Lk0 .

Part 3 As explained momentarily, a homomorphism QW Hk��!Hech can be defined
as follows: Given z 2Hk�� , take an element z 2HLk�ech that is mapped by Tk�� to z.
Set Q.z/ D  k�.z/. To see that this is well defined, suppose that z0 is an alternate
choice. As the image via Tk�� of z � z0 is zero, it follows from what is said by the
second bullet of Theorem 4.5 that z and z0 are mapped to zero in HLk��ech . This being
the case, their difference is mapped to zero in Hech by  k� .
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What follows next explains why Q is injective. To start, suppose that z 2 Hk�� is
mapped to zero by Q. Let k 2 f1; : : : ; k�g denote the minimal integer such that
z 2Hk��

k . Let z 2Hech
Lk denote an element that is mapped via Tk�� to z. To say

that Q.z/ is zero means that there exists some k 0 � k�� such that z is zero in HL0
kech .

This implies that Tk0.z/ is zero in the realization Hk0 .

Lemma 4.16 There exists a cobordism isomorphism, yI , that maps the Seiberg–Witten
cochain complex Ck�� to the corresponding complex Ck0 . This homomorphism restricts
to the image via the cochain version of Tk�� so as to define a homomorphism from
Cech

Lk into Ck0 with the following properties:

� This homomorphism from Cech
Lk into Ck0 maps into the image via Tk0 of

Cech
Lk and so induces an endomorphism from Cech

Lk to itself.

� The induced endomorphism of Cech
Lk maps any given cycle yz to one of the

form yzC yu where yu 2 CLk�1
ech .

Granted Lemma 4.16, suppose that yz is a closed cycle that gives the class z . Use the
second bullet in Lemma 4.16 to define yu. Note that the latter is also closed. This follows
from Theorem 4.3 since yI intertwines the differentials for the respective Seiberg–Witten
Floer complexes. Let u denote the class in HLk�1

ech defined by yu. The class z is mapped
by I to the class Tk0.zCu/. As Tk0.z/D 0, this implies that Tk��.z/D�Tk��.u/.
Given the definition of k , the latter conclusion implies that zD 0.

The homomorphism Q is also surjective onto the relevant degree summand in Hech .
To see that such is the case, fix a given class in Hech with the relevant degree. Let k

denote the minimum integer in the range fk�; k�C1; : : : g such this class is represented
by an element in Hech

Lk . Use z0 to denote the latter element. Fix k 0 > k so that the
conclusions of Theorem 4.5 hold for LDLk and L�DLk0 . It follows from Theorem
4.5 that Tk0.z

0/¤ 0 in Hk0 . Use I to again denote the cobordism isomorphism from
Hk�� to Hk0 . Then Tk0.z

0/ can be written as I.Tk��.z// for some z 2HLk�ech . It then
follows from Lemma 4.16 that Tk0.z

0/D Tk0.z
00/ where z00 is represented by a chain

in Cech
Lk� . Granted this last point, then the second bullet in Theorem 4.5 implies that

the given class in Hech is also represented by z00 . Therefore, the given class from Hech

is in the image of Q.

Proof of Lemma 4.16 Keep in mind that each k 2 f1; 2; : : : g version of .yak ; yJk/

is a preferred .LDLk ; ı/ approximation to .a;J /. Fix such k and then k 0 > k .
Proposition B.1 supplies a certain sort of family, f.yax; yJ x/gx2Œ0;1� of contact 1–form
and almost complex structure whose x D 0 member is .yak ; yJk/ and whose x D 1

member is .yakC1; yJkC1/. If r is sufficiently large, then r with any given x 2 Œ0; 1�

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology I 2555

version of .yax; yJ x/ can be used as input for Theorem 4.2 for the choice L D Lk .
Keep this fact in mind.

For each x 2 Œ0; 1�, let gx denote the metric on M that is defined by .yax; yJ x/.
Fix a smoothly varying path fx! �xgx2Œ0;1� of 1–forms that interpolates between
�k�1 and �k , and such that any given �x is in the gx version of �. Fix a family
fx ! rxgx2Œ0;1� with all members sufficiently large, and in particular such that the
data ..yax; yJ x/; rx; �x/ for any x 2 Œ0; 1� can be used as input for Theorem 4.2 and
for the first bullet in Theorem 4.4. Let Zx for x 2 Œ0; 1� denote the image of CLk

ech
via the corresponding version of ˆr . What follows explains why the 1–parameter
family fx! Zxgx2Œ0;1� obeys the conditions that are needed to invoke Lemma 4.15
for the path f.gx; gx D e�x C px/gx2Œ0;1� for certain paths fpxgx2Œ0;1� of elements
in P . The conclusions of this lemma imply what is asserted by Lemma 4.16.

The conditions for Lemma 4.15 are discussed in order opposite to the order given. To
start, note that the family fZxgx2Œ0;1� varies in the appropriate, smooth manner as x

varies; this is a consequence of Theorem 4.2 if each x 2 Œ0; 1� version of px has very
small norm. In fact, this path can be chosen so that each px vanishes to second order
on the elements in Zx .

To argue for the second bullet of (4-14), remark that the path fpxgx2Œ0;1� can be chosen
so that the following is true for each x 2 Œ0; 1�:

(4-16)
Every instanton solution to the .gx; rx; gx/ version of (3-6) has a
corresponding version of (3-9) with nonnegative Fredholm index.

Choose fpxgx2Œ0;1� so that (4-16) holds. As noted in Part 1 above, this is always
possible. The second bullet in (4-14) is therefore satisfied for each x 2 Œ0; 1�. To see
about the first bullet, of (4-14), let d denote an instanton solution to a given x 2 Œ0; 1�

version of (3-6) with s!1 limit given by cC 2 Zx . It follows from Theorem 4.2
that E.cC/ < 2�Lk . If px has sufficiently small norm then the first bullet of Theorem
4.4 guarantees that c� 2 Zx .

5 Theorems 4.2 and 4.3

The constructions that lead to ˆr and ‰r and the arguments for Theorems 4.2 and 4.3
are modifications of those used in [21; 22] to prove the equivalence between the Gromov
and Seiberg–Witten invariants of compact, symplectic 4–manifolds. What follows
in this section is a brief description of what is involved. The details are contained in
Papers II, III and IV of this series [26]–[28].
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5.a Vortices on C

Both ˆr and ‰r use the solutions to the vortex equations on C to construct pairs of
connection on E and section of S from Reeb orbit or pseudoholomorphic curves as the
case may be. Solutions to the vortex equations played a similar role in the constructions
done in [22]; see its article Gr) SW. What follows in this subsection provides a brief
summary of the vortex part of the story.

The vortex moduli spaces are labeled by a nonnegative integer, with the integer n

version of the vortex moduli space denoted by Cn . The latter consists of certain
equivalence classes of pairs .A; ˛/, where A is a hermitian connection on the trivial
complex line bundle over C , and where ˛ is a section of this bundle. A pair cD .A; ˛/
is in Cn if and only if the curvature of A and the A–covariant derivative of ˛ satisfy

(5-1)

� �FA D�i.1� j˛j2/.

� x@A˛ D 0:

� j˛j � 1:

� The function .1� j˛j2/ is integrable on C and
R

C .1�j˛j
2/D 2�n.

Here, x@A denotes the d –bar operator that is defined by the connection A. The equiv-
alence relation that defines a point in Cn identifies pairs .A; ˛/ and .A0; ˛0/ when
A0 DA�u�1du and ˛0 D u˛ where u is a smooth map from C to S1 .

The space C0 consists of a single element, the gauge equivalence class of the pair
.AD0; ˛D1/. When n � 1, the space Cn has the structure of a smooth, complex
manifold that is biholomorphic to Cn . This holomorphic identification is realized as
follows: As is explained by the author in Section 2 of the article Gr ) SW from
[22], [20] and [15], if .A; ˛/ solves (5-1), then ˛ has precisely n zeros counting
multiplicities. Let Zc D fz1; : : : ; zng denote the resulting set in the n–th symmetric
product of Cn . A holomorphic diffeomorphism from Cn to Cn sends c to the point in
Cn whose q–th coordinate is

P
1�j�n z

q
j . As it turns out

(5-2)
X

1�j�n

z
q
j D

1

2�

Z
C

zq.1�j˛j2/:

With regards to the integral in (5-2), note that

(5-3) 0< 1� j˛j2 < c0

X
1�j�m

e�
p

2jz�zj j and jrA˛j
2
� c0

X
1�j�m

e�
p

2jz�zj j;

where c0 is a constant that is independent of n and .A; ˛/ 2 Cm .
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This holomorphic identification to Cn does not provide the natural Riemannian metric
on Cn when n> 1. The relevant metric is described momentarily. To set the stage for
the story on the metric, remark that the .1; 0/ tangent space to Cn at a given cD .A; ˛/

is naturally isomorphic to a certain vector space of pairs .x; �/ where x is a C–valued
function on C and � is a section of the trivial bundle. To lie in T1;0Cnjc , both x and �
must be square integrable on C and obey the coupled system

(5-4) @xC 2�1=2
x̨�D 0 and x@A�C 2�1=2˛x D 0:

In this equation, @ is shorthand for @=@z . The pair .x; �/ provides the first order change
in .A; ˛/, which adds 2�1=2x to the .0; 1/ part of A and adds � to ˛ . The relevant
metric on Cn is defined so that the metric norm of .x; �/ is ��1=2 times its L2 norm
as defined by integration on C . This metric is a Kähler metric with respect to the
complex structure.

5.b Constructing the map ˆr in Theorem 4.2

This subsection is meant to give an indication of what is involved in constructing the
map ˆr . To set the stage, write the spinor bundle S as E ˚EK�1 . With L > 1

fixed, introduce as notation ZL to denote the set whose typical element, ‚, consists
of pairs of the form .
;m/ where 
 is a Reeb orbit and m a positive integer. Require
that distinct pairs from ‚ have distinct Reeb orbit components. In addition, requireP
.
;m/2‚ m`
 < L; and require that the formal sum

P
.
;m/2‚ m
 define a cycle

whose class in H1.M IZ/ is Poincaré dual to c1.E/.

The subsequent description of ˆr has four parts.

Part 1 Fix ‚ 2ZL . Assign to each .
;m/ 2‚ 2ZL a smooth map, c
 W S1! Cm .
The first step to defining ˆr is to construct a pair in Conn.E/ � C1.M IS/ from
the data fc
 g.
;m/2‚ . The map c
 W S

1 ! Cm is lifted so as to give a connection
on, and a section of, the product complex line bundle over S1 �C . The pullback of
this pair to any given constant t 2 S1 slice of S1 �C is a solution to (5-1). Define
yr
 W S

1 �C! S1 �C so that

yr�
 .t; z/D

�
t;

�
`


2�
r

�1=2

z

�
:

Use .A.
 /; ˛.
 // to denote the pullback via yr
 of the chosen lift of c
 . As might be
expected from (5-3), the connection A.
 / is nearly flat where jzj � r�1=2 on S1�C .
Meanwhile, ˛.
 / is nearly A.
 /–covariantly constant with norm 1 on this same part of
S1 �C .
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Suppose now that a tubular neighborhood map has been chosen for each Reeb orbit
from ‚ of the sort that is described in Section 2.a. Use such a map to identify a tubular
neighborhood of each Reeb orbit with S1 �D � S1 �C . Then .A.
 /; ˛.
 // can be
viewed as a pair of connection on and section of the product complex line bundle over
a tubular neighborhood of 
 in M with A.
 / nearly flat near the boundary of this
tubular neighborhood, and with ˛.
 / having norm 1 and nearly covariantly constant
near this same boundary.

This understood, the collection f.A.
 /; ˛.
 //g.
;m/2‚ are pasted together using “bump”
functions so as to obtain a pair .A�; ˛�/ of connection on and section of a complex
line bundle over M . The latter is isomorphic to E . Note that A� is flat except very
near the Reeb orbits from ‚; and likewise ˛� is covariantly constant with norm 1
except very near these same Reeb orbits.

Write S D E˚EK�1 and define .A�;  � D .˛�; 0// 2 Conn.E/�C1.M IS/. A
calculation shows that .A�;  �/ comes reasonably close to solving (3-17) if r is large.
Such is the case by virtue of the fact that the pairs in ‚ involve Reeb orbits. Indeed,
the construction just described can be applied to a set such as ‚ whose typical element
is a pair .
;m/ where 
 is an embedded loop in M . If 
 is not a Reeb orbit, then the
resulting .A�;  �/ will not come close to solving (3-17) when r is large.

The plan is to look for a solution to (3-17) near .A�;  �/. Such a solution can be found
when r is large if the collection fc
 W S1! Cmg.
;m/2‚ are suitably constrained.

Part 2 What follows describes the constraints on fc
 g.
;m/2‚ . To this end, return to
the vortex moduli space Cm . Let .�; �/ denote a pair consisting of a real number and
a complex number. Any such pair defines a function, h, on Cm given by

(5-5) hD
1

4�

Z
C
.2�jzj2C .�xz2

C x�z2//.1�j˛j2/:

As with any function on Cm , this one defines a Hamiltonian vector field. Now suppose
that � and � are respectively a real valued function on S1 and a C–valued function
on S1 . Then (5-5) defines a 1–parameter family of Hamiltonian vector fields on Cm .
Of interest are the closed, integral curves of the latter. These are maps cW S1! Cm

that obey at each t 2 S1 the equation

(5-6)
i

2
c0Cr.1;0/hjc D 0;

where c0 is shorthand for the .1; 0/ part of c�.d=dt/, and where r.1;0/h denotes the
.1; 0/ part of the gradient of h.
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Now suppose that 
 is a Reeb orbit. Fix a tubular neighborhood map for 
 of the sort
described in Section 2.a. Then 
 has an associated pair .�; �/ for use in (5-5), namely
the pair that appears in (2-1) and (2-3). With the preceding understood, what follows is
the key observation. Suppose that the following is true:

(5-7)

Each .
;m/ 2 ‚ version of c
 is a solution to the corresponding
version of (5-6).
In addition, the linearized version of the left hand side of (5-6) at this
c
 defines an operator with trivial kernel.

Note that the linearization of (5-6) at a given map cW S1! Cm defines a first order,
elliptic and symmetric operator on C1.S1; c�T 1;0Cm/.

Under the assumption in (5-7), perturbation theory can be employed to modify .A�;  �/
when r is large so that the result solves the corresponding version of (3-17). To put
this in a more formal way, introduce C‚ for ‚ 2 ZL to denote the set whose typical
element assigns to each .
;m/ 2 ‚ a corresponding solution to (5-6). Say that a
solution to (5-6) is nondegenerate when the linearization of the left hand side of (5-6)
at the solution has trivial kernel. Use C‚� to denote the subset where each assigned
solution is nondegenerate. Given L� 1, let CZL denote fC‚ W

P
.
;m/2‚ m`
 <Lg.

Use CZL� to denote the subset fC‚� W‚ 2 ZLg � CZL .

(5-8)

If the contact form comes from Lemma 2.1’s residual subset, if
CZL� D CZL , and if r is sufficiently large, then perturbation theory
defines an injective map ˆr W CZL!Mr whose image consists of
the set of elements with E < 2�L.

This map is constructed in [26]; and [28] proves that it is injective and surjective onto
the E < 2�L subset in Mr . It is fair to say that these parts of [26; 28] do little more
than reinterpret parts of the respective Gr) SW and Gr D SW and articles in [22].

If CZL ¤ CZL� , then perturbation theory constructs, for each sufficiently large r , an
injective map from a certain subset of CZL into Mr whose image consists of the set
of elements with E < 2�L. The latter is also denoted by ˆr in what follows.

Part 3 What follows says some things about the space of solutions to (5-6). To
start, note that the solution space to (5-6) is compact if .�; �/ is either hyperbolic or
m–elliptic. This is proved in [28]. In either case, there exists a unique solution for
mD 1; this is the vortex with ˛�1.0/D f0g. The unique mD 1 solution to (5-6) is
nondegenerate if .�; �/ is nondegenerate. In this mD 1 case, the corresponding linear
operator is the operator L that is depicted in (2-3).
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It is not known whether the solution space to the m> 1 versions of (5-6) consists of
solely nondegenerate solutions, even if .�; �/ are chosen in a generic fashion. However,
if each Reeb orbit with `
 �L is either hyperbolic or m–elliptic, and if each of the
corresponding versions of (5-6) has solely nondegenerate solutions when `
 �L, then
CZL is a finite set.

All solutions to (5-6) are known for some specific choices of � and �:

(5-9)

� .�; �/D .1
4
k; i"eikt / is hyperbolic with rotation number k . Here, " > 0

but very small. Then there are no m> 1 solutions to (5-6).

� .�; �/ D .1
2

R; 0/ with R irrational. Then there is a unique solution to
(5-6) for each m, this being the vortex with ˛�1.0/D f0g. Moreover, the
latter is nondegenerate.

These last facts are proved in [26]. If (5-9) holds for each Reeb orbit 
 with `
 <L,
then the set CZL is precisely the set ZL

ech that gives the generators of the embedded
contact homology subcomplex CL

ech . In this case, ˆr is a map from ZL
ech into Mr ;

this is the map used in Theorem 4.2.

Part 4 As it turns out, the proof that embedded contact homology is isomorphic to
Seiberg–Witten Floer cohomology does not require knowledge of all solutions to (5-6).
Knowledge of the corresponding Hamiltonian Floer cohomology groups is sufficient.

To elaborate, Floer [2; 3] introduced his celebrated “Floer (co)homology” to resolve a
famous conjecture of Arnold that concerned closed orbits of time-dependent Hamilton-
ian vector fields on symplectic manifolds. What is written in (5-6) is an example of
just such a Hamiltonian dynamical system. In particular, if .�; �/ is a nondegenerate
pair, then there are well-defined, Z–graded Floer homology and cohomology groups
whose generators are solutions to a suitably generic compactly supported (on Cm/

perturbation of (5-6).

There is one subtle point here, involving the instantons that define the differentials.
In this context, an instanton is a smooth map from cW R� S1! Cm that obeys the
equation

(5-10) x@cCr1;0hjc D 0;

where x@ is a suitably defined version of the d –bar operator on c�T 1;0Cm! S1 �R.
The map c must also limit as s !˙1 to a solution of (5-6). In order to obtain a
well-defined differential for the Hamiltonian Floer (co)homology, it is necessary to
prove that the moduli space of instanton solutions to (5-10) can be compactified by
adding “broken trajectories”. This can be done when .�; �/ are either hyperbolic or
m–elliptic.
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In any event, it can be shown that there are well-defined Hamiltonian Floer (co)homology
groups for (5-6) when .�; �/ are either hyperbolic or m–elliptic. Furthermore, it can
be shown (using (5-9)) that the Hamiltonian Floer cohomology groups are as follows:

(5-11)

8̂<̂
:

Z if mD 1:

0 if m> 1 and .�; �/ is hyperbolic:

Z if m> 1 and .�; �/ is m–elliptic:

Suppose that each ‚ 2ZL contains only pairs .
;m/ such that 
 is either hyperbolic
or m–elliptic. Granted only this assumption, it is nonetheless the case that the points
in C‚ that are mapped by ˆr into Mr carry, in a suitable sense, the product of the
Hamiltonian Floer cohomology groups as defined by the various .
;m/ 2‚ versions
of (5-6). Somewhat more is said about this in the next subsection.

5.c Constructing the map ‰r in Theorem 4.3

This section is meant to give a rough indication of how ‰r is constructed. There are
three parts to what follows. The final two parts say something about what is involved
when (5-9) does not hold.

Part 1 The idea is to mimic as much as possible what is done in the Gr) SW article
in [22]. As done there, the first step constructs an approximate solution to (3-18) such
that the connection is flat except very near to the given curve in M1.‚�; ‚C/, the
section of S lies only in the E summand, and this section of E is covariantly constant
with norm 1 except very near the given curve. Step 2 uses perturbation theoretic
techniques to find an honest solution to (3-18) that differs little from the approximate
one. There are, however, serious new issues that do not arise in [22], relating to the
behavior of the elements of M1.‚�; ‚C/ where jsj is large on R�M .

To elaborate on this last point, suppose that † � R �M is an embedded, pseudo-
holomorphic curve. As such, † has a well-defined normal bundle, N ! †, and a
fixed radius disk bundle N1 � N with an exponential map e†W N1 ! R�M that
immerses N1 and embeds a neighborhood of the zero section as a neighborhood of †.
Even so, there need not exist a fixed radius disk subbundle of N that is everywhere
embedded by e† . The point being that the constant s slices of distinct ends of † can
limit as s !˙1 to the same Reeb orbit. In addition, the constant s slices of any
given end need not define a degree 1 braid in the tubular neighborhood of the nearby
Reeb orbit.

These remarks about the fixed radius disk bundle are relevant because the constructions
in the article Gr) SW from [22] require an embedding of just such a bundle. When
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a fixed radius disk bundle is embedded by e† , then the constructions in [22] can be
copied with only minor changes to produce an approximate solution to (3-18) and then
a deformation of the latter to an honest solution. In this regard, the approximate solution
has the following appearance: Use the exponential map to identify the fixed radius
subbundle of N1 with a tubular neighborhood of † in R�M . The pullback of the
connection and the section of E to any given fiber of N1 differs little from the pullback
of a solution to (5-1) via the map from C to C that sends any given z 2C to r1=2z .

In general, only the following can be guaranteed: Given R> 1, there exists � > 0 such
that e† embeds the radius � disk bundle in N1 where jsj<R. This understood, the con-
structions in the article Gr) SW from [22] need modifications at large jsj on R�M .
The full details are given in [26; 28]; they account for the length of these papers. Said
briefly, the approximate solution at moderate values of jsj is constructed as in the article
Gr) SW from [22]. At points where s��1, the curve † is very near the s��1 part
of a union of R–invariant cylinders, each of the form R�
 with 
 �M a Reeb orbit.
The constructions in Gr) SW from [22] are applied using these cylinders in lieu of † to
obtain an approximate solution where s��1. Likewise, the constructions in Gr) SW
from [22] are applied to the s�1 part of another union of R invariant cylinders to obtain
the approximate solutions on this same part of R�M . The approximate solutions on
these three regions in R�M are then glued together where the regions overlap so as to
obtain an approximate solution on the whole of R�M . It is a consequence of (5-3) that a
gluing of this sort will result in a pair .A�;  �/ that nearly solves (3-18) when r is large.

With the approximate solution in hand, a perturbative construction finds a nearby .A;  /
that obeys (3-18) on the nose. The latter construction is somewhat more complicated
than that in Gr) SW from [22].

Part 2 The assumption in (5-9) greatly simplifies matters. The analog of Theorem 4.3
when (5-9) is not assumed is very much more complicated. The complications are
twofold: First, ˆr now associates to each ‚ 2 ZL a set, ˆ‚ , of elements in Mr .
These elements do not all have the same degree and there will, in general, be instanton
solutions to (3-19) with both s!�1 limit and s!C1 limit in ˆ‚ . With degrees
and signs taken into account, these sorts of instantons compute the product of the
Hamiltonian Floer cohomology given in (5-11) for the various pairs .
;m/ 2‚.

Meanwhile, if ‚� and ‚C are distinct elements in ZL , there may be instanton
solutions with s!�1 and s!C1 limits in respectively ˆ‚� and ˆ‚C . However,
the set of such solutions is not necessarily in 1–1 correspondence with M1.‚�; ‚C/.
If (5-9) does not hold, then each instanton in M1.‚�; ‚C/ can determine a number
of instanton solutions to (3-19), even when both ˆ‚� and ˆ‚C consist of a single
element. To say more about this last point, recall that an approximate solution to (3-19)
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for, say s��1, is constructed using as template what is done in Gr) SW from [22]
with the pseudoholomorphic curve taken to be a product of cylinders. The template
from the article Gr) SW in [22] requires a solution to (5-10) for each such cylinder.
In this regard, the s!�1 limit of the solution for a cylinder R�
 with .
;m/2‚�
must be a solution c
 to (5-6). However, the s!1 limit must be quite different since
it has to match up with what is done at moderate values of jsj using the template from
Gr) SW from [22] as applied to the given †�M1.‚�; ‚C/. The precise behavior
of ˛�1.0/ at large s is determined by the various versions of (2-6) that come from
the ends of † whose constant s slices converge as s!�1 to 
 . In particular, the
solution to (5-10) must be such that supt2S1fdist.˛�1.0/; 0/j.s;t/g diverges as s!1.
The story is even more complicated if there are two or more ends involved and they
have distinct versions of what is denoted as qE in Section 2.b.

In the case when (5-9) holds, there is but a single relevant solution to (5-10); and the
story, though still long, is more or less straightforward. If (5-9) does not hold, then
there may be many relevant solutions to (5-9), and then each will determine a distinct
instanton solution to (3-19).

Part 3 The upshot of all of this is that when (5-9) does not hold, the proof that the em-
bedded contact homology is isomorphic to Seiberg–Witten Floer cohomology requires
much more work, both on the analytic side and on the algebraic side. What follows
is meant to give a rough indication of what is involved on the algebraic side: Each
element in ZL determines some number of generators in CSW . This is the case even for
elements that are not in ZL

ech and so are not considered generators of CL
ech . Note that an

element in ZL�ZL
ech pairs one or more hyperbolic Reeb orbits with an integer greater

than 1. In any event, with the differentials taken into account, each ‚2ZL determines
a submodule, Zˆ‚ � CSW . Let L1 <L2 < � � � denote the ordered set of numbers that
can be obtained as

P
.
;m/2‚ m`
 with ‚ 2 ZL . If r is sufficiently large, then the

af ���Lr subcomplex of the Seiberg–Witten Floer cochain complex can be filtered as

(5-12) � � � �
L

‚2ZLk

Zˆ‚ �
L

‚2ZLkC1

Zˆ‚ � � � � :

The E2 term of the corresponding spectral sequence is isomorphic to the free Z module
generated by the generators of CL

ech . This follows from the aforementioned fact that
the cohomology of Zˆ‚ is isomorphic to the product of the various .
;m/ versions
of (5-11). In particular, this cohomology is isomorphic to either Z or 0 with Z arising
if and only if ‚ is in ZL

ech and so gives a generator of CL
ech . The induced differential

on the E2 term of the spectral sequence corresponding to (5-12) should be identical
to the differential on CL

ech .
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Appendix: .ı;L/ approximations

This appendix consists of two subappendices A and B. The first gives a proof of
Proposition 2.5; the second states some observations about the proof.

A Proof of Proposition 2.5

Let RL denote the set of Reeb orbits for a with symplectic action less than L. To set
the stage for the constructions that follow, agree to associate a tubular neighborhood
map from S1�D as described in Sections 2.a and 2.b for each Reeb orbit in RL . Since
there are but a finite number of such Reeb orbits, no generality is lost by assuming that
these tubular neighborhood maps have pairwise disjoint image. When 
 2RL , the
associated tubular neighborhood map is denoted by '
 . This map is used to identify
its image and domain so as to view the 1–form a near 
 as the 1–form on S1 �D

that is given by `
 times what is written on the right hand side of (2-1). Although
not strictly necessary for what follows, it nonetheless proves convenient to choose '

so that the following is true: If 
 is elliptic, then the rotation number R is between 0
and 1. If 
 is hyperbolic, then its rotation number is either 0 or 1.

Use '
 to define the functions .�; �/ that appear in (2-1). This done, fix a homotopy
f� ! .�� ; �� /g�2Œ0;1� as described in Lemma 2.3 with .�0; �0/D .�; �/. Choose this
homotopy to be independent of � near 0 and near 1.

What follows describes how the proof proceeds: Let Q denote a very large integer. The
plan is to define a sequence f.ak ;Jk/gkD0;1;:::;Q such that .a0;J0/D .a;J / and such
that for each k 2 f0; : : : ;Qg, all but the fourth item in (2-11) are satisfied if yaD ak

and yJ D Jk . For k � 1, the latter is replaced by

(A-1)

�
2�

`

'�ak D .1� 2��Dk=Qjzj

2
���Dk=Qxz

2
� x��Dk=Qz2/ dt

C
i

2
.z dxz�xz dz/

� '�T 1;0.R�M / is spanned by

dsC i'�ak and
`


2�
.dz� 2i.��Dk=QzC��Dk=Qxz/ dt/:

An inductive argument is used to make these constructions. A lower bound for the
integer Q is described below.

Three facts play a prime role in the construction of the sequence f.ak ;Jk/gkD1;2;::: .
Here is the first:
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(A-2)

The assignment of .�; t/2 Œ0; 1��S1 to any given Reeb orbit’s version
of the pair .�� .t/; �� .t// defines a smooth map to R � C . The
derivatives of this map to any given fixed order enjoy a uniform bound
that is independent of 
 2RL .

To state the second key fact, introduce L0 to denote the smallest of the lengths of all
closed Reeb orbits.

(A-3)

For any given positive integer q�L�1
0

LC1, there is a positive lower
bound, independent of 
 2RL and � 2 Œ0; 1�, to the absolute value
of any eigenvalue of the corresponding .�� ; �� / version of (2-3) on
the space of 2�q–periodic functions.

The statement of the third fact requires a digression to set the notation. To start it, fix
generators ‚� and ‚C from ZL

ech . An element from J ’s version of M1.‚�; ‚C/

consists of some number of R–invariant cylinders with integer weights, and one non–
R–invariant, irreducible submanifold. Let C denote either one of these cylinders, or
the non–R–invariant submanifold. Deformations of C that preserve to first order the
J invariance of its tangent space can be viewed with the help of a suitable exponential
map as sections of the normal bundle N ! C that obey a certain first order, R–linear
elliptic equation. The linear operator that defines this equation is denoted by DC .
This is the operator in (2-8) that was briefly described in the paragraph that follows
Lemma 2.2. As noted there, it defines a bounded, Fredholm map from L2

1
.C IN / to

L2.C IN ˝T 0;1C /. In this guise, its cokernel is trivial, and so it has an inverse that
gives a bounded, linear map to the L2 orthogonal complement of its kernel. This
kernel is trivial if C DR� 
 . The inverse of DC is denoted by D�1

C
.

With this notation set, here is the third point:

(A-4)
There is a bound, independent of .‚�; ‚C/ and C from
M1.‚�; ‚C/, to the norm of D�1

C
.

To explain, remember that there are but a finite number of pairs .‚�; ‚C/ to choose
from, and for each, there are but a finite number of components in M1.‚�; ‚C/.
Thus, up to the action of R, there are but a finite number of possible choices for C .
The lower bound for the integer Q is determined by the bounds in (A-2), (A-3) and
(A-4). To this end, let �0 denote the bound that is alluded to in (A-3) and let �0 denote
the bound that is alluded to in (A-4).

To initiate the induction, note that .a0;J0/ are such that .ya D a0; yJ D J0/ satisfy
(A-1) and all but the fourth item of (2-11). Suppose that k 2 f1; 2; : : : ;Q�1g and that
a pair .ak ;Jk/ have been defined so that .yaD ak ; yJ D Jk/ satisfies all but the fourth
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item of (2-11) and (A-1) if k � 1. The assertion in (A-4) also holds when M1. � ; � / is
defined using Jk . This is because the set of subvarieties in question is finite.

The induction from k to kC 1 requires one additional and crucial input: a constant,
�� � 1, whose definition follows. To start, let 
 2RL and let C DR� 
 . For each
� 2 Œ0; 1�, use L� to denote the version of (2-3) that has 
 ’s version of .�; �/ replaced
by .�� ; �� /. For each integer q 2 f1; : : : ;L0=LC 1g, let DC;�;q denote the operator
@=@sCL� with domain the space of complex valued, L2

1
functions on R� .R=2�qZ/

and range the space of complex valued, L2 functions on R� .R=2�qZ/. By virtue of
(A-3), this operator is invertible. Take �� to be a q , � and 
 2RL independent upper
bound for the norm of this inverse. This constant �� is determined by �0 and a sup
norm bound for all 
 2RL versions of the pair .�; �/.

The completion of the induction from k to k C 1 is presented below in eight parts.
Before starting, take note of the convention used here that c0 denotes a constant that is
independent of the relevant variables. Its value is greater than 1 and it can be assumed
to increase between subsequent appearances.

Part 1 To construct a candidate for akC1 , remark first that there exists, by assumption,
some �k� ı with the following significance: Let 
 2RL ; and use '
 again to identify
a tubular neighborhood of 
 with S1 �D . The 1–form ak on the jzj < �k part of
S1�D is given by the version of (2-1) that has .�; �/ replaced by .��Dk=Q; ��Dk=Q/.

The construction of akC1 also requires a smooth, nonincreasing function, �W Œ0;1/!
Œ0; 1� with value 1 on Œ0; 5

16
� and value 0 on Œ 7

16
;1/. This function should be fixed

once and for all. Given � > 0 with �� �k , define a function �� on D to equal

(A-5) �� D
k

Q
C

1

Q
�

�
1

�
jzj

�
:

So �� D .kC 1/=Q where jzj � 1
4
� and �� D k=Q where jzj> � . Note as well that

(A-6) jd��j � c0

1

Q
��1 and jrd��j � c0

1

Q
��2:

With � chosen as above, define the 1–form on S1 �D2 by the formula

(A-7)
2�

`

a� D .1� 2��� jzj

2
����xz

2
� x���z2/ dt

C
i

2
.z dxz�xz dz/C

�
1��

�
1

�
jzj

��
.� � � /;

where the terms indicated by the three dots on the right are identical to those that appear
in (2-1). It is a consequence of (A-6) that what is written in (A-7) defines a contact
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1–form when � is sufficiently small. To see this, remark that a� D ak where jzj> � ,
and that where jzj � � ,

2�

`

a� D dtC

i

2
.z dxz�xz dz/Cr0;

2�

`

da� D idz^dxz�2.���zC���xz/ dxz^dt�2.���xzC x���z/ dz^dtCr1;

(A-8)

where jr0j � c0jzj
2 and jr1j � c0.1=Q/jzj.

Define akC1;� as follows: If 
 2RL , set akC1;� to equal 
 ’s version of a� on the
image of '
 . Meanwhile, set akC1;� D ak on the complement of the union of these
tubular neighborhoods.

Lemma A.1 There exists � > 1 with the following significance: If Q> � and if � is
sufficiently small, then akC1;� satisfies the first and second items in (2-11) plus (A-1).

Proof of Lemma A.1 The proof has four steps.

Step 1 Let vk denote the Reeb vector field for the contact form ak and let vkC1;�

denote the Reeb vector field for akC1;� . The latter agrees with vk except near a Reeb
orbit from RL . Let 
 denote such an orbit. As before, use '
 to view a neighborhood
of 
 as a neighborhood of S1�f0g in S1�D . This done, then vkC1;� agrees with vk

except on the part of S1 �D where jzj< � . Meanwhile, it follows from the second
equation in (A-8) that

(A-9)
`


2�
vkC1;� D

@

@t
C 2i.���zC���xz/

@

@z
� 2i.���xzC x���z/

@

@xz
C v;

where

(A-10) jvj � c0

1

Q
jzj and jrvj � c0:

The formula for vkC1;� indicates first that 
 is also a vkC1;� Reeb orbit, and that it
is elliptic or hyperbolic as a vkC1;� Reeb orbit for all small � . It also indicates that

 ’s rotation number as a vkC1;� Reeb orbit is independent of � and identical to its
rotation number as vk and v orbit.

Step 2 This step proves that every vk;� Reeb orbit with symplectic action less than L

lies in a tubular neighborhood of some Reeb orbit from RL . To this end, suppose that
there exists a sequence f�j gjD0;1;::: with limit zero and a corresponding sequence f
j g
of Reeb orbits for the �D �j version of vkC1;� , all with symplectic action as defined
by the �D �j version of akC1;� bounded by L. View these loops as images of maps
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from S1 into M . The bounds in (A-10) on vkC1;� and its first derivative guarantee
the existence of a convergent subsequence in C 1.S1IM / whose limit map has the
following property: Its image is a closed integral curve of vk with symplectic action
less than L. Thus, each large j version of 
j must lie in the image of '
 that is
associated to some Reeb orbit 
 2RL .

The following is a direct consequence: There exists �0 such that if � is less than �0

and if 
 0 is a vkC1;� Reeb orbit with symplectic action less than L, then 
 0 lies in
the image of the tubular neighborhood map '
 that is associated to some Reeb orbit

 2RL .

Step 3 A virtual repeat of what is said in Step 2 strengthens Step 2’s conclusions
as follows: Given � > 0, there exists �� such that if � < �� and if 
 0 is a vkC1;�

Reeb orbit with symplectic action less than L, then 
 0 lies in the image of the tubular
neighborhood map '
 that is associated to a Reeb orbit 
 2RL . Moreover, if 
 0 is
such a vkC1;� Reeb orbit, and if it lies in '
 .S1 �D/, then the coordinate z for D

obeys jzj � � on 
 0 .

Step 4 Let 
 2 RL and let 
 0 denote a vkC1;� Reeb orbit with symplectic action
less than L that lies in '
 .S1 �D/. Suppose for the sake of argument that 
 0 ¤ 
 .
Let q denote the winding number of 
 0 in S1 �D . It follows from (A-9) that 
 0 can
be viewed as a 2�q periodic map from R to S1 �D by parametrizing it so that the
pullback of dt is the Euclidean 1–form on R. This done, use z0W R=.2�qZ/!C to
denote the function that sends t ! z.
 0.t// 2C .

Let y�W R=.2�qZ/!R denote the map whose value at any given point t 2R=.2�qZ/
is that of ��� at .t; z0.t//. Define y� in an similar fashion. It then follows that

(A-11) jy� � ��Dk=QjC jy����Dk=Qj � c0

1

Q
:

Here, c0 depends solely on the first derivative bounds that are alluded to in (A-2).

The preceding inequality implies that the function z0 is a 2�q–periodic solution to an
equation that has the schematic form

(A-12)
i

2

d

dt
z0C ��Dk=Qz0C��Dk=Qxz

0
D r where jr j � c0

�
1

Q
jz0jC jz0j2

�
:

Step 5 Let �0 > 0 again denote the eigenvalue bound that is alluded to in (A-3). Let
c0 denote the specific constant that appears in (A-12). Then (A-12) requires z0 D 0

if Q is chosen so that Q�1 � .100c0/
�1�0 . With this choice of Q, each Reeb orbit

for any �� �k version of vkC1;� with symplectic action less than L must be a loop
from RL .
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Given Lemma A.1, each �� �k version of akC1;� is a candidate for akC1 .

Part 2 This part of the proof defines an almost complex structure that is compatible
with each such small � version of akC1;� . This almost complex structure is denoted
in what follows by JkC1;� .

To start, set JkC1;� equal to Jk on the complement of images of the tubular neighbor-
hood maps for the Reeb orbits in RL . Now let 
 denote such a Reeb orbit, and let
'
 denote its tubular neighborhood map. As before, use '
 to identify S1 �D with
a neighborhood of 
 . Since JkC1;�.@=@s/ D vkC1;� , the only ambiguity concerns
the action of JkC1;� on the kernel of akC1;� . A look at (A-1) and (A-7) indicates
that JkC1;� can be chosen so as to have the following properties: First, JkC1;� D Jk

except at points where jzj � � . Second,

jJkC1;� �Jk j � c0

1

Q
jzj(A-13)

jr.JkC1;� �Jk/j � c0

1

Q
and jr

2.JkC1;� �Jk/j � c0

1

Q
��1:with

Third, the ' pullback of the JkC1;� version of T 1;0.R �M / is spanned by ds C

i'�akC1;� and by .`
=2�/.dz� 2i.���zC���xz/ dt/ at points where jzj � 1
4
� . Fix

JkC1;� with these properties.

Part 3 The next task is to construct a 1–1 map from the set of components of the
Jk version of M1.‚�; ‚C/ to those of the JkC1;� version. To start, take † from
the Jk version of M1.‚�; ‚C/. Then each R–invariant cylinder from † is JkC1;�

pseudoholomorphic because each has the form R�
 with 
 2RL . Let C �† denote
the component that is not R–invariant. Then C is JkC1;� pseudoholomorphic except
where it intersects the product of R with a tubular neighborhood of a Reeb orbit in
RL . To say more on this, let 
 denote such a Reeb orbit. Again use '
 to identify
S1 �D with its '
 image. Given R> 1, there exists �R� �k such that if � < �R ,
then the intersection of C with the jzj< � part of R� .S1�D/ can occur only in the
following two ways:

(A-14)

� Intersection occurs in a disk of radius R�1 in C centered around each
point from the finite set where C intersects R� 
 .

� Intersection can occur where jsj>R on those ends of C that are labeled
by a pair from ‚�[‚C whose Reeb orbit component is 
 .

Let �C;� denote the characteristic function of the support of jJkC1;� �Jk j on C .
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In any event, (A-13) implies that C is nearly JkC1;� pseudoholomorphic in that
each of its tangent planes is nearly JkC1;� invariant. Moreover, C is nearly JkC1;�

pseudoholomorphic in an L2 sense. To elaborate, reintroduce the normal bundle
N ! C and let � W T .R �M /jC ! N denote the orthogonal projection. It then
follows from (2-6), (A-13) and (A-14) that

(A-15)
Z

C

j� ıJkC1;�j
2
� c0

1

Q2
�2:

The relatively small L1 and L2 norms of � ıJkC1;� suggest a perturbative construc-
tion of a 1–1 map from the set of components of the Jk version of M1.‚�; ‚C/ to
the set of components of the JkC1;� version that pairs components so as to satisfy the
third item in (2-11). Such a construction is given in the three steps that follow.

Step 1 This step sets up this perturbative construction. To start, fix a component of
the Jk version of M1.‚�; ‚C/ and take † in this component. A partner for † in the
JkC1;� version of M1.‚�; ‚C/ is described next. This partner has the same set of
R–invariant cylinders with the same integer weights as does †. Let C �† denote the
component that is not R–invariant. The analogous component of the partner to † is
constructed as a deformation of C that comes via a section of C ’s normal bundle N by
composing the section with a suitably chosen exponential map from a disk subbundle
in N to R�M .

To say more, suppose that N1�N is a constant radius disk subbundle and suppose that
eC W N1!R�M is an exponential map that embeds each fiber disk as a pseudoholo-
morphic disk. Such maps are constructed in Section 5d of SW) Gr from [22]. Note
that eC cannot embed the whole of N1 unless each pair in ‚�[‚C has its second
component equal to 1. In any event, given eC , let � denote a section of N1 over †
which has jsj !1 limit equal to zero. Then eC ı � is JkC1;�–pseudoholomorphic if
and only if it obeys an equation that has the schematic form

(A-16) DC�C p1 � �C .R1.�/C p2/ � rC�CR0.�/C p0 D 0:

To elaborate for a moment on the notation, DC denotes the operator that appears in
(2-8). Meanwhile, p1 is a zero–th order, R–linear operator that obeys jp1j � c0.1=Q/

and with support in the two regions that are listed in (A-14). What is called p2 in (A-16)
is a homomorphism with support where JkC1;� ¤ Jk . It has norm jp2j � c0.1=Q/� ,
because it is bounded by c0jJkC1;� � Jk j. What is denoted by p0 is obtained from
� ı JkC1;� by restricting the latter to the (0, 1) tangent space of C . Finally, R1

denotes a fiber preserving map from N1 to Hom.T 1;0C;T 0;1C / and R2 denotes a
fiber preserving map from N1 to N ˝T 0;1C . By virtue of (2-6) and (A-13), these
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two maps obey

(A-17)

� jR1.b/j � c0

1

Q
jbj and jR0.b/j � c0jbj

2 .

� jrR1j � c0

1

Q
and jrR0j � c0

1

Q
jbj.

Step 2 Granted what was just said, a contraction mapping argument can be used to
find small normed solutions to (A-16) when � is small given that the linear term in
(A-16) is invertible as a map between suitable Banach spaces, and given that p0 has
suitably small norm as an element in the range Banach space.

Lemma A.2 There exists � > 1 with the following significance: Suppose that Q� � ,
that k 2 f1; : : : ;Qg and that f.ai ;Ji/g1�i�k has been constructed. If � is sufficiently
small, then DC C p2 � rC C p1 has bounded inverse as a map from the L2 –orthogonal
complement of the kernel of DC in L2

1
.C IN / to L2.C IN ˝T 0;1C /. Such is also

the case for the operator DC C �.p2 � rC C p1/ for each � 2 Œ0; 1�.

Note that the � ¤ 1 version of the lemma is needed only to compare respective ˙1

weights that are used to define the embedded contact homology differential. This
lemma is proved below in Part 7. Assume it for now.

The L2
1

norm does not dominate the L1 norm, and this makes L2
1

unsuitable as the
Banach space for the contraction mapping. However, a slightly stronger norm can be
used to define a suitable Banach space. To say more, introduce a norm on the space of
compactly supported sections of either N or N ˝TCC as follows: Its square assigns
to a section, � , the number

(A-18)
Z

C

j�j2C sup
z2C

sup
x2.0;1/

x�1=100

Z
dist.z; � /<x

j�j2:

The Banach space for the contraction mapping argument is the completion of the space
of compactly supported sections of N using the norm whose square assigns to any
given section � the sum of three terms. The first is the square of the L2

1
norm, and

the next two are the respective � D � and � D r� versions of (A-18). This space is
denoted by B1 and its norm is denoted by k � k� . An appeal to Theorem 3.5.2 in [17]
finds a constant, cC , such that j � j � cC k � k� . Note that this constant cC depends on
the curve C . Let B?

1
� B1 denote the subspace of elements that are L2 –orthogonal to

the kernel of DC .

Use B0 to denote the completion of the space of compactly supported sections of
N ˝T 0;1C using the norm whose square is depicted in (A-18). If DC Cp2 � rC Cp1
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has a bounded inverse mapping L2.C IN ˝ T 0;1C / to L2
1
.N /, then an argument

using Theorem 5.4.1 of [17] finds that the inverse of DC Cp2 �rC Cp1 restricts to B0

so as to define a bounded, linear map from B0 to B?
1

.

With the preceding understood, fix � > 0 so that elements of B1 with k�k�< 2� define
sections of the disk bundle N1 . Let U� � B?

1
denote the ball of radius � centered on

the origin and define the map T W U� ! B?
1

by setting

(A-19) T .�/D�.DC C p2 � rC C p1/
�1.R1.�/ � rC�CR0.�/C p0/:

Lemma A.3 There exists � 0 2 .0; �/ such that if � is sufficiently small then the
following is true: Suppose that C is a component of a submanifold in the Jk version
of M1.‚�; ‚C/. Then T defines a contraction mapping from U� 0 to itself. For such
� , the map T has a unique fixed point in U� 0 . Moreover, this fixed point has k � k�
norm bounded by cC� , and it is a smooth section of N that obeys (A-16). Here, cC is
independent of � but depends on C . In the case that C D R� 
 , this fixed point is
�D 0.

Proof of Lemma A.3 It follows from (A-13) and the first line in (A-17) that

(A-20) kT .�/k� � cC 1.k�k
2
�C �/;

where cC 1 is a constant that is independent of � but dependent on C . This last
bound implies that T maps the ball in B?

1
of radius 1

4
c�1

C 1
to itself when � < 1

8
c�2

C 1
.

Meanwhile, the second line in (A-17) implies that

(A-21) kT .�/� T .�0/k� � cC 2.k�k�Ck�
0
k�/k�� �

0
k�;

where cC 2 is a second C dependent but � independent constant. This last bound
implies that T maps the ball of radius � 0 to itself as a contraction mapping if � 0 <
1
4
.cC 1C cC 2/

�1 and if � is sufficiently small. The remaining assertions of the lemma
follow using standard elliptic regularity arguments as found in Chapter 5 of [17].

Step 3 Let C now denote the non–R–invariant component of †. With � very small,
let C 0 � R�M denote the immersed subvariety that is obtained from C using the
section � given by Lemma A.3. This subvariety is JkC1;� pseudoholomorphic by
construction. Introduce †0 to denote the union of C 0 and the other R–invariant
elements in † with their associated integer weights. As a parenthetical remark, note
that Proposition 11.4 in [12] implies the following: The union of the subvarieties that
comprise †0 is an embedded subvariety in R�M . In any event, †0 defines an element
in the JkC1;� version of M1.‚�; ‚C/.
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The association of † to †0 is an injective map from the set of components of the
Jk version of M1.‚�; ‚C/ into the set of components of the JkC1;� version of
M1.‚�; ‚C/. This map is denoted in what follows by F .

Part 4 This part verifies that if � is sufficiently small, then the components of the
JkC1;� version of M1.‚�; ‚C/ that lie in the image of F are smooth points in
this version of M1.‚�; ‚C/ in the sense of Lemma 2.2. It also verifies that the
correspondence that is defined by F satisfies the third item in (2-11) if yJ is replaced
there by JkC1;� .

Lemma A.4 Suppose that � is very small. Let †0 denote a subvariety from a compo-
nent of the JkC1;� version of M1.‚�; ‚C/ that is in the image of the map F . Let
C 0 denote a component of †0 . The associated deformation operator DC 0 has trivial
cokernel. Thus, the component of †0 in the JkC1;� version of M1.‚�; ‚C/ is an
orbit of the R–action on this space. Moreover, the sign that this component would
contribute to the embedded contact homology differential is the same as that of its
F –inverse image in the Jk version of M1.‚�; ‚C/.

Proof of Lemma A.4 The invertibility of DC 0 when C 0 is an R–invariant cylinder
from †0 is automatic since this operator doesn’t change when .ak ;Jk/ is replaced
by .akC1;�;JkC1;�/. Let C 0 denote the non–R–invariant component of †0 . Let †
denote the subvariety from the Jk version of M1.‚�; ‚C/ that gives rise to †0 , and
let C � † denote the non–R–invariant component that is used to construct C 0 via
Lemma A.3. Since C 0 is the image via the exponential map of a section of C ’s normal
bundle, it follows that C 0 is immersed and so has a normal bundle, N 0!C 0 . Note for
reference momentarily that Lemma A.2 asserts that DC C�.p2 �rC Cp1/ is invertible
for any constant � 2 Œ0; 1�.

Let � W N ! C again denote the normal bundle to C . Use the exponential map eC to
view C 0 as the graph in N of the section �. This identifies the normal bundle of C 0 with
the restriction of the bundle � �N to this graph. The view of C 0 as the graph of � also
supplies an R–linear isomorphism between T 0;1C and T 0;1C 0 . These identifications
allow DC 0 to be viewed as a bounded operator from L2

1
.C IN / to L2.C IN ˝T 0;1C /.

As such, it has the form DC C p2 � rC C p1C r where r has operator norm as a map
from B1 to B0 that is bounded by cC ".�/ where �! ".�/ is a decreasing function
with limit 0 as �! 0. Meanwhile, cC is independent of � but not C . Indeed, the
latter fact follows because the derivative terms in r have coefficients bounded by cC j�j

and the zero–th order terms in r have coefficients bounded by cC jr�j. The operator
norms of these terms can be bounded by cC k�k� using, respectively, Theorem 3.5.2
and Lemma 5.4.1 in [17].

Geometry & Topology, Volume 14 (2010)



2574 Clifford Henry Taubes

Granted that DC C p2 � rC C p1 is invertible, it follows from what was just said about
r that any sufficiently small � version of DC 0 has trivial cokernel when viewed as a
map from L2

1
.C 0IN 0/ to L2.C 0IN 0˝T 0;1C 0/. The fact that DC 0 has trivial cokernel

implies that the †0 is a smooth point of the JkC1;� version of M1.‚�; ‚C/ in the
sense of Lemma 2.2. Thus, its component is isomorphic to R with tangent vector field
the generator of the R action that is induced by the constant translations on the R
factor of R�M .

The small norm of DC 0�.DCCp2 �rCCp1/ and the fact that .DCC�.p2 �rCCp1//

is invertible for all � 2 Œ0; 1� imply that the sign contribution of the component of †0

to the embedded contact homology differential is the same as that of the component
of †. Here is why: These signs are defined using the determinant line bundles for the
operators DC 0 and DC . The linear interpolation between DC 0 and DC Cp2 �rC Cp1

provides a canonical isomorphism between the respective determinant lines, as does the
linear interpolation between DC C p2 � rC C p1 and DC . Meanwhile, the orientations
that are defined by the R actions on the components of the respective Jk and JkC1;�

versions of M1.‚�; ‚C/ are compatible as the construction of C 0 from C is R–
equivariant.

Part 5 Make a very small perturbation akC1;� and JkC1;� so that the resulting contact
structure is in Lemma 2.1’s residual set and so that the complex structure comes from
the set JakC1;�

. The difference between the perturbed and unperturbed pair should have
support in the radius tubular neighborhood of the Reeb orbits in RL , but its support
should be disjoint from these Reeb orbits, and from the pseudoholomorphic curves that
appear in F ’s image. Note in this regard that the projection to M of the union of the
curves that appear in elements from F ’s image defines a codimension 1 subvariety
in M . The arguments to justify that such perturbations exist are very much like those
used in Section 4 of [14] and will not be presented. These differences between the
perturbed and unperturbed pair can be as small as desired as measured with respect to
any q� 1 version of the C q norm, but in any event, this difference should have C 3

norm less than �3 . Make a very small perturbation. Agree to use .akC1;�;JkC1;�/

henceforth to denote this slightly perturbed version of the contact form and almost
complex structure given in Part 2.

Part 6 This part proves that the small � versions of the map F are onto. A very
similar argument proves that JkC1;� version of M0.‚�; ‚C/ is described by the third
item in (2-11) when � is small. The latter argument is not given.

To start the proof that small versions of F are onto, suppose to the contrary that
such is not the case so as to derive some nonsense. Under this assumption, there
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exists a decreasing sequence f��g�D1;2;::: with limit zero, and for each index � ,
there would exist a point †� in the JkC1;�� version of M1.‚�; ‚C/ that does not
arise as described from a point in the Jk version of M1.‚�; ‚C/. What are now
standard compactness arguments can be used to prove that the sequence f†�g has a
subsequence that converges to what is often called a broken trajectory. Indeed, the
limiting behavior is defined by a finite, ordered set ƒ D f†1; : : : ; †pg where any
given †j consists of a finite set of pairs of the form .S;m/ with S � R �M an
irreducible, Jk pseudoholomorphic subvariety and m a positive integer. Moreover,
there are constraints on the jsj !1 limits of the pairs that comprise any given †j .
The digression that follows is needed to describe these constraints.

To start the digression, suppose that .S;m/ 2 †j . The large jsj slices of any end
E�S converge as jsj!1 as a multiple cover of some Reeb orbit. If 
 is such a limit
Reeb orbit, define m
;S� to denote the multiplicity of this covering. Set m
;S� D 0 if

 is not multiply covered by the s!�1 limit of the constant s slices of any negative
end of S . Now associate to †j the set ‚j� whose elements are pairs of the form
.
; q/ where 
 is a Reeb orbit that is multiply covered by the s!�1 limit of the
constant s slices of some end in [.S;m/2†jS , and where q D

P
.S;m/2†j

mm
;S� .
Likewise define ‚jC .

What follows are the constraints on the pairs that comprise the elements from ƒ:

(A-22) ‚1� D‚�; ‚pC D‚C and ‚jC D‚jC1� for each j 2 f1; : : : ;p� 1g:

Note that these constraint imply that each ‚j˙ 2 CL
� . Given Equation (102) in [12] and

Propositions 11.4 and Corollary 11.5 in [12], it follows that ƒ has just one element and
that this element is in the Jk version M1.‚�; ‚C/. The argument here is essentially
the same as that used to Theorem 1.8 in [11]. See also the proof of Lemma 7.19 in [13].
Keep in mind that this limit element in the Jk version of M1.‚�; ‚C/ consists of a
set of disjoint cylinders with weights, and one non–R–invariant submanifold that is
disjoint from the cylinders. Let † denote the element in question.

The manner of convergence of the subsequence of f†�g�D1;2;::: to † is described
next. There is a sequence fs�g�D1;2;::: 2 R such that the translation s! s� of †�
along the R factor of R�M gives a new subsequence, now renamed f†�g�D1;2;::: ,
such that

(A-23)

� lim�!1
�
supz2.

S
.C;m/2†�

C / dist.z; †/Csupz2.
S
.C;m/2† C / dist.z; †�/

�
D 0.

� lim�!1
P
.C;m/2†�

m
R

C w D
P
.C;m/2† m

R
C w for any 2–form w

on R�M with compact support.
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The sort of convergence that is dictated in (A-23) requires the existence of a 1–1
correspondence between the set of components of any sufficiently large � version
of †� and the set of components of †. This correspondence is such that if .S;m/ is
a component of † and .S� ;m�/ � †� , then the convergence in (A-23) holds with
.S� ;m�/ replacing †� and .S;m/ replacing †.

Granted this last point, the contraction mapping theorem argument from Lemma A.3
proves that the partner from any sufficiently large � version of †� to an R–invariant
cylinder in † must coincide with this cylinder and its respective †� and † integer
weights must agree. Here is why: Let C denote a pseudoholomorphic subvariety for
any given almost complex structure compatible to any given contact 1–form. Suppose
that C is not R invariant. View �.C / as a cycle in M and write the boundary of
this cycle as @CC � @�C , where @˙C are the respective positive integer weighted
sums of Reeb orbits that arise by taking the s!˙1 limits of the constant s slices
of C . Then these two weighted sums cannot be equal because the integral over C of
the exterior derivative of the contact form is strictly positive.

Meanwhile, any partner in a sufficiently large � version †� to the non–R–invariant
component of † must be that given via Lemma A.3 and its contraction mapping.
These conclusions contradict the assumptions made at the outset as they imply that the
component of each large � version of †� in the JkC1;�� version of M1.‚�; ‚C/

is in the image of the 1–1 map from the set of components of the Jk version of
M1.‚�; ‚C/.

Part 7 Proof of Lemma A.2 The assertion follows by construction when C 0 is an
R–invariant cylinder. Consider the case when C 0 is not R–invariant. Let † denote
the subvariety in the Jk version of M1.‚�; ‚C/ that is paired by F with †0 and let
C �† denote the non–R–invariant component that gives rise to C 0 via Lemma A.3’s
contraction mapping.

As noted previously, the operator norm of p2 � rC is bounded by cC 1� where cC 1

depends on C but not on � . This understood, Lemma A.2 follows with a proof that
DC C �p1 also obeys its conclusions if � is small.

To prove the latter assertion, note that p1 is nonzero only on the domains that are
described by (A-14). The contribution to the operator norm of p1 from the disks
that are described in the first item of (A-14) is bounded by c0R�1 since p1 has a
�–independent point wise bound and the disks have area R�2 . Granted that such is
the case, the Sobolev theorems in dimension 2 imply the following: Given � 2 .0; 2/,
there exists a constant c0.�/ � 1 such that the contribution of this part of p1 to the
norm is less than c0.�/R

�� .
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This understood, let p1C denote the part of p1 with support far out on the ends of C .
Granted what was just said about p1� p1� , it is sufficient to prove that all sufficiently
small � versions of DC C p1C obey the conclusions of Lemma A.2 when � is small.

To prove the latter assertion, fix R� 1 so that the jsj �R portion of C is far out on
C ’s ends. Take � small so as to guarantee that p1C has support only where jsj> 100R.
Let uR denote the function on R that equals 0 where jsj < R, equals .jsj=R� 1/

where jsj 2 ŒR; 2R� and equals 1 where jsj > 2R. This function is Lipschitz. Now
write

(A-24) k.DC C p1C/�k
2
2 D kuR.DC C p1C/�k

2
2Ck.1�uR/DC�k

2
2:

Note that p1 is absent from the far right term in (A-24) by virtue of the fact that p1

is zero whereas 1 � uR is not. Commute the functions uR and .1 � uR/ past the
derivatives to obtain

(A-25) k.DC C p1C/�k
2
2 � .1� c0R�1/k.DC C p1C/.uR�/k

2
2

CkDC ..1�uR/�/k
2
2� c0R�1

k�k22:

The next point is that uR� has support far out on the ends of C . This is to say that each
component of the support of uR in C sits where C is represented as a multi-valued
graph over either the s � R or s � �R part of some R–invariant cylinder; this as
depicted in (2-6). To see what this implies, suppose that E � C is an end, and let 

denote the associated Reeb orbit. Represent E as in (2-6) where the eigenfunctions and
eigenvalues are those of the operator Lk that is given by replacing 
 ’s version of .�; �/
in (2-3) with .��Dk=Q; ��Dk=Q/. The operator DC on E differs from @=@sCLk by
terms that are bounded by c0e�2�s with � an eigenvalue of Lk that is respectively
positive or negative when E is positive or negative. Since jp1j � c0.1=Q/, this implies
that

(A-26) k.DC C p1C/.uR�/k
2
2 �

�
1� c0

�
1

Q
CR��

��
��2
� kuR�k

2
2;1:

Here, k � k2;1 denotes the L2
1

norm. Meanwhile, with
Q

C denoting the L2 projection
orthogonal to the kernel of DC ,

(A-27) kDC ..1�uR/�/k
2
2 � �

�2
k




Q
C

..1�uR/�/



2

2;1
:

Here, �k is a bound on the inverse of DC . These last three equations imply that any
sufficiently small � version of DC Cp1 is invertible as a map from the L2 –orthogonal
complement in L2

1
.C IN / of the kernel of DC to L2.C IN ˝T 0;1C /.
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Part 8 Given what has been said in the preceding parts, all sufficiently small � versions
of the pair .akC1;�;JkC1;�/ are such that all but the fourth item of (2-11) are obeyed
with yaD akC1;� and yJ D JkC1;� . As (A-1) is obeyed, the induction can proceed with
akC1 and JkC1 set equal to any very small � version of akC1;� , JkC1;� .

B Preferred .ı;L/ approximations

A .ı;L/ approximation to .a;J / of the sort just constructed will be called a preferred
.ı;L/ approximation. The construction of such an approximation requires the following
choices: For each 
 2RL , a suitable tubular neighborhood map '
 must be chosen.
This being done, a suitable homotopy f� ! .�� ; �� /g�2Œ0;1� for the '
 version of the
functions .�; �/ must be selected. With the latter in hand, a very large integer, Q,
is chosen next. Given Q, a choice must be made, for each k 2 f1; : : : ;Q� 1g, of a
positive, but sufficiently small number, � . In addition, a choice must be made of a very
small perturbation of .akC1;�;JkC1;�/ as described in Part 5 above.

The following proposition can be used to compare preferred .ı;L/ approximations
that are defined by different choices.

Proposition B.1 Suppose that L1 > L0 > 1 are such that there is no generator
‚ 2 Cech with

P
.
;m/2‚ m`
 equal to either L1 or L0 . Let .ya0; yJ 0/ and .ya1; yJ 1/

denote given preferred, .ı;L0/ and .ı;L1/ approximations to .a;J /. There exists a
smoothly parametrized family fx! .yax;J x/gx2Œ0;1� of contact form and compatible
almost complex structure with the following properties:

� The end members are the given .ya0; yJ 0/ and .ya1; yJ 1/.

� If � > 0 is such that .ya0; yJ 0/ and .ya1; yJ 1/ are described by the L–version of
the three bullets in Proposition 2.5, then such is case for each x 2 Œ0; 1� version
of .yax; yJ x/.

� Each x 2 Œ0; 1� member of the family obeys all but the fifth item in (2-11); and
the latter is obeyed if x is from a certain residual subset of Œ0; 1�.

Proof of Proposition B.1 What follows outlines the construction. The construction
starts by smoothly modifying the respective constructions for .ya0; yJ 0/ and .ya1; yJ 1/ so
as to smoothly decrease the various choices for the parameters f�kg that appear. These
are decreased so that the largest, �0 , is very much smaller than the smaller of those
originally chosen. In particular, straightforward modifications to the constructions from
the preceding part of this appendix will create two such families; one is parametrized
by x 2 Œ0; 1

8
� and starts at .ya0; yJ 0/, the other is parametrized by x 2 Œ7

8
; 1� and ends

at .ya1; yJ 1/. This is done so that both families obey the conclusions of the second
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and third bullets of Proposition B.1; and so that the end member of the first and the
starting member of the second obey the conclusions of the �0 and L version of the three
bullets in Proposition B.1. If �0 is sufficiently small, a second, also straightforward set
of modifications to the constructions used in the preceding part of the appendix will
construct the remaining, x 2 .1

8
; 7

8
/, part of the desired family. Note in this regard that

the set of homotopy choices f�.�� ; �� /g�2Œ0;1� that are needed for defining .ya0; yJ 0/

and .ya1; yJ 1/ is contractible; this because the universal cover of Sl.2IR/ is contractible.

As remarked above, the needed modifications to the constructions in the preceding part
of this appendix are straightforward; this being the case, the details are omitted.
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